1
|
Qiao L, Lin X, Liu H, Xiang R, Zhan J, Deng F, Bao M, He H, Wen X, Deng H, Wang X, He Y, Yang Z, Han J. T-2 toxin induces cardiac fibrosis by causing metabolic disorders and up-regulating Sirt3/FoxO3α/MnSOD signaling pathway-mediated oxidative stress. J Environ Sci (China) 2025; 150:532-544. [PMID: 39306426 DOI: 10.1016/j.jes.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 09/25/2024]
Abstract
T-2 toxin, an omnipresent environmental contaminant, poses a serious risk to the health of humans and animals due to its pronounced cardiotoxicity. This study aimed to elucidate the molecular mechanism of cardiac tissue damage by T-2 toxin. Twenty-four male Sprague-Dawley rats were orally administered T-2 toxin through gavage for 12 weeks at the dose of 0, 10, and 100 nanograms per gram body weight per day (ng/(g·day)), respectively. Morphological, pathological, and ultrastructural alterations in cardiac tissue were meticulously examined. Non-targeted metabolomics analysis was employed to analyze alterations in cardiac metabolites. The expression of the Sirt3/FoxO3α/MnSOD signaling pathway and the level of oxidative stress markers were detected. The results showed that exposure to T-2 toxin elicited myocardial tissue disorders, interstitial hemorrhage, capillary dilation, and fibrotic damage. Mitochondria were markedly impaired, including swelling, fusion, matrix degradation, and membrane damage. Metabonomics analysis unveiled that T-2 toxin could cause alterations in cardiac metabolic profiles as well as in the Sirt3/FoxO3α/MnSOD signaling pathway. T-2 toxin could inhibit the expressions of the signaling pathway and elevate the level of oxidative stress. In conclusion, the T-2 toxin probably induces cardiac fibrotic impairment by affecting amino acid and choline metabolism as well as up-regulating oxidative stress mediated by the Sirt3/FoxO3α/MnSOD signaling pathway. This study is expected to provide targets for preventing and treating T-2 toxin-induced cardiac fibrotic injury.
Collapse
Affiliation(s)
- Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Jingming Zhan
- Department of Radiological Medicine and Environmental Medicine, China Institute of Radiation Protection, Taiyuan 030006, China
| | - Feidan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Xining Wang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Yujie He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Zhihao Yang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
DOĞAN AHTARIKOĞULLARI, SAYLAM M, YILMAZ S, PARLAR S, BALLAR P, ALPTÜZÜN V. 3-(1H-pyrazole-1-yl/1H-1,2,4-triazole-1-yl)-N-propananilide Derivatives: Design, Synthesis and Neuroprotectivity Potential Against 6-OHDA Induced Neurotoxicity Model. Turk J Pharm Sci 2025; 22:1-9. [PMID: 40052327 PMCID: PMC11887587 DOI: 10.4274/tjps.galenos.2024.72365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2025]
Abstract
Objectives Excessive amounts of neuroapoptosis are the underlying cause of neurodegenerative diseases. Bax is a pro-apoptotic member of the B-cell lymphoma-2 family that activates caspases which are the members of the cysteine protease family that play a significant role in the initiation and execution phases of apoptosis. The aim of this study was to design and synthesize a group of N-propananilide derivatives bearing pyrazole or 1,2,4-triazole ring were designed and synthesized to analyze the neuroprotectivity potential against 6-hydroxy-dopamine (6-OHDA). Four compounds possessed protectivity at lower doses were subjected to further studies on caspase-3 and Bax pathway. Materials and Methods Designed compounds were synthesized by reacting 1H-pyrazole or 1H-1,2,4-triazole with propananilide intermediates in Dimethylformamide. The neuroprotective activity of the title compounds was analyzed against 6-OHDA-6-OHDA-induced neurotoxicity model. Then, caspase-3 and Bax levels were determined for the selected compounds by Western blot study. Results All twelve 3-(1H-pyrazole-1-yl/1H-1,2,4-triazole-1-yl)-N-propananilide derivatives possessed neuroprotectivity against the 6-OHDA-induced neurotoxicity model (p≤0.05, **p≤0.001, ***p≤0.005). Compounds 7, 10, 11, and 12 were found to be more active at lower doses. They were subjected to further studies and the results revealed that their protecting activity arose from the decreasing levels of Bax, one of the pro-apoptotic proteins, and c expression levels and caspase-3 proteins. Conclusion All designed and synthesized derivatives possessed neuroprotectivity against 6-OHDA-induced neurotoxicity in the SH-SY5Y cell line and compounds 7, 10, 11, and 12 revealed that their neuroprotectivity originated from the decreasing Bax expression levels and caspase-3 activation.
Collapse
Affiliation(s)
| | - Merve SAYLAM
- İzmir Katip Çelebi University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İzmir, Türkiye
| | - Sinem YILMAZ
- Alanya Alaaddin Keykubat University Faculty of Engineering, Department of Bioengineering, Antalya, Türkiye
| | - Sülünay PARLAR
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İzmir, Türkiye
| | - Petek BALLAR
- Ege University Faculty of Pharmacy, Department of Biochemistry, İzmir, Türkiye
| | - Vildan ALPTÜZÜN
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İzmir, Türkiye
| |
Collapse
|
3
|
Arzoo SH, Tasmin R, Banerjee SJ. Quantification of Total Free Radicals in Drosophila Using a Fluorescence-Based Biochemical Assay. Bio Protoc 2025; 15:e5238. [PMID: 40084083 PMCID: PMC11896775 DOI: 10.21769/bioprotoc.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 03/16/2025] Open
Abstract
Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), induce oxidative stress. This stress plays crucial roles in cellular signaling, stress response, and disease progression, making the quantification of free radicals essential for understanding oxidative stress mechanisms. Here, we present a high-throughput fluorescence-based protocol for measuring the presence of total free radicals, including ROS and RNS, in the whole adult Drosophila melanogaster (fruit fly). The protocol involves homogenizing whole adult flies in PBS and treating only the supernatant of the lysate with dichlorodihydrofluorescein-DiOxyQ (DCFH-DiOxyQ), which then converts into a fluorescent molecule, dichlorofluorescein (DCF), upon reacting with free radicals. The level of fluorescence is directly proportional to the amount of free radicals present in the sample. This protocol offers simplicity, scalability, and adaptability, making it ideal for studying oxidative stress in the model organism Drosophila and its different tissues under different dietary regimes, environmental stresses, genetic mutations, or pharmacological treatments. It is to be noted that the protocol uses a kit from Abcam, which has been used to measure free radicals in mice, rats, human blood, and cell lines. It can also be applied to biofluids, culture supernatants, and cell lysates, making it suitable for a wide range of sample types beyond whole organisms or tissues. However, due to our research focus and expertise, here we describe a detailed protocol to measure free radicals responsible for inducing oxidative stress only in fruit flies. Key features • Quantifies total free radicals including ROS and RNS levels in adult Drosophila melanogaster using a fluorescence-based approach for oxidative stress studies. • Suitable for high-throughput analysis with a 96-well black plate format, simultaneously enabling efficient handling of multiple samples and standards. • Adaptable to different experimental conditions, including diverse ROS-inducing treatments and mutations in Drosophila. • Offers detailed instructions for reagent preparation, sample homogenization, fluorescence measurement, normalization, and statistical analysis of data to ensure reproducibility and accuracy across research settings. Graphical overview Schematic workflow of the assay. Whole adult fruit flies are homogenized in PBS buffer and centrifuged. The clear supernatant is carefully transferred into new tubes for further treatment with different reagents, loaded into a clear-bottom black 96-well plate, and treated with another set of reagents. The plate is then incubated, and fluorescence is measured using the Agilent BioTek Synergy H1 plate reader.
Collapse
Affiliation(s)
| | - Rubaia Tasmin
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
4
|
Ye D, Hao Z, Tang S, Velkov T, Dai C. Aflatoxin Exposure-Caused Male Reproductive Toxicity: Molecular Mechanisms, Detoxification, and Future Directions. Biomolecules 2024; 14:1460. [PMID: 39595635 PMCID: PMC11592228 DOI: 10.3390/biom14111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Widespread endocrine disorders and infertility caused by environmental and food pollutants have drawn considerable global attention. Aflatoxins (AFTs), a prominent class of mycotoxins, are recognized as one of the key contributors to environmental and food contamination. Aflatoxin B1 (AFB1) is the most potent and toxic pollutant among them and is known to cause multiple toxic effects, including neuro-, nephro-, hepato-, immune-, and genotoxicity. Recently, concerns have been raised regarding AFB1-induced infertility in both animals and humans. Exposure to AFB1 can disrupt the structure and functionality of reproductive organs, leading to gametogenesis impairment in males, subsequently reducing fertility. The potential molecular mechanisms have been demonstrated to involve oxidative stress, cell cycle arrest, apoptosis, inflammatory responses, and autophagy. Furthermore, several signaling pathways, including nuclear factor erythroid 2-related factor 2; NOD-, LRR-, and pyrin domain-containing protein 3; nuclear factor kappa-B; p53; p21; phosphoinositide 3-kinase/protein kinase B; the mammalian target of rapamycin; adenosine 5'-monophosphate-activated protein kinase; and mitochondrial apoptotic pathways, are implicated in these processes. Various interventions, including the use of small molecules, Chinese herbal extracts, probiotic supplementation, and camel milk, have shown efficacy in ameliorating AFB1-induced male reproductive toxicity, by targeting these signaling pathways. This review provides a comprehensive summary of the harmful impacts of AFB1 exposure on male reproductive organs in mammals, highlighting the potential molecular mechanisms and protective agents.
Collapse
Affiliation(s)
- Dongyun Ye
- Department of Obstetrics and Gynecology, Ezhou Central Hospital, Hubei University of Science and Technology, Ezhou 436000, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
5
|
Hosen MHA, Whitworth DJ, Leusch FDL, Yuen N, Bengtson Nash SM. Bioenergetic Shifts in Humpback Whale Fibroblasts Upon Chemical Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12313-12319. [PMID: 38958666 DOI: 10.1021/acs.est.3c10595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Southern Hemisphere humpback whales accumulate persistent and toxic chemicals, which are transported to Antarctica through distant sources and in situ usage. The extreme seasonal migration-associated fast of humpback whales results in the remobilization of persistent and lipophilic environmental contaminants from liberated fat stores. Mitochondria play a key role in lipid metabolism, and any disruption to mitochondrial function is expected to influence whole-organism bioenergetics. It is therefore of interest to advance understanding of the impact of known contaminants of the Antarctic sea-ice ecosystem upon humpback whale cellular bioenergetics. Using cell line-based in vitro testing, this study employed the Seahorse Extracellular Flux Analyzer to study cellular metabolic activity in live humpback whale fibroblast cells. The assay, based on oxygen consumption rate, provides insights into the cause of cellular bioenergetic disruption. Immortalized skin fibroblasts were exposed to four priority environmental chemicals found in the Antarctic sea-ice ecosystem. Our findings reveal chemical-dependent functional alterations and varying bioenergetic profile responses. Chlorpyrifos was observed to decrease mitochondrial basal oxygen consumption; dieldrin increased basal oxygen consumption; trifluralin's impact was dose-specific, and endosulfan displayed no effect. Our results provide unique insights into environmental chemical mechanisms of action on cellular bioenergetics, generating much-needed taxa-specific chemical effect data in support of evidence-based conservation policy and management.
Collapse
Affiliation(s)
- Md Hafiz All Hosen
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Deanne J Whitworth
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas Yuen
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Susan M Bengtson Nash
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
6
|
Togawa S, Usui N, Doi M, Kobayashi Y, Koyama Y, Nakamura Y, Shinoda K, Kobayashi H, Shimada S. Neuroprotective effects of Si-based hydrogen-producing agent on 6-hydroxydopamine-induced neurotoxicity in juvenile mouse model. Behav Brain Res 2024; 468:115040. [PMID: 38723675 DOI: 10.1016/j.bbr.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.
Collapse
Affiliation(s)
- Shogo Togawa
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan.
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuki Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yukiko Nakamura
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
7
|
Oliveira BDS, Toscano ECDB, Abreu LKS, Fernandes HDB, Amorim RF, Ferreira RN, Machado CA, Carvalho BC, da Silva MCM, de Oliveira ACP, Rachid MA, Rocha NP, Teixeira AL, da Silva ER, de Miranda AS. Nigrostriatal Inflammation Is Associated with Nonmotor Symptoms in an Experimental Model of Prodromal Parkinson's Disease. Neuroscience 2024; 549:65-75. [PMID: 38750924 DOI: 10.1016/j.neuroscience.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Recent evidence has supported a pathogenic role for neuroinflammation in Parkinson's disease (PD). Inflammatory response has been associated with symptoms and subtypes of PD. However, it is unclear whether immune changes are involved in the initial pathogenesis of PD, leading to the non-motor symptoms (NMS) observed in its prodromal stage. The current study aimed to characterize the behavioral and cognitive changes in a toxin-induced model of prodromal PD-like syndrome. We also sought to investigate the role of neuroinflammation in prodromal PD-related NMS. Male mice were subjected to bilateral intranasal infusion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or saline (control group), followed by comprehensive behavioral, pathological and neurochemical analysis. Intranasal MPTP infusion was able to cause the loss of dopaminergic neurons in the substantia nigra (SN). In parallel, it induced impairment in olfactory discrimination and social memory consolidation, compulsive and anxiety-like behaviors, but did not influence motor performance. Iba-1 and GFAP expressions were increased in the SN, suggesting an activated state of microglia and astrocytes. Consistent with this, MPTP mice had increased levels of IL-10 and IL-17A, and decreased levels of BDNF and TrkA mRNA in the SN. The striatum showed increased IL-17A, BDNF, and NFG levels compared to control mice. In conclusion, neuroinflammation may play an important role in the early stage of experimental PD-like syndrome, leading to cognitive and behavioral changes. Our results also indicate that intranasal administration of MPTP may represent a valuable mouse model for prodromal PD.
Collapse
Affiliation(s)
- Bruna da Silva Oliveira
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eliana Cristina de Brito Toscano
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil; Programa de Pós-graduação em Saúde, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Larissa Katharina Sabino Abreu
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Heliana de Barros Fernandes
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renan Florindo Amorim
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caroline Amaral Machado
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Brener Cunha Carvalho
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratório de Patologia Celular e Molecular, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Natália Pessoa Rocha
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Antônio Lúcio Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, USA
| | - Elizabeth Ribeiro da Silva
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline Silva de Miranda
- Laboratório de Neurobiologia "Conceição Machado", Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Vallucci M, Boutin JA, Janda E, Blandel F, Musgrove R, Di Monte D, Ferry G, Michel PP, Hirsch EC. The specific NQO2 inhibitor, S29434, only marginally improves the survival of dopamine neurons in MPTP-intoxicated mice. J Neural Transm (Vienna) 2024; 131:1-11. [PMID: 37851107 DOI: 10.1007/s00702-023-02709-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.
Collapse
Affiliation(s)
- Maeva Vallucci
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, UMR 1239, 76000, Rouen, France.
| | - Elzbieta Janda
- Department of Health Sciences, Campus Germaneto, Magna Graecia University, 88100, Catanzaro, Italy
| | - Florence Blandel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Ruth Musgrove
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Donato Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gilles Ferry
- Institut de R&D, Servier Paris-Saclay, 91190, Gif-Sur-Yvette, France
- Gilles Ferry Consulting, Les Issambres, France
| | - Patrick P Michel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| |
Collapse
|
9
|
Ekpono EU, Eze ED, Adam AM, Ibiam UA, Obasi OU, Ifie JE, Ekpono EU, Alum EU, Noreen S, Awuchi CG, Aja PM. Ameliorative Potential of Pumpkin Seed Oil ( Cucurbita pepo L.) Against Tramadol-Induced Oxidative Stress. Dose Response 2024; 22:15593258241226913. [PMID: 38234695 PMCID: PMC10793191 DOI: 10.1177/15593258241226913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Background of the Study The increase in the therapeutic use of tramadol in the management of moderate to severe pains in some disease conditions and its unregulated access has led to its associated toxicity and there is little or no information on the protection against its associated toxicity. Aim of the Study Considering the medicinal value of pumpkin seed oil, its availability, and neglected use, it becomes necessary to evaluate the possible potential of the seed oil in tramadol-induced oxidative stress in Wister Albino rats. Methods of the Study This study used fifty-six (56) albino rats to determine the impact of Cucurbita pepo seed oil (CPSO) on tramadol-induced oxidative stress. The rats were grouped into 7. After a week of acclimatization, rats in group 1 (normal control) had access to water and food, while rats in group 2 received 5 mL/Kg (b.w) of normal saline. 100 mg/kg of tramadol (TM) was delivered to groups 3-6 to induce toxicity. The third group (TM control) received no treatment, whilst the other 3 groups (TM-CPSO treatment groups) received 5, 2.5, and 1.5 mL/Kg of CPSO, respectively. Group 7 received only 5 mL/kg CPSO (CPSO group). Similarly, groups 2 through 7 had unrestricted access to food and water for 42 days and received treatments via oral intubation once per day. Indicators of oxidative stress were discovered in the brain homogenate. Results TM toxicity was demonstrated by a considerable increase (P < .05) in the brain MDA level and a significant drop (P < .05) in the brain GSH level, as well as a significant reduction (P < .05) in GPx, catalase, SOD, GST, and quinone reductase activities. Conclusion The dose-dependent delivery of CPSO was able to restore not only the activity but also the concentrations of the altered markers.
Collapse
Affiliation(s)
- Ezebuilo U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Science Laboratory Technology, Federal Polytechnique, Oko, Nigeria
| | - Ejike D. Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Afodun M Adam
- Department of Medical Imaging Science, School of Health Sciences, University of Rwanda, Rwanda
| | - Udu A. Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Orji U. Obasi
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Josiah E. Ifie
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| | - Ejike U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Esther U. Alum
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Research Publication and Extensions, Kampala International University, Kampala, Uganda
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Chinaza G. Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| | - Patrick M. Aja
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| |
Collapse
|
10
|
Nieto-Escamez F, Obrero-Gaitán E, García-López H, Cortés-Pérez I. Unveiling the Hidden Challenges: Non-Motor Disorders in Parkinson's Disease. Brain Sci 2023; 13:1710. [PMID: 38137158 PMCID: PMC10741623 DOI: 10.3390/brainsci13121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is not just a motor disorder, it is a complex condition that affects every aspect of a patient's life, from cognitive impairment and psychiatric disturbances to autonomic dysfunction and sleep disturbances [...].
Collapse
Affiliation(s)
- Francisco Nieto-Escamez
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- CIBIS Research Center (Centro de Investigación para el Bienestar y la Inclusión Social), University of Almeria, 04120 Almeria, Spain
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| | - Héctor García-López
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain;
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain;
| |
Collapse
|
11
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
12
|
Larin ACR, Pfrunder MC, Mullen KM, Wiedbrauk S, Boase NR, Fairfull-Smith KE. Synergistic or antagonistic antioxidant combinations - a case study exploring flavonoid-nitroxide hybrids. Org Biomol Chem 2023; 21:1780-1792. [PMID: 36728689 DOI: 10.1039/d2ob02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases impose a considerable medical and public health burden on populations throughout the world. Oxidative stress, an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of reactive oxygen species (ROS), has been implicated in the progression of a number of neurodegenerative diseases. The manipulation of ROS levels may represent a promising treatment option to slow down neurodegeneration, although adequate potency of treatments has not yet been achieved. Using a hybrid pharmacology approach, free radical nitroxide antioxidants were hybridised with a class of natural antioxidants, flavonoids, to form a potential multitargeted antioxidant. Modification of the Baker-Venkataraman reaction achieved the flavonoid-nitroxide hybrids (6-9) in modest yields. Antioxidant evaluation of the hybrids by cyclic voltammetry showed both redox functionalities were still active, with little influence on oxidation potential. Assessment of the peroxyl radical scavenging ability through an ORAC assay showed reduced antioxidant activity of the hybrids compared to their individual components. It was hypothesized that the presence of the phenol in the hybrids creates a more acidic medium which does not favour regeneration of the nitroxide from the corresponding oxammonium cation, disturbing the typical catalytic cycle of peroxyl radical scavenging by nitroxides. This work highlights the potential intricacies involved with drug hybridization as a strategy for new therapeutic development.
Collapse
Affiliation(s)
- Astrid C R Larin
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Michael C Pfrunder
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathleen M Mullen
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Nathan R Boase
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
13
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Barangi S, Hosseinzadeh P, Karimi G, Tayarani Najaran Z, Mehri S. Osthole attenuated cytotoxicity induced by 6-OHDA in SH-SY5Y cells through inhibition of JAK/STAT and MAPK pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:953-959. [PMID: 37427324 PMCID: PMC10329246 DOI: 10.22038/ijbms.2023.68292.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 07/11/2023]
Abstract
Objectives Natural coumarin called osthole is regarded as a medicinal herb with widespread applications in Traditional Chinese Medicine. It has various pharmacological properties, including antioxidant, anti-inflammatory, and anti-apoptotic effects. In some neurodegenerative diseases, osthole also shows neuroprotective properties. In this study, we explored how osthole protects human neuroblastoma SH-SY5Y cells from the cytotoxicity of 6-hydroxydopamine (6-OHDA). Materials and Methods Using the MTT assay and DCFH-DA methods, respectively, the viability of the cells and the quantity of intracellular reactive oxygen species (ROS) were evaluated. Signal Transducers and Activators of Transcription (STAT), Janus Kinase (JAK), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and caspase-3 activation levels were examined using western blotting. Results In SH-SY5Y cells, the results showed that a 24-hour exposure to 6-OHDA (200 µM) lowered cell viability but markedly elevated ROS, p-JAK/JAK, p-STAT/STAT, p-ERK/ERK, p-JNK/JNK ratio, and caspase-3 levels. Interestingly, osthole (100 µM) pretreatment of cells for 24 hr prevented 6-OHDA-induced cytotoxicity by undoing all effects of 6-OHDA. Conclusion In summary, our data showed that osthole protects SH-SY5Y cells against 6-OHDA-induced cytotoxicity by inhibiting ROS generation and reducing the activity of the JAK/STAT, MAPK, and apoptotic pathways.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Raman Spectroscopy and Imaging Studies of Human Digestive Tract Cells and Tissues-Impact of Vitamin C and E Supplementation. Molecules 2022; 28:molecules28010137. [PMID: 36615330 PMCID: PMC9822473 DOI: 10.3390/molecules28010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022] Open
Abstract
Cancers of digestive tract such as colorectal cancer (CRC) and gastric cancer (GC) are the most commonly detected types of cancer worldwide and their origin can be associated with oxidative stress conditions. Commonly known and followed antioxidants, such as vitamin C and E, are widely considered as potential anti-cancer agents. Raman spectra have great potential in the biochemical characterization of matter based on the fact that each molecule has its own unique vibrational properties. Raman spectroscopy allows to precisely characterize components (proteins, lipids, nucleic acids). The paper presents the application of the Raman spectroscopy technique for the analysis of tissue samples and cells of the human colon and stomach. The main goal of this study is to show the differences between healthy and cancerous tissues from the human digestive tract and human normal and cancer colon and gastric cell lines. The paper presents the spectroscopic characterization of normal colon cells, CCD-18 Co, in physiological and oxidative conditions and effect of oxidative injury of normal colon cells upon supplementation with vitamin C at various concentrations based on Raman spectra. The obtained results were related to the Raman spectra recorded for human colon cancer cells-CaCo-2. In addition, the effect of the antioxidant in the form of vitamin E on gastric cancer cells, HTB-135, is presented and compared with normal gastric cells-CRL-7869. All measured gastric samples were biochemically and structurally characterized by means of Raman spectroscopy and imaging. Statistically assisted analysis has shown that normal, ROS injured and cancerous human gastrointestinal cells can be distinguished based on their unique vibrational properties. ANOVA tests, PCA (Principal Component Analysis) and PLSDA (Partial Least Squares Discriminant Analysis) have confirmed the main role of nucleic acids, proteins and lipids in differentiation of human colon and stomach normal and cancer tissues and cells. The conducted research based on Raman spectra proved that antioxidants in the form of vitamin C and E exhibit anti-cancer properties. In consequence, conducted studies proved that label-free Raman spectroscopy may play an important role in clinical diagnostic differentiation of human normal and cancerous gastrointestinal tissues and may be a source of intraoperative information supporting histopathological analysis.
Collapse
|
16
|
SRT1720 as an SIRT1 activator for alleviating paraquat-induced models of Parkinson's disease. Redox Biol 2022; 58:102534. [DOI: 10.1016/j.redox.2022.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|
17
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
18
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
19
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
20
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Gang Li Min Tang
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Gang Li Min Tang
| |
Collapse
|
21
|
Zhang X, Tu D, Li S, Li N, Li D, Gao Y, Tian L, Liu J, Zhang X, Hong JS, Hou L, Zhao J, Wang Q. A novel synthetic peptide SVHRSP attenuates dopaminergic neurodegeneration by inhibiting NADPH oxidase-mediated neuroinflammation in experimental models of Parkinson's disease. Free Radic Biol Med 2022; 188:363-374. [PMID: 35760232 DOI: 10.1016/j.freeradbiomed.2022.06.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
Current treatment of Parkinson's disease (PD) ameliorates symptoms but fails to block disease progression. This study was conducted to explore the protective effects of SVHRSP, a synthetic heat-resistant peptide derived from scorpion venom, against dopaminergic neurodegeneration in experimental models of PD. Results showed that SVHRSP dose-dependently reduced the loss of dopaminergic neuron in the nigrostriatal pathway and motor impairments in both rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced mouse PD models. Microglial activation and imbalance of M1/M2 polarization were also abrogated by SVHRSP in both models. In rotenone-treated primary midbrain neuron-glial cultures, loss of dopaminergic neuron and microglial activation were mitigated by SVHRSP. Furthermore, lipopolysaccharide (LPS)-elicited microglial activation, M1 polarization and related dopaminergic neurodegeneration in primary cultures were also abrogated by SVHRSP, suggesting that inhibition of microglial activation contributed to SVHRSP-afforded neuroprotection. Mechanistic studies revealed that SVHRSP blocked both LPS- and rotenone-induced microglial NADPH oxidase (NOX2) activation by preventing membrane translocation of cytosolic subunit p47phox. NOX2 knockdown by siRNA markedly attenuated the inhibitory effects of SVHRSP against LPS- and rotenone-induced gene expressions of proinflammatory factors and related neurotoxicity. Altogether, SVHRSP protects dopaminergic neurons by blocking NOX2-mediated microglial activation in experimental PD models, providing experimental basis for the screening of clinical therapeutic drugs for PD.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Dezhen Tu
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Donglai Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yun Gao
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lu Tian
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Liyan Hou
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
22
|
Dai C, Das Gupta S, Wang Z, Jiang H, Velkov T, Shen J. T-2 toxin and its cardiotoxicity: New insights on the molecular mechanisms and therapeutic implications. Food Chem Toxicol 2022; 167:113262. [PMID: 35792220 DOI: 10.1016/j.fct.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
T-2 toxin is one of the most toxic and common trichothecene mycotoxins, and can cause various cardiovascular diseases. In this review, we summarized the current knowledge-base and challenges as it relates to T-2 toxin related cardiotoxicity. The molecular mechanisms and potential treatment approaches were also discussed. Pathologically, T-2 toxin-induced cardiac toxicity is characterized by cell injury and death in cardiomyocyte, increased capillary permeability, necrosis of cardiomyocyte, hemorrhage, and the infiltration of inflammatory cells in the heart. T-2 toxin exposure can cause cardiac fibrosis and finally lead to cardiac dysfunction. Mechanistically, T-2 toxin exposure-induced cardiac damage involves the production of ROS, mitochondrial dysfunction, peroxisome proliferator-activated receptor-gamma (PPAR-γ) signaling pathway, endoplasmic reticulum (ER stress), transforming growth factor beta 1 (TGF-β1)/smad family member 2/3 (Smad2/3) signaling pathway, and autophagy and inflammatory responses. Antioxidant supplementation (e.g., catalase, vitamin C, and selenium), induction of autophagy (e.g., rapamycin), blockade of inflammatory signaling (e.g., methylprednisolone) or treatment with PPAR-γ agonists (e.g., pioglitazone) may provide protective effects against these detrimental cardiac effects caused by T-2 toxin. We believe that our review provides new insights in understanding T-2 toxin exposure-induced cardiotoxicity and fuels effective prevention and treatment strategies against this important food-borne toxin-induced health problems.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China.
| | - Subhajit Das Gupta
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75230, USA
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China
| | - Haiyang Jiang
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing, 100193, PR China
| |
Collapse
|
23
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
24
|
Protective Effects of Jujubosides on 6-OHDA-Induced Neurotoxicity in SH-SY5Y and SK-N-SH Cells. Molecules 2022; 27:molecules27134106. [PMID: 35807356 PMCID: PMC9268520 DOI: 10.3390/molecules27134106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
6-hydroxydopamine (6-OHDA) is used to induce oxidative damage in neuronal cells, which can serve as an experimental model of Parkinson’s disease (PD). Jujuboside A and B confer free radical scavenging effects but have never been examined for their neuroprotective effects, especially in PD; therefore, in this study, we aimed to investigate the feasibility of jujubosides as protectors of neurons against 6-OHDA and the underlying mechanisms. 6-OHDA-induced neurotoxicity in the human neuronal cell lines SH-SY5Y and SK-N-SH, was used to evaluate the protective effects of jujubosides. These findings indicated that jujuboside A and B were both capable of rescuing the 6-OHDA-induced loss of cell viability, activation of apoptosis, elevation of reactive oxygen species, and downregulation of the expression levels of superoxide dismutase, catalase, and glutathione peroxidase. In addition, jujuboside A and B can reverse a 6-OHDA-elevated Bax/Bcl-2 ratio, downregulate phosphorylated PI3K and AKT, and activate caspase-3, -7, and -9. These findings showed that jujubosides were capable of protecting both SH-SY5Y and SK-N-SH neuronal cells from 6-OHDA-induced toxicity via the rebalancing of the redox system, together with the resetting of the PI3K/AKT apoptotic signaling cascade. In conclusion, jujuboside may be a potential drug for PD prevention.
Collapse
|
25
|
Nguyen K, Sanchez CL, Brammer-Robbins E, Pena-Delgado C, Kroyter N, El Ahmadie N, Watkins JM, Aristizabal-Henao JJ, Bowden JA, Souders CL, Martyniuk CJ. Neurotoxicity assessment of QoI strobilurin fungicides azoxystrobin and trifloxystrobin in human SH-SY5Y neuroblastoma cells: Insights from lipidomics and mitochondrial bioenergetics. Neurotoxicology 2022; 91:290-304. [PMID: 35700754 DOI: 10.1016/j.neuro.2022.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/01/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Strobilurin fungicides are quinone outside inhibitors (QoI) used to treat fungal pathogens for agricultural and residential use. Here, we compared the potential for neurotoxicity of the widely used strobilurins, azoxystrobin (AZS) and trifloxystrobin (TFS), in differentiated human SH-SY5Y cells. Fungicides did not include cytotoxicity up to 200 µM but both induced loss of cell viability at 48 h, with TFS showing slightly higher toxicity that AZS. Caspase 3/7 activity was induced in SH-SY5Y cells by both fungicides at 48 h (50 µM for AZS and 25 µM for TFS). ATP levels were reduced following a 24-hour exposure to > 25 µM AZS and > 6.25 µM TFS and both fungicides rapidly impaired oxidative respiration (~12.5 µM for AZS and ~3.125 µM TFS) and decreased oligomycin-induced ATP production, maximal respiration, and mitochondrial spare capacity. AZS at 100 µM showed a continual impairment of mitochondrial membrane potential (MMP) between 4 and 48 h while TFS at > 50 µM decreased MMP at 24 h. Taken together, TFS exerted higher mitochondrial toxicity at lower concentrations compared to AZS in SH-SY5Y cells. To discern toxicity mechanisms of strobilurin fungicides, lipidomics was conducted in SH-SY5Y cells following exposure to 6.25 µM and 25 µM AZS, and a total of 1595 lipids were detected, representing 49 different lipid classes. Lipid classes with the largest proportion of lipids detected in SH-SY5Y cells included triglycerides (17%), phosphatidylethanolamines (8%), ether-linked triglycerides (8%), phosphatidylcholines (7%), ether-linked phosphatidylethanolamines (6%), and diacylglycerols (5%). Together, these 5 lipid classes accounted for over 50% of the total lipids measured in SH-SY5Y cells. Lipids that were increased by AZS included acyl carnitine, which plays a role in long chain fatty acid utilization for mitochondrial β-oxidation, as well as non-modified, ether linked, and oxidized triacylglycerols, suggesting compensatory upregulation of triglyceride biosynthesis. The ceramide HexCer-NS, linked to neurodegenerative diseases, was decreased in abundance following AZS exposure. In summary, strobilurin fungicides rapidly inhibit mitochondrial oxidative respiration and alter the abundance of several lipids in neuronal cells, relevant for understanding environmental exposure risks related to their neurotoxicity.
Collapse
Affiliation(s)
- Khaai Nguyen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Christina L Sanchez
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Brammer-Robbins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Carlos Pena-Delgado
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Noa Kroyter
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Jacqueline M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Juan J Aristizabal-Henao
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; BERG LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Lumkwana D, Peddie C, Kriel J, Michie LL, Heathcote N, Collinson L, Kinnear C, Loos B. Investigating the Role of Spermidine in a Model System of Alzheimer’s Disease Using Correlative Microscopy and Super-resolution Techniques. Front Cell Dev Biol 2022; 10:819571. [PMID: 35656544 PMCID: PMC9152225 DOI: 10.3389/fcell.2022.819571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Spermidine has recently received major attention for its potential therapeutic benefits in the context of neurodegeneration, cancer, and aging. However, it is unclear whether concentration dependencies of spermidine exist, to differentially enhance autophagic flux. Moreover, the relationship between low or high autophagy activity relative to basal neuronal autophagy flux and subsequent protein clearance as well as cellular toxicity has remained largely unclear. Methods: Here, we used high-resolution imaging and biochemical techniques to investigate the effects of a low and of a high concentration of spermidine on autophagic flux, neuronal toxicity, and protein clearance in in vitro models of paraquat (PQ) induced neuronal toxicity and amyloid precursor protein (APP) overexpression, as well as in an in vivo model of PQ-induced rodent brain injury. Results: Our results reveal that spermidine induces autophagic flux in a concentration-dependent manner, however the detectable change in the autophagy response critically depends on the specificity and sensitivity of the method employed. By using correlative imaging techniques through Super-Resolution Structured Illumination Microscopy (SR-SIM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), we demonstrate that spermidine at a low concentration induces autophagosome formation capable of large volume clearance. In addition, we provide evidence of distinct, context-dependent protective roles of spermidine in models of Alzheimer’s disease. In an in vitro environment, a low concentration of spermidine protected against PQ-induced toxicity, while both low and high concentrations provided protection against cytotoxicity induced by APP overexpression. In the in vivo scenario, we demonstrate brain region-specific susceptibility to PQ-induced neuronal toxicity, with the hippocampus being highly susceptible compared to the cortex. Regardless of this, spermidine administered at both low and high dosages protected against paraquat-induced toxicity. Conclusions: Taken together, our results demonstrate that firstly, administration of spermidine may present a favourable therapeutic strategy for the treatment of Alzheimer’s disease and secondly, that concentration and dosage-dependent precision autophagy flux screening may be more critical for optimal autophagy and cell death control than previously thought.
Collapse
Affiliation(s)
- D. Lumkwana
- Microscopy and Imaging Translational Technology Platform, Cancer Research UK, University College London, London, United Kingdom
- *Correspondence: D. Lumkwana,
| | - C. Peddie
- Science Technology Platform, Electron Microscopy, Francis Crick Institute, London, United Kingdom
| | - J. Kriel
- Central Analytical Facilities, Electron Microscopy Unit, Stellenbosch University, Stellenbosch, South Africa
| | - L. L. Michie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - N. Heathcote
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - L. Collinson
- Science Technology Platform, Electron Microscopy, Francis Crick Institute, London, United Kingdom
| | - C. Kinnear
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - B. Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
27
|
Tamura H, Nishio R, Saeki N, Katahira M, Morioka H, Tamano H, Takeda A. Paraquat-induced intracellular Zn 2+ dysregulation causes dopaminergic degeneration in the substantia nigra, but not in the striatum. Neurotoxicology 2022; 90:136-144. [PMID: 35339517 DOI: 10.1016/j.neuro.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 11/15/2022]
Abstract
Parkinson's disease is characterized by a selective death of nigrostriatal dopaminergic neurons, while the difference in the vulnerability to the death between the substantia nigra pars compacta (SNpc) and the striatum is poorly understood. Here we tested the difference focused on paraquat (PQ)-induced intracellular Zn2+ toxicity via extracellular glutamate accumulation. When PQ was locally injected into the SNpc and the striatum, dopaminergic degeneration was observed in the SNpc, but not in the striatum. Intracellular hydrogen peroxide (H2O2) produced by PQ was increased in both the SNpc and the striatum. In contrast, extracellular glutamate accumulation was observed only in the SNpc and rescued in the presence of N-(p-amylcinnamoyl)anthranilic acid (ACA), a blocker of the transient receptor potential melastatin 2 (TRPM2) cation channels. PQ increased intracellular Zn2+ level in the SNpc, but not in the striatum. The increase was rescued by 1-naphthyl acetyl spermine (NASPM), a selective blocker of Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors. PQ-induced dopaminergic degeneration in the SNpc was rescued by ACA, NASPM, and GBR, a dopamine reuptake inhibitor. The present study indicates intracellular H2O2 produced by PQ, which is taken up through dopamine transporters, is retrogradely transported to presynaptic glutamatergic terminals, activates TRPM2 channels, accumulates glutamate in the extracellular compartment, and induces intracellular Zn2+ dysregulation via Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptor activation, resulting in dopaminergic degeneration in the SNpc. However, H2O2 signaling is not the case in the striatum. Paraquat-induced Zn2+ dysregulation plays a key role for neurodegeneration in the SNpc, but not in the striatum.
Collapse
Affiliation(s)
- Haruna Tamura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryusuke Nishio
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nana Saeki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misa Katahira
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Morioka
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
28
|
Nasri A, Lafon PA, Mezni A, Clair P, Cubedo N, Mahmoudi E, Beyrem H, Rossel M, Perrier V. Developmental exposure to the A6-pesticide causes changes in tyrosine hydroxylase gene expression, neurochemistry, and locomotors behavior in larval zebrafish. Toxicol Mech Methods 2022; 32:569-579. [PMID: 35313786 DOI: 10.1080/15376516.2022.2056100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, the increase in the synthesis of biopesticides for alternative agricultural uses has necessitated the study of their impacts. Among these compounds, several of them are known to exert endocrine-disrupting effects causing deregulation of a variety of physiological functions affecting cell signaling pathways involved in neural cell differentiation leading to developmental neurotoxicity. In this current paper, we thus determined the impact of the biopesticide A6 on zebrafish larvae, which is structurally linked to estrogenic endocrine disruptors. The objective of this study was to define the toxicity of A6, the mechanisms responsible, and to evaluate its effects on the locomotors activity at nanomolar concentrations (0, 0.5, 5, and 50 nM). We show through its blue fluorescence properties that A6 accumulates in different parts of the body as intestine, adipose tissue, muscle, yolk sac and head. We display also that A6 disrupt the development and affects the function of the central nervous system, especially the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. We studied whether A6 disturbs the target genes expression and recorded that it downregulated genes embroiled in TH expression, suggesting that A6's neurotoxic effect may be the result of its binding propinquity to the estrogen receptor.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.,U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Pierre-André Lafon
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Philippe Clair
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Nicolas Cubedo
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Mireille Rossel
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| | - Véronique Perrier
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095 Montpellier, France
| |
Collapse
|
29
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
30
|
Münzel T, Hahad O, Daiber A, Landrigan PJ. OUP accepted manuscript. Cardiovasc Res 2022; 119:440-449. [PMID: 35772469 PMCID: PMC10064841 DOI: 10.1093/cvr/cvac082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy soil is foundational to human health. Healthy soil is needed to grow crops, provides food, and sustains populations. It supports diverse ecosystems and critical ecological services such as pollination. It stores water and prevents floods. It captures carbon and slows global climate change. Soil pollution is a great and growing threat to human health. Soil may be polluted by heavy metals, organic chemicals such as pesticides, biological pathogens, and micro/nanoplastic particles. Pollution reduces soil's ability to yield food. It results in food crop contamination and disease. Soil pollutants wash into rivers causing water pollution. Deforestation causes soil erosion, liberates sequestered pollutants, and generates airborne dust. Pollution of air, water, and soil is responsible for at least 9 million deaths each year. More than 60% of pollution-related disease and death is due to cardiovascular disease. Recognizing the importance of pollution to human health, the European Commission and the EU Action Plan for 2050: A Healthy Planet for All, have determined that air, water, and soil pollution must be reduced to levels that cause no harm to human or ecosystem health. We are thus required to create a toxic-free environment, respect the concept of a safe operating space for humanity, and sustain the health of our planet for future generations. This review article summarizes current knowledge of the links between soil health and human health and discusses the more important soil pollutants and their health effects.
Collapse
Affiliation(s)
- Thomas Münzel
- Corresponding author. Tel: +49 613 117 7250; fax: +49 613 117 6615, E-mail:
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Cardiology I, Geb. 605, Langenbeckstr. 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | | | | |
Collapse
|
31
|
Manjima RB, Ramya S, Kavithaa K, Paulpandi M, Saranya T, Harysh Winster SB, Balachandar V, Arul N. Spathulenol attenuates 6-hydroxydopamine induced neurotoxicity in SH-SY5Y neuroblastoma cells. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Goyal S, Seth B, Chaturvedi RK. Polyphenols and Stem Cells for Neuroregeneration in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Curr Pharm Des 2021; 28:806-828. [PMID: 34781865 DOI: 10.2174/1381612827666211115154450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders, pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| |
Collapse
|
33
|
Della-Flora Nunes G, Wilson ER, Hurley E, He B, O'Malley BW, Poitelon Y, Wrabetz L, Feltri ML. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. eLife 2021; 10:e66278. [PMID: 34519641 PMCID: PMC8478418 DOI: 10.7554/elife.66278] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Emma R Wilson
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
| | - Bin He
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist HospitalHoustonUnited States
| | - Bert W O'Malley
- Department of Medicine and Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical CollegeAlbanyUnited States
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
34
|
Yang H, Lin Q, Chen N, Luo Z, Zheng C, Li J, Zheng F, Guo Z, Cai P, Wu S, Wang YL, Li H. LncRNA NR_030777 Alleviates Paraquat-Induced Neurotoxicity by Regulating Zfp326 and Cpne5. Toxicol Sci 2021; 178:173-188. [PMID: 32735315 DOI: 10.1093/toxsci/kfaa121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paraquat (PQ) is herbicide widely used in agricultural production. It is identified as an environmental toxicant that could lead to neurodegeneration damage. Parkinson's disease (PD) is a central nervous system degenerative disease that occurs in the elderly. Main risk factors for PD include genetic and environmental variables, but its specific mechanism is still not well understood. Emerging evidence suggests that long noncoding RNAs (lncRNAs) play an important role in PD. LncRNA NR_030777 has a full length of 2208 bp and is highly conserved among species. RNA profiling showed a significant alteration in lncRNA NR_030777 expression upon PQ-induced neurotoxicity. However, little is known on the functional relevance of lncRNA NR_030777 in the development of PQ. In this study, we discovered a vital protective role of lncRNA NR_030777 in PQ-induced neurotoxicity. The expression of NR_030777 correlates with elevated level of reactive oxygen species induced by PQ. In addition, activated expression of NR_030777 alleviates neurotoxicity by regulating the expression of Zfp326 and Copine 5. We report that lncRNA NR_030777 has a vital protective role in neurotoxicity induced by environmental toxicants such as PQ. This study could serve as an exemplary case for lncRNAs to be considered as a potential target for the prevention and treatment of PQ-induced neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingxia Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhousong Luo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Chunyan Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jing Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health.,Fujian Provincial Key Laboratory of Environment Factors and Cancer
| | - Ping Cai
- The Key Laboratory of Environment and Health.,Fujian Provincial Key Laboratory of Environment Factors and Cancer.,Department of Health Inspection and Quarantine
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environment Factors and Cancer.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,The Key Laboratory of Environment and Health.,Fujian Provincial Key Laboratory of Environment Factors and Cancer
| |
Collapse
|
35
|
Fialova JL, Raudenska M, Jakubek M, Kejik Z, Martasek P, Babula P, Matkowski A, Filipensky P, Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini Rev Med Chem 2021; 21:816-832. [PMID: 33213355 DOI: 10.2174/1389557520666201118153242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as 'mitocans'.
Collapse
Affiliation(s)
- Jindriska Leischner Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Zdenek Kejik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Borowska 211, Poland
| | - Petr Filipensky
- Department of Urology, St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
36
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
37
|
Pei X, Jiang H, Liu X, Li L, Li C, Xiao X, Li D, Tang S. Targeting HMGB1 inhibits T-2 toxin-induced neurotoxicity via regulation of oxidative stress, neuroinflammation and neuronal apoptosis. Food Chem Toxicol 2021; 151:112134. [PMID: 33762183 DOI: 10.1016/j.fct.2021.112134] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
T-2 toxin, a food-derived mycotoxin, has been identified as a neurotoxin. Nonetheless, T-2 toxin-induced neuroinflammation has never been revealed. As an important therapeutic target for inflammatory diseases and cancers, the role of high mobility group B1 (HMGB1) in mycotoxin-mediated neurotoxicity remains a mystery. In current study, we found that PC12 cells were sensitive to trace amounts of T-2 toxin less than 12 ng/mL, distinguished by decreased cell viability and increased release of lactate dehydrogenase (LDH). Oxidative stress and mitochondrial damage were observed in PC12 cells, manifested as accumulation of oxidative stress products, up-regulation of Nrf2/HO-1 pathway and decrease of mitochondrial membrane potential (MMP), leading to mitochondria-dependent apoptosis. Meanwhile, we first discovered that tiny amounts of T-2 toxin triggered neuroinflammation directly, including raising the expression and translocation of NF-κB and promoting secretion of proinflammatory cytokines such as TNF-α, IL-6, IL-8 and IL-1β. Most interestingly, the increased of HMGB1 was detected both inside and outside the cells. Conversely, HMGB1 siRNA reduced T-2 toxin-mediated oxidative stress, apoptosis and neuroinflammatory outbreak, accompanied by lessened caspase-3 and caspase-9, and decreased secretion of pro-inflammatory cytokines. Taken together, T-2 toxin-stimulated PC12 cells simultaneously displayed apoptosis and inflammation, whereas HMGB1 played a critical role in these neurotoxic processes.
Collapse
Affiliation(s)
- Xingyao Pei
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Xinyu Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin, 300384, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin, 300384, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin, 300384, China
| | - Xilong Xiao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin, 300384, China.
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, China.
| |
Collapse
|
38
|
Silva J, Alves C, Martins A, Susano P, Simões M, Guedes M, Rehfeldt S, Pinteus S, Gaspar H, Rodrigues A, Goettert MI, Alfonso A, Pedrosa R. Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum. Int J Mol Sci 2021; 22:1888. [PMID: 33672866 PMCID: PMC7918146 DOI: 10.3390/ijms22041888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Patrícia Susano
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Marco Simões
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Miguel Guedes
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Stephanie Rehfeldt
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Helena Gaspar
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal;
| | - Américo Rodrigues
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.A.); (A.M.); (P.S.); (M.S.); (M.G.); (S.P.); (A.R.)
| | - Márcia Ines Goettert
- Cell Culture Laboratory, Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado, RS 95914-014, Brazil; (S.R.); (M.I.G.)
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
39
|
de Bem AF, Krolow R, Farias HR, de Rezende VL, Gelain DP, Moreira JCF, Duarte JMDN, de Oliveira J. Animal Models of Metabolic Disorders in the Study of Neurodegenerative Diseases: An Overview. Front Neurosci 2021; 14:604150. [PMID: 33536868 PMCID: PMC7848140 DOI: 10.3389/fnins.2020.604150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
The incidence of metabolic disorders, as well as of neurodegenerative diseases—mainly the sporadic forms of Alzheimer’s and Parkinson’s disease—are increasing worldwide. Notably, obesity, diabetes, and hypercholesterolemia have been indicated as early risk factors for sporadic forms of Alzheimer’s and Parkinson’s disease. These conditions share a range of molecular and cellular features, including protein aggregation, oxidative stress, neuroinflammation, and blood-brain barrier dysfunction, all of which contribute to neuronal death and cognitive impairment. Rodent models of obesity, diabetes, and hypercholesterolemia exhibit all the hallmarks of these degenerative diseases, and represent an interesting approach to the study of the phenotypic features and pathogenic mechanisms of neurodegenerative disorders. We review the main pathological aspects of Alzheimer’s and Parkinson’s disease as summarized in rodent models of obesity, diabetes, and hypercholesterolemia.
Collapse
Affiliation(s)
- Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brazilia, Brazil
| | - Rachel Krolow
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hémelin Resende Farias
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victória Linden de Rezende
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Pens Gelain
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Miguel das Neves Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
40
|
Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021; 35:1-20. [PMID: 33515429 PMCID: PMC7893831 DOI: 10.1007/s40263-020-00787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK-iNOS-NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.
Collapse
|
41
|
Liu Y, Yu L, Xu Y, Tang X, Wang X. Substantia nigra Smad3 signaling deficiency: relevance to aging and Parkinson's disease and roles of microglia, proinflammatory factors, and MAPK. J Neuroinflammation 2020; 17:342. [PMID: 33198771 PMCID: PMC7670688 DOI: 10.1186/s12974-020-02023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Smad3 signaling is indicated to regulate microglia activity. Parkinson’s disease (PD) neurodegeneration is shown to be associated with aging and neuroinflammation. However, it remains unclear about the relationship among Smad3 signaling, aging, neuroinflammation, and PD. Methods Rats were treated with SIS3 (a specific inhibitor of Smad3, intranigal injection) and/or lipopolysaccharide (intraperitoneal injection). We investigated the effect of SIS3 and lipopolysaccharide and their mechanism of action on motor behavior and nigrostriatal dopaminergic system in the rats. Furthermore, we explored the effect of SIS3 and LPS and their potential signaling mechanism of action on inflammatory response by using primary microglial cultures. Finally, we investigated the relationship among aging, Smad3 signaling, and neuroinflammation using animals of different ages. Results Both SIS3 and lipopolysaccharide induced significant behavior deficits and nigrostriatal dopaminergic neurodegeneration in the rats compared with the vehicle-treated (control) rats. Significantly increased behavior deficits and nigrostriatal dopaminergic neurodegeneration were observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the rats treated with vehicle, SIS3, or lipopolysaccharide. Furthermore, both SIS3 and lipopolysaccharide induced significant microglia activation and proinflammatory factor (IL-1β, IL-6, iNOS, and ROS) level increase in the SN of rats compared with the control rats. Significantly enhanced microglial inflammatory response was observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the other three groups. For our in vitro study, both SIS3 and lipopolysaccharide induced significant proinflammatory factor level increase in primary microglia cultures compared with the control cultures. Significantly increased inflammatory response was observed in the cultures co-treated with SIS3 and lipopolysaccharide compared with the other three groups. MAPK (ERK/p38) contributed to microglial inflammatory response induced by co-treatment with SIS3 and lipopolysaccharide. Interestingly, there was decrease in Smad3 and pSmad3 expression (protein) and enhancement of neuroinflammation in the mouse SN with aging. Proinflammatory factor levels were significantly inversely correlated with Smad3 and pSmad3 expression. Conclusion Our study strongly indicates the involvement of SN Smad3 signaling deficiency in aging and PD neurodegeneration and provides a novel molecular mechanism underlying the participation of aging in PD and helps to elucidate the mechanisms for the combined effect of multiple factors in PD.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China.
| |
Collapse
|
42
|
4E-BP1 Protects Neurons from Misfolded Protein Stress and Parkinson's Disease Toxicity by Inducing the Mitochondrial Unfolded Protein Response. J Neurosci 2020; 40:8734-8745. [PMID: 33046555 DOI: 10.1523/jneurosci.0940-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Decline of protein quality control in neurons contributes to age-related neurodegenerative disorders caused by misfolded proteins. 4E-BP1 is a key node in the regulation of protein synthesis, as activated 4E-BP1 represses global protein translation. Overexpression of 4E-BP1 mediates the benefits of dietary restriction and can counter metabolic stress, and 4E-BP1 disinhibition on mTORC1 repression may be neuroprotective; however, whether 4E-BP1 overexpression is neuroprotective in mammalian neurons is yet to be fully explored. To address this question, we generated 4E-BP1-overexpressing transgenic mice and confirmed marked reductions in protein translation in 4E-BP1-overexpressing primary neurons. After documenting that 4E-BP1-overexpressing neurons are resistant to proteotoxic stress elicited by brefeldin A treatment, we exposed primary neurons to three different Parkinson's disease (PD)-linked toxins (rotenone, maneb, or paraquat) and documented significant protection in neurons from newborn male and female 4E-BP1-OE transgenic mice. We observed 4E-BP1-dependent upregulation of genes encoding proteins that comprise the mitochondrial unfolded protein response, and noted 4E-BP1 overexpression required activation of the mitochondrial unfolded protein response for neuroprotection against rotenone toxicity. We also tested whether 4E-BP1 could prevent α-synuclein neurotoxicity by treating 4E-BP1-overexpressing primary neurons with α-synuclein preformed fibrils, and we observed marked reductions in α-synuclein aggregation and neurotoxicity, thus validating that 4E-BP1 is a powerful suppressor of PD-linked pathogenic insults. Our results indicate that increasing 4E-BP1 expression or enhancing 4E-BP1 activation can robustly induce the mitochondrial unfolded protein response and thus could be an appealing strategy for treating a variety of neurodegenerative diseases, including especially PD.SIGNIFICANCE STATEMENT In neurodegenerative disease, misfolded proteins accumulate and overwhelm normal systems of homeostasis and quality control. One mechanism for improving protein quality control is to reduce protein translation. Here we investigated whether neuronal overexpression of 4E-BP1, a key repressor of protein translation, can protect against misfolded protein stress and toxicities linked to Parkinson's disease, and found that 4E-BP1 overexpression prevented cell death in neurons treated with brefeldin A, rotenone, maneb, paraquat, or preformed fibrils of α-synuclein. When we sought the basis for 4E-BP1 neuroprotection, we discovered that 4E-BP1 activation promoted the mitochondrial unfolded protein response. Our findings highlight 4E-BP1 as a therapeutic target in neurodegenerative disease and underscore the importance of the mitochondrial unfolded protein response in neuroprotection against various insults.
Collapse
|
43
|
Jismy B, El Qami A, Pišlar A, Frlan R, Kos J, Gobec S, Knez D, Abarbri M. Pyrimido[1,2-b]indazole derivatives: Selective inhibitors of human monoamine oxidase B with neuroprotective activity. Eur J Med Chem 2020; 209:112911. [PMID: 33071056 DOI: 10.1016/j.ejmech.2020.112911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Structurally diverse heterotricyclic compounds are recognized as monoamine oxidase (MAO) inhibitors and thus represent an appealing scaffold in development and optimization of novel MAO inhibitors. Herein we explored the chemical space of pyrimido[1,2-b]indazoles as MAO inhibitors by preparing a small library of (hetero)aryl derivatives. An efficient synthetic strategy was developed starting from commercially available 1H-indazol-3-amines, which were converted to various 3-bromoheterotricyclic derivatives and further functionalized via Suzuki-Miyaura coupling reaction. Derivatives 4a-t selectively inhibited human MAO-B isoform in a reversible and competitive manner as confirmed by kinetic experiments and docking studies. Selected derivatives were not cytotoxic to neuroblastoma SH-SY5Y cells. Moreover, analogue 4i protected human neuroblastoma SH-SY5Y cells against 6-hydroxydopamine-induced cell death, which confirms the applicability of the pyrimido[1,2-b]indazoles as potential antiparkinsonian agents.
Collapse
Affiliation(s)
- Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour L'Energie (PCM2E), EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200, Tours, France
| | - Abdelkarim El Qami
- Département de Chimie Université Hassan II de Casablanca, Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22, BP 146, 28800, Mohammedia, Morocco
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Janko Kos
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour L'Energie (PCM2E), EA 6299. Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200, Tours, France.
| |
Collapse
|
44
|
Atsushi T, Tamano H. New insight into Parkinson's disease pathogenesis from reactive oxygen species-mediated extracellular Zn 2+ influx. J Trace Elem Med Biol 2020; 61:126545. [PMID: 32438294 DOI: 10.1016/j.jtemb.2020.126545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the common neurodegenerative disorder in the elderly characterized by motor symptoms such as tremors, which is caused by selective loss of nigral dopaminergic neurons. Oxidative stress induced by the auto-oxidation of dopamine has been implicated as a key cause of the selective loss of dopaminergic neurons. METHODS To understand the selective loss of nigral dopaminergic neurons, the PD pathogenesis is reviewed focused on paraquat (PQ) and 6-hydroxydopamine (6-OHDA)-induced PD in rats. RESULTS Reactive oxygen species (ROS), which are produced by PQ and 6-OHDA, are retrogradely transported to presynaptic glutamatergic neuron terminals. ROS activate presynaptic transient receptor potential melastatin 2 (TRPM2) cation channels and induce extracellular glutamate accumulation in the substantia nigra pars compacta (SNpc), followed by age-related intracellular Zn2+ dysregulation. Loss of nigral dopaminergic neurons is accelerated by age-related intracellular Zn2+ dysregulation in the SNpc of rat PD models. The intracellular Zn2+ dysregulation in nigral dopaminergic neurons is linked with the rapid influx of extracellular Zn2+ via postsynaptic AMPA receptor activation, suggesting that PQ- and 6-OHDA-induced pathogenesis is linked with age-related intracellular Zn2+ dysregulation in the SNpc. Postsynaptic TRPM2 channels may be also involved in intracellular Zn2+ dysregulation in the SNpc. CONCLUSION A novel mechanism of nigral dopaminergic degeneration, in which ROS induce rapid intracellular Zn2+ dysregulation, figures out the PD pathogenesis induced by PQ and 6-OHDA in rats. This review deals with new insight into PD pathogenesis from ROS-mediated extracellular Zn2+ influx and its proposed defense strategy.
Collapse
Affiliation(s)
- Takeda Atsushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
45
|
Liu L, Wang J, Wang H. Hydrogen sulfide alleviates oxidative stress injury and reduces apoptosis induced by MPP + in Parkinson's disease cell model. Mol Cell Biochem 2020; 472:231-240. [PMID: 32577946 DOI: 10.1007/s11010-020-03801-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S), an endogenously produced gas, is a cardioprotective agent against neurotoxin-induced neurodegeneration in Parkinson's disease (PD). However, the roles of H2S in 1-methyl-4-phenylpyridinium ion (MPP+)-treated SH-SY5Y cells with the involvement of reactive oxygen species-nitric oxide (ROS-NO) signaling pathway in PD remain unclear. For this study, a MPP+-treated SH-SY5Y cell model was established to explore the regulatory role of H2S in oxidative stress injury and cell apoptosis. With the cell viability, apoptosis, cytotoxicity, levels of reactive oxygen species (ROS) and nitric oxide (NO), mitochondrial transmembrane potential (Δψm), contents of oxidative stress injury-related markers (glutathione, superoxide dismutase, malondialdehyde), levels of apoptosis-related proteins (Caspase 3, Bax, Bcl-2) and inducible nitric oxide synthase (iNOS) determined, this study demonstrated that NaHS (an H2S donor) treatment could alleviated the reduction of cell viability and cytotoxicity, cell apoptosis, Δψm loss, contents of ROS and NO, and oxidative stress injury induced by MPP+. The present study showed that H2S may protect SH-SY5Y cells from MPP+-induced injury in PD cell model via the inhibition of ROS-NO signaling pathway and provide insight into the potential of H2S for PD therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Nankai District, No.6, Changjiang Dao, Tianjin, 300100, People's Republic of China
| | - Jin Wang
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Nankai District, No.6, Changjiang Dao, Tianjin, 300100, People's Republic of China
| | - Heng Wang
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Nankai District, No.6, Changjiang Dao, Tianjin, 300100, People's Republic of China.
| |
Collapse
|
46
|
Hsu SW, Hsu PC, Chang WS, Yu CC, Wang YC, Yang JS, Tsai FJ, Chen KY, Tsai CW, Bau DT. Protective effects of valproic acid on 6-hydroxydopamine-induced neuroinjury. ENVIRONMENTAL TOXICOLOGY 2020; 35:840-848. [PMID: 32167238 DOI: 10.1002/tox.22920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Oxidative stress may play critically important roles in the etiology of Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a physiological neurotoxin reported to induce oxidative-induced apoptosis of dopaminergic neurons in PD mice models. Valproic acid (VPA), a clinical mood stabilizer, is a HDAC inhibitor with neuroprotective capacities. In the study, we aim at examining the feasibility of VPA as a protector for dopaminergic neurons against damage from 6-OHDA, and the intracellular mechanisms. The 6-OHDA-induced neurotoxicity to the human dopaminergic cell line SH-SY5Y was applied for examining VPA protective effects. Pretreatment with VPA was able to improve cell viability and reduce 6-OHDA-induced reactive oxygen species. Furthermore, a significant suppression of apoptotic caspases including cleaved caspase-3, caspase-7, and caspase-9 was observed. The results also revealed VPA decreased the 6-OHDA-induced Bax/Bcl2 ratio, as measured at protein level. These novel findings indicate that VPA may be capable of protecting the SH-SY5Y dopaminergic neuronal cells from 6-OHDA-induced toxicity via the deceasing of apoptotic caspases (cleaved caspase-3, caspase-7, and caspase-9) and reducing of the Bax/Bcl2 ratio. Very possibly, VPA could serve as not only a mood stabilizer but also a potential antidote for PD prevention.
Collapse
Affiliation(s)
- Shih-Wei Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
- Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Pei-Chen Hsu
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yun-Chi Wang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Yuan Chen
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
48
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Lee JA, Kim HR, Son HJ, Shin N, Han SH, Cheong CS, Kim DJ, Hwang O. A novel pyrazolo [3,4-d] pyrimidine, KKC080106, activates the Nrf2 pathway and protects nigral dopaminergic neurons. Exp Neurol 2020; 332:113387. [PMID: 32580013 DOI: 10.1016/j.expneurol.2020.113387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/20/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
The transcription factor nuclear factor-erythroid 2-related factor-2 (Nrf2) is known to induce neuroprotective and anti-inflammatory effects and is considered to be an excellent molecular target for drugs related to neurodegenerative disease therapy. Nrf2 activators previously tested in clinical trials were electrophilic, causing adverse effects due to non-selective and covalent modification of cellular thiols. In order to circumvent this issue, we constructed and screened a chemical library consisting of 241 pyrazolo [3,4-d] pyrimidine derivatives and discovered a novel, non-electrophilic compound: 1-benzyl-6-(methylthio)-N-(1-phenylethyl)-1H-pyrazolo[3,4-d]pyrimidine-4-amine (KKC080106). KKC080106 was able to activate Nrf2 signaling as it increases the cellular levels of Nrf2, binds to the Nrf2 inhibitor protein Keap1, and causes the accumulation of nuclear Nrf2. We also observed an increase in the expression levels of Nrf2-dependent genes for antioxidative/neuroprotective enzymes in dopaminergic neuronal cells. In addition, in lipopolysaccharide-activated microglia, KKC080106 suppressed the generation of the proinflammatory markers, such as IL-1β, TNF-α, cyclooxygenase-2, inducible nitric oxide synthase, and nitric oxide, and inhibited the phosphorylation of kinases known to be involved in inflammatory signaling, such as IκB kinase, p38, JNK, and ERK. As a drug, KKC080106 exhibited excellent stability against plasma enzymes and a good safety profile, evidenced by no mortality after the administration of 2000 mg/kg body weight, and minimal inhibition of the hERG channel activity. Pharmacokinetic analysis revealed that KKC080106 has good bioavailability and enters the brain after oral and intravenous administration, in both rats and mice. In MPTP-treated mice that received KKC080106 orally, the compound blocked microglial activation, protected the nigral dopaminergic neurons from degeneration, and prevented development of the dopamine deficiency-related motor deficits. These results suggest that KKC080106 has therapeutic potential for neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Ri Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Nari Shin
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Se Hee Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chan Seong Cheong
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Dong Jin Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea.
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
50
|
Song IY, Snyder AM, Kim Y, Neely EB, Wade QW, Connor JR. The Nrf2-mediated defense mechanism associated with HFE genotype limits vulnerability to oxidative stress-induced toxicity. Toxicology 2020; 441:152525. [PMID: 32540480 DOI: 10.1016/j.tox.2020.152525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in gene and environment interactions in neurodegenerative diseases. The HFE (homeostatic iron regulator) gene variant (H63D) is highly prevalent in the population and has been investigated as a disease modifier in multiple neurodegenerative diseases. We have developed a mouse model to interrogate the impact of this gene variant in a model of paraquat toxicity. Using primary astrocytes, we found that the H67D-Hfe(equivalent of the human H63D variant) astrocytes are less vulnerable than the WT-Hfe astrocytes to paraquat-induced cell death, mitochondrial damage, and cellular senescence. We hypothesized that the Hfe variant-associated protection is a result of the activation of the Nrf2 antioxidant defense system and found a significant increase in Nrf2 levels after paraquat exposure in the H67D-Hfe astrocytes than the WT-Hfe astrocytes. Moreover, decreasing Nrf2 by molecular or pharmaceutical manipulation resulted in increased vulnerability to paraquat in the H67D-Hfe astrocytes. To further elucidate the role of Hfe variant genotype in neuroprotection mediated by astrocytes, we added media from the paraquat-treated astrocytes to differentiated SH-SY5Y neuroblastoma cells and found a significantly larger reduction in the viability when treated with WT-Hfe astrocyte media than the H67D-Hfe astrocyte media possibly due to higher secretion of IL-6 observed in the WT-Hfe astrocytes. To further explore the mechanism of Nrf2 protection, we measured NQO1, the Nrf2-mediated antioxidant, in primary astrocytes and found a significantly higher NQO1 level in the H67D-Hfe astrocytes. To consider the translational potential of our findings, we utilized the PPMI (Parkinson's Progression Markers Initiative) clinical database and found that, consistent with the mouse study, H63D-HFE carriers had a significantly higher NQO1 level in the CSF than the WT-HFE carriers. Consistent with our previous reports on H63D-HFE in disease, these data further suggest that HFE genotype in the human population impacts the antioxidant defense system and can therefore alter pathogenesis.
Collapse
Affiliation(s)
- Insung Y Song
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States.
| | - Amanda M Snyder
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Yunsung Kim
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Elizabeth B Neely
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Quinn W Wade
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - James R Connor
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| |
Collapse
|