1
|
Ma C, Ma B, Wang J, Wang Z, Zhou B, Chen X. Grade identification of ripened Pu-erh teas, and their differences of phenolic components, in vitro antioxidant capacity and hypoglycemic effect. Food Chem X 2025; 27:102421. [PMID: 40248321 PMCID: PMC12005310 DOI: 10.1016/j.fochx.2025.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Tea grade causes chemical differences. To reveal its detailed impact, chemical constitute and in vitro antioxidant capacity were determined in 20 ripened Pu-erh teas (RiPT). Their inhibitory activity on α-amylase and α-glucosidase were calculated to evaluate hypoglycemic effect. Results confirmed pile-fermentation as the main effective factor for chemical and functional differences among four series of RiPT. Furthermore, partial least squares-discriminant analysis and heat map analysis both accomplished the discrimination of high grade (G1) from middle grade (G3 and G5) and low grade (G7 and G9). Particularly, several phenolics like theaflavins, (-)-epigallocatechin (EGC), rutin and quercetin contributed to grade identification. Due to phenolics difference, RiPT grade showed positive correlation with antioxidant capacity and hypoglycemic effect. Characteristic antioxidants and inhibitors existed in RiPT with significantly positive (P < 0.05 and r > 0.75) correlations. Concretely, theaflavins, EGC, theabrownins, gallic acid, rutin and quercetin enhanced its antioxidant capacity and hypoglycemic effect.
Collapse
Affiliation(s)
- Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingsong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiacai Wang
- Qianxinan Academy of Agricultural and Forestry Sciences, Xingyi 562400, China
| | - Zihao Wang
- Xinyang College of Agriculture and Forestry, Xinyang 464000, China
| | - Binxing Zhou
- College of Tea, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Li W, Yi L, Gu Y, Ren D, Dong W. Investigation on the Lipid Profile of Ripened Pu-erh Tea and Relationships Between Their Changes and Key Aromatic Volatiles. J Sep Sci 2025; 48:e70133. [PMID: 40226889 DOI: 10.1002/jssc.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Ripened Pu-erh tea is a special tea with unique flavor and obtained by solid fermentation of microorganisms. This work aimed to investigate the changes of lipid metabolites during fermentation and the association between lipids and the aroma of ripened Pu-erh tea based on ultra-high-performance liquid chromatography-high resolution mass spectrometry and GC-MS. A total of 217 lipids and lipid-soluble substances covering 19 subclasses were detected and characterized. Compared with green tea, black tea, and raw Pu-erh tea, ripened Pu-erh tea showed the highest levels of fatty acids. The contents of 36 lipids varied remarkably with fermentation time, and thus these compounds were screened as differential metabolites. These changes were mainly caused by the degradation of glycerophospholipids (folds change: 0.48-0.13) and the formation of fatty acids (folds change: 5.2-11.2). Results of Pearson correlation analysis showed that a few of the aromatic volatiles, including 2-octenal, 3,5-octadien-2-one, 2,4-heptadienal, and 2,6-nonadienal showed obvious negative correlations with phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, but significant positive correlations with fatty acids 18:2 and 18:1. This study provided a further understanding of the lipid composition of ripened Pu-erh and their changes during tea production.
Collapse
Affiliation(s)
- Wenting Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, People's Republic of China
| |
Collapse
|
3
|
Yang Z, Xie Y, Zhu Y, Lei M, Chen X, Jin W, Fu C, Yu L. Unraveling the flavor formation process of mellow and thick-type ripened Pu-erh tea through non-targeted metabolomics and metagenomics. Food Chem X 2025; 27:102424. [PMID: 40241696 PMCID: PMC12002954 DOI: 10.1016/j.fochx.2025.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Ripened Pu-erh tea (RPT) is renowned for its distinctive flavor and health benefits. However, its complex fermentation process poses challenges in ensuring consistency in production. This study investigated RPT flavor formation through sensory evaluation, multi-omics analysis, and multivariate statistical approaches. By day 24, the tea exhibited a reddish-brown infusion and a mellow, thick taste (MT_RPT), achieving the highest sensory score (94.0, P < 0.05). Sixteen flavor-related chemical components exhibited significant changes (P < 0.05). The contents of free amino acids, L-theanine, tea polyphenols, flavonoids, catechins, and thearubigins decreased. In contrast, the contents of total soluble sugars, caffeine, theobromine, epicatechin, and theabrownins (TBs) increased, reaching 74.1 mg/g, 65.38 mg/g, 3.13 mg/g, 3.33 mg/g, and 134.84 mg/g, respectively. Additionally, 33 nonvolatile metabolites (e.g., pelargonidin 3-O-glucoside, dihydroisorhamnetin, and puerarin) were significantly correlated with MT_RPT flavor (VIP > 1, |r| ≥ 0.8, P < 0.05) and influenced by key functional microbes, including Pantoea, Aspergillus, Brachybacterium, and Staphylococcus. By day 30, the infusion darkened, and sensory scores declined (81.4, P < 0.05), attributed to the dominance of Brevibacterium. This microbial shift reduced water-soluble pectin, free amino acids, and 11 metabolites while increasing TBs and theophylline (219.33 mg/g and 0.09 mg/g, respectively). Therefore, TBs were identified as a crucial indicator of optimal fermentation. Moreover, redundancy analysis indicated that the tea pile's central temperature, moisture content, and pH were essential fermentation parameters (P < 0.05). These findings deepen our understanding of MT_RPT flavor development mechanisms and provide valuable insights into precise fermentation control.
Collapse
Affiliation(s)
- Zixi Yang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yanxia Xie
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Mengjie Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Xuemin Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| |
Collapse
|
4
|
Lu Z, Zhen Q, Liang Q, Bian C, Sun W, Lv H, Tian C, Zhao X, Guo X. Roles of Gut Microbiota Metabolites and Circadian Genes in the Improvement of Glucose and Lipid Metabolism in KKAy Mice by Theabrownin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5260-5273. [PMID: 40040491 DOI: 10.1021/acs.jafc.4c10332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Theabrownin (TB), a prominent pigment in fermented dark tea, exhibits beneficial effects on adiposity reduction. Our study revealed that TB derived from Fu brick tea significantly lowered fasting blood glucose levels and insulin resistance in obese/diabetic KKAy mice. Furthermore, TB demonstrated potent anti-inflammatory effects in the liver, adipose tissue, and intestines, as well as enhancing intestinal integrity. Additionally, TB was found to inhibit hepatic gluconeogenesis and promote fatty acid oxidation. Notably, TB altered gut metabolites, particularly l-palmitoylcarnitine, which showed an elevation in serum, liver, and adipose tissue following TB intervention. l-Palmitoylcarnitine reduced gluconeogenesis in primary hepatocytes and decreased lipid deposition in both primary hepatocytes and 3T3-L1 adipocytes in vitro. However, these effects were abolished when the circadian gene Period 3 (Per3) was knocked down. Our findings suggest that l-palmitoylcarnitine may play a crucial role in improving TB-mediated glucose homeostasis and lipid metabolism by regulating Per3.
Collapse
Affiliation(s)
- Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Wenyue Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Huifang Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Cuixia Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| |
Collapse
|
5
|
Wang Y, Hu Q, Chen B, Ma D. Effects of Liupao Tea with Different Years of Aging on Glycolipid Metabolism, Body Composition, and Gut Microbiota in Adults with Obesity or Overweight: A Randomized, Double-Blind Study. Foods 2025; 14:866. [PMID: 40077569 PMCID: PMC11898661 DOI: 10.3390/foods14050866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Liupao tea (LPT) is a traditionally fermented dark tea from Guangxi, China and the effects of different aging periods of LPT on metabolic health remain inadequately explored. METHODS This randomized, double-blind, longitudinal study enrolled 106 adults with obesity or overweight who were assigned to consume LPT of different ages over a 90-day period. Participants were randomly divided into four groups, each consuming LPT that had been aged for 1 year, 4 years, 7 years, or 10 years. The metabolic parameters, body composition, and gut microbiota were assessed at baseline and after the 90-day intervention. RESULTS All LPT groups experienced significant reductions in systolic blood pressure (SBP) and diastolic blood pressure (DBP), with the 10-year-aged group showing the most notable SBP decrease (p < 0.001). Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels decreased significantly in the 1-, 4-, and 10-year-aged groups (p < 0.05), while high-density lipoprotein cholesterol (HDL-C) increased in the 7-year-aged group (p < 0.05). Body weight, body fat mass (BFM), body mass index (BMI), waist circumference (WC), body fat percentage (BFP), and visceral fat area (VFA) significantly declined across all groups (p < 0.05). Gut microbiota analysis showed changes in specific genera, though overall diversity remained stable. No significant differences were found in metabolic or microbiota outcomes between the different aged groups. CONCLUSIONS LPT consumption effectively improves blood pressure, lipid profiles, and body composition in adults with obesity without adverse liver effects. The aging duration of LPT does not significantly alter these health benefits, challenging the belief that longer-aged LPT is superior.
Collapse
Affiliation(s)
| | | | | | - Defu Ma
- Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China (Q.H.)
| |
Collapse
|
6
|
Huang H, Chen X, Wang Y, Cheng Y, Wu X, Wu C, Xiong Z. Analysis of volatile compounds and vintage discrimination of raw Pu-erh tea based on GC-IMS and GC-MS combined with data fusion. J Chromatogr A 2025; 1743:465683. [PMID: 39832420 DOI: 10.1016/j.chroma.2025.465683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Storage duration significantly influences the aroma profile of raw Pu-erh tea. To comprehensively investigate the differences in the volatile compounds across various vintages of raw Pu-erh teas and achieve the rapid classification of tea vintages, volatile compounds of raw Pu-erh tea with different years (2020-2023) were analyzed using a combination of gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The datasets obtained from both techniques were integrated through low-level and mid-level data fusion strategies. Additionally, partial least squares discriminant analysis (PLS-DA) and random forest (RF) machine learning algorithms were applied to develop predictive models for the classification of tea storage durations. Consequently, GC-IMS and GC-MS identified 54 and 76 volatile compounds, respectively. Notably, the RF model, particularly when coupled with mid-level data fusion, exhibited exceptional predictive accuracy for tea storage time, reaching an accuracy of 100%. These findings provide a reference for elucidating the aroma characteristics of raw Pu-erh tea of different vintages and demonstrate that data fusion combined with machine learning has great potential for ensuring food quality.
Collapse
Affiliation(s)
- Haoran Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xinyu Chen
- Optoelectronics Department of Changzhou Institute of Technology, Liaohe Road 666, Changzhou 213002, China
| | - Ying Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Ye Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xianzhi Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Zhixin Xiong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
| |
Collapse
|
7
|
Li W, Wang K, Wang P, Yang P, Xu S, Tong J, Zhang Y, Yang Y, Han L, Ye M, Shen S, Lei B, Liu B. Impact of glyphosate on soil bacterial communities and degradation mechanisms in large-leaf tea plantations. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136626. [PMID: 39603119 DOI: 10.1016/j.jhazmat.2024.136626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
This study investigated the impact of glyphosate on bacterial communities and their degradation mechanisms in large-leaf tea soil, through exposure microcosm and enrichment culture experiments. Soils from three tea gardens in Yunnan, China, were used: two glyphosate-free (JM and KL) for microcosm study and one long-term exposed (G2) for enrichment culture experiment. The results revealed a two-phase degradation process with half-lives of 12.7 to 268 days, while the metabolite AMPA was notably persistent. The acidic conditions and high organic content of tea soils may retard glyphosate microbial availability and degradation. Glyphosate initially stimulated bacterial growth but led to abundance declines with prolonged exposure. It tended to enhance bacterial diversity at lower doses. Network complexity increased in JM soil where strong adsorption moderated glyphosate exposure, yet decreased in KL soil where weak adsorption enabled greater microbial-glyphosate interactions. Community structure analysis revealed soil-specific responses, with decreased Proteobacteria in JM soil and Actinobacteria in KL soil, while several phyla including Proteobacteria, Acidobacteriota, Chloroflexi, Myxococcota, and Verrucomicrobiota showed increased abundance. PICRUSt2 analysis indicated enhanced biosynthesis and cell growth pathways, while carbohydrate metabolism, nitrogen metabolism, and xenobiotics biodegradation pathways were reduced. LEfSe analysis identified potential degrading biomarkers primarily from Proteobacteria, Acidobacteriota, Myxococcota, Chloroflexi, and Actinobacteriota, suggesting their putative role in degradation. The enriched consortium G2 efficiently degraded 400 mg/L glyphosate within 7 days, with notable increases in Afipia, Dokdonella, and Cohnella abundance. This study provides insights into bacterial interactions with glyphosate in tea soils, suggesting strategies for contamination mitigation and environmental restoration.
Collapse
Affiliation(s)
- Wenxi Li
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Kaibo Wang
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Panlei Wang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Peiwen Yang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Shengtao Xu
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Jiayin Tong
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Yanmei Zhang
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Yuhan Yang
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Lijun Han
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Min Ye
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650500, Yunnan, China.
| | - Shiquan Shen
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China.
| | - Baokun Lei
- Agricultural Environment and Resource Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| | - Benying Liu
- Yunnan Key Laboratory of Tea Science, Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China; Tea Research Institution, Yunnan Academy of Agricultural Sciences, Kunming 650200, Yunnan, China
| |
Collapse
|
8
|
Feng BY, Chen PL, Yan L, Huang WF, Li CF, Yi LT, Xu GH. Long-term Pu-erh tea alleviates inflammatory bowel disease via the regulation of intestinal microbiota and maintaining the intestinal mucosal barrier. Food Sci Biotechnol 2025; 34:743-755. [PMID: 39958166 PMCID: PMC11822139 DOI: 10.1007/s10068-024-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition with increasing global prevalence. Current therapies are limited, leading to exploration of novel treatments like Pu-erh tea, a fermented tea recognized for its health benefits. This study shows that long-term consumption of Pu-erh tea significantly reduces IBD symptoms in DSS-induced mice by moderating inflammation and enhancing oxidative responses in the colon. Pu-erh tea notably increases the abundance of specific gut microbiota, particularly enhancing Firmicutes, Bacteroidota, and Proteobacteria phyla, and raising levels of Lactobacillus and Muribaculaceae genera. Key species such as Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus murinus also showed increased abundance. Additionally, Pu-erh tea helps restore the integrity of the intestinal barrier. These findings highlight the potential of Pu-erh tea as a complementary dietary strategy for IBD, potentially improving disease management and patient outcomes through its effects on the intestinal microbiota and mucosal barrier. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01696-9.
Collapse
Affiliation(s)
- Bi-Yun Feng
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
| | - Pei-Lu Chen
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
| | - Ling Yan
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
| | - Wei-Feng Huang
- Department of Gastroenterology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003 Fujian People’s Republic of China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009 Fujian People’s Republic of China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021 Fujian People’s Republic of China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, 361021 Fujian People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021 Fujian People’s Republic of China
| | - Guang-Hui Xu
- Fujian University of Traditional Chinese Medicine College of Pharmacy, Fuzhou, 350108 Fujian People’s Republic of China
- Xiamen Medicine Research Institute, Xiamen, 361008 Fujian People’s Republic of China
- Xiamen Key Laboratory of Natural Medicine Research and Development, Xiamen, 361021 Fujian People’s Republic of China
| |
Collapse
|
9
|
Ma B, Ma C, Zhou B, Chen X, Wang Y, Li Y, Yin J, Li X. Quantitative descriptive analysis, non-targeted metabolomics and molecular docking reveal the dynamic aging and taste formation mechanism in raw Pu-erh tea during the storage. Food Chem X 2025; 25:102234. [PMID: 39968040 PMCID: PMC11833447 DOI: 10.1016/j.fochx.2025.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Natural storage promotes raw Pu-erh tea (RaPT) aging along with chemical conversion and flavor evolution. In this study, quantitative descriptive analysis (QDA) and UHPLC-Orbitrap-MS/MS-based non-targeted metabolomics were performed to illustrate dynamic changes of taste compounds across 18 RaPT samples during the storage. Multivariate statistical analyses effectively classified stored RaPT into three groups based on storage stages, confirming that storage duration, rather than environmental conditions, primarily influences the taste profile and the changes in non-volatile compounds. A total of 509 characteristic metabolites (VIP > 1.0, P < 0.05, and FC > 1.50 or < 0.67) including multifarious flavor compounds related to tastes evolution were identified. Notable changes included the reduction, transformation, and condensation of flavonoids (such as catechins, flavonol glycosides, and anthocyanins) and amino acids, alongside an accumulation of organic acids, catechin/amino acid derivatives, flavoalkaloids, and gallic acid. These transformations generated significantly (P < 0.05) decreased umami, bitterness, and astringency, while significantly (P < 0.05) increasing sourness and kokumi. Molecular docking analyses further revealed that certain compounds, notably puerins and N-ethyl-2-pyrrolidone-substituted flavan-3-ols (EPSFs), exhibit high binding affinities with CaSR and OTOP1, contributing to the kokumi and sourness taste profiles.
Collapse
Affiliation(s)
- Bingsong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Binxing Zhou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yifan Li
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Junfeng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
10
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Zhao W, Ma X, Yan H, Zhang L, Shi W, Zhou Y. Aspergillus flavus and aflatoxins control in long-term storage of food ingredients of Puerh tea, peanut and polished rice. Food Chem 2024; 461:140805. [PMID: 39181056 DOI: 10.1016/j.foodchem.2024.140805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Aflatoxins are a group of high toxic mycotoxins in food chain. Recent studies showed that aflatoxins might contaminate post-fermented tea, but the result remains controversial. Here, Aspgergillus flavus growth and aflatoxin production were characterized in Puerh tea, peanut and polished rice at different initial water activity (aw) values for long-term storage. As a result, food initial aw value was the critical factor for A. flavus growth and aflatoxin production, and A. flavus almost not grew on foods at aw value lower than 0.8. A. flavus grew best in peanut, followed by rice, but growth on Puerh tea was limited. A. flavus growth was inhibited significantly by adding tea to Potato Dextrose Agar (PDA). Accordingly, aflatoxins produced dramatically in peanut, followed by rice at the first 90 days storage. However, aflatoxin neither produced in Puerh tea nor on tea modified PDA, indicating tea components inhibited A. flavus growth and aflatoxins synthesis.
Collapse
Affiliation(s)
- Weifan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Xue Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Wei Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China.
| |
Collapse
|
12
|
Kulandaivel S, Wang YM, Chen SF, Lin CH, Yeh YC. A Cu-based metal-organic framework synthesized via a green method exhibits unique catecholase-like activity for epigallocatechin gallate detection in teas. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8307-8315. [PMID: 39513318 DOI: 10.1039/d4ay01733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Tea contains various antioxidant compounds, including polyphenols, catechins, theaflavins, theasinensins, and flavonoids. Among these, epigallocatechin gallate (EGCG) is a crucial antioxidant recognized for its potent bioactivity. This study presents the synthesis of a highly selective Cu-PyC NH4+-based metal-organic framework (MOF) nanozyme that exhibits catecholase-like activity to assess the antioxidant capabilities of EGCG. The developed nanozyme demonstrates robust stability and specificity in oxidizing 3,5-di-tert-butylcatechol (3,5-DTBC), showcasing unique catecholase activity distinct from that of typical oxidase nanozymes. Furthermore, this nanozyme displays exceptional efficacy, sensitivity, and selectivity in targeting EGCG, enabling accurate quantification of EGCG levels in commercial tea products via UV-spectroscopy. The assay exhibits a linear response within the EGCG concentration range of 0.5-125 μM, with a detection limit of 0.83 μM, alongside excellent reproducibility and stability. These findings suggest that this nanozyme offers a promising approach for precisely evaluating antioxidants, with significant implications for the food and beverage industry and health research.
Collapse
Affiliation(s)
| | - Yu-Meng Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| |
Collapse
|
13
|
Shan B, Zhao C, Peng C, Miao Y, Lei S, Zhao L, Jia M, Pan S, Gong J, Wang Q. Theabrownin from Pu-erh tea attenuated high-fat diet-induced metabolic syndrome in rat by regulating microRNA and affecting gut microbiota. Int J Biol Macromol 2024; 285:138368. [PMID: 39638201 DOI: 10.1016/j.ijbiomac.2024.138368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Theabrownin (TB), the primary pigment in Pu-erh tea, has shown potential in alleviating metabolic syndrome (MS), though its precise mechanisms remain unclear. This study investigated the effects of Pu-erh tea water extract (WE) and TB on high-fat diet (HFD)-induced MS in rats, focusing on miRNA regulation and gut microbiota composition. Both WE and TB significantly improved markers of MS, including dyslipidemia, insulin resistance, and inflammation. These improvements were linked to the normalization of specific miRNAs (miR-125b-5p, miR-223-3p_R + 2, miR-148b-3p, and miR-1247-5p), which activated the PI3K/AKT/FOXO signaling pathway, subsequently modulating key genes involved in glucolipid metabolism (SREBP-1C, PEPCK, PGC-1α, and G6pc). Additionally, WE and TB restored gut microbiota balance by decreasing the Firmicutes/Bacteroidetes ratio and increasing beneficial bacteria such as Bacteroides, Lactobacillus, and Bifidobacterium, while reducing harmful bacteria like Pseudomonas. These findings underscore the potential of theabrownin as a functional food component for MS prevention, offering new insights into its miRNA-mediated and microbiota-related mechanisms.
Collapse
Affiliation(s)
- Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Man Jia
- Fermentation Engineering Research Center for Yunnan Pu-erh Tea, Kunming 650217, China
| | - Shukang Pan
- Fermentation Engineering Research Center for Yunnan Pu-erh Tea, Kunming 650217, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
14
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
Cheng L, Wei Y, Peng L, Wei K, Liu Z, Wei X. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits. Crit Rev Food Sci Nutr 2024; 64:11321-11340. [PMID: 37584203 DOI: 10.1080/10408398.2023.2236701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As far as health benefit is concerned, dark tea is one of the best beverages in the world. Theabrownins are the major ingredient contributing to the health benefits of dark tea and known as "the soft gold in dark tea." A growing body of evidence indicated that theabrownins are macromolecular pigments with reddish-brown color and mellow taste, and mainly derived from the oxidative polymerization of tea polyphenols. Theabrownins are the main active ingredients in dark tea which brings multiple health-promoting effects in modulating lipid metabolism, reducing body weight gain, attenuating diabetes, mitigating NAFLD, scavenging ROS, and preventing tumors. More importantly, it's their substantial generation in microbial fermentation that endows dark tea with much stronger hypolipidemic effect compared with other types of tea. This review firstly summarizes the most recent findings on the preparation, structural characteristics, and health-promoting effects of theabrownins, emphasizing the underlying molecular mechanism, especially the different mechanisms behind the effect of theabrownins-mediated gut microbiota on the host's multiple health-promoting benefits. Furthermore, this review points out the main limitations of current research and potential future research directions, hoping to provide updated scientific evidence for their better theoretical research and industrial utilization.
Collapse
Affiliation(s)
- Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
16
|
Chen QY, Liu ML, Li RY, Jiang B, Liu KY, Xiao YQ, Wang Q, Wang T, Zhao LQ, Wang WT, Liu ZW, Chen LJ, Ma Y, Zhao M. Changes in lipids and medium- and long-chain fatty acids during the spontaneous fermentation of ripened pu-erh tea. Curr Res Food Sci 2024; 9:100831. [PMID: 39281340 PMCID: PMC11402406 DOI: 10.1016/j.crfs.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
During the fermentation of ripened pu-erh tea (RPT), the composition of lipids and other compounds changes significantly. In this study, we conducted industrial fermentation of RPT and observed that the levels of water extract, tea polyphenols, free amino acids, catechins, caffeine, rutin, theophylline, luteolin, and myricetin decreased, while the level of soluble sugar increased. Additionally, the levels of gallic acid, quercetin, ellagic acid, and kaempferol first increased and then decreased during fermentation. We identified a total of 731 lipids, which were classified into seven categories using a lipomics method. Among these lipids, 85 with relatively high contents decreased, while 201 lipids with low contents increased after fermentation. This led to an overall decrease in the sum contents of lipids and dominant lipids, including glycerophospholipids and saccharolipids. We also detected 33 medium- and long-chain fatty acids, with α-linolenic acid (881.202 ± 12.13-1322.263 ± 19.78 μg/g), palmitic acid (797.275 ± 19.56-955.180 ± 30.49 μg/g), and linoleic acid (539.634 ± 15.551-706.869 ± 12.14 μg/g) being the predominant ones. Coenzymes Q9 (62.76-63.57 μg/g) and Q10 (50.82-59.33 μg/g) were also identified in the fermentation process. Our findings shed light on the changes in lipids during the fermentation of RPT and highlight the potential bio-active compounds, such as α-linolenic acid, linoleic acid, Coenzymes Q9, and Q10, in ripened pu-erh tea. This contributes to a better understanding of the fermentation mechanism for RPT.
Collapse
Affiliation(s)
- Qiu-Yue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming-Li Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Research Institute of Tea Industry, Yibi, Sichuan 644000, China
| | - Ruo-Yu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Kun-Yi Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Yan-Qin Xiao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lian-Qin Zhao
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Wei-Tao Wang
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Zhi-Wei Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
17
|
Caruso F, Sakib R, Belli S, Caruso A, Rossi M. Antioxidant Scavenging of the Superoxide Radical by Yerba Mate ( Ilex paraguariensis) and Black Tea (Camellia sinensis) Plus Caffeic and Chlorogenic Acids, as Shown via DFT and Hydrodynamic Voltammetry. Int J Mol Sci 2024; 25:9342. [PMID: 39273291 PMCID: PMC11394812 DOI: 10.3390/ijms25179342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
We describe the antioxidant capability of scavenging the superoxide radical of several tea and yerba mate samples using rotating ring-disk electrochemistry (RRDE). We directly measured superoxide concentrations and detected their decrease upon the addition of an antioxidant to the electrochemical cell. We studied two varieties of yerba mate, two varieties of black tea from Bangladesh, a sample of Pu-erh tea from China, and two components, caffeic acid and chlorogenic acid. All of these plant infusions and components showed strong antioxidant activities, virtually annihilating the available superoxide concentration. Using density functional theory (DFT) calculations, we describe a mechanism of superoxide scavenging via caffeic and chlorogenic acids. Superoxide can initially interact at two sites in these acids: the H4 catechol hydrogen (a) or the acidic proton of the acid (b). For (a), caffeic acid needs an additional π-π superoxide radical, which transfers electron density to the ring and forms a HO2- anion. A second caffeic acid proton and HO2- anion forms H2O2. Chlorogenic acid acts differently, as the initial approach of superoxide to the catechol moiety (a) is enough to form the HO2- anion. After an additional acidic proton of chlorogenic acid is given to HO2-, three well-separated compounds arise: (1) a carboxylate moiety, (2) H2O2, and a (3) chlorogenic acid semiquinone. The latter can capture a second superoxide in a π-π manner, which remains trapped due to the aromatic ring, as for caffeic acid. With enough of both acids and superoxide radicals, the final products are equivalent: H2O2 plus a complex of the type [X-acid-η-O2], X = caffeic, chlorogenic. Chlorogenic acid (b) is described by the following reaction: 2 O2•- + 2 chlorogenic acid → 2 chlorogenic carboxylate + O2 + H2O2, and so, it acts as a non-enzymatic superoxide dismutase (SOD) mimic, as shown via the product formation of O2 plus H2O2, which is limited due to chlorogenic acid consumption. Caffeic acid (b) differs from chlorogenic acid, as there is no acidic proton capture via superoxide. In this case, approaching a second superoxide to the H4 polyphenol moiety forms a HO2- anion and, later, an H2O2 molecule upon the transfer of a second caffeic acid proton.
Collapse
Affiliation(s)
- Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
| | - Raiyan Sakib
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
| | - Stuart Belli
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
| | - Alessio Caruso
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, USA
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
| |
Collapse
|
18
|
Huang Z, Zhang L, Xuan J, Yang L, Zhao T, Peng W. Tea for histamine anti-allergy: component analysis of tea extracts and potential mechanism for treating histamine anti-allergy. Front Pharmacol 2024; 15:1296190. [PMID: 38873420 PMCID: PMC11169817 DOI: 10.3389/fphar.2024.1296190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
In China, Camellia plants are widely used to reduce atopic dermatitis and inflammation-related diseases, but their protective mechanisms remain unclear. This study investigated the anti-allergic dermatitis, anti-oxidation and anti-inflammation effect and underlying mechanism of five Camellia species, including Camellia ptilophylla Chang, Camellia assamica Chang var. Kucha Chang, Camellia parvisepala Chang, Camellia arborescens Chang, and C. assamica M. Chang. A total of about 110 chemical compositions were detected from five Camellia teas extracts. The level of mast cell infiltration in the model mice skin was determined by HE (Hematoxylin and eosin) staining and toluidine blue staining, and the level of interleukin-1β (IL-1β) and nerve growth factor was detected by immunohistochemistry. The five Camellia tea leaf extracts have histamine-induced allergic dermatitis. Lipopolysaccharide (Lipopolysaccharide)-induced murine macrophage RAW264.7 inflammation model was found to secrete NF-κB factor, as shown by immunofluorescence, and reactive oxygen species secretion and related cytokine levels were detected. The results suggested that Camellia's five tea extracts had the ability to resist cellular oxidative stress. In addition, the results of cell inflammatory cytokines including fibronectin (FN) and interleukin-6 (IL-6) suggested that the five tea extracts of Camellia had anti-inflammatory effects. Therefore, it is suggested that five Camellia teas may possess inhibitory properties against allergic reactions, oxidative stress, and inflammation, and may prove beneficial in the treatment of allergies.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Lu Yang
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| | - Tiantian Zhao
- Sericulture and Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Department of Food Science, Rutgers University, New Brunswick, NB, United States
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co Ltd., Guangzhou, China
| |
Collapse
|
19
|
Zhou Z, Li Y, Wang F, Zhu G, Qi S, Wang H, Ma Y, Zhu R, Zheng Y, Ge G, Wang P. Bioactive components and mechanisms of Pu-erh tea in improving levodopa metabolism in rats through COMT inhibition. Food Funct 2024; 15:5287-5299. [PMID: 38639730 DOI: 10.1039/d4fo00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 μg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.
Collapse
Affiliation(s)
- Ziqiong Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fangyuan Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shenglan Qi
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haonan Wang
- Shanghai Inoherb Cosmetics Co. Ltd., Technology Center, 121 Chengyin Road, Baoshan District, Shanghai 200083, China
| | - Yuhe Ma
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rong Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Meng X, Cui W, Liang Q, Zhang B, Wei Y. Trends and hotspots in tea and Alzheimer's disease research from 2014 to 2023: A bibliometric and visual analysis. Heliyon 2024; 10:e30063. [PMID: 38699003 PMCID: PMC11064447 DOI: 10.1016/j.heliyon.2024.e30063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives The positive effects of tea on Alzheimer's disease (AD) have increasingly captured researchers' attention. Nevertheless, the quantitative comprehensive analysis in the relevant literatur is lack. This paper aims to thoroughly examine the current research status and hotspots from 2014 to 2023, providing a valuable reference for subsequent research. Methods Documents spanning from 2014 to 2023 were searched from the Web of Science, and the R software, VOSviewer, and Citespace software were used for analysis and visualization. Results A total of 374 documents were contained in the study. The rate of article publications exhibited a consistent increase each year from 2014 to 2023. Notably, China emerged as the leading country in terms of published articles, followed by the United States and India. Simultaneously, China is also in a leading position in cooperation with other countries. Molecules emerged as the most frequently published journal, while the Journal of Alzheimer's Disease secured the top spot in terms of citations. The identified main keywords included oxidative stress, amyloid, epigallocatechin gallate, and green tea polyphenol, among others. These focal areas delved into the antioxidative and anti-amyloid aggregation actions of tea's polyphenolic components. Furthermore, the particularly way in which epigallocatechin gallate delivers neuroprotective outcomes by influencing molecules related to AD represents a focal point of research. Conclusion The increasing attention from researchers on the role of tea in ameliorating AD positions it as a hot spot in the development of anti-AD drugs in the development of future. Through our generalized analysis of the current landscape and hotspots regarding tea's application in AD, this study provides an estimable reference for future research endeavors.
Collapse
Affiliation(s)
- Xuefang Meng
- Department of Pharmacy, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Wei Cui
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Qian Liang
- Department of Scientific Research, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yingxiu Wei
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Lu Z, Zheng Y, Zheng J, Liang Q, Zhen Q, Cui M, Yang H, Wu H, Tian C, Zhu K, Bian C, Du L, Wu H, Guo X. Theabrownin from Fu Brick tea ameliorates high-fat induced insulin resistance, hepatic steatosis, and inflammation in mice by altering the composition and metabolites of gut microbiota. Food Funct 2024; 15:4421-4435. [PMID: 38563324 DOI: 10.1039/d3fo05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.
Collapse
Affiliation(s)
- Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan 430022, China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Mengjie Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haoru Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Haotian Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Cuixia Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Kangming Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| |
Collapse
|
22
|
Sousa AC, Pádua I, Gonçalves VM, Ribeiro C, Leal S. Exploring tea and herbal infusions consumption patterns and behaviours: The case of Portuguese consumers. Heliyon 2024; 10:e28779. [PMID: 38601558 PMCID: PMC11004536 DOI: 10.1016/j.heliyon.2024.e28779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Consumption of tea and herbal infusions (THIs) have a long history in traditional medicine and cultural practices. The health-promoting benefits attributed to THIs are considered influential factors in consumer choices. However, there is limited data on consumer choices and attitudes that might interfere with the positive effects associated with THIs consumption. The aim of this study was to investigate the consumption pattern and behavior of THIs consumers in Portugal, assessing the influence of socio-demographic factors on the selection of THIs products and consumer practices related to these beverages. An online survey was conducted, and from the collected data, 720 responses met the aim of the study and were further analyzed. Most of the respondents were female, 74.4%, belonging to the 40-60 age group (40.6%) and were medium consumers of THIs (47.2%). Green tea was the most consumed type among participants, and its consumption was associated not only with age but also with the pattern of THIs consumption. Despite that, participants preferred herbal infusions, with citronella, chamomile, and lemon verbena being the most consumed types. For certain types of herbal infusions, consumption was associated with age, while other types were preferred by moderate or heavy consumers. Most participants purchased THIs in supermarkets, registered trademark and brand stores, in the form of THIs bag. Light consumers use only bag, while medium/heavy consumers indicated the use of other forms. Almost half of the respondents admitted to not reading the information on product labels before consumption and using THIs after the expiry date, while only one-third of them declared paying attention to the label instructions. This study revealed the impact of socio-demographic factors as age on the consumption patterns and preferences of THIs of consumers. Of concern is the neglect of label usage among Portuguese consumers. This emphasizes the urgency of implementing interventions to guide proper label use and promote good consumption practices to ensure the quality of THIs products.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Inês Pádua
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Virgínia M.F. Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Cláudia Ribeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Sandra Leal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
23
|
Yan X, Tian Y, Zhao F, Wang R, Zhou H, Zhang N, Wang Y, Shan Z, Zhang C. Analysis of the key aroma components of Pu'er tea by synergistic fermentation with three beneficial microorganisms. Food Chem X 2024; 21:101048. [PMID: 38162036 PMCID: PMC10757262 DOI: 10.1016/j.fochx.2023.101048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024] Open
Abstract
Aroma is a key indicator of the quality and value of Pu'er tea. A total of 36 aroma components were detected,which Saccharomyces, Rhizopus, and Aspergillus niger, were in the ratios of 2:1:2, 2:2:2, and 2:3:2 inoculated to ferment Pu'er tea, comparing with natural fermentation. In addition, 12 key aroma compounds were identified by analysing ROAVs. Methoxyphenyl compounds and β-ionone were the primary contributors to the formation of aged and woody aroma when fermenting Pu'er tea naturally or using Rhizopus, while linalool and its oxides, benzyl alcohol, hexanal, and limonene were the primary contributors to the formation of floral and fruity aroma when fermenting Pu'er tea using synergistic fermentation with Saccharomyces, Rhizopus, and Aspergillus niger. This study identified the key aroma components of the Pu'er tea fermented using five methods, which revealed and demonstrated the potential application of synergistic effects of different microorganisms in the changes of aroma of Pu'er tea.
Collapse
Affiliation(s)
- Xuehang Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yang Tian
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Feng Zhao
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Ruifang Wang
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Hongjie Zhou
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Naiming Zhang
- College of Tea, Yunnan Agricultural University, Kunming, Yunnan, 650000, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Shan
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| | - Chunhua Zhang
- College of Tea and Coffee, Pu'er University, Pu'er 665000, China
| |
Collapse
|
24
|
He S, Deng X, Han Y, Gong Z, Wang J, Tao X, Tong H, Chen Y. Metabolites and metagenomic analysis reveals the quality of Pu-erh "tea head". Food Chem 2023; 429:136992. [PMID: 37516054 DOI: 10.1016/j.foodchem.2023.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Tea head, a derivative product of Pu-erh tea, are tight tea lumps formed during pile-fermentation. The aim of this study was to reveal the differences of quality-related metabolites and microbial communities between ripened Pu-erh tea (PE-21) and tea heads (CT-21). Compared with PE-21, CT-21 showed a more mellow and smooth taste with slight bitterness and astringency, and can withstand multiple infusions. Metabolites analysis indicated CT-21 had more abundant water-soluble substances (47.39%) and showed significant differences with PE-21 in the main compositions of amino acids, catechins and saccharides which contributed to the viscosity of tea liquor, mellow taste and the tight tea lumps formation. Microbial communities and COG annotation analysis revealed CT-21 had lower abundance of Bacteria (84.05%), and higher abundance of Eukaryota (15.10%), carbohydrate transport and metabolism (8.28%) and glycoside hydrolases (37.36%) compared with PE-21. The different microbial communities may cause metabolites changes, forming distinct flavor of Pu-erh.
Collapse
Affiliation(s)
- Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhengli Gong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Jian Wang
- Ice Island Mountain Tea Company, Mengku Town, Shuangjiang Autonomous County, Yunnan Province, China
| | - Xiaoqi Tao
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Wang J, Zhang T, Wan C, Lai Z, Li J, Chen L, Li M. The effect of theabrownins on the amino acid composition and antioxidant properties of hen eggs. Poult Sci 2023; 102:102717. [PMID: 37734359 PMCID: PMC10518584 DOI: 10.1016/j.psj.2023.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 09/23/2023] Open
Abstract
Pu-erh tea theabrownins (TBs) exert beneficial effect on egg quality and antioxidant properties of eggs, but the underlying mechanisms behind this response are unclear. In this study, we investigate the effect of TBs on egg antioxidative activity, amino acid and fatty acid profiles, and the underlying relationship between the TBs and oxidant-sensitive Nrf2 signaling pathway in laying hens. Eighty layers were fed a basal diet (control) and 400 mg/kg of TBs supplemented diet for 12 wk. TBs led to an increase in albumen height and Haugh unit (P < 0.05). The albumen lysine, valine, and tryptophan were higher in layers fed TBs, whereas yolk tryptophan, methionine, vitamin A, and α-tocopherol content were enhanced by TBs (P < 0.05). Eggs albumen and yolk showed higher total antioxidant capacity (T-AOC), reducing power (RP), and the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH), and lower MDA content than those of eggs from the control group (P < 0.05). Also, magnum Nrf2, hemeoxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and Bcl2 expression were up-regulated by TBs, whereas magnum proapoptotic gene (Bax, caspase 3, Cyt C) were down-regulated by TBs (P < 0.05). Our findings suggest that TBs improved egg albumen quality and antioxidant activity, and the Nrf2-ARE pathway were found to be involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhangfeng Lai
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Li
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Luojun Chen
- Tea Science Research Institute, Xiushui, Jiujiang, 332400, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
26
|
Li HY, Huang SY, Zhou DD, Xiong RG, Luo M, Saimaiti A, Han MK, Gan RY, Zhu HL, Li HB. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis. J Adv Res 2023; 52:59-72. [PMID: 36639024 PMCID: PMC10555776 DOI: 10.1016/j.jare.2023.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) with obesity seriously threats public health. Our previous studies showed that dark tea had more potential on regulating lipid metabolism than other teas, and theabrownin (TB) was considered to be a main contributor to the bioactivity of dark tea. OBJECTIVES This in vivo study aims to reveal the effects and molecular mechanisms of TB on NAFLD and obesity, and the role of the gut-liver axis is explored. METHODS The histopathological examinations, biochemical tests, and nuclear magnetic resonance were applied to evaluate the effects of TB on NAFLD and obesity. The untargeted metabolomics was used to find the key molecule for further exploration of molecular mechanisms. The 16S rRNA gene sequencing was used to assess the changes in gut microbiota. The antibiotic cocktail and fecal microbiota transplant were used to clarify the role of gut microbiota. RESULTS TB markedly reduced body weight gain (67.01%), body fat rate (62.81%), and hepatic TG level (51.35%) in the preventive experiment. Especially, TB decreased body weight (32.16%), body fat rate (42.56%), and hepatic TG level (42.86%) in the therapeutic experiment. The mechanisms of action could be the improvement of fatty acid oxidation, lipolysis, and oxidative stress via the regulation of serotonin-related signaling pathways. Also, TB increased the abundance of serotonin-related gut microbiota, such as Akkermansia, Bacteroides and Parabacteroides. Antibiotics-induced gut bacterial dysbiosis disrupted the regulation of TB on serotonin-related signaling pathways in liver, whereas the beneficial regulation of TB on target proteins was regained with the restoration of gut microbiota. CONCLUSION We find that TB has markedly preventive and therapeutic effects on NAFLD and obesity by regulating serotonin level and related signaling pathways through gut microbiota. Furthermore, gut microbiota and TB co-contribute to alleviating NAFLD and obesity. TB could be a promising medicine for NAFLD and obesity.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Mu-Ke Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
27
|
Zhou H, Zhang J, Kirbis BS, Mula Z, Zhang W, Kuang Y, Huang Q, Yin L. Ethnobotanical study on medicinal plants used by Bulang people in Yunnan, China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:38. [PMID: 37679773 PMCID: PMC10486041 DOI: 10.1186/s13002-023-00609-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Despite the popularity of modern medicine, medicinal plants remain a cornerstone of treatment for numerous diseases, particularly among ethnic groups and tribal communities around the globe. Ethnomedicine offers advantages such as ease of use, convenience, and economic benefits. Medicinal plant knowledge within Bulang ethnic community of southwest China is a valuable complement to Chinese ethnomedicine systems. Accumulated medical knowledge is due to the extensive length of occupation by Bulang People, considered the earliest inhabitants of Xishuangbanna; this has resulted in the development of various traditional treatment methods with local characteristics and unique curative effects. Therefore, there is exceeding value in exploring the medical knowledge of Bulang. METHODS A total of 175 local informants participated in the interviews and distribution of questionnaires in 10 Bulang villages in Menghai County, Xishuangbanna Prefecture, Yunnan Province, China. We documented the community of Bulang's use of medicinal herbs, and we used both the informant consensus factor (ICF) and use value (UV) methodologies to analyze the data. Furthermore, we conducted a comparative study to explore the potential of Bulang traditional medicine by comparing it to traditional Dai medicine. RESULTS The study recorded 60 medicinal plant species belonging to 41 families and 59 genera, including 22 species of herb, 22 species of shrub, nine species of trees, and seven species of liana. Araceae, Compositae, Lamiaceae and Leguminosae were found to have the highest number of species. The affordability and cultural heritage of Bulang medicine make it advantageous, Investigated Informants report that increased usage of Western medicine (88%), less availability of herbal medicine (95.43%), and the reduction in medicinal plant resources (80.57%) pose significant threats to Bulang medicine. All Bulang medicinal plants are naturally grown, with only 22 per cent being cultivated. Camellia sinensis (0.94) and Zingiber officinale (0.89) showed the highest UV values, while the function of Phyllanthus emblica L. and Houttuynia cordata Thunb. were also noted. The ICF revealed digestive system related diseases were the most commonly treated, with conditions of the motor system using the highest number of plant species. Finally, a comparison with traditional Dai medicine determined that 22 plants (36.67%) of the 60 surveyed had higher medicinal value in Bulang medicine. CONCLUSION Bulang communities primarily source medicinal plants from the wild. Should environmental damage lead to the extinction of these medicinal plants, it could result in a shift toward modern Western medicine as a preferred medical treatment. Bulang ethnomedicine is a vital supplement to China's traditional medicine, particularly aspects of ethnic medicine relevant to daily life. Future research should emphasize inter-ethnic medical studies to reveal the untapped potential of medicinal plants.
Collapse
Affiliation(s)
- Hao Zhou
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Jiaqi Zhang
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China
| | | | - Zi Mula
- Xishuangbanna Ancient Tea Plant Conservation and Development Association, Jing Hong, 666100, Yunnan, China
| | - Wei Zhang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Yinzhi Kuang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Qing Huang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Lun Yin
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, Yunnan, China.
- Southwest Ecological Civilization Research Center, National Forestry and Grassland Administration, Kunming, 650224, Yunnan, China.
| |
Collapse
|
28
|
Zeng Z, Jin S, Xiang X, Yuan H, Jin Y, Shi Q, Zhang Y, Yang M, Zhang L, Huang R, Song C. Dynamical changes of tea metabolites fermented by Aspergillus cristatus, Aspergillus neoniger and mixed fungi: A temporal clustering strategy for untargeted metabolomics. Food Res Int 2023; 170:112992. [PMID: 37316065 DOI: 10.1016/j.foodres.2023.112992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Dark tea fermentation involves various fungi, but studies focusing on the mixed fermentation in tea remain limited. This study investigated the influences of single and mixed fermentation on the dynamical alterations of tea metabolites. The differential metabolites between unfermented and fermented teas were determined using untargeted metabolomics. Dynamical changes in metabolites were explored by temporal clustering analysis. Results indicated that Aspergillus cristatus (AC) at 15 days, Aspergillus neoniger (AN) at 15 days, and mixed fungi (MF) at 15 days had respectively 68, 128 and 135 differential metabolites, compared with unfermentation (UF) at 15 days. Most of metabolites in the AN or MF group showed a down-regulated trend in cluster 1 and 2, whereas most of metabolites in the AC group showed an up-regulated trend in cluster 3 to 6. The three key metabolic pathways mainly composed of flavonoids and lipids included flavone and flavonol biosynthesis, glycerophospholipid metabolism and flavonoid biosynthesis. Based on the dynamical changes and metabolic pathways of the differential metabolites, AN showed a predominant status in MF compared with AC. Together, this study will advance the understanding of dynamic changes in tea fermentation and provide valuable insights into the processing and quality control of dark tea.
Collapse
Affiliation(s)
- Zhaoxiang Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Xingliang Xiang
- School of Life Sciences, Hainan University, 58 Renmin Avenue, Meilan District, 570228 Haikou, Hainan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yuehui Jin
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yanmei Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Min Yang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| |
Collapse
|
29
|
Wang N, Li L, Zhang P, Mehmood MA, Lan C, Gan T, Li Z, Zhang Z, Xu K, Mo S, Xia G, Wu T, Zhu H. In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice. Nutr Res Pract 2023; 17:682-697. [PMID: 37529260 PMCID: PMC10375330 DOI: 10.4162/nrp.2023.17.4.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Luzhou LaoJiao Group Co. Ltd., Luzhou 646000, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Puyu Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Tian Gan
- Ya’an Youyi Tea Co., Ltd, Ya’an 625000, China
| | - Zaixin Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhi Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Shan Mo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Gang Xia
- Comprehensive Agricultural Service Center of Dachuan, Lushan, Ya’an 625000, China
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu 610039, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
30
|
Tzen JTC. Strictinin: A Key Ingredient of Tea. Molecules 2023; 28:molecules28093961. [PMID: 37175375 PMCID: PMC10180463 DOI: 10.3390/molecules28093961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Strictinin is a relatively tiny ellagitannin, which is found in many plants as a minor constituent. Catechins are known as the major constituents in the young leaves of most tea plants, while strictinin was found as a major constituent in the Pu'er tea plant. In some Pu'er tea varieties, strictinin was identified as the most abundant phenolic compound rather than catechins. In the past decade, strictinin was demonstrated to possess several functional activities, including antiviral, antibacterial, anti-obesity, laxative, anticaries, anti-allergic, antipsoriatic, antihyperuricemia, antidiabetic, and anticancer effects. These functional activities were in accordance with the therapeutic effects empirically perceived for Pu'er tea. Evidently, strictinin is the key ingredient in Pu'er tea that acts as a herbal medicine. In functionally-based applications, an instant powder of Pu'er tea infusion was formulated as an active raw material to be supplemented in food, cosmetics, and beverages; a new type of tea named Bitter Citrus Tzen Tea was developed by combining three teas empirically consumed to expel the cold, and new edible oral care products were designed for caries prevention by supplementation with Pu'er tea extract. More functional activities and practical applications of strictinin are scientifically anticipated in follow-up research.
Collapse
Affiliation(s)
- Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
31
|
Tang MG, Zhang S, Xiong LG, Zhou JH, Huang JA, Zhao AQ, Liu ZH, Liu AL. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents. Compr Rev Food Sci Food Saf 2023; 22:2267-2291. [PMID: 37043598 DOI: 10.1111/1541-4337.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/14/2023]
Abstract
Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.
Collapse
Affiliation(s)
- Meng-Ge Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng Zhang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing-Hui Zhou
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Qing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhong-Hua Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China
| | - Ai-Ling Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
32
|
Zhao L, Miao Y, Shan B, Zhao C, Peng C, Gong J. Theabrownin Isolated from Pu-Erh Tea Enhances the Innate Immune and Anti-Inflammatory Effects of RAW264.7 Macrophages via the TLR2/4-Mediated Signaling Pathway. Foods 2023; 12:foods12071468. [PMID: 37048289 PMCID: PMC10094067 DOI: 10.3390/foods12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Theabrownin (TB) is a tea pigment extracted from Pu-erh Tea. The effects of TB on innate immunity and inflammation are not well understood. Herein, the effects of TB on innate immunity are investigated using RAW264.7 macrophages. We found that TB promoted the proliferation of RAW264.7 macrophages, altered their morphology, enhanced their pinocytic and phagocytic ability, and significantly increased their secretion of nitric oxide (NO) and cytokines, all of which enhanced the immune response. Additionally, TB inhibited the release of inflammatory signals in RAW264.7 macrophages primed with lipopolysaccharide (LPS), implying that TB modulates the excessive inflammation induced by bacterial infection. A Western blot showed that TB could activate the toll-like receptor (TLR)2/4-mediated myeloid differentiation factor 88 (MyD88)-dependent mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathway and the TLR2-mediated phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, enhancing the immune functions of RAW264.7 macrophages. TB also inhibited the phosphorylation of core proteins in the MAPK/NF-κB/PI3K-AKT signaling pathway induced by LPS. In addition, we analyzed the transcriptomes of RAW264.7 macrophages, and a Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed that TB modulated thetoll-like receptor signal pathway. A gene ontology (GO) enrichment analysis indicated that TB treatment strongly modulated the immune response and inflammation. As a result, TB-enhanced innate immunity and modulated inflammation via the TLR2/4 signaling pathway.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
33
|
Zhao S, Hu S, Sun K, Luo L, Zeng L. Long-term Pu-erh tea consumption improves blue light-induced depression-like behaviors. Food Funct 2023; 14:2313-2325. [PMID: 36779860 DOI: 10.1039/d2fo02780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Blue light emitted by smartphones and tablets at night increases the risk of depression. Pu-erh tea has been reported to reduce the risk of depression by regulating tryptophan metabolism, but its underlying protective mechanism on depression induced by blue light at night (BLAN) remains unclear. In this work, two groups of C57BL6/J mice were given water or 0.25% (w/v) Pu-erh tea for 120 days, followed by a 45-day BLAN treatment (400 lux blue light between 21:00 and 23:00) to simulate blue light emitted from electronic equipment. Our results indicated that BLAN induced depression-like behaviors and gut microbiota disorders in healthy mice. Pu-erh tea intake significantly reshaped the gut microbiome (especially Bifidobacterium) and regulated the metabolism of short-chain fatty acids (SCFAs) which protected the integrity of the intestinal barrier. This improvement further reduced blood-brain barrier (BBB) damage and alleviated neuroinflammation by inhibiting MyD88/NF-κB pathways which finally regulated neurotransmitters such as brain-derived neurotrophic factor (BDNF) and serotonin (5-hydroxytryptamine, 5-HT). Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent BLAN-induced depression-like behaviors by reshaping the gut microbiota and increasing the generation of SCFAs via the gut-brain axis.
Collapse
Affiliation(s)
- Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
34
|
Chen Y, Liu X, Li Q, Cai X, Wu W, Wu Q, Yuan W, Deng X, Liu Z, Zhao S, Wang B. Integrated genomics and transcriptomics reveal the extreme heavy metal tolerance and adsorption potentiality of Staphylococcus equorum. Int J Biol Macromol 2023; 229:388-400. [PMID: 36592848 DOI: 10.1016/j.ijbiomac.2022.12.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
In this study, we successfully isolated 11 species of cadmium-tolerant bacterium from Pu-erh rhizosphere soil, of which Staphylococcus equorum PU1 showed the highest cadmium tolerance, with a minimum inhibitory concentration (MIC) value of 500 mg/L. The cadmium removal efficiency of PU1 in 400 mg/L cadmium medium reached 58.7 %. Based on the Nanopore PromethION and Illumina NovaSeq platforms, we successfully obtained the complete PU1 genome with a size of 2,705,540 bp, which encoded 2729 genes. We further detected 82 and 44 indel mutations in the PU1 genome compared with the KS1039 and KM1031 genomes from the database. Transcriptional analysis showed that the expression of 11 genes in PU1 increased with increasing cadmium concentrations (from 0 to 200, then to 400 mg/L), which encoded cadmium resistance, cadmium transport, and mercury resistance genes. In addition, some genes showed differential expression patterns with changes in cadmium concentration, including quinone oxidoreductase-like protein, ferrous iron transport protein, and flavohemoprotein. Gene Ontology (GO) functions, including oxidation reduction process and oxidoreductase activity functions, and KEGG pathways, including glycolysis/gluconeogenesis and biosynthesis of secondary metals, were also considered closely related to the extreme cadmium tolerance of PU1. This study provides novel insight into the cadmium tolerance mechanism of bacteria.
Collapse
Affiliation(s)
- Yaping Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, China; College of Plant Protection, Yunnan Agricultural University, Kunming, China; Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Qiang Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaobo Cai
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China; College of Big Data, Yunnan Agricultural University, Kunming, China; Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Wendou Wu
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Kunming, China; College of Big Data, Yunnan Agricultural University, Kunming, China; Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China
| | - Qi Wu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Xiujuan Deng
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Zhiwe Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Shengnan Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, China; College of Big Data, Yunnan Agricultural University, Kunming, China; Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Kunming, China.
| |
Collapse
|
35
|
An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase. Molecules 2023; 28:molecules28041722. [PMID: 36838710 PMCID: PMC9959171 DOI: 10.3390/molecules28041722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Tea polyphenol (TPs) oxidation caused by polyphenol oxidase (PPO) in manufacturing is responsible for the sensory characteristics and health function of fermented tea, therefore, this subject is rich in scientific and commercial interests. In this work, an in vitro catalysis of TPs in liquid nitrogen grinding of sun-dried green tea leaves by PPO was developed, and the changes in metabolites were analyzed by metabolomics. A total of 441 metabolites were identified in the catalyzed tea powder and control check samples, which were classified into 11 classes, including flavonoids (125 metabolites), phenolic acids (67 metabolites), and lipids (55 metabolites). The relative levels of 28 metabolites after catalysis were decreased significantly (variable importance in projection (VIP) > 1.0, p < 0.05, and fold change (FC) < 0.5)), while the relative levels of 45 metabolites, including theaflavin, theaflavin-3'-gallate, theaflavin-3-gallate, and theaflavin 3,3'-digallate were increased significantly (VIP > 1.0, p < 0.05, and FC > 2). The increase in theaflavins was associated with the polymerization of catechins catalyzed by PPO. This work provided an in vitro method for the study of the catalysis of enzymes in tea leaves.
Collapse
|
36
|
Hou Y, Mao H, Lu F, Ma C, Zhu S, Li G, Huang S, Zhang Y, Lv C, Xiao R. Widely targeted metabolomics and HPLC analysis elaborated the quality formation of Yunnan pickled tea during the whole process at an industrial scale. Food Chem 2023; 422:135716. [PMID: 37156017 DOI: 10.1016/j.foodchem.2023.135716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Yunnan pickled tea is produced from fresh tea-leaves through fixation, rolling, anaerobic fermentation and sun-drying. In this study, widely targeted metabolomics using UHPLC-QQQ-MS/MS and HPLC analysis were carried out to elaborate its quality formation during the whole process. Results confirmed the contribution of preliminary treatments and anaerobic fermentation to the quality formation. A total of 568 differential metabolites (VIP > 1.0, P < 0.05, FC > 1.50 or < 0.67) were screened through OPLS-DA. (-)-Epigallocatechin and (-)-epicatechin significantly (P < 0.05) increased from the hydrolyzation of ester catechins, such as (-)-epigallocatechin gallate and (-)-epicatechin gallate in anaerobic fermentation. Additionally, the anaerobic fermentation promoted vast accumulations of seven essential amino acids, four phenolic acids, three flavones and flavone glycosides, pelargonidin and pelargonidin glycosides, flavonoids and flavonoid glycosides (i.e. kaempferol, quercetin, taxifolin, apigenin, myricetin, luteolin and their glycosides) through relevant N-methylation, O-methylation, hydrolyzation, glycosylation and oxidation.
Collapse
Affiliation(s)
- Yan Hou
- College of Tea, Yunnan Agriculture University, Kunming 650201, Yunnan, China; College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| | - Honglin Mao
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Fengmei Lu
- Yunnan Defeng Tea Co., Ltd, Mangshi 678400, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaoxian Zhu
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Guoyou Li
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Siqi Huang
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China
| | - Yi Zhang
- Yunnan Defeng Tea Co., Ltd, Mangshi 678400, Yunnan, China
| | - Caiyou Lv
- College of Tea, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| | - Rong Xiao
- College of Food Science and Technology, Yunnan Agriculture University, Kunming 650201, Yunnan, China.
| |
Collapse
|
37
|
Li T, Zhang Y, Jia H, Zhang J, Wei Y, Deng WW, Ning J. Effects of Microbial Action and Moist-Heat Action on the Nonvolatile Components of Pu-Erh Tea, as Revealed by Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15602-15613. [PMID: 36441948 DOI: 10.1021/acs.jafc.2c05925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial action and moist-heat action are crucial factors that influence the piling fermentation (PF) of Pu-erh tea. However, their effects on the quality of Pu-erh tea remain unclear. In this study, the effects of spontaneous PF (SPPF) and sterile PF (STPF) on the chemical profile of Pu-erh tea were investigated for the first time, and sun-dried green tea was used as a raw material to determine the factors contributing to the unique quality of Pu-erh tea. The results indicated that the SPPF-processed samples had a stale and mellow taste, whereas the STPF-processed samples had a sweet and mellow taste. Through metabolomics-based analysis, 21 potential markers of microbial action (including kaempferol, quercetin, and dulcitol) and 10 potential markers of moist-heat action (including ellagic acid, β-glucogallin, and ascorbic acid) were screened among 186 differential metabolites. Correlation analysis with taste revealed that metabolites upregulated by moist-heat and microbial action were the main factors contributing to the staler mellow taste of the SPPF-processed samples and the sweeter mellow taste of the STPF-processed samples. Kaempferol, quercetin, and ellagic acid were the main active substances formed under microbial action. This study provides new knowledge regarding the quality formation mechanism of Pu-erh tea.
Collapse
Affiliation(s)
- Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Yiyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, Anhui, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei230036, China
| |
Collapse
|
38
|
Li T, Lu C, Huang J, Chen Y, Zhang J, Wei Y, Wang Y, Ning J. Qualitative and quantitative analysis of the pile fermentation degree of Pu-erh tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Rapid and easy ICP OES determination of selected major, minor and trace elements in Pu-erh tea infusions using the response surface methodology along with the joint desirability function approach. Talanta 2022; 249:123650. [DOI: 10.1016/j.talanta.2022.123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
40
|
Tang H, Zhang M, Liu J, Cai J. Metabolomic and Transcriptomic Analyses Reveal the Characteristics of Tea Flavonoids and Caffeine Accumulation and Regulation between Chinese Varieties ( Camellia sinensis var. sinensis) and Assam Varieties ( C. sinensis var. assamica). Genes (Basel) 2022; 13:1994. [PMID: 36360231 PMCID: PMC9690216 DOI: 10.3390/genes13111994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2023] Open
Abstract
Flavonoids and caffeine are the major secondary metabolites with beneficial bioactivity for human health in tea plants, and their biosynthesis pathway and regulatory networks have been well-deciphered. However, the accumulation traits of flavonoids and caffeine in different tea cultivars was insufficient in investigation. In this study, metabolomic and transcriptomic analyses were performed to investigate the differences of flavonoids and caffeine accumulation and regulation between Chinese varieties, including the 'BTSC' group with green leaf, the 'BTZY' group with purple foliage, and the 'MYC' group comprising Assam varieties with green leaf. The results showed that most of the flavonoids were down-regulated in the 'MYC' group; however, the total anthocyanin contents were higher than that of the 'BTSC' group while lower than that of the 'BTZY' group. An ANS (Anthocyanin synthase) was significantly up-regulated and supposed to play a key role for anthocyanin accumulation in the 'BTZY' group. In addition, the results showed that esterified catechins were accumulated in the 'BTSC' and 'BTZY' groups with high abundance. In addition, SCPL1A (Type 1A serine carboxypeptidase-like acyltransferases gene) and UGGT (UDP glucose: galloyl-1-O-β-d-glucosyltransferase gene) potentially contributed to the up-accumulation of catechins esterified by gallic acid. Interestingly, the results found that much lower levels of caffeine accumulation were observed in the 'MYC' group. RT-qPCR analysis suggested that the expression deficiency of TCS1 (Tea caffeine synthase 1) was the key factor resulting in the insufficient accumulation of caffeine in the 'MYC' group. Multiple MYB/MYB-like elements were discovered in the promoter region of TCS1 and most of the MYB genes were found preferentially expressed in 'MYC' groups, indicating some of which potentially served as negative factor(s) for biosynthesis of caffeine in tea plants. The present study uncovers the characteristics of metabolite accumulation and the key regulatory network, which provide a research reference to the selection and breeding of tea varieties.
Collapse
Affiliation(s)
- Hao Tang
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | |
Collapse
|
41
|
Microbial community succession in the fermentation of Qingzhuan tea at various temperatures and their correlations with the quality formation. Int J Food Microbiol 2022; 382:109937. [PMID: 36155261 DOI: 10.1016/j.ijfoodmicro.2022.109937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
With the aim to reveal the microbial community succession at various temperatures in the fermentation of Qingzhuan tea (QZT), the Illumina NovaSeq sequencing was carried out to analyze bacterial and fungal community structure in tea samples collected from the fermentation set at various temperatures, i.e., 25 °C, 30 °C, 37 °C, 45 °C, 55 °C, and room temperature. The results showed that fermentation temperature profoundly affected the microbial community succession in the QZT fermentation. Microbial richness and community diversity decreased along with the increase of fermentation temperature. Despite the differences between microorganisms and their metabolic types among various temperatures, most bacteria and fungi showed positive correlations at the genera level. Klebsiella, Paenibacillus, Cohnella, and Pantoea were confirmed as the main bacterial genera, and Aspergillus and Cyberlindnera were the main fungal genera in QZT fermentation. The microbial genera (i.e. Aspergillus, Rhizomucor, Thermomyces, Ralstonia, Castellaniella, and Vibrio) were positively correlated with fermentation temperature (P < 0.05), while Klebsiella, Paenibacillus, and Aspergillus had good adaptability at different temperatures. Conversely, Pantoea and Cyberlindnera were only suitable for low temperature (≤37 °C) growth, and Thermomyces was only suitable for high temperature (>37 °C) growth. Aspergillus had a significant positive correlation with tea aroma quality (r = 0.64, p < 0.05). This study would help to understand the formation mechanism of QZT from microflora perspective.
Collapse
|
42
|
Hong M, Yu J, Wang X, Liu Y, Zhan S, Wu Z, Zhang X. Tea Polyphenols as Prospective Natural Attenuators of Brain Aging. Nutrients 2022; 14:3012. [PMID: 35893865 PMCID: PMC9332553 DOI: 10.3390/nu14153012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/26/2022] Open
Abstract
No organism can avoid the process of aging, which is often accompanied by chronic disease. The process of biological aging is driven by a series of interrelated mechanisms through different signal pathways, including oxidative stress, inflammatory states, autophagy and others. In addition, the intestinal microbiota play a key role in regulating oxidative stress of microglia, maintaining homeostasis of microglia and alleviating age-related diseases. Tea polyphenols can effectively regulate the composition of the intestinal microbiota. In recent years, the potential anti-aging benefits of tea polyphenols have attracted increasing attention because they can inhibit neuroinflammation and prevent degenerative effects in the brain. The interaction between human neurological function and the gut microbiota suggests that intervention with tea polyphenols is a possible way to alleviate brain-aging. Studies have been undertaken into the possible mechanisms underpinning the preventative effect of tea polyphenols on brain-aging mediated by the intestinal microbiota. Tea polyphenols may be regarded as potential neuroprotective substances which can act with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Jing Yu
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan 512699, China;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (S.Z.); (Z.W.)
| |
Collapse
|
43
|
Zhang X, Jia W, Tang X, Shan Q, Chen Q, Cheng C, Shao J, Ling Y, Hei D. Geographical Discrimination of Pu-Erh Tea by the Determination of Elements by Low-Power Total Reflection X-Ray Fluorescence (TXRF) and Caffeine and Polyphenols by Spectrophotometry. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2093891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Xinlei Zhang
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Wenbao Jia
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Xinru Tang
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qing Shan
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Qiyan Chen
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Can Cheng
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jinfa Shao
- Key Laboratory of Ray Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing, China
| | - Yongsheng Ling
- Department of Nuclear Science and Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Daqian Hei
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
ZHOU L, ZHANG Q. Multiple indicators metrological analysis for 5 kinds of tea produced in Yunnan, China. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.70922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Libing ZHOU
- Guangxi Science & Technology Normal University, China
| | - Qin ZHANG
- Guangxi Science & Technology Normal University, China
| |
Collapse
|