1
|
Haile SM, Gruber M, Bollwein G, Trabold B. Effect of Arginine Vasopressin on Human Neutrophil Function Under Physiological and Sepsis-Associated Conditions. Int J Mol Sci 2025; 26:2512. [PMID: 40141155 PMCID: PMC11942086 DOI: 10.3390/ijms26062512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
This study examines how different concentrations of arginine vasopressin (AVP) and its preservative chlorobutanol (ClB) impact the immune functions of human polymorphonuclear neutrophils (PMNs), which are crucial in the immune response, particularly in sepsis. Using a model to simulate the physiological, sepsis-related, and therapeutic AVP levels in plasma, we analysed how AVP and ClB affect PMN activities, including reactive oxygen species (ROS) production, NETosis, antigen expression, and migration. PMNs were isolated from whole human blood and assessed using flow cytometry and live cell imaging. The results indicated that neither AVP nor ClB significantly affected PMN viability, antigen expression, NETosis, or ROS production in response to N-Formylmethionine-leucyl-phenylalanine, or fMLP, and tumour necrosis factor alpha. In the migration assays, concentration-dependent effects were observed. At physiological AVP levels, PMN migration showed no reduction, while the sepsis-associated AVP levels initially reduced migration before returning to the baseline or even increasing. The therapeutic AVP concentrations showed similar migration to that in the controls, while high concentrations progressively inhibited migration. ClB, regardless of its concentration, enhanced PMN migration. These findings suggest that AVP during sepsis may impair PMN migration, potentially contributing to tissue damage and systemic complications. This highlights AVP's role as a possible immune modulator in complex immune responses.
Collapse
Affiliation(s)
- Sophie-Marie Haile
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
- Department of Internal Medicine II, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Michael Gruber
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
| | - Gabriele Bollwein
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
| | - Benedikt Trabold
- Department of Anaesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany; (S.-M.H.); (M.G.)
| |
Collapse
|
2
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
3
|
Haq S, Sarodaya N, Karapurkar JK, Suresh B, Jo JK, Singh V, Bae YS, Kim KS, Ramakrishna S. CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate cancer progression. Cancer Lett 2022; 525:146-157. [PMID: 34742871 DOI: 10.1016/j.canlet.2021.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
The NADPH oxidase (Nox) family of enzymes is solely dedicated in the generation of reactive oxygen species (ROS). ROS generated by Nox are involved in multiple signaling cascades and a myriad of pathophysiological conditions including cancer. As such, ROS seem to have both detrimental and beneficial roles in a number of cellular functions, including cell signaling, growth, apoptosis and proliferation. Regulatory mechanisms are required to control the activity of Nox enzymes in order to maintain ROS balance within the cell. Here, we performed genome-wide screening for deubiquitinating enzymes (DUBs) regulating Nox organizer 1 (NoxO1) protein expression using a CRISPR/Cas9-mediated DUB-knockout library. We identified cylindromatosis (CYLD) as a binding partner regulating NoxO1 protein expression. We demonstrated that the overexpression of CYLD promotes ubiquitination of NoxO1 protein and reduces the NoxO1 protein half-life. The destabilization of NoxO1 protein by CYLD suppressed excessive ROS generation. Additionally, CRISPR/Cas9-mediated knockout of CYLD in PC-3 cells promoted cell proliferation, migration, colony formation and invasion in vitro. In xenografted mice, injection of CYLD-depleted cells consistently led to tumor development with increased weight and volume. Taken together, these results indicate that CYLD acts as a destabilizer of NoxO1 protein and could be a potential tumor suppressor target for cancer therapeutics.
Collapse
Affiliation(s)
- Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea
| | | | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jung Ki Jo
- Department of Urology, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, Hassanpour P, Qujeq D, Rashtchizadeh N, Ghorbanihaghjo A. Zinc and Selenium in Inflammatory Bowel Disease: Trace Elements with Key Roles? Biol Trace Elem Res 2021; 199:3190-3204. [PMID: 33098076 DOI: 10.1007/s12011-020-02444-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that may emerge at a young age and often lasts for life. It often goes through phases of recurrence and remission and has a devastating effect on quality of life. The exact etiology of the disease is still unclear, but it appears that an inappropriate immune response to intestinal flora bacteria in people with a genetic predisposition may cause the disease. Managing inflammatory bowel disease is still a serious challenge. Oxidative stress and free radicals appear to be involved in the pathogenesis of this disease, and a number of studies have suggested the use of antioxidants as a therapeutic approach. The antioxidant and anti-inflammatory properties of some trace elements have led some of the research to focus on studying these trace elements in inflammatory bowel disease. Zinc and selenium are among the most important trace elements that have significant anti-inflammatory and antioxidant properties. Some studies have shown the importance of these trace elements in inflammatory bowel disease. In this review, we have attempted to provide a comprehensive overview of the findings of these studies and to gather current knowledge about the association of these trace elements with the inflammatory process and inflammatory bowel disease.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, P.O. Box 14711, Tabriz, 5166614711, Iran.
| |
Collapse
|
5
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
6
|
Zamora-Briseño JA, Améndola-Pimenta M, Ortega-Rosas DA, Pereira-Santana A, Hernández-Velázquez IM, González-Penagos CE, Pérez-Vega JA, Del Río-García M, Árcega-Cabrera F, Rodríguez-Canul R. Gill and liver transcriptomic responses of Achirus lineatus (Neopterygii: Achiridae) exposed to water-accommodated fraction (WAF) of light crude oil reveal an onset of hypoxia-like condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34309-34327. [PMID: 33646544 DOI: 10.1007/s11356-021-12909-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Crude oil is one of the most widespread pollutants released into the marine environment, and native species have provided useful information about the effect of crude oil pollution in marine ecosystems. We consider that the lined sole Achirus lineatus can be a useful monitor of the effect of crude oil in the Gulf of Mexico (GoM) because this flounder species has a wide distribution along the GoM, and its response to oil components is relevant. The objective of this study was to compare the transcriptomic changes in liver and gill of adults lined sole fish (Achirus lineatus) exposed to a sublethal acute concentration of water-accommodated fraction (WAF) of light crude oil for 48 h. RNA-Seq was performed to assess the transcriptional changes in both organs. A total of 1073 differentially expressed genes (DEGs) were detected in gills; 662 (61.69%) were upregulated, and 411 (38.30%) were downregulated whereas in liver, 515 DEGs; 306 (59.42%) were upregulated, and 209 (40.58%) were downregulated. Xenobiotic metabolism and redox metabolism, along with DNA repair mechanisms, were activated. The induction of hypoxia-regulated genes and the generalized regulation of multiple signaling pathways support the hypothesis that WAF exposition causes a hypoxia-like condition.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | | | - Alejandro Pereira-Santana
- División de Biotecnología Industrial, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco, Camino Arenero 1227, El Bajío, C.P. 45019, Zapopan, Jalisco, Mexico
| | - Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Marcela Del Río-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356, Sisal, Yucatán, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico.
- Laboratorio de Inmunología y Biología Molecular, CINVESTAV-IPN Unidad Mérida, Antigua carretera a Progreso Km 6., CP 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
7
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
8
|
Seimetz M, Sommer N, Bednorz M, Pak O, Veith C, Hadzic S, Gredic M, Parajuli N, Kojonazarov B, Kraut S, Wilhelm J, Knoepp F, Henneke I, Pichl A, Kanbagli ZI, Scheibe S, Fysikopoulos A, Wu CY, Klepetko W, Jaksch P, Eichstaedt C, Grünig E, Hinderhofer K, Geiszt M, Müller N, Rezende F, Buchmann G, Wittig I, Hecker M, Hecker A, Padberg W, Dorfmüller P, Gattenlöhner S, Vogelmeier CF, Günther A, Karnati S, Baumgart-Vogt E, Schermuly RT, Ghofrani HA, Seeger W, Schröder K, Grimminger F, Brandes RP, Weissmann N. NADPH oxidase subunit NOXO1 is a target for emphysema treatment in COPD. Nat Metab 2020; 2:532-546. [PMID: 32694733 DOI: 10.1038/s42255-020-0215-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death worldwide. Peroxynitrite, formed from nitric oxide, which is derived from inducible nitric oxide synthase, and superoxide, has been implicated in the development of emphysema, but the source of the superoxide was hitherto not characterized. Here, we identify the non-phagocytic NADPH oxidase organizer 1 (NOXO1) as the superoxide source and an essential driver of smoke-induced emphysema and pulmonary hypertension development in mice. NOXO1 is consistently upregulated in two models of lung emphysema, Cybb (also known as NADPH oxidase 2, Nox2)-knockout mice and wild-type mice with tobacco-smoke-induced emphysema, and in human COPD. Noxo1-knockout mice are protected against tobacco-smoke-induced pulmonary hypertension and emphysema. Quantification of superoxide, nitrotyrosine and multiple NOXO1-dependent signalling pathways confirm that peroxynitrite formation from nitric oxide and superoxide is a driver of lung emphysema. Our results suggest that NOXO1 may have potential as a therapeutic target in emphysema.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/drug effects
- Emphysema/drug therapy
- Emphysema/etiology
- Emphysema/genetics
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Peroxynitrous Acid/metabolism
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Signal Transduction/genetics
- Superoxides/metabolism
- Tobacco Smoke Pollution/adverse effects
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Michael Seimetz
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Mariola Bednorz
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Oleg Pak
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christine Veith
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Marija Gredic
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Nirmal Parajuli
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Basic Biomedical Science, University of South Dakota, Sanford School of Medicine, Vermillion, SD, USA
| | - Baktybek Kojonazarov
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Justus-Liebig University, Institute for Lung Health, Giessen, Germany
| | - Simone Kraut
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Justus-Liebig University, Institute for Lung Health, Giessen, Germany
| | - Fenja Knoepp
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ingrid Henneke
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Justus-Liebig University, Institute for Lung Health, Giessen, Germany
| | - Alexandra Pichl
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Zeki I Kanbagli
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susan Scheibe
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Athanasios Fysikopoulos
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Cheng-Yu Wu
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Walter Klepetko
- Department of Cardiothoracic Surgery, University Hospital of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Cardiothoracic Surgery, University Hospital of Vienna, Vienna, Austria
| | - Christina Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Katrin Hinderhofer
- Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Miklós Geiszt
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Flavia Rezende
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Giulia Buchmann
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics Group, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Matthias Hecker
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Andreas Hecker
- Department of Surgery, Justus-Liebig University, Giessen, Germany
| | - Winfried Padberg
- Department of Surgery, Justus-Liebig University, Giessen, Germany
| | - Peter Dorfmüller
- Department of Pathology, Justus-Liebig University, Giessen, Germany
| | | | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, German Center for Lung Research, University of Marburg, Marburg, Germany
| | - Andreas Günther
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Department of Medicine, Imperial College London, London, UK
| | - Werner Seeger
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Friedrich Grimminger
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Norbert Weissmann
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
9
|
Kumar T, Pandey R, Chauhan NS. Hypoxia Inducible Factor-1α: The Curator of Gut Homeostasis. Front Cell Infect Microbiol 2020; 10:227. [PMID: 32500042 PMCID: PMC7242652 DOI: 10.3389/fcimb.2020.00227] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
The human gut microbiome is a stratified and resilient ecosystem co-inhabited by a diverse and dynamic pool of microorganisms. Microbial selection, establishment, and colonization are modulated through a complex molecular network of host-microbial interactions. These molecular bioprocesses ensure the taxonomic composition of the mature human gut microbiome. The human gut microbiome plays a vital role in host health; otherwise, any microbial dysbiosis could predispose to the onset of physiological and metabolic disorder/s. Focussed research are being carried out to identify key molecular agents defining gut homeostasis. These molecules hold the potential to develop effective therapeutic solutions for microbial dysbiosis-associated human disorders. Of these, Hypoxia-inducible factor-1α (HIF-1α) is a central player in host-microbial crosstalk to maintain gut homeostasis. Human gut microbial metabolites regulate its cellular stability, which in turn regulates various cellular processes required for the stable gut microbiome. In the present review, an effort has been made to summarize the key role of HIF-1α to maintain gut homeostasis.
Collapse
Affiliation(s)
- Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
10
|
Chu FF, Esworthy RS, Shen B, Gao Q, Doroshow JH. Dexamethasone and Tofacitinib suppress NADPH oxidase expression and alleviate very-early-onset ileocolitis in mice deficient in GSH peroxidase 1 and 2. Life Sci 2019; 239:116884. [PMID: 31689440 PMCID: PMC6898790 DOI: 10.1016/j.lfs.2019.116884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
C57BL6/J (B6) mice lacking Se-dependent GSH peroxidase 1 and 2 (GPx1/2-DKO) develop mild to moderate ileocolitis around weaning. These DKO mice have a disease resembling human very-early-onset inflammatory bowel disease (VEOIBD), which is associated with mutations in NADPH oxidase genes. Drugs including dexamethasone (Dex), Tofacitinib (Tofa; a Janus kinase/JAK inhibitor) and anti-TNF antibody are effective to treat adult, but not pediatric IBD. AIMS To test the efficacy of hydrophobic Dex and hydrophilic Dex phosphate (Dex phos), Tofa, anti-Tnf Ab, Noxa1ds-TAT and gp91ds-TAT peptides (inhibiting NOX1 and NOX2 assembly respectively), antioxidant MJ33 and ML090, and pifithrin-α (p53 inhibitor) on alleviation of gut inflammation in DKO weanlings. MAIN METHODS All treatments began on 22-day-old GPx1/2-DKO mice. The mouse intestine pathology was compared between the drug- and vehicle-treated groups after six or thirteen days of treatment. KEY FINDINGS Among all drugs tested, Dex, Dex phos and Tofa were the strongest to suppress ileocolitis in the DKO weanlings. Dex, Dex phos and Tofa inhibited crypt apoptosis and increased crypt density. Dex or Dex phos alone also inhibited cell proliferation, exfoliation and crypt abscess in the ileum. Dex, but not Tofa, retarded mouse growth. Both Dex and Tofa inhibited ileum Nox1, Nox4 and Duox2, but not Nox2 gene expression. Noxa1ds-TAT and gp91ds-TAT peptides as well as MJ33 had subtle effect on suppressing pathology, while others had negligible effect. SIGNIFICANCE These findings suggest that NADPH oxidases can be novel drug targets for pediatric IBD therapy, and Tofa may be considered for treating VEOIBD.
Collapse
Affiliation(s)
- Fong-Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, 471003, China; Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, 471003, China; Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
12
|
Rezende F, Moll F, Walter M, Helfinger V, Hahner F, Janetzko P, Ringel C, Weigert A, Fleming I, Weissmann N, Kuenne C, Looso M, Rieger MA, Nawroth P, Fleming T, Brandes RP, Schröder K. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice. Redox Biol 2018; 15:12-21. [PMID: 29195137 PMCID: PMC5723277 DOI: 10.1016/j.redox.2017.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
AIM NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes. RESULTS In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice. INNOVATION AND CONCLUSION ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Franziska Moll
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Maria Walter
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Fabian Hahner
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Patrick Janetzko
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Christian Ringel
- Institute for Patho Biochemistry, Goethe University, Frankfurt, Germany
| | - Andreas Weigert
- Institute for Patho Biochemistry, Goethe University, Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Bioinformatics Core Facility, Bad Nauheim, Germany
| | - Mario Looso
- Max-Planck-Institute for Heart and Lung Research, Bioinformatics Core Facility, Bad Nauheim, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe-University, Frankfurt, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg Center for Molecular Biology (ZMBH) and University Hospital Heidelberg University, Heidelberg, Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Neuherberg, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany.
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; German Center of Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt, Germany.
| |
Collapse
|
13
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
14
|
Aviello G, Knaus UG. ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br J Pharmacol 2017; 174:1704-1718. [PMID: 26758851 PMCID: PMC5446568 DOI: 10.1111/bph.13428] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
The intestine is composed of many distinct cell types that respond to commensal microbiota or pathogens with immune tolerance and proinflammatory signals respectively. ROS produced by mucosa-resident cells or by newly recruited innate immune cells are essential for antimicrobial responses and regulation of signalling pathways including processes involved in wound healing. Impaired ROS production due to inactivating patient variants in genes encoding NADPH oxidases as ROS source has been associated with Crohn's disease and pancolitis, whereas overproduction of ROS due to up-regulation of oxidases or altered mitochondrial function was linked to ileitis and ulcerative colitis. Here, we discuss recent advances in our understanding of how maintaining a redox balance is crucial to preserve gut homeostasis. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Aviello
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
| | - UG Knaus
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
- Conway Institute, School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
15
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
16
|
Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc Natl Acad Sci U S A 2017; 114:568-573. [PMID: 28049834 PMCID: PMC5255594 DOI: 10.1073/pnas.1612921114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The colonic epithelium provides an essential barrier against the environment that is critical for protecting the body and controlling inflammation. In response to injury or gut microbes, colonic epithelial cells produce extracellular hydrogen peroxide (H2O2), which acts as a potent signaling molecule affecting barrier function and host defense. In humans, impaired regulation of H2O2 in the intestine has been associated with early-onset inflammatory bowel disease and colon cancer. Here, we show that signal transduction by H2O2 depends on entry into the cell by transit through aquaporin-3 (AQP3), a plasma membrane H2O2-conducting channel. In response to injury, AQP3-depleted colonic epithelial cells showed defective lamellipodia, focal adhesions, and repair after wounding, along with impaired H2O2 responses after exposure to the intestinal pathogen Citrobacter rodentium Correspondingly, AQP3-/- mice showed impaired healing of superficial wounds in the colon and impaired mucosal innate immune responses against C. rodentium infection, manifested by reduced crypt hyperplasia, reduced epithelial expression of IL-6 and TNF-α, and impaired bacterial clearance. These results elucidate the signaling mechanism of extracellular H2O2 in the colonic epithelium and implicate AQP3 in innate immunity at mucosal surfaces.
Collapse
|
17
|
Kwon J, Wang A, Burke DJ, Boudreau HE, Lekstrom KJ, Korzeniowska A, Sugamata R, Kim YS, Yi L, Ersoy I, Jaeger S, Palaniappan K, Ambruso DR, Jackson SH, Leto TL. Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radic Biol Med 2016; 96:99-115. [PMID: 27094494 PMCID: PMC4929831 DOI: 10.1016/j.freeradbiomed.2016.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Nox1 is an abundant source of reactive oxygen species (ROS) in colon epithelium recently shown to function in wound healing and epithelial homeostasis. We identified Peroxiredoxin 6 (Prdx6) as a novel binding partner of Nox activator 1 (Noxa1) in yeast two-hybrid screening experiments using the Noxa1 SH3 domain as bait. Prdx6 is a unique member of the Prdx antioxidant enzyme family exhibiting both glutathione peroxidase and phospholipase A2 activities. We confirmed this interaction in cells overexpressing both proteins, showing Prdx6 binds to and stabilizes wild type Noxa1, but not the SH3 domain mutant form, Noxa1 W436R. We demonstrated in several cell models that Prdx6 knockdown suppresses Nox1 activity, whereas enhanced Prdx6 expression supports higher Nox1-derived superoxide production. Both peroxidase- and lipase-deficient mutant forms of Prdx6 (Prdx6 C47S and S32A, respectively) failed to bind to or stabilize Nox1 components or support Nox1-mediated superoxide generation. Furthermore, the transition-state substrate analogue inhibitor of Prdx6 phospholipase A2 activity (MJ-33) was shown to suppress Nox1 activity, suggesting Nox1 activity is regulated by the phospholipase activity of Prdx6. Finally, wild type Prdx6, but not lipase or peroxidase mutant forms, supports Nox1-mediated cell migration in the HCT-116 colon epithelial cell model of wound closure. These findings highlight a novel pathway in which this antioxidant enzyme positively regulates an oxidant-generating system to support cell migration and wound healing.
Collapse
Affiliation(s)
- Jaeyul Kwon
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Medical Education, School of Medicine, Chungnam National University, Daejeon, 301-747, Korea
| | - Aibing Wang
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Devin J. Burke
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Howard E. Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kristen J. Lekstrom
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ryuichi Sugamata
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Yong-Soo Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Liang Yi
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Ilker Ersoy
- Department of Pathology and Anatomical Sciences, University of Missouri, Sch. of Medicine, Columbia, MO, USA
| | - Stefan Jaeger
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel R. Ambruso
- Department of Pediatrics, University of Colorado Sch. of Medicine, Denver, CO, USA
| | - Sharon H. Jackson
- Diabetes Cluster, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Thomas L. Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Corresponding author: Laboratory of Host Defenses, NIAID, NIH, 12441 Parklawn Drive, Rockville, MD, 20852, USA. Fax: 301 480-1731.
| |
Collapse
|
18
|
Joo JH, Oh H, Kim M, An EJ, Kim RK, Lee SY, Kang DH, Kang SW, Keun Park C, Kim H, Lee SJ, Lee D, Seol JH, Bae YS. NADPH Oxidase 1 Activity and ROS Generation Are Regulated by Grb2/Cbl-Mediated Proteasomal Degradation of NoxO1 in Colon Cancer Cells. Cancer Res 2016; 76:855-65. [PMID: 26781991 DOI: 10.1158/0008-5472.can-15-1512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The generation of reactive oxygen species (ROS) is required for proper cell signaling, but must be tightly regulated to minimize deleterious oxidizing effects. Activation of the NADPH oxidases (Nox) triggers ROS production and, thus, regulatory mechanisms exist to properly control Nox activity. In this study, we report a novel mechanism in which Nox1 activity is regulated through the proteasomal degradation of Nox organizer 1 (NoxO1). We found that through the interaction between NoxO1 and growth receptor-bound protein 2 (Grb2), the Casitas B-lineage lymphoma (Cbl) E3 ligase was recruited, leading to decreased NoxO1 stability and a subsequent reduction in ROS generation upon epidermal growth factor (EGF) stimulation. Additionally, we show that EGF-mediated phosphorylation of NoxO1 induced its release from Grb2 and facilitated its association with Nox activator 1 (NoxA1) to stimulate ROS production. Consistently, overexpression of Grb2 resulted in decreased Nox1 activity, whereas knockdown of Grb2 led to increased Nox1 activity in response to EGF. CRISPR/Cas9-mediated NoxO1 knockout in human colon cancer cells abrogated anchorage-independent growth on soft agar and tumor-forming ability in athymic nude mice. Moreover, the expression and stability of NoxO1 were significantly increased in human colon cancer tissues compared with normal colon. Taken together, these results support a model whereby Nox1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteolysis of NoxO1 in response to EGF, providing new insight into the processes by which excessive ROS production may promote oncogenic signaling to drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jung Hee Joo
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hyunjin Oh
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myungjin Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Rae-Kwon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
19
|
Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1. Inflamm Bowel Dis 2015; 21:1018-26. [PMID: 25822013 DOI: 10.1097/mib.0000000000000365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Increased reactive oxygen species (ROS) production is associated with inflamed ileal lesions in Crohn's disease colonized by pathogenic adherent-invasive Escherichia coli LF82. We investigated whether such ileal bacteria can modulate ROS production by epithelial cells, thus impacting on inflammation and mucin expression. METHODS Ileal bacteria from patients with Crohn's disease were incubated with cultured epithelial T84 cells, and ROS production was assayed using the luminol-amplified chemiluminescence method. The gentamicin protection assay was used for bacterial invasion of T84 cell. The expression of NADPH oxidase (NOX) subunits, mucin, and IL-8 was analyzed by quantitative real-time PCR and Western blots. Involvement of NOX and ROS was analyzed using diphenyleneiodonium (DPI) and N-acetylcysteine (NAC). RESULTS Among different bacteria tested, only LF82 induced an increase of ROS production by T84 cells in a dose-dependent manner. This response was inhibited by DPI and NAC. Heat- or ethanol-attenuated LF82 bacteria and the mutant LF82ΔFimA, which does not express pili type 1 and poorly adheres to epithelial cells, did not induce the oxidative response. The LF82-induced oxidative response coincides with its invasion in T84 cells, and both processes were inhibited by DPI. Also, we observed an increased expression of NOX1 and NOXO1 in response to LF82 bacteria versus the mutant LF82ΔFimA. Furthermore, LF82 inhibited mucin gene expression (MUC2 and MUC5AC) in T84 cells while increasing the chemotactic IL-8 expression, both in a DPI-sensitive manner. CONCLUSIONS Adherent-invasive E. coli LF82 induced ROS production by intestinal NADPH oxidase and altered mucin and IL-8 expression, leading to perpetuation of inflammatory lesions in Crohn's disease.
Collapse
|
20
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
21
|
Guina T, Biasi F, Calfapietra S, Nano M, Poli G. Inflammatory and redox reactions in colorectal carcinogenesis. Ann N Y Acad Sci 2015; 1340:95-103. [PMID: 25727454 DOI: 10.1111/nyas.12734] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been established that there is a relationship between chronic inflammation and cancer development. The constant colonic inflammation typical of inflammatory bowel diseases is now considered a risk factor for colorectal carcinoma (CRC) development. The inflammatory network of signaling molecules is also required during the late phases of carcinogenesis, to enable cancer cells to survive and to metastasize. Oxidative reactions are an integral part of the inflammatory response, and are generally associated with CRC development. However, when the malignant phenotype is acquired, increased oxidative status induces antioxidant defenses in cancer cells, favoring their aggressiveness. This contradictory behavior of cancer cells toward redox status is of great significance for potential anticancer therapies. This paper summarizes the essential background information relating to the molecules involved in regulating oxidative stress and inflammation during carcinogenesis. Understanding more of their function in CRC stages might provide the foundation for future developments in CRC treatment.
Collapse
Affiliation(s)
- Tina Guina
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | |
Collapse
|
22
|
Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: preventive effect of apocynin. Mediators Inflamm 2014; 2014:312484. [PMID: 25276054 PMCID: PMC4167951 DOI: 10.1155/2014/312484] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species- (ROS-) mediated injury has been implicated in several inflammatory disorders, including inflammatory bowel disease (IBD). NADPH oxidases (NOXs) are the major source of endogenous ROS. Here, we investigated the role of NOXs derived-ROS in a mouse model of colitis induced by the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Intraperitoneal injection of TNFα (10 μg · kg−1) induced an acute inflammation of the colon and a marked increase in expression of NADPH oxidase 1 (NOX1), a colon specific NADPH oxidase isoform. TNFα-induced colitis was also characterized by high production of keratinocyte-derived chemokine (KC) and mucosal infiltration of neutrophils, NOX2-expressing cells. Concomitantly, ROS production and lipid peroxidation were significantly enhanced while catalase activity and glutathione level were reduced indicating a redox imbalance in the colon. Furthermore, the redox-sensitive MAP kinases, ERK1/2 and p38 MAPK, were activated during TNFα-induced colitis. Pretreatment of mice with apocynin, an NADPH oxidase inhibitor with antioxidant properties, before TNFα challenge, prevented all these events. These data suggest that ROS derived from NADPH oxidases (mainly NOX1 and NOX2) and MAP kinase pathways could contribute to the induction and expansion of oxidative lesions characteristics of IBD and that apocynin could potentially be beneficial in IBD treatment.
Collapse
|
23
|
Yang P, Huang S, Yan X, Huang G, Dong X, Zheng T, Yuan D, Wang R, Li R, Tan Y, Xu A. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radic Biol Med 2014; 70:54-67. [PMID: 24560860 DOI: 10.1016/j.freeradbiomed.2014.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/23/2022]
Abstract
The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xiangru Dong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Tingting Zheng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Dongjuan Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Rui Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ying Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People׳s Republic of China.
| |
Collapse
|
24
|
Hill AJ, Drever N, Yin H, Tamayo E, Saade G, Bytautiene E. The role of NADPH oxidase in a mouse model of fetal alcohol syndrome. Am J Obstet Gynecol 2014; 210:466.e1-5. [PMID: 24334207 DOI: 10.1016/j.ajog.2013.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/19/2013] [Accepted: 12/09/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Fetal alcohol syndrome (FAS) is the most common cause of nongenetic mental retardation. Oxidative stress is one of the purported mechanisms. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is an enzyme involved in the production of reactive oxygen species. Our objective was to evaluate NOX in the fetal brain of a well-validated mouse model of FAS. STUDY DESIGN Timed, pregnant C57BL/6J mice were injected intraperitoneally with 0.03 mL/g of either 25% ethyl alcohol or saline. Fetal brain, liver, and placenta were harvested on gestational day 18. The unit of analysis was the litter; tissue from 6-8 litters in the alcohol and control group was isolated. Evaluation of messenger ribonucleic acid (mRNA) expression of NOX subunits (DUOX1, DUOX2, NOX1, NOX2, NOX3, NOX4, NOXA1, NOXO1, RAC1, p22phox, and p67phox) was performed using quantitative real-time polymerase chain reaction; alcohol vs placebo groups were compared using a Student t test or a Mann-Whitney test (P < .05). RESULTS Alcohol exposed fetal brains showed significant up-regulation in subunits DUOX2 (1.61 ± 0.28 vs 0.84 ± 0.09; P = .03), NOXA1 (1.75 ± 0.27 vs 1.09 ± 0.06; P = .04), and NOXO1 (1.59 ± 0.10 vs 1.28 ± 0.05; P = .02). Differences in mRNA expression in the placenta were not significant; p67phox was significantly up-regulated in alcohol-exposed livers. CONCLUSION Various NOX subunits are up-regulated in fetal brains exposed to alcohol. This effect was not observed in the fetal liver or placenta. Given the available evidence, the NOX system may be involved in the causation of FAS through the generation of reactive oxygen species and may be a potential target for preventative treatment in FAS.
Collapse
Affiliation(s)
- Alexandria J Hill
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX
| | - Nathan Drever
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX
| | - Huaizhi Yin
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX
| | - Esther Tamayo
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX
| | - George Saade
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX
| | - Egle Bytautiene
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
25
|
Kaito Y, Kataoka R, Takechi K, Mihara T, Tamura M. Nox1 activation by βPix and the role of Ser-340 phosphorylation. FEBS Lett 2014; 588:1997-2002. [PMID: 24792722 DOI: 10.1016/j.febslet.2014.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 11/19/2022]
Abstract
Rac is an activating factor for Nox1, an O2(-)-generating NADPH oxidase, expressed in the colon and other tissues. Rac requires a GDP-GTP exchange factor for activation. Nox1 activation by βPix has been demonstrated in cell lines. We examined the effects of βPix and its phosphomimetic mutant on endogenous Nox1 in Caco-2 cells transfected with Noxo1 and Noxa1. βPix expression enhanced O2(-) production in resting cells and cells stimulated with EGF or phorbol ester. βPix(S340E) further enhanced O2(-) production, while βPix(S340A) eliminated the βPix effect. βPix(S340E), but not βPix(S340A), had higher affinity and GEF activity for Rac than wild-type βPix. These results suggest that βPix phosphorylation at Ser-340 upregulates Nox1 through Rac activation, confirming Rac as a trigger for acute Nox1-dependent ROS production.
Collapse
Affiliation(s)
- Yuuki Kaito
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryosuke Kataoka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kento Takechi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Mihara
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
26
|
Biasi F, Leonarduzzi G, Oteiza PI, Poli G. Inflammatory bowel disease: mechanisms, redox considerations, and therapeutic targets. Antioxid Redox Signal 2013; 19:1711-47. [PMID: 23305298 PMCID: PMC3809610 DOI: 10.1089/ars.2012.4530] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is thought to play a key role in the development of intestinal damage in inflammatory bowel disease (IBD), because of its primary involvement in intestinal cells' aberrant immune and inflammatory responses to dietary antigens and to the commensal bacteria. During the active disease phase, activated leukocytes generate not only a wide spectrum of pro-inflammatory cytokines, but also excess oxidative reactions, which markedly alter the redox equilibrium within the gut mucosa, and maintain inflammation by inducing redox-sensitive signaling pathways and transcription factors. Moreover, several inflammatory molecules generate further oxidation products, leading to a self-sustaining and auto-amplifying vicious circle, which eventually impairs the gut barrier. The current treatment of IBD consists of long-term conventional anti-inflammatory therapy and often leads to drug refractoriness or intolerance, limiting patients' quality of life. Immune modulators or anti-tumor necrosis factor α antibodies have recently been used, but all carry the risk of significant side effects and a poor treatment response. Recent developments in molecular medicine point to the possibility of treating the oxidative stress associated with IBD, by designing a proper supplementation of specific lipids to induce local production of anti-inflammatory derivatives, as well as by developing biological therapies that target selective molecules (i.e., nuclear factor-κB, NADPH oxidase, prohibitins, or inflammasomes) involved in redox signaling. The clinical significance of oxidative stress in IBD is now becoming clear, and may soon lead to important new therapeutic options to lessen intestinal damage in this disease.
Collapse
Affiliation(s)
- Fiorella Biasi
- 1 Department of Clinical and Biological Sciences, University of Turin , San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | | | | |
Collapse
|
27
|
Mangerich A, Dedon PC, Fox JG, Tannenbaum SR, Wogan GN. Chemistry meets biology in colitis-associated carcinogenesis. Free Radic Res 2013; 47:958-86. [PMID: 23926919 PMCID: PMC4316682 DOI: 10.3109/10715762.2013.832239] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD)-a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology, and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation.
Collapse
Affiliation(s)
- Aswin Mangerich
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Gerald N. Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
28
|
Park SY, Shim JH, Cho YS. Distinctive roles of receptor-interacting protein kinases 1 and 3 in caspase-independent cell death of L929. Cell Biochem Funct 2013; 32:62-9. [DOI: 10.1002/cbf.2972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jung Hyun Shim
- College of Pharmacy; Mokpo National University; Muan-gun Jeonnam South Korea
| | - Young Sik Cho
- College of Pharmacy; Keimyung University; Daegu South Korea
| |
Collapse
|
29
|
Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin Sci (Lond) 2013; 124:597-615. [PMID: 23379642 DOI: 10.1042/cs20120212] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathological angiogenesis is a key feature of many diseases including retinopathies such as ROP (retinopathy of prematurity) and DR (diabetic retinopathy). There is considerable evidence that increased production of ROS (reactive oxygen species) in the retina participates in retinal angiogenesis, although the mechanisms by which this occurs are not fully understood. ROS is produced by a number of pathways, including the mitochondrial electron transport chain, cytochrome P450, xanthine oxidase and uncoupled nitric oxide synthase. The family of NADPH oxidase (Nox) enzymes are likely to be important given that their primary function is to produce ROS. Seven isoforms of Nox have been identified named Nox1-5, Duox (dual oxidase) 1 and Duox2. Nox1, Nox2 and Nox4 have been most extensively studied and are implicated in the development of conditions such as hypertension, cardiovascular disease and diabetic nephropathy. In recent years, evidence has accumulated to suggest that Nox1, Nox2 and Nox4 participate in pathological angiogenesis; however, there is no clear consensus about which Nox isoform is primarily responsible. In terms of retinopathy, there is growing evidence that Nox contribute to vascular injury. The RAAS (renin-angiotensin-aldosterone system), and particularly AngII (angiotensin II), is a key stimulator of Nox. It is known that a local RAAS exists in the retina and that blockade of AngII and aldosterone attenuate pathological angiogenesis in the retina. Whether the RAAS influences the production of ROS derived from Nox in retinopathy is yet to be fully determined. These topics will be reviewed with a particular emphasis on ROP and DR.
Collapse
|
30
|
Debbabi M, Kroviarski Y, Bournier O, Gougerot‐Pocidalo M, El‐Benna J, Dang PM. NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. FASEB J 2013; 27:1733-48. [DOI: 10.1096/fj.12-216432] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maya Debbabi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Université de Paris‐SudOrsayFrance
| | - Yolande Kroviarski
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Centre Hospitalier Universitaire Xavier BichatCentre d'Investigations Biomédicales(CIB) PhenogenParisFrance
| | - Odile Bournier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Centre Hospitalier Universitaire Xavier BichatCentre d'Investigations Biomédicales(CIB) PhenogenParisFrance
| | - Marie‐Anne Gougerot‐Pocidalo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Centre Hospitalier Universitaire Xavier BichatCentre d'Investigations Biomédicales(CIB) PhenogenParisFrance
| | - Jamel El‐Benna
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
| | - Pham My‐Chan Dang
- Institut National de la Santé et de la Recherche Médicale (INSERM) U773Centre de Recherche Biomédicale Bichat Beaujon CRB3ParisFrance
- Université Paris 7 Site BichatUnité Mixte de Recherche (UMR) 773ParisFrance
| |
Collapse
|
31
|
O'Leary DP, Bhatt L, Woolley JF, Gough DR, Wang JH, Cotter TG, Redmond HP. TLR-4 signalling accelerates colon cancer cell adhesion via NF-κB mediated transcriptional up-regulation of Nox-1. PLoS One 2012; 7:e44176. [PMID: 23071493 PMCID: PMC3469572 DOI: 10.1371/journal.pone.0044176] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 01/03/2023] Open
Abstract
Surgery induced inflammation is a potent promoter of tumour recurrence and metastasis in colorectal cancer. The recently discovered family of Nox enzymes represent a major source of endogenous reactive oxygen species (ROS) and are now heavily implicated in tumour cell metastasis. Interestingly, Nox enzymes can be ‘purposefully’ activated by inflammatory cytokines and growth factors which are present in abundance in the peri-operative window. As colon cancer cells express Nox enzymes and Toll-like receptor 4 (TLR-4), we hypothesised that LPS may potentiate the ability of colon cancer cells to metastasise via Nox enzyme mediated redox signalling. In support of this hypothesis, this paper demonstrates that LPS induces a significant, transient increase of endogenous ROS in SW480, SW620 and CT-26 colon cancer cells. This increase in LPS-induced ROS activity is completely abrogated by a Nox inhibitor, diphenyleneiodonium (DPI), Nox1 siRNA and an NF-κB inhibitor, Dihydrochloride. A significant increase in Nox1 and Nox2 protein expression occurs following LPS treatment. Inhibition of NF-κB also attenuates the increase of Nox1 and Nox2 protein expression. The sub-cellular location of LPS-induced ROS generation lies mainly in the endoplasmic reticulum. LPS activates the PI3K/Akt pathway via Nox generated ROS and this signal is inhibited by DPI. This LPS activated Nox mechanism facilitates a significant increase in SW480 colon cancer cell adhesion to collagen I, which is inhibited by DPI, Nox1 siRNA and a PI3K inhibitor. Altogether, these data suggest that the LPS-Nox1 redox signalling axis plays a crucial role in facilitation of colon cancer cell adhesion, thus increasing the metastatic potential of colon cancer cells. Nox1 may represent a valuable target in which to prevent colon cancer metastasis.
Collapse
Affiliation(s)
- D Peter O'Leary
- Department of Academic Surgery, Cork University Hospital, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
There has been increasing interest lately in understanding how natural dietary antioxidants affect chemoprevention, and recently, there has been a merging of information about antioxidants, endogenous and exogenous reactive oxygen and nitrogen species (RONS), and inflammation. RONS normally serve the cells as second messengers to regulate many of the intracellular signaling cascades that govern multiple cellular activities. However, when the amount of RONS exceeds the cell’s ability to metabolize/eliminate them, the cell becomes stressed and acquires genetic and epigenetic aberrations and dysregulated intracellular signaling cascades. In addition, there has been a better understanding of the role of tissue inflammation in the carcinogenesis process. Herein we integrate these fields to explain where RONS arise and how natural dietary antioxidants are principally working through refurbishing pathways that use RONS as second messengers.
Collapse
Affiliation(s)
- Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Chieh-Ti Kuo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Yi-Wen Huang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Gary D. Stoner
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - John F. Lechner
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, TBRC, Room C4930 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
33
|
Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res 2012; 23:201-13. [PMID: 22565378 DOI: 10.1007/s12640-012-9327-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Neuronal excitation is mediated by the activation of NMDA receptor and associated with the formation of reactive oxygen species due to the activation of NADPH oxidase complex proteins. The activation of Gs protein coupled receptors (GPCRs) induces neuronal activation in the cAMP-dependent protein kinase A (PKA)-mediated signal cascade and regulates NADPH oxidase activity. However, it is unknown whether PKA regulates NADPH oxidase gene expression in neurons and microglia. In the present research, the NADPH oxidase gene expression was studied in rat cortical neurons and microglia in vitro. Purified microglial cells were identified with OX-42 antibody and they also expressed apolipoprotein E (ApoE). The time-dependent effect of cytokine interleukin-4 (IL-4) (20 ng/ml) in NADPH oxidase gene expression was studied in microglial cells. The levels of mRNA were determined by quantitative RT-PCR. The expression of NOX1, NOX2, and NCF2 was upregulated after IL-4 treatment for 4 h, but it was downregulated after 8-24 h. The expression of NCF1 was suppressed during any time of cytokine effect. IL-4 upregulated arginase1 (Arg1) and serine racemase1 (SRR1) gene expressions in microglia. Amyloid beta (Ab) suppressed NOX2, NCF1, and NCF2 gene expressions and upregulated glutamate cystine transporter (xCT), although IL-4 attenuated the effect of Ab (500 μM) in the upregulation of xCT gene expression. The activation of PKA with agonist dibutyryl cAMP (dbcAMP) (100 μM) induced the upregulation of Arg1 gene expression in microglia involving in the process of microglial activation. The transcription of NOX1, NOX2, and NCF1 was suppressed in microglial cells after dbcAMP treatment within 24 h. Neurons were identified with the microtubule-associated protein tau. The uniform distribution of tau along axons was established in normal neurons. Tau protein was redistributed after PKA agonist dbcAMP treatment for 24 h. L-glutamate (50 μM) caused the apoptotic processes and the accumulation of tau in the soma of neurons and along axons. The activation of PKA for 24 h induced the transcriptional upregulation of NOX1 and NCF1 in cortical neurons. However, L-glutamate suppressed NOX1 gene expression in neurons. These data demonstrate that the effects of IL-4 and dbcAMP are similar in the regulation of SRR1, Arg1, and NADPH oxidase complex gene expressions in neurons and microglia. IL-4 prevents glutamate release from microglia suppressing xCT expression induced by Ab. These findings suggest that the activation of GPCR in PKA-mediated pathway leads to transcriptional regulation of NADPH oxidase complex. The modulation of GPCR activation may inhibit the oxidative stress in neurons.
Collapse
|
34
|
Han JE, Choi JW. Control of JNK for an activation of NADPH oxidase in LPS-stimulated BV2 microglia. Arch Pharm Res 2012; 35:709-15. [PMID: 22553064 DOI: 10.1007/s12272-012-0415-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 12/29/2022]
Abstract
NADPH oxidase is a main regulator for H(2)O(2) productivity in neuroinflammatory cells, including microglia, under various CNS diseases and its activity is controlled by mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). However, little is known about the link between NADPH oxidase-driven H(2)O(2) productivity and JNK in microglia. The purpose of this study is to uncover the link using lipopolysaccharide (LPS)-stimulated BV2 microglia. LPS-stimulated BV2 microglia produced H(2)O(2) that was decreased by NADPH oxidase inhibitors, including 4-(2-aminoethyl)benzenesulfonylfluoride and diphenyleneiodonium chloride. In addition, NADPH oxidase was activated in LPS-stimulated BV2 cells. These results suggest that NAPDH oxidase is a main factor for H(2)O(2) productivity in LPS-stimulated BV2 microglia. Based on a semi-quantitative PCR analysis, two of NADPH oxidase components, p47(phox) and gp91(phox), were involved in the activation of NADPH oxidase because transcriptional levels of both components were upregulated by LPS. Role of JNK in NADPH oxidase-regulated H(2)O(2) productivity was pursued using specific inhibitors, including SP600125 and JNK inhibitory peptide (JIP). Inhibition of the JNK pathways significantly reduced H(2)O(2) productivity, which was closely related to the attenuation of NADPH oxidase activation and the upregulation of components. We conclude that JNK pathways are involved in NADPH oxidase-mediated H(2)O(2) productivity in BV2 microglia.
Collapse
Affiliation(s)
- Jung Eun Han
- Department of Pharmacology, College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | | |
Collapse
|
35
|
Yu LCH, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol 2012; 3:27-43. [PMID: 22368784 PMCID: PMC3284523 DOI: 10.4291/wjgp.v3.i1.27] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/04/2011] [Accepted: 02/08/2012] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status.
Collapse
|
36
|
Stillie RM, Sapp HL, Stadnyk AW. TNFR1 Deficiency Protects Mice from Colitis-Associated Colorectal Cancer Coupled with a Decreased Level of Oxidative Damage in the Colon: Implications for Anti-TNF Therapy of Unremitting Colitis. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jct.2012.326119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Schoultz I, Söderholm JD, McKay DM. Is metabolic stress a common denominator in inflammatory bowel disease? Inflamm Bowel Dis 2011; 17:2008-18. [PMID: 21830276 DOI: 10.1002/ibd.21556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 01/06/2023]
Abstract
The enteric epithelium represents the major boundary between the outside world and the body, and in the colon it is the interface between the host and a vast and diverse microbiota. A common feature of inflammatory bowel disease (IBD) is decreased epithelial barrier function, and while a cause-and-effect relationship can be debated, prolonged loss of epithelial barrier function (whether this means the ability to sense bacteria or exclude them) would contribute to inflammation. While there are undoubtedly individual nuances in IBD, we review data in support of metabolic stress--that is, perturbed mitochondrial function--in the enterocyte as a contributing factor to the initiation of inflammation and relapses in IBD. The postulate is presented that metabolic stress, which can arise as a consequence of a variety of stimuli (e.g., infection, bacterial dysbiosis, and inflammation also), will reduce epithelial barrier function and perturb the enterocyte-commensal flora relationship and suggest that means to negate enterocytic metabolic stress should be considered as a prophylactic or adjuvant therapy in IBD.
Collapse
Affiliation(s)
- Ida Schoultz
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute of Infection Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
38
|
Lopes-Pires ME, Casarin AL, Pereira-Cunha FG, Lorand-Metze I, Antunes E, Marcondes S. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation. Platelets 2011; 23:195-201. [PMID: 21806496 DOI: 10.3109/09537104.2011.603065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.
Collapse
Affiliation(s)
- M Elisa Lopes-Pires
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas (SP), Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Katsuyama M, Matsuno K, Yabe-Nishimura C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr 2011; 50:9-22. [PMID: 22247596 PMCID: PMC3246189 DOI: 10.3164/jcbn.11-06sr] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/17/2011] [Indexed: 01/19/2023] Open
Abstract
NADPH oxidase is a superoxide (O2•−)-generating enzyme first identified in phagocytes, essential for their bactericidal activities. Later, in non-phagocytes, production of O2•− was also demonstrated in an NADPH-dependent manner. In the last decade, several non-phagocyte-type NADPH oxidases have been identified. The catalytic subunit of these oxidases, NOX, constitutes the NOX family. There are five homologs in the family, NOX1 to NOX5, and two related enzymes, DUOX1 and DUOX2. Transgenic or gene-disrupted mice of the NOX family have also been established. NOX/DUOX proteins possess distinct features in the dependency on other components for their enzymatic activities, tissue distributions, and physiological functions. This review summarized the characteristics of the NOX family proteins, especially focused on their functions clarified through studies using gene-modified mice.
Collapse
|
40
|
Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011; 63:218-42. [PMID: 21228261 DOI: 10.1124/pr.110.002980] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase (Nox) has a dedicated function of generating reactive oxygen species (ROS). Accumulating evidence suggests that Nox has an important role in signal transduction in cellular stress responses. We have reviewed the current evidence showing that the Nox system can be activated by a collection of chemical, physical, and biological cellular stresses. In many circumstances, Nox activation fits to the cellular stress response paradigm, in that (1) the response can be initiated by various forms of cellular stresses; (2) Nox-derived ROS may activate mitogen-activated protein kinases (extracellular signal-regulated kinase, p38) and c-Jun NH(2)-terminal kinase, which are the core of the cell stress-response signaling network; and (3) Nox is involved in the development of stress cross-tolerance. Activation of the cell survival pathway by Nox may promote cell adaptation to stresses, whereas Nox may also convey signals toward apoptosis in irreversibly injured cells. At later stage after injury, Nox is involved in tissue repair by modulating cell proliferation, angiogenesis, and fibrosis. We suggest that Nox may have an integral role in cell stress responses and the subsequent tissue repair process. Understanding Nox-mediated redox signaling mechanisms may be of prominent significance at the crossroads of directing cellular responses to stress, aiming at either enhancing the stress resistance (in such situations as preventing ischemia-reperfusion injuries and accelerating wound healing) or sensitizing the stress-induced cytotoxicity for proliferative diseases such as cancer. Therefore, an optimal outcome of interventions on Nox will only be achieved when this is dealt with in a timely and disease-and stage-specific manner.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China.
| | | | | |
Collapse
|
41
|
David RO, González-Muñoz MJ, Benedí J, Bastida S, Sánchez-Muniz FJ. Thermally oxidized palm olein exposure increases triglyceride polymer levels in rat small intestine. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Katsuyama M. NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. J Pharmacol Sci 2010; 114:134-46. [PMID: 20838023 DOI: 10.1254/jphs.10r01cr] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
NADPH oxidase is a superoxide (O(2)(-))-generating enzyme first identified in phagocytes that shows bactericidal activities. It has been reported that O(2)(-) is also produced in an NADPH-dependent manner in non-phagocytes. In the last decade, non-phagocyte-type NADPH oxidases have been identified, and the catalytic subunit NOX family has been found to be composed of five homologs, NOX1 to NOX5, and two related enzymes, DUOX1 and DUOX2. These NOX proteins have distinct features in dependency on other components for maximal enzymatic activity, tissue distribution, expressional regulation, and physiological functions. This review summarized the distinct characteristics of NOX family proteins, especially focusing on their functions and mechanisms of their expressional regulation.
Collapse
Affiliation(s)
- Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Japan.
| |
Collapse
|
43
|
Abstract
Reactive oxygen species (ROS) have been implicated in many intra- and intercellular processes. High levels of ROS are generated as part of the innate immunity in the respiratory burst of phagocytic cells. Low levels of ROS, however, are generated in a highly controlled manner by various cell types to act as second messengers in redox-sensitive pathways. A NADPH oxidase has been initially described as the respiratory burst enzyme in neutrophils. Stimulation of this complex enzyme system requires specific signaling cascades linking it to membrane-receptor activation. Subsequently, a family of NADPH oxidases has been identified in various nonphagocytic cells. They mainly differ in containing one out of seven homologous catalytic core proteins termed NOX1 to NOX5 and DUOX1 or 2. NADPH oxidase activity is controlled by regulatory subunits, including the NOX regulators p47phox and p67phox, their homologs NOXO1 and NOXA1, or the DUOX1 or 2 regulators DUOXA1 and 2. In addition, the GTPase Rac modulates activity of several of these enzymes. Recently, additional proteins have been identified that seem to have a regulatory function on NADPH oxidase activity under certain conditions. We will thus summarize molecular pathways linking activation of different membrane-bound receptors with increased ROS production of NADPH oxidases.
Collapse
Affiliation(s)
- Andreas Petry
- Experimental Pediatric Cardiology, Technical University Munich, Munich, Germany
| | | | | |
Collapse
|
44
|
Fatehi-Hassanabad Z, Chan CB, Furman BL. Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 2010; 636:8-17. [DOI: 10.1016/j.ejphar.2010.03.048] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/27/2010] [Accepted: 03/22/2010] [Indexed: 02/07/2023]
|
45
|
Olivero David R, Bastida S, Schultz A, González Torres L, González-Muñoz MJ, Sánchez-Muniz FJ, Benedí J. Fasting status and thermally oxidized sunflower oil ingestion affect the intestinal antioxidant enzyme activity and gene expression of male Wistar rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2498-2504. [PMID: 20112906 DOI: 10.1021/jf903622q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of thermally oxidized sunflower oil ingestion on antioxidant levels, enzyme activities and expressions in the small intestine of fed and fasted rats was studied. For three consecutive days, 12 male Wistar rats received 0.5 g of unused sunflower oil/100 g of body weight (controls, C) while another 12 were given 0.5 g of thermally oxidized sunflower oil/100 g of body weight (test group, T). On the night of day 3, 6 rats from each group were fasted (FC and FT, respectively) while the other 6 animals from each group were given free access to food (NFC and NFT, respectively). On day 4, FC and NFC rats received 1 g of unused oil/100 g of body weight, while FT and NFT rats were given 1 g of altered oil/100 g of body weight. Small intestines were extracted after 4 h exposure to the oils. Fasting and oil alteration significantly interacted modifying total, Se-GPx (both, P < 0.001) and non-Se-GPx (P < 0.05) activity, and GPx and Cu,Zn-SOD expressions (both P < 0.001). FT rats showed a significant increase in TBARS (P < 0.05) and catalase activity (P < 0.001) and a decrease in SOD, Se- and non-Se-dependent GPx activities (at least, P < 0.05) with respect to FC and NFT animals. SOD and GPx expressions decreased (p<0.001) but that of TNFalpha increased significantly (P < 0.001) in FT rats with respect to FC and NFT animals. Lengthy fasting and consumption of food containing oxidized fat should both be avoided to prevent intestinal oxidative stress.
Collapse
Affiliation(s)
- Raul Olivero David
- Departamento de Nutrición, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 2010; 44:1172-84. [PMID: 19714290 DOI: 10.1007/s00535-009-0119-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/02/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND NADPH oxidase 1 (Nox1) is preferentially expressed in the colon, but its functional role is not fully understood. This study was designed to elucidate a potential role of Nox1 in inflammation of the colon. METHODS Superoxide production by T84 cells was measured by the cytochrome c method. Protein and mRNA levels of Nox1 and Nox organizer 1 (NOXO1) in the cells were measured by real-time reverse transcriptase PCR and Western blotting, respectively. Expression of Nox1, Nox2, dual oxidase 2 (Duox2), NOXO1, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha mRNAs was measured in proximal, middle, and distal portions of colonic mucosas from male wild-type C57BL/6J and interleukin (IL)-10 knockout mice at 6, 10, and 16 weeks of age. Grading of inflammation was done by scoring histological changes. RESULTS IL-10 significantly inhibited IFN-gamma- or TNF-alpha-induced up-regulation of superoxide-producing activity in T84 cells by suppressing expression of Nox1 mRNA and protein. IL-10 also inhibited TNF-alpha-stimulated induction of NOXO1 and p38 MAPK phosphorylation. Levels of Nox1, but not Nox2 or Duox2 mRNA, was age-dependently increased following a gradient with low levels in the proximal colon and high levels in the distal colon of the wild-type mice. The absence of IL-10 significantly facilitated Nox1 expression in association with increased IFN-gamma mRNA expression before the development of spontaneous colitis and age-dependently accelerated their mRNA expression. CONCLUSIONS IL-10 may be a possible down-regulator of the Nox1-based oxidase in the colon, suggesting a potential role of reactive oxygen species (ROS) derived from Nox1-based oxidase in inflammation of the colon.
Collapse
|
47
|
Kroviarski Y, Debbabi M, Bachoual R, Périanin A, Gougerot-Pocidalo MA, El-Benna J, Dang PMC. Phosphorylation of NADPH oxidase activator 1 (NOXA1) on serine 282 by MAP kinases and on serine 172 by protein kinase C and protein kinase A prevents NOX1 hyperactivation. FASEB J 2010; 24:2077-92. [PMID: 20110267 DOI: 10.1096/fj.09-147629] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
NADPH oxidase activator 1 (NOXA1) together with NADPH oxidase organizer 1 (NOXO1) are key regulatory subunits of the NADPH oxidase NOX1. NOX1 is expressed mainly in colon epithelial cells and could be involved in mucosal innate immunity by producing reactive oxygen species (ROS). Contrary to its phagocyte counterpart NOX2, the mechanisms involved in NOX1 activation and regulation remain unclear. Here we report that NOX1 activity is regulated through MAP kinase (MAPK), protein kinase C (PKC), and protein kinase A (PKA)-dependent phosphorylation of NOXA1. We identified Ser-282 as target of MAPK and Ser-172 as target of PKC and PKA in vitro and in a transfected human embryonic kidney 293 (HEK293) cell model using site directed mutagenesis and phosphopeptide mapping analysis. In HEK293 cells, phosphorylation of these sites occurred at a basal level and down-regulated constitutive NOX1 activity. Indeed, S172A and S282A single mutants of NOXA1 significantly up-regulated constitutive NOX1-derived ROS production, and S172A/S282A double mutant further increased it, as compared to wild-type NOXA1. Furthermore, phosphorylation of NOXA1 on Ser-282 and Ser-172 decreased its binding to NOX1 and Rac1. These results demonstrated a critical role of NOXA1 phosphorylation on Ser-282 and Ser-172 in preventing NOX1 hyperactivation through the decrease of NOXA1 interaction to NOX1 and Rac1.
Collapse
Affiliation(s)
- Yolande Kroviarski
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Role of NADPH oxidase‐2 in lipopolysaccharide‐induced matrix metalloproteinase expression and cell migration. Immunol Cell Biol 2009; 88:197-204. [DOI: 10.1038/icb.2009.87] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Brown DI, Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med 2009; 47:1239-53. [PMID: 19628035 PMCID: PMC2763943 DOI: 10.1016/j.freeradbiomed.2009.07.023] [Citation(s) in RCA: 640] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) family of superoxide (O(2)(*-)) and hydrogen peroxide (H(2)O(2))-producing proteins has emerged as an important source of reactive oxygen species (ROS) in signal transduction. ROS produced by Nox proteins Nox1-5 and Duox1/2 are now recognized to play essential roles in the physiology of the brain, the immune system, the vasculature, and the digestive tract as well as in hormone synthesis. Nox-derived ROS have been implicated in regulation of cytoskeletal remodeling, gene expression, proliferation, differentiation, migration, and cell death. These processes are tightly controlled and reversible. In this review, we will discuss recent literature on Nox protein tissue distribution, subcellular localization, activation, and the resulting signal transduction mechanisms.
Collapse
Affiliation(s)
- David I Brown
- Department of Medicine, Division of Cardiology, Emory University, 1639 Pierce Drive, 319 WMB Atlanta, GA 30322, USA
| | | |
Collapse
|
50
|
Abstract
Reactive oxygen species (ROS) were seen as destructive molecules, but recently, they have been shown also to act as second messengers in varying intracellular signaling pathways. This review concentrates on hydrogen peroxide (H2O2), as it is a more stable ROS, and delineates its role as a survival molecule. In the first part, the production of H2O2 through the NADPH oxidase (Nox) family is investigated. Through careful examination of Nox proteins and their regulation, it is determined how they respond to stress and how this can be prosurvival rather than prodeath. The pathways on which H2O2 acts to enable its prosurvival function are then examined in greater detail. The main survival pathways are kinase driven, and oxidation of cysteines in the active sites of various phosphatases can thus regulate those survival pathways. Regulation of transcription factors such as p53, NF-kappaB, and AP-1 also are reviewed. Finally, prodeath proteins such as caspases could be directly inhibited through their cysteine residues. A better understanding of the prosurvival role of H2O2 in cells, from the why and how it is generated to the various molecules it can affect, will allow more precise targeting of therapeutics to this pathway.
Collapse
Affiliation(s)
- Gillian Groeger
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork , Cork, Ireland
| | | | | |
Collapse
|