1
|
Bertolo MRV, Pereira TS, dos Santos FV, Facure MHM, dos Santos F, Teodoro KBR, Mercante LA, Correa DS. Citrus wastes as sustainable materials for active and intelligent food packaging: Current advances. Compr Rev Food Sci Food Saf 2025; 24:e70144. [PMID: 40034076 PMCID: PMC11929373 DOI: 10.1111/1541-4337.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Citrus fruits are one of the most popular crops in the world, and around one quarter of them are subjected to industrial processes, aiming at the production of different food products. Citrus processing generates large amounts of waste, including peels, pulp, and seeds. These materials are rich sources of polymers (e.g., pectin, cellulose, hemicellulose, lignin), phenolic compounds, and essential oils. At the same time, the development of food packaging materials using citrus waste is a highly sought strategy for food preservation, and meets the principles of circular economy. This review surveys current advances in the development of active and intelligent food packaging produced using one or more citrus waste components (polymers, phenolics extracts, and essential oils). It highlights the contribution and effects of each of these components on the properties of the developed packaging, as well as emphasizes the current state and challenges for developing citrus-based packaging. Most of the reported investigations employed citrus pectin as a base polymer to produce packaging films through the casting technique. Likewise, most of them focused on developing active materials, and fewer studies have explored the preparation of citrus waste-based intelligent materials. All studies characterized the materials developed, but only a few actually applied them to food matrices. This review is expected to encourage novel investigations that contribute to food preservation and to reduce the environmental impacts caused by discarded citrus byproducts.
Collapse
Affiliation(s)
- Mirella R. V. Bertolo
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Tamires S. Pereira
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Fabrício dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
| | - Luiza A. Mercante
- Institute of ChemistryFederal University of Bahia (UFBA)SalvadorBABrazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentationSao CarlosSPBrazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and TechnologyFederal University of Sao Carlos (UFSCar)Sao CarlosSPBrazil
- PGrCEM, Department of Materials Engineering, Sao Carlos School of EngineeringUniversity of Sao PauloSao CarlosSPBrazil
| |
Collapse
|
2
|
Soltani R, Kariminik A, Motaghi MM. In vitro sustained release modeling and antimicrobial properties of the Persian gum-based bio-nanocomposite loaded with electrosprayed gliadin containing cinnamon essential oil. Int J Biol Macromol 2024; 283:137549. [PMID: 39542330 DOI: 10.1016/j.ijbiomac.2024.137549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
This study aimed to produce bio-nanocomposites based on Persian gum-starch using electrosprayed gliadin nanoparticles (EGNPs) containing cinnamon essential oil (CEO) to increase the shelf life of rainbow trout fillets and to model its in vitro release. The CEO with 5, 10, and 15 % w/w were loaded in the EGNPs. The EGNPs containing 10 % w/w CEO had the highest encapsulation efficiency (92.85 % ± 1.01 %) and uniform morphology. Field emission scanning electron microscopy showed that 10 % w/w EGNPs in the Persian gum-based films was accompanied by a uniform distribution of nanoparticles in the bio-nanocomposite. However, higher levels of nanoparticles (15 % w/w) were associated with forming local aggregates on the surface of bio-nanocomposites. Fourier transform infrared analysis confirmed the successful encapsulation of CEO in the EGNPs and the successful placement of nanoparticles in the matrix. By integrating 10 % w/w of electrosprayed nanoparticles, the mechanical properties of bio-nanocomposites were significantly reinforced. The Peleg model was the best model describing the release behavior of the CEO from the designed structures, and the dominant mechanism affecting its release was the Fickian diffusion. Using bio-nanocomposites containing 10 % w/w of EGNPs containing CEO suppressed the growth of microorganisms and increased the shelf life of coated fillets.
Collapse
Affiliation(s)
- Roya Soltani
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran; Food and Agricultural Safety Research Center, Kerman Branch, Islamic Azad University, Kerman, Iran.
| | | |
Collapse
|
3
|
Switz A, Mishra A, Jabech K, Prasad A. Affordable lab-scale electrospinning setup with interchangeable collectors for targeted fiber formation. HARDWAREX 2024; 17:e00501. [PMID: 38192608 PMCID: PMC10772283 DOI: 10.1016/j.ohx.2023.e00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024]
Abstract
The electrospinning method is increasingly in demand due to its capability to produce fibers in the nanometer to micrometer range, with applications in diverse fields including biomedical, filtration, energy storage, and sensing. Many of these applications demand control over fiber layout and diameter. However, a standard flat plate collector yields random fibers with limited control over diameter and density. Other viable solutions offering a higher level of control are either scarce or substantially expensive, impeding the accessibility of this vital technique. This study addresses the challenge by designing an affordable laboratory-scale electrospinning setup with interchangeable collectors, enabling the creation of targeted fibers from random, aligned, and coiled. The collectors include the standard flat plate and two additional designs, which are a rotating drum and a spinneret tip collector. The rotating drum collector has adjustable speed control to collect aligned fibers and exhibits stability even at high rotational speeds. The spinneret tip collector was designed to produce helically coiled fibers. The setup was validated by directed fiber formation using polycaprolactone (PCL), a biodegradable and FDA-approved polymer. Overall, the uniqueness of the design lies in its affordability, modifiability, and replicability using readily available materials, thus extending the reach of the electrospinning technique.
Collapse
Affiliation(s)
- Alexi Switz
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Aditi Mishra
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| | - Katrina Jabech
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
4
|
Huang L, Liao R, Bu N, Zhang D, Pang J, Mu R. Electrospun Konjac Glucomannan/Polyvinyl Alcohol Long Polymeric Filaments Incorporated with Tea Polyphenols for Food Preservations. Foods 2024; 13:284. [PMID: 38254585 PMCID: PMC10814646 DOI: 10.3390/foods13020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, nanofiber films were prepared by electrospinning technology with polyvinyl alcohol (PVA) and konjac glucomannan (KGM) as raw materials. Tea polyphenols (TPs) were incorporated in the above matrix, which increased physicochemical (thermal and mechanical characteristics) and antibacterial properties of the nanofiber films. The release behavior of phenolic compounds from PVA/KGM-TPs nanofiber films was determined in different food simulants; antioxidant and antibacterial activity of the films were also evaluated. The results showed that the addition of KGM increased the physical and chemical properties of the films. The tensile strength (TS) and elongation at break (EB) increased from 5.40 ± 0.33 to 10.62 ± 0.34 and from 7.24 ± 0.32 to 18.10 ± 0.91, respectively. PVA/KGM-TPs nanofiber films performed controlled release of TPs, with final release of 49.17% in 3% acetic acid, 43.6% in 10% ethanol, and 59.42% in 95% ethanol. The nanofiber films showed good antioxidation properties, with the free radical scavenging rate increasing from 1.33% to 25.61%, and good antibacterial properties with inhibition zones against E. coli and S. aureus of 24.33 ± 0.47 mm and 34.33 ± 0.94 mm, respectively. In addition, the as-prepared films showed significant preservation performance for raw bananas at 25 °C.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China (R.L.); (D.Z.); (J.P.)
| |
Collapse
|
5
|
Liao M, Pan Y, Fu X, Wu S, Gan S, Wu Z, Zhao H, Zheng W, Cao Y, Zhou W, Dong X. Electrospun polylactic acid nanofiber film modified by silver oxide deposited on hemp fibers for antibacterial fruit packaging. Int J Biol Macromol 2023; 253:126569. [PMID: 37648140 DOI: 10.1016/j.ijbiomac.2023.126569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Bacterial and fungal contamination have become major factors in fruit spoilage and damage, posing a potential risk to human health. In this work, polylactic acid (PLA) nanofibers combined with Ag2O-hemp fibers for a good antimicrobial effect were developed and applied to antimicrobial fruit fresh-keeping packages. The results of molecular simulation calculations showed that the strength of hydrogen bonds between Ag2O and hemp fibers reached 45.522 kJ·mol-1, which proved that Ag2O and with hemp fibers formed a stable deposition. The Ag2O-hemp fibers modified electrospun polylactic acid nanofibrous composite film exhibited favorable mechanical properties. The tensile strength reached 5.23 ± 0.05 MPa and the elongation at break reached 105.56 ± 3.95 %. The obtained nanofibrous composite film has good antibacterial activity against E. coli, S. aureus, A. niger, and Penicillium, which indicated that they could effectively inhibit the growth of bacteria and fungi. The cell experiments proved that the nanofibrous composite film had good biocompatibility with a cell survival rate of 100 %. The experimental results on the fresh-keeping of red grapes showed that the PLA nanofibrous composite film modified by the Ag2O-hemp fibers could effectively prolong the spoilage time of red grapes at room temperature. Compared with the blank group, the freshness period of PLA nanofiber film modified by Ag2O-hemp fibers could be extended for more than 5 days. The hardness of 15 days (1.94 ± 0.19 × 105 Pa) was basically the same as that of 1 day (2.05 ± 0.06 × 105 Pa). The results were superior to commercially available PE preservation films. The above research results indicated that the Ag2O-hemp fibers modified PLA nanofibrous composite film had potential application prospects in the field of fruit fresh-keeping package.
Collapse
Affiliation(s)
- Minjian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Yue Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Xuewei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Shangjing Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Shiqi Gan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Ziyang Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Hui Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xianming Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, Research Center of Biomass 3D Printing Materials, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Braga ARC, Nunes MC, Raymundo A. The Experimental Development of Emulsions Enriched and Stabilized by Recovering Matter from Spirulina Biomass: Valorization of Residue into a Sustainable Protein Source. Molecules 2023; 28:6179. [PMID: 37687008 PMCID: PMC10488792 DOI: 10.3390/molecules28176179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Spirulina consists of a cluster of green-colored cyanobacteria; it is commonly consumed as a food or food supplement rich in bioactive compounds with antioxidant activity, predominantly C-phycocyanin (C-PC), which is related to anti-inflammatory action and anticancer potential when consumed frequently. After C-PC extraction, the Spirulina residual biomass (RB) is rich in proteins and fatty acids with the potential for developing food products, which is interesting from the circular economy perspective. The present work aimed to develop a vegan oil-in-water emulsion containing different contents of Spirulina RB, obtaining a product aligned with current food trends. Emulsions with 3.0% (w/w) of proteins were prepared with different chickpea and Spirulina RB ratios. Emulsifying properties were evaluated regarding texture and rheological properties, color, antioxidant activity, and droplet size distribution. The results showed that it was possible to formulate stable protein-rich emulsions using recovering matter rich in protein from Spirulina as an innovative food ingredient. All the concentrations used of the RB promoted the formulation of emulsions presenting interesting rheological parameters compared with a more traditional protein source such as chickpea. The emulsions were also a source of antioxidant compounds and maintained the color for at least 30 days after production.
Collapse
Affiliation(s)
- Anna Rafaela Cavalcante Braga
- Department of Chemical Engineering, Campus Diadema, Federal University of São Paulo (UNIFESP), Diadema 09972-270, Brazil;
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos 11015-020, Brazil
| | - Maria Cristiana Nunes
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Anabela Raymundo
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| |
Collapse
|
7
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
8
|
Hajjari MM, Golmakani MT, Sharif N. Electrospun zein/C-phycocyanin composite: Simulation, characterization and therapeutic application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
10
|
Cheng C, Min T, Luo Y, Zhang Y, Yue J. Electrospun polyvinyl alcohol/chitosan nanofibers incorporated with 1,8-cineole/cyclodextrin inclusion complexes: Characterization, release kinetics and application in strawberry preservation. Food Chem 2023; 418:135652. [PMID: 36989651 DOI: 10.1016/j.foodchem.2023.135652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Development of food packaging systems containing essential oils (EOs) has gained increased attention recently. However, the instability of EOs restricts their application. Therefore, effective encapsulation of EOs is demanded for their protection and controlled release. In this work, 1,8-cineole, the major component in Eucalyptus globulus essential oil, was encapsulated into hydroxypropyl-β-cyclodextrin to form an inclusion complex, which was then incorporated into polyvinyl alcohol and chitosan composite polymer to fabricate nanofibrous film via electrospinning. The film with 40% (w/w) of inclusion complexes showed enhanced barrier and mechanical properties, and the release of 1,8-cineole from the film was sustained and dominated by the non-Fick diffusion. Moreover, this film could extend the shelf life of strawberries to 6 days at 25 ℃. This work suggested dual encapsulation of EOs by cyclodextrin and electrospun nanofibers is an ideal strategy to improve the availability of EOs, and the produced film is promising for food preservation.
Collapse
|
11
|
Visser Z, Verma SK, Rainey JK, Frampton JP. Loading and Release of Quercetin from Contact-Drawn Polyvinyl Alcohol Fiber Scaffolds. ACS Pharmacol Transl Sci 2022; 5:1305-1317. [PMID: 36524014 PMCID: PMC9745892 DOI: 10.1021/acsptsci.2c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/30/2022]
Abstract
Polymeric drug releasing systems have numerous applications for the treatment of chronic diseases and traumatic injuries. In this study, a simple, cost-effective, and scalable method for dry spinning of crosslinked polyvinyl alcohol (PVA) fibers is presented. This method utilizes an entangled solution of PVA to form liquid bridges that are drawn into rapidly drying fibers through extensional flow. The fibers are crosslinked by a one-pot reaction in which glyoxal is introduced to the PVA solution prior to contact drawing. Failure analysis of fiber formation is used to understand the interplay of polymer concentration, glyoxal concentration, and crosslinking time to identify appropriate formulations for the production of glyoxal-crosslinked PVA fibers. The small molecule quercetin (an anti-inflammatory plant flavonoid) can be added to the one-pot reaction and is shown to be incorporated into the fibers in a concentration-dependent manner. Upon rehydration in an aqueous medium, the glyoxal-crosslinked PVA fiber scaffolds retain their morphology and slowly degrade, as measured over the course of 10 days. As the scaffolds degrade, they release the loaded quercetin, reaching a cumulative release of 56 ± 6% of the loaded drug after 10 days. The bioactivity of the released quercetin is verified by combining quercetin-loaded fibers with contact-drawn polyethylene oxide-type I collagen (PEO-Col) fibers and monitoring the growth of PC12 cells on the fibers. PC12 cells readily attach to the PEO-Col fibers and display increased nerve growth factor-induced elongation and neurite formation in the presence of quercetin-loaded PVA fibers relative to substrates formed from only PEO-Col fibers or PEO-Col and PVA fibers without quercetin.
Collapse
Affiliation(s)
- Zachary
B. Visser
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - Surendra Kumar Verma
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - Jan K. Rainey
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Biochemistry & Molecular Biology, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Chemistry, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - John P. Frampton
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Biochemistry & Molecular Biology, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| |
Collapse
|
12
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
Nanofibers of Jussara Pulp: A Tool to Prevent the Loss of Thermal Stability and the Antioxidant Activity of Anthocyanins after Simulated Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Electrospinning can produce a new composite for coating sensitive bioactive compounds, such as anthocyanins, and the product obtained from this process presents characteristics that potentialize the application of natural pigments in foodstuffs. The present work aimed to develop a new nanofiber composite with incorporated anthocyanins from jussara pulp using polyethylene oxide through electrospinning. A decay in the percentage of anthocyanins during digestion was observed. However, the polymeric solution and composites produced maintained the antioxidant activity, showing their protective effect on bioactive compounds; furthermore, both nanofibers and polymer solution improved the thermal stability of the anthocyanins. Thus, the results obtained potentiate electrospinning composites in processed food products since the nanofibers presented superior thermal stability and antioxidant activity, even after the digestion process in vitro.
Collapse
|
14
|
Zhang Y, Guo J, Guan F, Tian J, Li Z, Zhang S, Zhao M. Preparation and numerical simulation of food gum electrospun nanofibers. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Development and characterization of Sechium edule starch and polyvinyl alcohol nanofibers obtained by electrospinning. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Qiao BW, Liu XT, Wang CX, Song S, Ai CQ, Fu YH. Preparation, Characterization, and Antioxidant Properties of Phycocyanin Complexes Based on Sodium Alginate and Lysozyme. Front Nutr 2022; 9:890942. [PMID: 35685875 PMCID: PMC9171975 DOI: 10.3389/fnut.2022.890942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, phycocyanin-sodium alginate/lysozyme complex (PC-SLC) was prepared for the first time and characterized by UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and circular dichroism spectroscopy (CD). The stability of PC-SLC under light, temperature, pH and simulated gastrointestinal fluid was investigated. The scavenging ability of the complexes against DPPH and ABTS radicals was determined. The results showed that the complex formed by the mass ratio of SA-LZM of 0.1 showed the highest PC encapsulation rate (89.9 ± 0.374%). The combination of SA and LZM changed the secondary conformation of PC. The PC-SLC complex shows an irregular spherical structure and the spheres are clustered together. Compared with phycocyanin (PC), its thermal stability was obviously improved, but it was still greatly influenced by light. It could exist stably in simulated gastric fluid (SGF) for 2 h and be slowly digested in simulated intestinal fluid (SIF), which helped to promote the absorption of nutrients in the intestinal tract. Meanwhile, the complex PC-SLC showed high scavenging ability for DPPH and ABTS radicals. It can be concluded that the complexes have good antioxidant activity. This study provides an idea for the construction of PC delivery system and makes it more widely used in food industry and other fields.
Collapse
Affiliation(s)
- Bian-Wen Qiao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xin-Tong Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Chen-Xin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, Dalian, China
| | - Chun-Qing Ai
- National Engineering Research Center of Seafood, Dalian, China
| | - Ying-Huan Fu
- National Engineering Research Center of Seafood, Dalian, China.,School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
18
|
Shen C, Yang Z, Rao J, Wu J, Sun C, Sun C, Wu D, Chen K. Chlorogenic acid-loaded sandwich-structured nanofibrous film developed by solution blow spinning: Characterization, release behavior and antimicrobial activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Shavisi N, Shahbazi Y. Chitosan-gum Arabic nanofiber mats encapsulated with pH-sensitive Rosa damascena anthocyanins for freshness monitoring of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers (Basel) 2022; 14:polym14020315. [PMID: 35054720 PMCID: PMC8781631 DOI: 10.3390/polym14020315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, food packaging systems have shifted from a passive to an active role in which the incorporation of antimicrobial compounds into biopolymers can promote a sustainable way to reduce food spoilage and its environmental impact. Accordingly, composite materials based on oxidized-bacterial cellulose (BC) and poly(vinyl alcohol)-chitosan (PVA-CH) nanofibers were produced by needleless electrospinning and functionalized with the bacterial pigment prodigiosin (PG). Two strategies were explored, in the first approach PG was incorporated in the electrospun PVA-CH layer, and TEMPO-oxidized BC was the substrate for nanofibers deposition (BC/PVA-CH_PG composite). In the second approach, TEMPO-oxidized BC was functionalized with PG, and afterward, the PVA-CH layer was electrospun (BC_PG/PVA-CH composite). The double-layer composites obtained were characterized and the nanofibrous layers displayed smooth fibers with average diameters of 139.63 ± 65.52 nm and 140.17 ± 57.04 nm, with and without pigment incorporation, respectively. FTIR-ATR analysis confirmed BC oxidation and revealed increased intensity at specific wavelengths, after pigment incorporation. Moreover, the moderate hydrophilic behavior, as well as the high porosity exhibited by each layer, remained mostly unaffected after PG incorporation. The composites’ mechanical performance and the water vapor transmission rate (WVTR) evaluation indicated the suitability of the materials for certain food packaging solutions, especially for fresh products. Additionally, the red color provided by the bacterial pigment PG on the external surface of a food packaging material is also a desirable effect, to attract the consumers’ attention, creating a multifunctional material. Furthermore, the antimicrobial activity was evaluated and, PVA-CH_PG, and BC_PG layers exhibited the highest antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the fabricated composites can be considered for application in active food packaging, owing to PG antimicrobial potential, to prevent foodborne pathogens (with PG incorporated into the inner layer of the food packaging material, BC/PVA-CH_PG composite), but also to prevent external contamination, by tackling the exterior of food packaging materials (with PG added to the outer layer, BC_PG/PVA-CH composite).
Collapse
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
21
|
Shen C, Cao Y, Rao J, Zou Y, Zhang H, Wu D, Chen K. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Dhiman A, Suhag R, Singh A, Prabhakar PK. Mechanistic understanding and potential application of electrospraying in food processing: a review. Crit Rev Food Sci Nutr 2021; 62:8288-8306. [PMID: 34039180 DOI: 10.1080/10408398.2021.1926907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospraying (ESPR) is a cost effective, flexible, and facile method that has been used in the pharmaceutical industry, and thanks to its wide variety of uses such as bioactive compound encapsulation, micronization, and food product coating, which have received a great attention in the food market. It uses a jet of polymer solution for processing food and food-derived products. Droplet size can be extremely small up to nanometers and can be regulated by altering applied voltage and flow rate. Compared to conventional techniques, it is simple, cost effective, uses less solvent and products are obtained in one step with a very high encapsulation efficiency (EE). Encapsulation provided using it protects bioactives from moisture, thermal, oxidative, and mechanical stresses, and thus provides them a good storage stability which will help in increasing the application of these ingredients in food formulation. This technique has an enormous potential for increasing the shelf life of fruit and vegetables through coating and improvement of eating quality. This study is aimed at overviewing the operating principles of ESPR, working parameters, applications, and advantages in the food sector. The article also covers new ESPR techniques like supercritical assisted ESPR and ESPR assisted by pressurized gas (EAPG) which have high yield as compared to conventional ESPR. This article is enriched with good information for research and development in ESPR techniques for development of novel foods.
Collapse
Affiliation(s)
- Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Rajat Suhag
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pramod K Prabhakar
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| |
Collapse
|
23
|
Sameen DE, Ahmed S, Lu R, Li R, Dai J, Qin W, Zhang Q, Li S, Liu Y. Electrospun nanofibers food packaging: trends and applications in food systems. Crit Rev Food Sci Nutr 2021; 62:6238-6251. [PMID: 33724097 DOI: 10.1080/10408398.2021.1899128] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food safety is a bottleneck problem. In order to provide information about advanced and unique food packaging technique, this study summarized the advancements of electrospinning technique. Food packaging is a multidisciplinary area involving food science, food engineering, food chemistry, and food microbiology, and the interest in maintaining the freshness and quality of foods has grown considerably. For this purpose, electrospinning technology has gained much attention due to its unique functions and superior processing. Sudden advancements of electrospinning have been rapidly incorporated into research. This review summarized some latest information about food packaging and different materials used for the packaging of various foods such as fruits, vegetables, meat, and processed items. Also, the use of electrospinning and materials used for the formation of nanofibers are discussed in detail. However, in food industry, the application of electrospun nanofibers is still in its infancy. In this study, different parameters, structures of nanofibers, features and fundamental properties are described briefly, while polymers fabricated through electrospinning with advances in food packaging films are described in detail. Moreover, this comprehensive review focuses on the polymers used for the electrospinning of nanofibers as packaging films and their applications for variety of foods. This will be a valuable source of information for researchers studying various polymers for electrospinning for application in the food packaging industry.
Collapse
Affiliation(s)
- Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China.,California Nano Systems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R. An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. ADVANCED COMPOSITES AND HYBRID MATERIALS 2021; 4:768-779. [PMID: 33748671 PMCID: PMC7958938 DOI: 10.1007/s42114-021-00230-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/07/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED This study aimed to investigate parameters affecting the electrospinning of poly (vinyl alcohol) (PVA)/kefiran composite nanofibers. Accordingly, PVA/kefiran composite nanofibers were produced using the electrospinning of PVA, kefiran blend solutions under various electrospinning parameters (such as applied voltage, nozzle-to-collector distance, and polymer injection rate), and solution parameters (such as the ratio of polymers). PVA and kefiran solutions were prepared in 8% and 6% w/w, respectively. Kefiran was blended with PVA solution in different proportions: 70:30, 60:40, 50:50, 40:60, and 30:70. According to the scanning electron microscope (SEM) images, kefiran mixed with PVA in 40:60 ratios produced the best result in nanofiber production. Then, device parameters such as voltage (12, 15, 18, and 20 kV), distance (120, 150, 170, and 200 mm), and polymer injection rates (1, 1.5, 2, and 2.5 mL/h) were changed. The investigation of SEM images showed that the optimal condition for the fabrication of nanofibers was 18 kV, 200 mm, and 1 mL/h. The nanofibers produced in the optimal condition were uniform without knots or adhesion in a small diameter. It was also found that concentration can be regarded as the most effective parameter affecting the diameter of nanofibers. Moreover, the transmission electron microscopy (TEM) image proved that phase separation did not occur between the two polymers. GRAPHICAL ABSTRACT Kefiran biopolymer extracted from fermented milk was used in fabrication of PVA/kefiran composite nanofibers using the electrospinning method.
Collapse
Affiliation(s)
- Hakimeh Ziyadi
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Baghali
- Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Bagherianfar
- Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Mehrali
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
25
|
Fabrication and characterization of composite film based on gelatin and electrospun cellulose acetate fibers incorporating essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00799-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Hajikhani M, Emam Djomeh Z, Askari G. Lycopene loaded polylactic acid (PLA) and PLA/copolymer electrospun nanofibers, synthesis, characterization, and control release. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mehdi Hajikhani
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Zahra Emam Djomeh
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Gholamreza Askari
- Transport Phenomena Laboratory (TPL) Department of Food Science and Technology University College of Agriculture and Natural Resources University of Tehran Karaj Iran
| |
Collapse
|
27
|
Fabrication and Characterization of Gluten Film Reinforced by Lycopene-Loaded Electrospun Polylactic Acid Nano-fibers. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02561-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Giaconia MA, Ramos SDP, Pereira CF, Lemes AC, De Rosso VV, Braga ARC. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105939] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Ojha N, Das N. Fabrication and characterization of biodegradable PHBV/SiO 2 nanocomposite for thermo-mechanical and antibacterial applications in food packaging. IET Nanobiotechnol 2020; 14:785-795. [PMID: 33399109 DOI: 10.1049/iet-nbt.2020.0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the present study, biogenic silica nanoparticles (bSNPs) were synthesized from groundnut shells, and thoroughly characterized to understand its phase, and microstructure properties. The biopolymer was synthesized from yeast Wickerhamomyces anomalus and identified as Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by GC-MS and NMR analysis. The bSNPs were reinforced to fabricate PHBV/SiO2 nanocomposites via solution casting technique. The fabricated PHBV/SiO2 nanocomposites revealed intercalated hybrid interaction between the bSNPs and PHBV matrix through XRD analysis. PHBV/SiO2 nanocomposites showed significant improvement in physical, chemical, thermo-mechanical and biodegradation properties as compared to the bare PHBV. The cell viability study revealed excellent biocompatibility against L929 mouse fibroblast cells. The antibacterial activity of PHBV/SiO2 nanocomposites was found to be progressively improved upon increasing bSNPs concentration against E. coli and S. aureus.
Collapse
Affiliation(s)
- Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
30
|
Duman D, Karadag A. Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: characterisation and assessment of viability during storage and simulated gastrointestinal digestion. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dilan Duman
- Food Engineering Department Yıldız Technical University 34210Esenler‐Istanbul Turkey
| | - Ayse Karadag
- Food Engineering Department Yıldız Technical University 34210Esenler‐Istanbul Turkey
| |
Collapse
|
31
|
Chiesa E, Dorati R, Pisani S, Bruni G, Rizzi LG, Conti B, Modena T, Genta I. Graphene Nanoplatelets for the Development of Reinforced PLA-PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers (Basel) 2020; 12:polym12061390. [PMID: 32575840 PMCID: PMC7362196 DOI: 10.3390/polym12061390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Electrospun scaffolds made of nano- and micro-fibrous non-woven mats from biodegradable polymers have been intensely investigated in recent years. In this field, polymer-based materials are broadly used for biomedical applications since they can be managed in high scale, easily shaped, and chemically changed to tailor their specific biologic properties. Nonetheless polymeric materials can be reinforced with inorganic materials to produce a next-generation composite with improved properties. Herein, the role of graphene nanoplatelets (GNPs) on electrospun poly-l-lactide-co-poly-ε-caprolactone (PLA-PCL, 70:30 molar ratio) fibers was investigated. Microfibers of neat PLA-PCL and with different amounts of GNPs were produced by electrospinning and they were characterized for their physicochemical and biologic properties. Results showed that GNPs concentration notably affected the fibers morphology and diameters distribution, influenced PLA-PCL chain mobility in the crystallization process and tuned the mechanical and thermal properties of the electrospun matrices. GNPs were also liable of slowing down copolymer degradation rate in simulated physiological environment. However, no toxic impurities and degradation products were pointed out up to 60 d incubation. Furthermore, preliminary biologic tests proved the ability of the matrices to enhance fibroblast cells attachment and proliferation probably due to their unique 3D-interconnected structure.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12—27100 Pavia, Italy; (E.C.); (R.D.); (B.C.); (T.M.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12—27100 Pavia, Italy; (E.C.); (R.D.); (B.C.); (T.M.)
- Polymerix srl, V.le Taramelli 24—27100 Pavia, Italy
| | - Silvia Pisani
- Immunology and Transplantation Laboratory, Pedriatric Hematology Oncology Unit, Department of Maternal and Children’s Health, Fondazione IRCCS Policlinico S. Matteo—27100 Pavia, Italy;
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, PV, Italy;
| | - Laura G. Rizzi
- Directa Plus S.p.a., COMO NexT, Via Cavour, 2—22074 Lomazzo (CO), Italy;
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12—27100 Pavia, Italy; (E.C.); (R.D.); (B.C.); (T.M.)
- Polymerix srl, V.le Taramelli 24—27100 Pavia, Italy
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12—27100 Pavia, Italy; (E.C.); (R.D.); (B.C.); (T.M.)
- Polymerix srl, V.le Taramelli 24—27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12—27100 Pavia, Italy; (E.C.); (R.D.); (B.C.); (T.M.)
- Polymerix srl, V.le Taramelli 24—27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382987371
| |
Collapse
|
32
|
Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of processes for stabilization of the properties of bioactive compounds has been studied in recent years, and the use of nanotechnology is among the most discussed routes. The present work addressed the assembly of nanostructures using polyethylene oxide (PEO), the production of core-shell nanofibers (NFs) with bioactive compounds, and the evaluation of their microscopic and physical characteristics. Aqueous solutions of PEO were electrospun by varying different process and solution parameters (PEO and NaCl concentrations, feeding rate, the tip-to-collector distance (TCD), and applied voltage) in order to optimize production of nanostructures. The best condition obtained was evaluated to form core-shell NFs composed by jussara pulp as a source of anthocyanins. To assess the production of NFs with PEO and jussara pulp, feed solutions were prepared in acetate buffer (pH 4.5) with 6% PEO and 10% lyophilized jussara pulp, at a feeding rate of 150 μL·h−1 and TCD of 15 cm using an applied voltage of 10 kV to form core-shell NFs. The results revealed the formation of core-shell NFs with a diameter of 126.5 ± 50.0 nm. The outcomes achieved represent a crucial step in the application of anthocyanins in food systems as pigments, establishing a basis for further research on the incorporation of nanomaterials into foodstuff.
Collapse
|
33
|
Lin W, Ni Y, Pang J. Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. Int J Biol Macromol 2020; 149:853-860. [DOI: 10.1016/j.ijbiomac.2020.01.242] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 01/15/2023]
|
34
|
Topuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 2020; 130:108927. [DOI: 10.1016/j.foodres.2019.108927] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|