1
|
Kordahi MC, Daniel N, Gewirtz AT, Chassaing B. Mucus-penetrating microbiota drive chronic low-grade intestinal inflammation and metabolic dysregulation. Gut Microbes 2025; 17:2455790. [PMID: 39865067 PMCID: PMC11776472 DOI: 10.1080/19490976.2025.2455790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences. In support of this notion, we herein report that both CMC and P80 led to stark changes in the mucus microbiome, markedly distinct from those observed in feces. Moreover, transfer of mucus microbiota from CMC- and P80-fed mice to germfree mice resulted in microbiota encroachment, low-grade inflammation, and various features of metabolic syndrome. Thus, we conclude that mucus-associated bacteria are pivotal determinants of intestinal inflammatory tone and host metabolism.
Collapse
Affiliation(s)
- Melissa C. Kordahi
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Noëmie Daniel
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Centre for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
- CHRU Nancy, IHU Infiny, Nancy, France
| |
Collapse
|
2
|
Tao Z, Zou Y, Ye Z, Lin J, Zheng Q. The intervention effects of Pleurotus citrinopileatus polysaccharides with different molecular weights on high-fat diet mice. Int J Biol Macromol 2025; 310:143085. [PMID: 40250684 DOI: 10.1016/j.ijbiomac.2025.143085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Polysaccharides from valuable mushroom Pleurotus citrinopileatus (PCP) have been considered to have health promoting effects. In this study, two main polysaccharides components with different molecular weights were isolated (PCP40 with 1000 kDa and PCP80 with 10 kDa, PCPs) and their anti-obesity effects were evaluated and compared. Results showed that PCPs could correct the abnormity of lipid and sugar metabolism, indicating by the decreased level of body weight, white fat weight, adipocyte size, serum lipid as well as the recovery of leptin resistance and insulin resistance in high-fat diet (HFD) mice. PCP40 exerted more remarkable lipid lowering effects than PCP80, which might due to its higher fat binding and pancreatic lipase inhibition capacity that inhibit lipid absorption, and the more active lipolysis activity. On the other hand, PCPs improved intestinal microecology and alleviate chronic inflammation in HFD mice. PCPs could promote SCFAs production and recover gut hypoxic condition through repairing the function of mitochondria. This changed condition also led to the increase of bacterial variety and distinct bacteria enrichment, such as Paracteroides goldsteinii (PCP40) and Lactobacillus (PCP80). These findings suggested PCPs, especially the high molecular component PCP40, had a promising anti-obesity effect.
Collapse
Affiliation(s)
- Zhiyin Tao
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| |
Collapse
|
3
|
Long H, Huang R, Zhu S, Wang Z, Liu X, Zhu Z. Polysaccharide from Caulerpa lentillifera alleviates hyperlipidaemia through altering bile acid metabolism mediated by gut microbiota. Int J Biol Macromol 2025; 306:141663. [PMID: 40044008 DOI: 10.1016/j.ijbiomac.2025.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/07/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Polysaccharide from Caulerpa lentillifera (CLP) offers preventative health benefits, but its efficacy against hyperlipidaemia and underlying mechanisms still elusive. This investigation assessed CLP's potential to mitigate high-fat diet (HFD)-induced hyperlipidaemia via the gut microbiota-bile acid (BA) axis. In hyperlipidaemic mice, 8 weeks of CLP treatment improved body weight, lipid profiles, and hepatic function, correlating with shifts in BA concentrations. Additionally, CLP not only repaired HFD-induced gut dysbiosis by increasing SCFA-producing bacteria but also positively modulated gut metabolites, including acetic and butyric acids. Spearman's correlation analysis illustrated strong associations between the altered microbes, metabolites, and the expression of genes involved in BA metabolism. Remarkably, CLP significantly influenced BA levels related to hyperlipidaemia, partly by augmenting the population of Parabacteroides and associated butyric acid level. These results indicate that CLP may serve as a functional food to guard against dyslipidaemia through impacting specific gut microbes and metabolites such as Parabacteroides and butyrate, and thus presenting promising therapeutic prospects for diseases associated with BA metabolism.
Collapse
Affiliation(s)
- Hairong Long
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239001, Anhui, PR China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Rui Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Shuangjie Zhu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239001, Anhui, PR China
| | - Zuhan Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239001, Anhui, PR China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, PR China.
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
4
|
Gao L, Liu C, Wu J, Cui Y, Zhang M, Bi C, Shan A, Dou X. EGCG improve meat quality, restore lipid metabolism disorder and regulate intestinal flora in high-fat fed broilers. Poult Sci 2025; 104:104875. [PMID: 39919564 PMCID: PMC11848460 DOI: 10.1016/j.psj.2025.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025] Open
Abstract
Excessive oil addition can easily result in decreased disease resistance in broilers, a drop in meat quality, and disorders of glucose and lipid metabolism. Epigallocatechin gallate (EGCG) is an important bioactive component of tea and has been shown to have promising effects on the metabolism of nutrients. This study was aimed at investigating the impact of EGCG supplementation through a high-fat diet (HFD) on production performance, meat quality, lipid metabolism and the influence of intestinal flora in broiler chickens. During the experimental phase, the broilers were segregated into three groups and provided with distinct diets: a basal diet, a high-fat diet, and a high-fat diet supplemented with EGCG, respectively. The results showed that EGCG increased lightness (L*) 24 h (P < 0.05), and decreased drip loss (P < 0.05) of chicken meat; Enhanced the presence of non-essential and flavor amino acids in muscle tissue and greatly enhanced the antioxidant capacity of broilers, leading to a noteworthy upregulation of antioxidant genes at the genetic level (P < 0.05); Reduced in blood lipids, blood glucose, liver and abdominal fat accumulation in high-fat diet-induced obese chickens (P < 0.05), markedly improved serum and liver biochemical parameters, and histological analysis results also demonstrated that EGCG markedly decreased hepatic lipid accumulation caused by HFD feeding. Compared to high-fat diet-induced obese chickens, supplementation of EGCG significantly lowered hepatic fatty acid synthase (FAS) expression and lipid synthesis metabolites, while fatty acid decomposition enzymes showed no significant changes. Furthermore, EGCG significantly decreased inflammation levels and oxidative damage in high-fat diet-induced obese chickens (P < 0.05). 16S rRNA gene sequencing revealed that dietary supplementation of EGCG reduced the abundance of Bacteroidota and Dielma, while increasing the abundance of Firmicutes, Turiciactor, Romboutsia, and Parasutterella, thereby modulating the microbial composition. Dietary EGCG may have induced some of the alterations due to increased activity of the enzymes catalase (CAT) and superoxide dismutase (SOD), as well as decreased oxidation of proteins and lipids. Collectively, EGCG shows potential as an effective dietary additive for improving the high fat feeding of broiler health, feed nutrient utilization, and meat quality and nutritional value. This experiment provides a powerful new idea for the efficient utilization of oil feed and has important theoretical significance.
Collapse
Affiliation(s)
- Lujia Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chen Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Ying Cui
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Man Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Song W, Zhang T, Wang Y, Xue S, Zhang Y, Zhang G. Glycyrrhiza uralensis Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice. Nutrients 2025; 17:225. [PMID: 39861355 PMCID: PMC11767424 DOI: 10.3390/nu17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES Polysaccharides from Glycyrrhiza are known to have several bioactive effects. Previous studies have found that low-molecular-weight Glycyrrhiza polysaccharide (GP1) is degraded by Muribaculum_sp_H5 and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied. In this study, we aimed to reveal the immune enhancement effect and mechanism of GP1 on healthy mice. METHODS The cytotoxicity and immunomodulatory activity of GP1 were analyzed by cell experiment; the effects of GP1 on antioxidation, immune regulation and gut microbiota structure of healthy body were studied in vivo. In addition, the mechanism of GP1 enhancing immune response of healthy body was analyzed by multi-omics. RESULTS The results show that GP1 enhanced the immune function of healthy mice by increasing the index of immune organs, improving the organizational structure of immune organs, and increasing the secretion of immune cytokines and immunoglobulin. GP1 also increased the contents of antioxidant factors such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in various organs and reduced the content of oxide malondialdehyde (MDA), thus enhancing the body's antioxidant capacity, promoting cell proliferation and prolonging life. Moreover, GP1 promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Muribaculum, Prevotellaceae_UCG-001, and Paramuribaculum, and the production of characteristic metabolites (collectively referred to as postbiotics), including α-tocopherol, arachidonic acid, melibiose, taurine, and nicotinic acid. These beneficial bacteria and postbiotics have been proven to have health maintaining functions. CONCLUSIONS GP1 promoted the proliferation of beneficial bacteria and increased the production of postbiotics, which should be the mechanism of its beneficial effect. It is expected to be a promising immune dietary supplement.
Collapse
Affiliation(s)
- Wangdi Song
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Taifeng Zhang
- Testing Center of Xinjiang Tianye Co., Ltd., Shihezi 832099, China
| | - Yunyun Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Shengnan Xue
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yan Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
6
|
Saxena J, Agarwal G, Das S, Kumar A, Thakkar K, Kaushik S, Srivatsava VK, Siddiqui AJ, Jyoti A. Immunopharmacological Insights into Cordyceps spp.: Harnessing Therapeutic Potential for Sepsis. Curr Pharm Des 2025; 31:823-842. [PMID: 39694962 DOI: 10.2174/0113816128326301240920040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 12/20/2024]
Abstract
Cordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Gaurang Agarwal
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Sarvjeet Das
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Anshu Kumar
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Krish Thakkar
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | | | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
7
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
8
|
Wang G, Xie B, Yang X, Wang R, Zhong G, Gao L, Chen X, Lin M, Huang Q, Zhang C, Huang H, Li T, Xu J, Deng W. The "crosstalk" between gut microbiota, metabolites and genes in diet-induced hepatic steatosis mice intervened with Cordyceps guangdongensis polysaccharides. Int J Biol Macromol 2024; 277:134607. [PMID: 39127294 DOI: 10.1016/j.ijbiomac.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Bojun Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ruijuan Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guorui Zhong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangnv Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Min Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qiuju Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hao Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
9
|
Fu Y, Wang Q, Tang Z, Liu G, Guan G, Lyu J. Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis. Nutrients 2024; 16:2859. [PMID: 39275176 PMCID: PMC11396883 DOI: 10.3390/nu16172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. METHODS In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice's colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. RESULTS CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. CONCLUSIONS According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity.
Collapse
Affiliation(s)
- Yifeng Fu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiangfeng Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zihan Tang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guiping Guan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jin Lyu
- Department of Pathology, The First People's Hospital of Foshan, Foshan 528000, China
| |
Collapse
|
10
|
Sang X, Guan X, Tong Y, Wang F, Zhou B, Li Y, Zhao Q. Sulfated Polysaccharides from Sea Cucumber Cooking Liquid Prevents Obesity by Modulating Gut Microbiome, Transcriptome, and Metabolite Profiles in Mice Fed a High-Fat Diet. Foods 2024; 13:2017. [PMID: 38998524 PMCID: PMC11241695 DOI: 10.3390/foods13132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
We aimed to explore the anti-obesity mechanism from the microbiome, metabolome, and transcriptome viewpoints, focusing on the sulfated polysaccharides found in the cooking liquid of Apostichopus japonicus (CLSPAJ) to explore the potential mediators of the anti-obesity effects in mice fed a high-fat diet (HFD). The mice treated with CLSPAJ showed a decrease in obesity and blood lipid levels. Gut microbiome dysbiosis caused by the HFD was reversed after CLSPAJ supplementation, along with increased levels of indole-3-ethanol, N-2-succinyl-L-glutamic acid 5-semialdehyde, and urocanic acid. These increases were positively related to the increased Akkermansia, Lactobacillus, Roseburia, and Phascolarctobacterium. Transcriptome analysis showed that B cell receptor signaling and cytochrome P450 xenobiotic metabolism were the main contributors to the improvement in obesity. Metabolome-transcriptome analysis revealed that CLSPAJ reversal of obesity was mainly due to amino acid metabolism. These findings suggest that CLSPAJ could be a valuable prebiotic preparation for preventing obesity-related diseases.
Collapse
Affiliation(s)
- Xue Sang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High-Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116000, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Guan
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Yao Tong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Fuyi Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Boqian Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
| | - Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High-Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (X.S.); (X.G.); (Y.T.); (F.W.); (B.Z.); (Y.L.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High-Value Utilization, Dalian 116023, China
- Liaoning Provincial Marine Healthy Food Engineering Research Centre, Dalian 116000, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Li R, Yang P, Liu B, Ye Z, Zhang P, Li M, Gong Y, Huang Y, Yang L, Li M. Lycium barbarum polysaccharide remodels colon inflammatory microenvironment and improves gut health. Heliyon 2024; 10:e30594. [PMID: 38774318 PMCID: PMC11107222 DOI: 10.1016/j.heliyon.2024.e30594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Aim Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bowen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ziru Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Puyue Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Mingjian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yong Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lan Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
12
|
Liao C, Wang L, Quon G. Microbiome-based classification models for fresh produce safety and quality evaluation. Microbiol Spectr 2024; 12:e0344823. [PMID: 38445872 PMCID: PMC10986475 DOI: 10.1128/spectrum.03448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Small sample sizes and loss of sequencing reads during the microbiome data preprocessing can limit the statistical power of differentiating fresh produce phenotypes and prevent the detection of important bacterial species associated with produce contamination or quality reduction. Here, we explored a machine learning-based k-mer hash analysis strategy to identify DNA signatures predictive of produce safety (PS) and produce quality (PQ) and compared it against the amplicon sequence variant (ASV) strategy that uses a typical denoising step and ASV-based taxonomy strategy. Random forest-based classifiers for PS and PQ using 7-mer hash data sets had significantly higher classification accuracy than those using the ASV data sets. We also demonstrated that the proposed combination of integrating multiple data sets and leveraging a 7-mer hash strategy leads to better classification performance for PS and PQ compared to the ASV method but presents lower PS classification accuracy compared to the feature-selected ASV-based taxonomy strategy. Due to the current limitation of generating taxonomy using the 7-mer hash strategy, the ASV-based taxonomy strategy with remarkably less computing time and memory usage is more efficient for PS and PQ classification and applicable for important taxa identification. Results generated from this study lay the foundation for future studies that wish and need to incorporate and/or compare different microbiome sequencing data sets for the application of machine learning in the area of microbial safety and quality of food. IMPORTANCE Identification of generalizable indicators for produce safety (PS) and produce quality (PQ) improves the detection of produce contamination and quality decline. However, effective sequencing read loss during microbiome data preprocessing and the limited sample size of individual studies restrain statistical power to identify important features contributing to differentiating PS and PQ phenotypes. We applied machine learning-based models using individual and integrated k-mer hash and amplicon sequence variant (ASV) data sets for PS and PQ classification and evaluated their classification performance and found that random forest (RF)-based models using integrated 7-mer hash data sets achieved significantly higher PS and PQ classification accuracy. Due to the limitation of taxonomic analysis for the 7-mer hash, we also developed RF-based models using feature-selected ASV-based taxonomic data sets, which performed better PS classification than those using the integrated 7-mer hash data set. The RF feature selection method identified 480 PS indicators and 263 PQ indicators with a positive contribution to the PS and PQ classification.
Collapse
Affiliation(s)
- Chao Liao
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, USA
| |
Collapse
|
13
|
Zhang Q, Xu Y, Xie L, Shu X, Zhang S, Wang Y, Wang H, Dong Q, Peng W. The function and application of edible fungal polysaccharides. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:45-142. [PMID: 38763529 DOI: 10.1016/bs.aambs.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Edible fungal polysaccharides (EFPs) are a variety of bioactive macromolecular which isolated from fruiting bodies, mycelia or fermentation broths of edible or medicinal fungus. Increasing researches have confirmed that EFPs possess multiple biological activities both in vitro and in vivo settings, including antioxidant, antiviral, anti-inflammatory, immunomodulatory, anti-tumor, hypoglycemic, hypolipidemic, and regulating intestinal flora activities. As a result, they have emerged as a prominent focus in the healthcare, pharmaceutical, and cosmetic industries. Fungal EFPs have safe, non-toxic, biodegradable, and biocompatible properties with low immunogenicity, bioadhesion ability, and antibacterial activities, presenting diverse potential applications in the food industries, cosmetic, biomedical, packaging, and new materials. Moreover, varying raw materials, extraction, purification, chemical modification methods, and culture conditions can result in variances in the structure and biological activities of EFPs. The purpose of this review is to provide comprehensively and systematically organized information on the structure, modification, biological activities, and potential applications of EFPs to support their therapeutic effects and health functions. This review provides new insights and a theoretical basis for prospective investigations and advancements in EFPs in fields such as medicine, food, and new materials.
Collapse
Affiliation(s)
- Qian Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yingyin Xu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Xueqin Shu
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Shilin Zhang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Yong Wang
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Haixia Wang
- Horticulture Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, P.R. China.
| | - Qian Dong
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| | - Weihong Peng
- Sichuan Institute of Edible Fungi, Chengdu, P.R. China; National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Chengdu, P.R. China; Scientifc Observing and Experimental Station of Agro-Microbial Resource and Utilization in Southwest China, Ministry of Agriculture, Chengdu, P.R. China.
| |
Collapse
|
14
|
Closa E, Herold L, Sorbara MT. Shaping microbiome function with a human milk-oligosaccharide synbiotic. Trends Endocrinol Metab 2024; 35:91-93. [PMID: 37945457 DOI: 10.1016/j.tem.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
In a recent article, Button and colleagues demonstrate that human milk oligosaccharides create a nutrient niche that supports reversible colonization by Bifidobacterium infantis. Using this tunable system, they assessed the impact of B. infantis on microbiome recovery after antibiotic treatment. Overall, this work highlights synbiotics as a useful approach for developing live biotherapeutic products (LBPs).
Collapse
Affiliation(s)
- Ethel Closa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Loudon Herold
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Matthew T Sorbara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
15
|
Huang Q, Zhang Y, Chu Q, Song H. The Influence of Polysaccharides on Lipid Metabolism: Insights from Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300522. [PMID: 37933720 DOI: 10.1002/mnfr.202300522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Polysaccharides are complex molecules of more than ten monosaccharide residues interconnected through glycosidic linkages formed via condensation reactions. Polysaccharides are widely distributed in various food resources and have gained considerable attention due to their diverse biological activities. This review presented a critical analysis of the existing research literature on anti-obesity polysaccharides and investigates the complex interplay between their lipid-lowering activity and the gut microbiota, aiming to provide a comprehensive overview of the lipid-lowering properties of polysaccharides and the underlying mechanisms of action. METHODS AND RESULTS In this review, the study summarized the roles of polysaccharides in improving lipid metabolism via gut microbiota, including the remodeling of the intestinal barrier, reduction of inflammation, inhibition of pathogenic bacteria, reduction of trimethylamine N-oxide (TMAO) production, and regulation of the metabolism of short-chain fatty acids (SCFAs) and bile acids (BAs). CONCLUSION These mechanisms collectively contributed to the beneficial effects of polysaccharides on lipid metabolism and overall metabolic health. Furthermore, polysaccharide-based nanocarriers combined with gut microbiota have broad prospects for developing targeted and personalized therapies for hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yanhui Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, China
| |
Collapse
|
16
|
Yu S, Wang H, Cui L, Wang J, Zhang Z, Wu Z, Lin X, He N, Zou Y, Li S. Pectic oligosaccharides ameliorate high-fat diet-induced obesity and hepatic steatosis in association with modulating gut microbiota in mice. Food Funct 2023; 14:9892-9906. [PMID: 37853813 DOI: 10.1039/d3fo02168h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.
Collapse
Affiliation(s)
- Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
- BGI-Shenzhen, Shenzhen 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Luwen Cui
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Zhinan Wu
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen 518083, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China.
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
17
|
Zhu Z, Huang A, Chen M, Wang J, Li Z, Sun Z, Ye Y, Nan J, Yu S, Chen M, Xie Y, Hu H, Zhang J, Wu Q, Ding Y. Impacts of selenium enrichment on nutritive value and obesity prevention of Cordyceps militaris: A nutritional, secondary metabolite, and network pharmacological analysis. Food Chem X 2023; 19:100788. [PMID: 37780281 PMCID: PMC10534092 DOI: 10.1016/j.fochx.2023.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to compare the nutritive value and obesity prevention of ordinary Cordyceps militaris (CM) and selenium-enriched CM (SeCM). The results indicated that Se enrichment significantly increased the total carbohydrate and soluble dietary fiber content, while the protein and insoluble dietary fiber content decreased. Although the fat content was not affected, the medium and long-chain fatty acids content significantly changed. Moreover, Se enrichment significantly elevated the secondary metabolites belonging to terpenoids and alkaloids, which are linked with the enhanced biosynthesis of secondary metabolites. Both CM and SeCM reduced body weight, adipose accumulation, impaired glucose tolerance, and lipid levels in high-fat diet (HFD)-fed mice, and there was no significant difference between them. Network pharmacological analysis revealed that dietary CM and SeCM prevented HFD-induced obesity and associated metabolic diseases with multi-ingredients acting on multi-targets. Overall, Se enrichment improved the nutritive value of CM without altering its role in preventing obesity.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Aohuan Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Mengfei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zeyang Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhongxu Sun
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Yiheng Ye
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Jingwei Nan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Shubo Yu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510700, China
| | - Huiping Hu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| |
Collapse
|
18
|
Wang X, Peng Z, Wang L, Zhang J, Zhang K, Guo Z, Xu G, Li J. Cordyceps militaris Solid Medium Extract Alleviates Lipoteichoic Acid-Induced MH-S Inflammation by Inhibiting TLR2/NF-κB/NLRP3 Pathways. Int J Mol Sci 2023; 24:15519. [PMID: 37958501 PMCID: PMC10648577 DOI: 10.3390/ijms242115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to investigate the inhibitory effects of Cordyceps militaris solid medium extract (CME) and cordycepin (COR) on LTA-induced inflammation in MH-S cells and their mechanisms of action. In this study, the establishment of an LTA-induced MH-S inflammation model was determined, the CCK-8 method was used to determine the safe concentration range for a drug for COR and CME, the optimal concentration of COR and CME to exert anti-inflammatory effects was further selected, and the expression of inflammatory factors of TNF-α, IL-1β, IL-18, and IL-6 was detected using ELISA. The relative expression of TNF-α, IL-1β, IL-18, IL-6, IL-10, TLR2 and MyD88 mRNA was detected using RT-PCR, and the IL-1β, IL-18, TLR2, MyD88, NF-κB p-p65, NLRP3, pro-caspase-1, Caspase-1 and ASC protein expression in the cells were detected using Western blot; immunofluorescence assay detected the expression of Caspase-1 in MH-S cells. The results revealed that both CME and COR inhibited the levels of IL-1β, IL-18, IL-6, and TNF-α in the supernatants of LTA-induced MH-S cells and the mRNA expression levels of IL-1β, IL-18, IL-6, TNF-α, TLR2 and MyD88, down-regulated the LTA-induced IL-1β, IL-18, TLR2 in MH-S cells, MyD88, NF-κB p-p65/p65, NLRP3, ASC, pro-caspase-1, and caspase-1 protein expression levels, and inhibited LTA-induced caspase-1 activation in MH-S cells. In conclusion, CME can play a therapeutic role in LTA-induced inflammation in MH-S cells via TLR2/NF-κB/NLRP3, and may serve as a potential drug for bacterial pneumonia caused by Gram-positive bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
19
|
Wu S, Wu Z, Chen Y. Effect of Cordyceps militaris Powder Prophylactic Supplementation on Intestinal Mucosal Barrier Impairment and Microbiota-Metabolites Axis in DSS-Injured Mice. Nutrients 2023; 15:4378. [PMID: 37892453 PMCID: PMC10610503 DOI: 10.3390/nu15204378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease with an unknown pathogenesis and increasing incidence. The objective of this study is to investigate the impact of prophylactic treatment with Cordyceps militaris on UC. The findings demonstrate that prophylactic supplementation of C. militaris powder effectively mitigates disease symptoms in DSS-injured mice, while also reducing the secretion of pro-inflammatory cytokines. Furthermore, C. militaris powder enhances the integrity of the intestinal mucosal barrier by up-regulating MUC2 protein expression and improving tight junction proteins (ZO-1, occludin, and claudin 1) in DSS-injured mice. Multiomics integration analyses revealed that C. militaris powder not only reshaped gut microbiota composition, with an increase in Lactobacillus, Odoribacter, and Mucispirillum, but also exerted regulatory effects on various metabolic pathways including amino acid, glyoxylates, dicarboxylates, glycerophospholipids, and arachidonic acid. Subsequent analysis further elucidated the intricate interplay of gut microbiota, the intestinal mucosal barrier, and metabolites, suggesting that the microbiota-metabolite axis may involve the effect of C. militaris on intestinal mucosal barrier repair in UC. Moreover, in vitro experiments demonstrated that peptides and polysaccharides, derived from C. militaris, exerted an ability to change the gut microbiota structure of UC patients' feces, particularly by promoting the growth of Lactobacillus. These findings suggest that regulatory properties of C. militaris on gut microbiota may underlie the potential mechanism responsible for the protective effect of C. militaris in UC. Consequently, our study will provide support for the utilization of C. militaris as a whole food-based ingredient against the occurrence and development of UC.
Collapse
Affiliation(s)
- Shujian Wu
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
| | - Zaoxuan Wu
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| | - Ye Chen
- Shenzhen Clinical Research Center for Digestive Disease, Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China;
- State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China;
| |
Collapse
|
20
|
Bai C, Su F, Zhang W, Kuang H. A Systematic Review on the Research Progress on Polysaccharides from Fungal Traditional Chinese Medicine. Molecules 2023; 28:6816. [PMID: 37836659 PMCID: PMC10574063 DOI: 10.3390/molecules28196816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional Chinese medicine (TCM) is a class of natural drugs with multiple components and significant therapeutic effects through multiple targets. It also originates from a wide range of sources containing plants, animals and minerals, and among them, plant-based Chinese medicine also includes fungi. Fungal traditional Chinese medicine is a medicinal resource with a long history and widespread application in China. Accumulating evidence confirms that polysaccharide is the main pharmacodynamic material on which fungal TCM is based. The purpose of the current systematic review is to summarize the extraction, isolation, structural identification, biological functions, quality control and medicinal and edible applications of polysaccharides from fungal TCM in the past three years. This paper will supplement and deepen the understanding and application of polysaccharides from fungal TCM, and propose some valuable insights for further research and development of drugs and functional foods.
Collapse
Affiliation(s)
| | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.B.); (F.S.); (W.Z.)
| |
Collapse
|
21
|
Li L, Wu L, Jiang T, Liang T, Yang L, Li Y, Gao H, Zhang J, Xie X, Wu Q. Lactiplantibacillus plantarum 124 Modulates Sleep Deprivation-Associated Markers of Intestinal Barrier Dysfunction in Mice in Conjunction with the Regulation of Gut Microbiota. Nutrients 2023; 15:4002. [PMID: 37764783 PMCID: PMC10538203 DOI: 10.3390/nu15184002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Intestinal diseases caused by sleep deprivation (SD) are severe public health threats worldwide. However, whether or not probiotics attenuate the intestinal damage associated with SD remains unclear. In this study, we used antibiotic pretreatment and fecal microbiota transplantation to investigate the protective role of Lactiplantibacillus plantarum (L. plantarum) 124 against SD-related intestinal barrier damage in C57BL/6 mice. Compared with those of a normal sleeping mouse, we observed that intestinal antioxidant capacity and anti-inflammatory cytokine levels were decreased, while pro-inflammatory cytokines were increased in sleep deprivation mice with an increasing duration of sleep deprivation. This resulted in decreased tight junction protein expression and increased intestinal barrier permeability. In contrast, intragastric administration with L. plantarum 124 reversed SD-associated intestinal oxidative stress, inflammation, colonic barrier damage, and the dysbiosis of the microbiota in the colon. In addition, L. plantarum 124 restored gut microbiota homeostasis via restoring abundance, including that of Dubosiella, Faecalibaculum, Bacillus, Lachnoclostridium, and Bifidobacterium. Further studies showed that gut microbiota mediated SD-associated intestinal damage and the treatment L. plantarum 124 in SD-associated colonic barrier damage. L. plantarum 124 is a potential candidate for alleviating SD-associated intestinal barrier damage. Overall, L. plantarum 124 consumption attenuates intestinal oxidative stress, inflammation, and intestinal barrier damage in SD-associated mice via the modulation of gut microbes.
Collapse
Affiliation(s)
- Longyan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tong Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - He Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
22
|
Yan JK, Chen TT, Li LQ, Liu F, Liu X, Li L. The anti-hyperlipidemic effect and underlying mechanisms of barley ( Hordeum vulgare L.) grass polysaccharides in mice induced by a high-fat diet. Food Funct 2023. [PMID: 37449927 DOI: 10.1039/d3fo01451g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hyperlipidemia is a pathological disorder of lipid metabolism that can cause fatty liver, atherosclerosis, acute myocardial infarction, and other diseases, seriously endangering people's health. Polysaccharides have been shown to have lipid-lowering potential. In the current study, the anti-hyperlipidemia effect and potential mechanisms of a polysaccharide (BGP-Z31) obtained from barley grass harvested at the stem elongation stage in high-fat diet (HFD)-treated mice were investigated. Results showed that supplementation with BGP-Z31 (200 and 400 mg kg-1) not only suppressed obesity, organ enlargement, and fat accumulation caused by HFD, but also regulated dyslipidemia, relieved liver function injury, and ameliorated the oxidative stress level. Meanwhile, BGP-Z31 increased the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in HFD-induced mice. Gut microbiota analysis demonstrated that BGP-Z31 had no obvious effect on the gut microbiota diversity in mice treated with HFD, but it positively remodeled the intestinal flora structure by elevating the relative abundances of Bacteroides, Muribaculaceae, and Lachnospiraceae and lowering the Firmicutes/Bacteroides value and the relative abundance of Desulfovibrionaceae. Therefore, our data suggested that BGP-Z31 can be used as a promising nutritional supplement for dietary intervention in hyperlipidemia.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Ting-Ting Chen
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
23
|
Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr 2023; 10:1213010. [PMID: 37485384 PMCID: PMC10358859 DOI: 10.3389/fnut.2023.1213010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
Collapse
Affiliation(s)
- Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Diru Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Zhang Q, Bai Y, Wang W, Li J, Zhang L, Tang Y, Yue S. Role of herbal medicine and gut microbiota in the prevention and treatment of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116127. [PMID: 36603782 DOI: 10.1016/j.jep.2022.116127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is a common metabolic dysfunction disease, which is highly correlated with the homeostasis of gut microbiota (GM). The dysregulation of GM on energy metabolism, immune response, insulin resistance and endogenous metabolites (e.g., short chain fatty acids and secondary bile acids) can affect the occurrence and development of obesity. Herbal medicine (HM) has particular advantages and definite therapeutic effects in the prevention and treatment of obesity, but its underlying mechanism is not fully clear. AIM OF THE STUDY In this review, the representative basic and clinical anti-obesity studies associated with the homeostasis of GM regulated by HM including active components, single herb and herbal formulae were summarized and discussed. We aim to provide a state of art reference for the mechanism research of HM in treating obesity and the further development of new anti-obesity drugs. MATERIALS AND METHODS The relevant information was collected by searching keywords (obesity, herbal medicine, prescriptions, mechanism, GM, short chain fatty acids, etc.) from scientific databases (CNKI, PubMed, SpringerLink, Web of Science, SciFinder, etc.). RESULTS GM dysbiosis did occur in obese patients and mice, whiles the intervention of GM could ameliorate the condition of obesity. HM (e.g., berberine, Ephedra sinica, Rehjnannia glutinosa, and Buzhong Yiqi prescription) has been proved to possess a certain regulation on GM and an explicit effect on obesity, but the exact mechanism of HM in improving obesity by regulating GM remains superficial. CONCLUSION GM is involved in HM against obesity, and GM can be a novel therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yaya Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Jiajia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu Province, China.
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi Traditional Chinese Medicine Processing Technology Heritage Base, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
25
|
Gan L, Wang J, Guo Y. Polysaccharides influence human health via microbiota-dependent and -independent pathways. Front Nutr 2022; 9:1030063. [PMID: 36438731 PMCID: PMC9682087 DOI: 10.3389/fnut.2022.1030063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Polysaccharides are the most diverse molecules and can be extracted from abundant edible materials. Increasing research has been conducted to clarify the structure and composition of polysaccharides obtained from different materials and their effects on human health. Humans can only directly assimilate very limited polysaccharides, most of which are conveyed to the distal gut and fermented by intestinal microbiota. Therefore, the main mechanism underlying the bioactive effects of polysaccharides on human health involves the interaction between polysaccharides and microbiota. Recently, interest in the role of polysaccharides in gut health, obesity, and related disorders has increased due to the wide range of valuable biological activities of polysaccharides. The known roles include mechanisms that are microbiota-dependent and involve microbiota-derived metabolites and mechanisms that are microbiota-independent. In this review, we discuss the role of polysaccharides in gut health and metabolic diseases and the underlying mechanisms. The findings in this review provide information on functional polysaccharides in edible materials and facilitate dietary recommendations for people with health issues. To uncover the effects of polysaccharides on human health, more clinical trials should be conducted to confirm the therapeutic effects on gut and metabolic disease. Greater attention should be directed toward polysaccharide extraction from by-products or metabolites derived from food processing that are unsuitable for direct consumption, rather than extracting them from edible materials. In this review, we advanced the understanding of the structure and composition of polysaccharides, the mutualistic role of gut microbes, the metabolites from microbiota-fermenting polysaccharides, and the subsequent outcomes in human health and disease. The findings provide insight into the proper application of polysaccharides in improving human health.
Collapse
Affiliation(s)
- Liping Gan
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Jinrong Wang
- School of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Extraction, Characterization, and Platelet Inhibitory Effects of Two Polysaccharides from the Cs-4 Fungus. Int J Mol Sci 2022; 23:ijms232012608. [PMID: 36293463 PMCID: PMC9604242 DOI: 10.3390/ijms232012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiovascular diseases are associated with platelet hyperactivity, and downregulating platelet activation is one of the promising antithrombotic strategies. This study newly extracted two polysaccharides (purified exopolysaccharides, EPSp and purified intercellular exopolysaccharides, IPSp) from Cordyceps sinensis Cs-4 mycelial fermentation powder, and investigated the effects of the two polysaccharides and their gut bacterial metabolites on platelet functions and thrombus formation. EPSp and IPSp are majorly composed of galactose, mannose, glucose, and arabinose. Both EPSp and IPSp mainly contain 4-Galp and 4-Glcp glycosidic linkages. EPSp and IPSp significantly inhibited human platelet activation and aggregation with a dose-dependent manner, and attenuated thrombus formation in mice without increasing bleeding risk. Furthermore, the EPSp and IPSp after fecal fermentation showed enhanced platelet inhibitory effects. The results have demonstrated the potential value of Cs-4 polysaccharides as novel protective ingredients for cardiovascular diseases.
Collapse
|
27
|
Lin S, Hsu WK, Tsai MS, Hsu TH, Lin TC, Su HL, Wang SH, Jin D. Effects of Cordyceps militaris fermentation products on reproductive development in juvenile male mice. Sci Rep 2022; 12:13720. [PMID: 35962055 PMCID: PMC9372929 DOI: 10.1038/s41598-022-18066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Cordyceps militaris (CM) is a popular medicinal fungus; however, few studies have focused on its impact on the male reproductive system. We evaluated the effects of CM fermentation products on the reproductive development of juvenile male (JM) mice. Mice were divided into four experimental groups, each fed 5% CM products (weight per weight (w/w) in normal diet): extracellular polysaccharides (EPS), fermentation broth (FB), mycelia (MY), and whole fermentation products (FB plus MY, FBMY) for 28 days, while mice in the control group (CT) were fed a normal diet. Basic body parameters, testicular structure, sperm parameters, and sex hormones concentrations were analyzed. Compared to the CT group, mice in the EPS, MY, and FBMY groups showed a significantly increased mean seminiferous tubule area (p < 0.05), mice in the FB and MY groups had significantly higher sperm concentrations (p < 0.05), and mice in the EPS, FB, and FBMY groups showed significantly increased ratios of motile sperm (p < 0.05). Meanwhile, EPS significantly promoted the ability of JM mice to synthesize testosterone (p < 0.05). Furthermore, all CM products significantly increased the food intake of JM mice (p < 0.05) but did not significantly change their water intake and body weight gain (p > 0.05). In conclusion, CM products, especially EPS, exhibit strong androgen-like activities that can promote male reproductive development.
Collapse
Affiliation(s)
- Shan Lin
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 311399, Zhejiang, China
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Wen-Kuang Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Ming-Shiun Tsai
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, 515006, Taiwan
| | - Tso-Ching Lin
- Department of Sport and Health Management, Da-Yeh University, Changhua, 515006, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402306, Taiwan.
| | - Dazhi Jin
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, 311399, Zhejiang, China.
| |
Collapse
|
28
|
Oyster (Crassostrea gigas) polysaccharide ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat diet fed mice. Int J Biol Macromol 2022; 216:916-926. [PMID: 35868410 DOI: 10.1016/j.ijbiomac.2022.07.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
Oyster is nutritious shellfish, wildly consumed throughout the world. Its polysaccharide (OPS) has various bioactivity. In the present study, the anti-obesity effect of OPS was evaluated in obese mice induced by a high-fat diet (HFD). The results showed that OPS significantly alleviated weight gain, dyslipidemia, and metabolic endotoxemia of obese mice, and accelerated the production of short-chain fatty acids. OPS also regulated lipid metabolism of adipose and liver by activating the expression of p-AMPKα to further down-regulate the expression of SREBP-1c, PPARγ, and p-ACC-1. 16S rRNA results indicated that OPS corrected HFD-induced gut microbiota dysbiosis by enriching beneficial bacteria (Bifidobacterium, Lactobacillus, Dobosiella, and Faecalibaculum) and decreasing harmful bacteria (Erysipelatoclostridium, Helicobacter, and Mucispirillum). In summary, these results revealed that OPS could serve as a potential prebiotic to improve obesity.
Collapse
|
29
|
Zheng Y, Wang Y, Luo D, Lin L, Lu X, Gao J, Xiao C, Zhao M. Effect of Bergamot and Laoxianghuang Polysaccharides on Gut Microbiota Derived from Patients with Hyperlipidemia: An Integrative Analysis of Microbiome and Metabolome during In Vitro Fermentation. Foods 2022; 11:foods11142039. [PMID: 35885282 PMCID: PMC9323038 DOI: 10.3390/foods11142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the effects of bergamot polysaccharide (BP) and Laoxianghuang polysaccharides (LPs, fermented bergamot) on the microbiome and metabolome during the in vitro fermentation of gut microbiota from patients with hyperlipidemia. Results indicated that both BP and LPs were able to increase the production of acetic acid, propionic acid, and butyric acid. However, only LPs could decrease the content of isobutyric acid and isovaleric acid, which are detrimental to gut health. A 16S rRNA analysis showed that both BP and LPs could reduce the proportion of Fusobacterium, whereas they increased the Bacteroides content in hyperlipidemia. Untargeted UPLC-MS/MS metabolomic profiling found six bio-markers that were significantly changed after BP and LPs intervention, and four of the down-regulated metabolites were long-chain fatty acids associated with vascular diseases. These findings provide new evidence that BP and LPs have the potential to regulate imbalances in the gut microbiota in patients with hyperlipidemia and ameliorate its metabolic abnormalities.
Collapse
Affiliation(s)
- Yang Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (Y.Z.); (D.L.); (L.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Wang
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China;
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (Y.Z.); (D.L.); (L.L.)
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Lianzhu Lin
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (Y.Z.); (D.L.); (L.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (J.G.)
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (J.G.)
| | - Chuqiao Xiao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (Y.Z.); (D.L.); (L.L.)
- Correspondence: (C.X.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: (C.X.); (M.Z.)
| |
Collapse
|
30
|
Chen D, Bai R, Yong H, Zong S, Jin C, Liu J. Improving the digestive stability and prebiotic effect of carboxymethyl chitosan by grafting with gallic acid: In vitro gastrointestinal digestion and colonic fermentation evaluation. Int J Biol Macromol 2022; 214:685-696. [PMID: 35779653 DOI: 10.1016/j.ijbiomac.2022.06.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Carboxymethyl chitosan (CMCS) is a useful polysaccharide with potential applications in food, cosmetic and biomedical industries. Nonetheless, CMCS is unfavorable for maintaining intestinal flora balance. In this study, gallic acid (GA) was grafted with CMCS through ascorbic acid/hydrogen peroxide initiated graft copolymerization reaction, producing GA grafted CMCS (GA-g-CMCS). The digestive and fermentative behavior of CMCS and GA-g-CMCS were investigated by using in vitro simulated gastrointestinal digestion and colonic fermentation models. Results showed that the average molecular weight (Mw) of CMCS gradually decreased during saliva-gastro-intestinal digestion, changing from original sheet-like morphology to porous and rod-like fragments. However, the Mw and morphology of GA-g-CMCS were almost unchanged under saliva-gastro-intestinal digestion. Meanwhile, the grafted GA moiety was not released from GA-g-CMCS during saliva-gastro-intestinal digestion. As compared with CMCS fermentation, GA-g-CMCS fermentation significantly suppressed the relative abundance of Escherichia-Shigella, Paeniclostridium, Parabacteroides, Lachnoclostridium, Clostridium_sensu_stricto_1, UBA1819 and Butyricimonas, while facilitated the relative abundance of Enterobacter, Enterococcus, Fusobacterium and Lachnospira. In addition, GA-g-CMCS fermentation significantly enhanced the production of short-chain fatty acids. These findings suggested that the digestive stability and prebiotic effect of CMCS were improved by grafting with GA.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ruyu Bai
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|