1
|
Zhao X, Bi H. Impact of boiling on the allergens in fish bone samples identified by microfluidic chips and MALDI-TOF MS. Food Chem 2025; 465:141868. [PMID: 39536626 DOI: 10.1016/j.foodchem.2024.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Fish bones hold significant potential in the food industry. Investigating the allergenic characteristics of fish bone food products can enhance our understanding of fish allergies. In this study, the allergenic proteins in aqueous extracts from large yellow croaker (Larimichthys crocea) bones boiled for various durations were analyzed and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and protein database searches. Tryptic products of potential allergens were detected using MALDI-TOF MS and further identified through analysis with Bruker's FlexAnalysis software and the FindMod tool available on the ExPASy proteomics server of the SIB (http://expasy.org/). 25 proteins related to allergy were identified. Two proteins reported as allergens were identified, along with twenty-three (23) proteins that, to the best knowledge of the authors, have not been reported as allergens. At least one aligned tryptic peptide were detected for 17 of the 25 proteins. The 17 potentially allergenic proteins exhibit peptide coverage ranging from 6.72 % to as high as 80 %. The results indicate that boiling the bones for 10 min releases many potentially allergenic proteins. However, the sensitization of most proteins diminishes when the bones are boiled for 30 to 120 min. Despite this, boiling does not completely eliminate the allergenicity of proteins in large yellow croaker bone samples. It is recommended to boil large yellow croaker fish bones for 30 min or longer to reduce most of the protein allergenicity when processing fish bones. Boiling may affect the allergenicity of proteins in fish bones by modifying their structure. These findings provide valuable guidance for monitoring allergens in aquatic food by-products, promisingly assisting to ensure the safety of allergy sufferers. Additionally, this research offers a reference for allergy management and the development of diagnostic reagents derived from aquatic food by-products.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, 201306 Shanghai, China
| | - Hongyan Bi
- College of Food Science and Technology, Shanghai Ocean University (SHOU), 999 Hucheng Ring Road, Pudong New District, 201306 Shanghai, China.
| |
Collapse
|
2
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
3
|
Anjum SI, Ullah A, Gohar F, Raza G, Khan MI, Hameed M, Ali A, Chen CC, Tlak Gajger I. Bee pollen as a food and feed supplement and a therapeutic remedy: recent trends in nanotechnology. Front Nutr 2024; 11:1371672. [PMID: 38899322 PMCID: PMC11186459 DOI: 10.3389/fnut.2024.1371672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.
Collapse
Affiliation(s)
- Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Plant Protection, Ministry of National Food Security and Research, Karachi, Pakistan
| | - Faryal Gohar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ghulam Raza
- Department of Biological Sciences, University of Baltistan, Skardu, Pakistan
| | - Muhammad Ilyas Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Zhou E, Li Q, Xu R, Pan F, Tao Y, Li X, Xue X, Wu L. Covalent conjugation with quercetin mitigates allergenicity of the bee pollen allergen Bra c p in a murine model. Food Chem 2024; 436:137722. [PMID: 37857207 DOI: 10.1016/j.foodchem.2023.137722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Profilin family members are highly conserved food allergens that can cause widespread cross-allergic reactions. Our previous research has demonstrated that the covalent conjunction with quercetin can disrupt the conformational epitopes of a profilin allergen, Bra c p. In this study, we further investigated the intrinsic molecular mechanisms using molecular dynamics simulations. Moreover, the allergenic potential of Bra c p and its conjugate with quercetin was assessed in BALB/c mice. The results showed that continuous interaction with quercetin increased the molecular motion of Bra c p, causing changes to its α-helices and exposing hydrophobic residues which altered antigenic epitopes. Additionally, mice treated with Bra c p-quercetin conjugate showed reduced allergic reactions compared to those treated with Bra c p alone by regulating purine metabolism, calcium signaling, and CD4+CD25+ Tregs proportion. Quercetin conjugation decreases the allergenicity of Bra c p, providing a scientific foundation for reducing the profilin allergens in food.
Collapse
Affiliation(s)
- Enning Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Rui Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science (CAAS), Beijing 100193, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Yuxiao Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| |
Collapse
|
5
|
Wang S, Chen L, Li S, Hu F. Uncovering proteome variations and concomitant quality changes of differently drying-treated rape (Brassica napus) bee pollen by label-free quantitative proteomics. Food Chem 2024; 434:137559. [PMID: 37748288 DOI: 10.1016/j.foodchem.2023.137559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
High moisture content of fresh bee pollen makes it difficult to preserve and thus makes drying a necessary process during the bee pollen production. Drying treatment will affect its quality and the effects of sun drying, hot-air drying and freeze drying on the proteome of rape (Brassica napus) bee pollen have been evaluated using label-free quantitative proteomics by liquid chromatography-tandem mass spectrometer (LC-MS/MS). A total of 8377 proteins are identified, among which the most abundant differential proteins were found in freeze drying-treated samples. Also freeze-drying treatment maximizes the content of antioxidant, antibacterial and anemic bioactive pollen protein. Besides, rape bee pollen is found to adjust its metabolism to protect itself during the drying process. These results can be favorable to evaluate the effects of drying treatment on the nutrition and function of processed rape bee pollen and insight into how rape bee pollen proteins respond to dehydration.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Chen
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Li
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuliang Hu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Qiao J, Zhang Y, Haubruge E, Wang K, El-Seedi HR, Dong J, Xu X, Zhang H. New insights into bee pollen: Nutrients, phytochemicals, functions and wall-disruption. Food Res Int 2024; 178:113934. [PMID: 38309905 DOI: 10.1016/j.foodres.2024.113934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Bee pollen is hailed as a treasure trove of human nutrition and has progressively emerged as the source of functional food and medicine. This review conducts a compilation of nutrients and phytochemicals in bee pollen, with particular emphasis on some ubiquitous and unique phenolamides and flavonoid glycosides. Additionally, it provides a concise overview of the diverse health benefits and therapeutic properties of bee pollen, particularly anti-prostatitis and anti-tyrosinase effects. Furthermore, based on the distinctive structural characteristics of pollen walls, a substantial debate has persisted in the past concerning the necessity of wall-disruption. This review provides a comprehensive survey on the necessity of wall-disruption, the impact of wall-disruption on the release and digestion of nutrients, and wall-disruption techniques in industrial production. Wall-disruption appears effective in releasing and digesting nutrients and exploiting bee pollen's bioactivities. Finally, the review underscores the need for future studies to elucidate the mechanisms of beneficial effects. This paper will likely help us gain better insight into bee pollen to develop further functional foods, personalized nutraceuticals, cosmetics products, and medicine.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Jie Dong
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
7
|
Qi S, Dong S, Fan M, Xue X, Wu L, Wang P. Stress Response in the Honeybee ( Apis mellifera L.) Gut Induced by Chlorinated Paraffins at Residue Levels Found in Bee Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11442-11451. [PMID: 37490655 DOI: 10.1021/acs.est.3c01827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Chlorinated paraffins (CPs) have become global pollutants and are of considerable concern as a result of their persistence and long-distance transmission in the environment and toxicity to mammals. However, their risks to pollinating insects are unknown. Honeybees are classical pollinators and sensitive indicators of environmental pollution. Herein, the effects of CPs on the gut microenvironment and underlying mechanisms were evaluated and explored using Apis mellifera L. Both short- and medium-chain CPs had significant sublethal effects on honeybees at a residue dose of 10 mg/L detected in bee products but did not significantly alter the composition or diversity of the gut microbiota. However, this concentration did induce significant immune, detoxification, and antioxidation responses and metabolic imbalances in the midgut. The mechanisms of CP toxicity in bees are complicated by the complex composition of these chemicals, but this study indicated that CPs could substantially affect intestinal physiology and metabolic homeostasis. Therefore, CPs in the environment could have long-lasting impacts on bee health. Future studies are encouraged to identify novel bioindicators of CP exposure to detect early contamination and uncover the detailed mechanisms underlying the adverse effects of CPs on living organisms, especially pollinating insects.
Collapse
Affiliation(s)
- Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Man Fan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
8
|
Guo W, Luo H, Cao Y, Jiang Z, Liu H, Zou J, Sheng C, Xi Y. Multi-omics research on common allergens during the ripening of pollen and poplar flocs of Populus deltoides. FRONTIERS IN PLANT SCIENCE 2023; 14:1136613. [PMID: 37396639 PMCID: PMC10313134 DOI: 10.3389/fpls.2023.1136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023]
Abstract
Background Populus deltoides is widely cultivated in China and produces a large number of pollen and poplar flocs from March to June per year. Previous studies have found that the pollen of P. deltoides contains allergens. However, studies on the ripening mechanism of pollen/poplar flocs and their common allergens are very limited. Methods Proteomics and metabolomics were used to study the changes of proteins and metabolites in pollen and poplar flocs of P. deltoides at different developmental stages. Allergenonline database was used to identify common allergens in pollen and poplar flocs at different developmental stages. Western blot (WB) was used to detect the biological activity of common allergens between mature pollen and poplar flocs. Results In total, 1400 differently expressed proteins (DEPs) and 459 different metabolites (DMs) were identified from pollen and poplar flocs at different developmental stages. KEGG enrichment analysis showed that DEPs in pollen and poplar flocs were significantly enriched in ribosome and oxidative phosphorylation signaling pathways. The DMs in pollen are mainly involved in aminoacyl-tRNA biosynthesis and arginine biosynthesis, while the DMs in poplar flocs are mainly involved in glyoxylate and dicarboxylate metabolism. Additionally, 72 common allergens were identified in pollen and poplar flocs at different developmental stages. WB showed that there were distinct binding bands between 70 and 17KD at the two groups of allergens. Conclusions A multitude of proteins and metabolites are closely related to the ripening of pollen and poplar flocs of Populus deltoides, and they contain common allergens between mature pollen and poplar flocs.
Collapse
Affiliation(s)
- Wei Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Luo
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yi Cao
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Ziyun Jiang
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Liu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Jie Zou
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Changle Sheng
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
9
|
Zhou E, Wang W, Xue X, Wang P, Wu F, Wu L, Li Q. Hydrogen peroxide oxidation modifies the structural properties and allergenicity of the bee pollen allergen profilin. Food Chem 2023; 425:136495. [PMID: 37276665 DOI: 10.1016/j.foodchem.2023.136495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/25/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Bee pollen is a byproduct of pollination, which is a necessary process to produce foods. However, bee pollen can induce significant food-borne allergies. We previously identified a bee pollen-derived pan-allergen in the profilin family, Bra c p. Herein, we aimed to reduce Bra c p allergenicity via protein oxidation with hydrogen peroxide and explore the changes induced. Ion-mobility mass spectrometry revealed aggregation of the oxidized product; we also found irreversible sulfonation of the free sulfhydryl group of the Bra c p Cys98 residue to a more stable cysteine derivative. A significant proportion of the α-helices in Bra c p were transformed into β-sheets after oxidation, masking the antigenic epitopes. An immunoassay demonstrated that the IgE-binding affinity of Bra c p was decreased in vitro after oxidation. To our knowledge, this is the first report describing the application of protein oxidation to reduce the allergenicity of profilin family member in foods.
Collapse
Affiliation(s)
- Enning Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Pianpian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing 100191, China
| | - Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| | - Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| |
Collapse
|
10
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Zhou E, Xue X, Xu H, Zhao L, Wu L, Li Q. Effects of covalent conjugation with quercetin and its glycosides on the structure and allergenicity of Bra c p from bee pollen. Food Chem 2023; 406:135075. [PMID: 36462363 DOI: 10.1016/j.foodchem.2022.135075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Profilin family members are potential pan-allergens in foods, presenting public health hazards. However, studies on the allergenicity modification of profilin allergens are limited. Herein, quercetin and its glycosides (isoquercitrin and rutin) were applied to modify the allergenicity of a profilin allergen (Bra c p) from Brassica campestris bee pollen. Results showed that only quercetin can be closely covalently bound to Bra c p among the three, and the binding site was located at the Cys98 residue. After covalently conjunction, the relative content of α-helix structure in Bra c p was reduced by 40.05%, while random coil was increased by 42.89%; moreover, the Tyr and Phe residues in Bra c p were masked. These structural changes could alter the conformational antigenic epitopes of Bra c p, resulting in its allergenicity reduction. Our findings might provide a technical foundation for reducing the allergenicity of bee pollen and foods containing profilin family allergens.
Collapse
Affiliation(s)
- Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Haoxie Xu
- Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China.
| |
Collapse
|
12
|
Xue F, Li C. Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. ULTRASONICS SONOCHEMISTRY 2023; 92:106249. [PMID: 36459901 PMCID: PMC9712773 DOI: 10.1016/j.ultsonch.2022.106249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 05/15/2023]
Abstract
Camellia bee pollen protein isolates were extracted by cell wall disruption using ultrasonication, freeze-thawing, enzymatic hydrolysis, and their combinations. The effects of these methods on microstructure of cell wall, protein release, protein yield, physiochemical properties and structure of proteins were investigated. As compared with physical treatments (ultrasonication, freeze-thawing and their combination), the enzymatic hydrolysis significantly improved the yield of proteins, because it not only promoted the release of proteins from the inside of pollen, but also released proteins in pollen wall. The proteins extracted by enzymatic hydrolysis method also exhibited better solubility, emulsifying and gelation properties due to the partial hydrolysis of proteins by protease. In addition, when ultrasound was combined with freeze-thawing or enzymatic hydrolysis, it could further improve the yield of proteins and the functional properties of proteins, which was mainly related to the changes of protein structure induced by cavitation effect of ultrasound.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
13
|
Tao Y, Zhou E, Li F, Meng L, Li Q, Wu L. Allergenicity Alleviation of Bee Pollen by Enzymatic Hydrolysis: Regulation in Mice Allergic Mediators, Metabolism, and Gut Microbiota. Foods 2022; 11:foods11213454. [PMID: 36360070 PMCID: PMC9658975 DOI: 10.3390/foods11213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bee pollen as a nutrient-rich functional food has been considered for use as an adjuvant for chronic disease therapy. However, bee pollen can trigger food-borne allergies, causing a great concern to food safety. Our previous study demonstrated that the combined use of cellulase, pectinase and papain can hydrolyze allergens into peptides and amino acids, resulting in reduced allergenicity of bee pollen based on in vitro assays. Herein, we aimed to further explore the mechanisms behind allergenicity alleviation of enzyme-treated bee pollen through a BALB/c mouse model. Results showed that the enzyme-treated bee pollen could mitigate mice scratching frequency, ameliorate histopathological injury, decrease serum IgE level, and regulate bioamine production. Moreover, enzyme-treated bee pollen can modulate metabolic pathways and gut microbiota composition in mice, further supporting the alleviatory allergenicity of enzyme-treated bee pollen. The findings could provide a foundation for further development and utilization of hypoallergenic bee pollen products.
Collapse
Affiliation(s)
- Yuxiao Tao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Enning Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Fukai Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
- Correspondence: ; Tel.: +86-132-6949-5300
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China
| |
Collapse
|