1
|
Shin HE, Pan C, Curran DM, Bateman TJ, Chong DHY, Ng D, Shah M, Moraes TF. Prevalence of Slam-dependent hemophilins in Gram-negative bacteria. J Bacteriol 2024; 206:e0002724. [PMID: 38814789 PMCID: PMC11332172 DOI: 10.1128/jb.00027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from Stenotrophomonas maltophilia, Vibrio harveyi, and Haemophilus parainfluenzae. Structural determination of HphAs revealed an N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded β-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The genetic organization of HphAs consists of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in Escherichia coli cells and found that the efficient secretion of HphA depends on Slam. The TBDR also played an important role in heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria. Together, these results show that the Slam-dependent HphA-type hemophores are prevalent in Gram-negative bacteria and further expand the role of Slams in transporting soluble proteins. IMPORTANCE This paper describes the structure and function of a family of Slam (Type IX secretion System) secreted hemophores that bacteria use to uptake heme (iron) while establishing an infection. Using structure-based bioinformatics analysis to define the diversity and prevalence of this heme acquisition pathway, we discovered that a large portion of gammaproteobacterial harbors this system. As organisms, including Acinetobacter baumannii, utilize this system to facilitate survival during host invasion, the identification of this heme acquisition system in bacteria species is valuable information and may represent a target for antimicrobials.
Collapse
Affiliation(s)
- Hyejin Esther Shin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David M. Curran
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
3
|
Red-emitting rhodamine-based probe with large Stokes shift for ClO− detection. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Goud PT, Bai D, Abu-Soud HM. A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19. Int J Biol Sci 2021; 17:62-72. [PMID: 33390833 PMCID: PMC7757048 DOI: 10.7150/ijbs.51811] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with "cytokine storms" could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19.
Collapse
Affiliation(s)
- Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
5
|
Chami B, San Gabriel PT, Kum-Jew S, Wang X, Dickerhof N, Dennis JM, Witting PK. The nitroxide 4-methoxy-tempo inhibits the pathogenesis of dextran sodium sulfate-stimulated experimental colitis. Redox Biol 2019; 28:101333. [PMID: 31593888 PMCID: PMC6812268 DOI: 10.1016/j.redox.2019.101333] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterised by leukocyte recruitment to the gut mucosa. Leukocyte myeloperoxidase (MPO) produces the two-electron oxidant hypochlorous acid (HOCl), damaging tissue and playing a role in cellular recruitment, thereby exacerbating gut injury. We tested whether the MPO-inhibitor, 4-Methoxy-TEMPO (MetT), ameliorates experimental IBD. Colitis was induced in C57BL/6 mice by 3% w/v dextran-sodium-sulfate (DSS) in drinking water ad libitum over 9-days with MetT (15 mg/kg; via i. p. injection) or vehicle control (10% v/v DMSO+90% v/v phosphate buffered saline) administered twice daily during DSS challenge. MetT attenuated body-weight loss (50%, p < 0.05, n = 6), improved clinical score (53%, p < 0.05, n = 6) and inhibited serum lipid peroxidation. Histopathological damage decreased markedly in MetT-treated mice, as judged by maintenance of crypt integrity, goblet cell density and decreased cellular infiltrate. Colonic Ly6C+, MPO-labelled cells and 3-chlorotyrosine (3-Cl-Tyr) decreased in MetT-treated mice, although biomarkers for nitrosative stress (3-nitro-tyrosine-tyrosine; 3-NO2-Tyr) and low-molecular weight thiol damage (assessed as glutathione sulfonamide; GSA) were unchanged. Interestingly, MetT did not significantly impact colonic IL-10 and IL-6 levels, suggesting a non-immunomodulatory pathway. Overall, MetT ameliorated the severity of experimental IBD, likely via a mechanism involving the modulation of MPO-mediated damage.
Collapse
Affiliation(s)
- Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Patrick T San Gabriel
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Stephen Kum-Jew
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - XiaoSuo Wang
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Joanne M Dennis
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Paul K Witting
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Fletcher NM, Harper AK, Memaj I, Fan R, Morris RT, Saed GM. Molecular Basis Supporting the Association of Talcum Powder Use With Increased Risk of Ovarian Cancer. Reprod Sci 2019; 26:1603-1612. [DOI: 10.1177/1933719119831773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genital use of talcum powder and its associated risk of ovarian cancer is an important controversial topic. Epithelial ovarian cancer (EOC) cells are known to manifest a persistent prooxidant state. Here we demonstrated that talc induces significant changes in key redox enzymes and enhances the prooxidant state in normal and EOC cells. Using real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, levels of CA-125, caspase-3, nitrate/nitrite, and selected key redox enzymes, including myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GSR), were determined. TaqMan genotype analysis utilizing the QuantStudio 12K Flex was used to assess single-nucleotide polymorphisms in genes corresponding to target enzymes. Cell proliferation was determined by MTT proliferation assay. In all talc-treated cells, there was a significant dose-dependent increase in prooxidant iNOS, nitrate/nitrite, and MPO with a concomitant decrease in antioxidants CAT, SOD, GSR, and GPX ( P < .05). Remarkably, talc exposure induced specific point mutations that are known to alter the activity in some of these key enzymes. Talc exposure also resulted in a significant increase in inflammation as determined by increased tumor marker CA-125 ( P < .05). More importantly, talc exposure significantly induced cell proliferation and decreased apoptosis in cancer cells and to a greater degree in normal cells ( P < .05). These findings are the first to confirm the cellular effect of talc and provide a molecular mechanism to previous reports linking genital use to increased ovarian cancer risk.
Collapse
Affiliation(s)
- Nicole M. Fletcher
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Amy K. Harper
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ira Memaj
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rong Fan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert T. Morris
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
7
|
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C. The other myeloperoxidase: Emerging functions. Arch Biochem Biophys 2018; 649:1-14. [PMID: 29614255 DOI: 10.1016/j.abb.2018.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a member of the mammalian peroxidase family. It is mainly expressed in neutrophils, monocytes and macrophages. As a catalyzer of reactive oxidative species and radical species formation, it contributes to neutrophil bactericidal activity. Nevertheless MPO invalidation does not seem to have major health consequences in affected individuals. This suggests that MPO might have alternative functions supporting its conservation during evolution. We will review the available data supporting these non-canonical functions in terms of tissue specific expression, function and enzymatic activity. Thus, we discuss its cell type specific expression. We review in between others its roles in angiogenesis, endothelial (dys-) function, immune reaction, and inflammation. We summarize its pathological actions in clinical conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium; Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
8
|
Madrigal-Matute J, Martinez-Pinna R, Ramos-Mozo P, Blanco-Colio L, Moreno J, Tarin C, Burillo E, Fernandez-Garcia C, Egido J, Meilhac O, Michel JB, Martin-Ventura J. Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: Detoxifying mechanisms and potential therapeutic options. Thromb Haemost 2017; 108:435-42. [DOI: 10.1160/th12-04-0248] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/21/2012] [Indexed: 12/15/2022]
Abstract
SummaryOxidative stress is involved in the chronic pathological vascular remodelling of both abdominal aortic aneurysm and occlusive atherosclerosis. Red blood cells (RBCs), leukocytes and platelets present in both, aneurysmal intraluminal thrombus and intraplaque haemorraghes, could be involved in the redox imbalance inside diseased arterial tissues. RBCs haemolysis may release the pro-oxidant haemoglobin (Hb), which transfers heme to tissue and low-density lipoproteins. Heme-iron potentiates molecular, cell and tissue toxicity mediated by leukocytes and other sources of reactive oxygen species (ROS). Polymorphonuclear neutrophils release myeloperoxidase and, along with activated platelets, produce superoxide mediated by NADPH oxidase, causing oxidative damage. In response to this pro-oxidant milieu, several anti-oxidant molecules of plasma or cell origin can prevent ROS production. Free Hb binds to haptoglobin (Hp) and once Hp-Hb complex is endocytosed by CD163, liberated heme is converted into less toxic compounds by heme oxygenase-1. Iron homeostasis is mainly regulated by transferrin, which transports ferric ions to other cells. Transferrin-bound iron is internalised via endocytosis mediated by transferrin receptor. Once inside the cell, iron is mainly stored by ferritin. Other non hemo-iron related antioxidant enzymes (e.g. superoxide dismutase, catalase, thioredoxin and peroxiredoxin) are also involved in redox modulation in vascular remodelling. Oxidative stress is a main determinant of chronic pathological remodelling of the arterial wall, partially linked to the presence of RBCs, leukocytes, platelets and oxidised fibrin within tissue and to the imbalance between pro-/anti-oxidant molecules. Understanding the complex mechanisms underlying redox imbalance could help to define novel potential targets to decrease atherothrombotic risk.
Collapse
|
9
|
Martin-Ventura JL, Rodrigues-Diez R, Martinez-Lopez D, Salaices M, Blanco-Colio LM, Briones AM. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18112315. [PMID: 29099757 PMCID: PMC5713284 DOI: 10.3390/ijms18112315] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the main sources of reactive oxygen species (ROS) in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO) and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL) in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.
Collapse
Affiliation(s)
- Jose Luis Martin-Ventura
- Vascular Research Lab, FIIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| | - Diego Martinez-Lopez
- Vascular Research Lab, FIIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain.
| | - Mercedes Salaices
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, FIIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Ana M Briones
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| |
Collapse
|
10
|
Khan SN, Shaeib F, Thakur M, Jeelani R, Awonuga AO, Goud PT, Abu-Soud HM. Peroxynitrite deteriorates oocyte quality through disassembly of microtubule organizing centers. Free Radic Biol Med 2016; 91:275-80. [PMID: 26746586 DOI: 10.1016/j.freeradbiomed.2015.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/24/2022]
Abstract
Previous theoretical studies have suggested that utilization of 3-D imaging to acquire morphologic parameters of meiotic spindles may be useful in infertility related procedures as an assessment of oocyte quality. However, our results show that treatment of oocytes with increasing concentrations of peroxynitrite (ONOO(-)) caused a dramatic alteration in spindle shape in which morphologic parameters are not measurable or are uninformative in terms of oocyte quality. Metaphase II mouse oocytes (n=520) were treated with increasing concentrations of ONOO(-), after which all oocytes were fixed and subjected to indirect immunofluorescence. Oocyte quality was assessed by alterations in the microtubule-organizing center (MTOC), pericentrin location, microtubule morphology, and chromosomal alignment. In untreated oocytes, pericentrin is primarily assembled utilizing the acentrosomal MTOC, which appears as a condensation at both spindle poles. The spindle has a symmetrical pointed barrel shape, assembled around the chromosomal plate at the spindle equator. Oocytes treated with low concentrations of ONOO(-) (<2.5 μM) showed shortening of the spindle apparatus, while pericentrin scatters from a tight condensation to a dispersed cluster around each spindle pole. At higher ONOO(-) concentrations (>2.5μM) the central attachments between microtubules are strained and bend or unevenly break, and the MTOC proteins are further dispersed or undetectable. Peroxynitrite mediated MTOC damage, which deranges the chromosomal scaffold at the time of assembly and separation, caused the deterioration in oocyte quality. These results provide a link between reactive oxygen species and poor reproductive outcomes and elucidate the underlying etiology, which could be used as a superior biomarker for oocyte quality compared to existing assessment tools.
Collapse
Affiliation(s)
- Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mili Thakur
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roohi Jeelani
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pravin T Goud
- Department of Obstetrics and gynecology, Division of Reproductive Endocrinology and Infertility, University of California Davis, Sacramento, CA, USA; California IVF Fertility Center, Davis and Sacramento, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| |
Collapse
|
11
|
Shaeib F, Khan SN, Ali I, Najafi T, Maitra D, Abdulhamid I, Saed GM, Pennathur S, Abu-Soud HM. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid. PLoS One 2015; 10:e0120737. [PMID: 25835505 PMCID: PMC4383586 DOI: 10.1371/journal.pone.0120737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022] Open
Abstract
Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.
Collapse
Affiliation(s)
- Faten Shaeib
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sana N. Khan
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Iyad Ali
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Genetics, Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Tohid Najafi
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Ghassan M. Saed
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Myeloperoxidase scavenges peroxynitrite: A novel anti-inflammatory action of the heme enzyme. Arch Biochem Biophys 2015; 571:1-9. [PMID: 25731855 PMCID: PMC4388333 DOI: 10.1016/j.abb.2015.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
Ferric myeloperoxidase accelerates the decomposition of peroxynitrite. Compound I of myeloperoxidase does not promote this removal of peroxynitrite. Peroxynitrite removal is enhanced by substances reacting well with myeloperoxidase Compound II. In the presence of H2O2, peroxynitrite diminishes the chlorinating activity of myeloperoxidase.
Peroxynitrite, a potent pro-inflammatory and cytotoxic species, interacts with a variety of heme containing proteins. We addressed the question whether (i) the interaction of myeloperoxidase (MPO, an enzyme generating hypochlorous acid from hydrogen peroxide and chloride ions) with peroxynitrite affects the clearance of peroxynitrite, and (ii) if peroxynitrite could modulate the chlorinating activity of MPO. Our results show that this interaction promotes the decomposition of the highly reactive pro-inflammatory oxidant, whereby MPO Compound II (but not Compound I) is formed. The efficiency of MPO to remove peroxynitrite was enhanced by l-tyrosine, nitrite and (−)-epicatechin, substances known to reduce Compound II with high reaction rate. Next, peroxynitrite (added as reagent) diminished the chlorinating activity of MPO in the presence of hydrogen peroxide. Alternatively, SIN-1, a peroxynitrite donor, reduced hypochlorous acid formation by MPO, as measured by aminophenyl fluorescein oxidation (time kinetics) and taurine chloramine formation (end point measurement). At inflammatory loci, scavenging of peroxynitrite by MPO may overcome the uncontrolled peroxynitrite decomposition and formation of reactive species, which lead to cell/tissue damage.
Collapse
|
13
|
Maitra D, Shaeib F, Abdulhamid I, Abdulridha RM, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med 2013; 63:90-8. [PMID: 23624305 PMCID: PMC3863623 DOI: 10.1016/j.freeradbiomed.2013.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase (MPO) is a heme-containing enzyme that generates hypochlorous acid (HOCl) from chloride (Cl(-)) and hydrogen peroxide (H₂O₂). It is implicated in the pathology of several chronic inflammatory conditions such as cardiovascular and pulmonary diseases and cancer. Recently we have shown that HOCl can destroy the heme prosthetic group of hemoproteins. Here, we investigated whether the HOCl formed during steady-state catalysis is able to destroy the MPO heme moiety and thereby function as a major source of free iron. UV-visible spectra and H₂O₂-specific electrode measurements recorded during steady-state HOCl synthesis by MPO showed that the degree of MPO heme destruction increased after multiple additions of H₂O₂ (10 µM), precluding the enzyme from functioning at maximum activity (80-90% inhibition). MPO heme destruction occurred only in the presence of Cl(-). Stopped-flow measurements revealed that the HOCl-mediated MPO heme destruction was complex and occurred through transient ferric species whose formation and decay kinetics indicated it participates in heme destruction along with subsequent free iron release. MPO heme depletion was confirmed by the buildup of free iron utilizing the ferrozine assay. Hypochlorous acid, once generated, first equilibrates in the solution as a whole before binding to the heme iron and initiating heme destruction. Eliminating HOCl from the MPO milieu by scavenging HOCl, destabilizing the MPO-Compound I-Cl complex that could be formed during catalysis, and/or inhibiting MPO catalytic activity partially or completely protects MPO from HOCl insults. Collectively, this study elucidates the bidirectional relationship between MPO and HOCl, which highlights the potential role of MPO as a source of free iron.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - Rasha M. Abdulridha
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Fax: 313 577 8554. (H. M. Abu-Soud)
| |
Collapse
|
14
|
Banerjee J, Shaeib F, Maitra D, Saed GM, Dai J, Diamond MP, Abu-Soud HM. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure in vitro. Fertil Steril 2013; 100:578-84.e1. [PMID: 23721714 DOI: 10.1016/j.fertnstert.2013.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To demonstrate the effects of peroxynitrite (ONOO(-)) on metaphase II mouse oocyte spindle structure and chromosomal alignment in presence and absence of cumulus cells. DESIGN Experimental study. SETTING University-based research laboratory. ANIMAL(S) Metaphase II mouse oocytes (n = 440). INTERVENTION(S) Metaphase II mouse oocytes, with and without cumulus cells, were exposed to ONOO(-), nitrite/nitrate, the final product of ONOO(-), and nontreated controls for 15 minutes. Oocytes were fixed and subjected to indirect immunofluorescence for detecting changes in the spindle and chromosomal alignment. Viability staining in exposed oocytes with and without cumulus cells was performed using the trypan blue dye exclusion method and compared with controls. MAIN OUTCOME MEASURE(S) Scoring the alterations in spindle and chromosomal alignment using immunofluorescent and confocal microscopy based on a previously validated system. RESULT(S) Most oocytes had poor scores for the spindle and chromosomal alignment with exposure to ONOO(-) in a dose-dependent manner compared with controls. Trypan blue staining revealed that most of the cumulus cells failed to survive treatment with ONOO(-) compared with controls. CONCLUSION(S) ONOO(-) affects the viability of cumulus cells and the oocyte spindle structure in a dose-dependent manner. Collectively, these effects compromise oocyte quality, which may lead to female infertility.
Collapse
Affiliation(s)
- Jashoman Banerjee
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Nauseef WM. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim Biophys Acta Gen Subj 2013; 1840:757-67. [PMID: 23660153 DOI: 10.1016/j.bbagen.2013.04.040] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The recent recognition that isoforms of the cellular NADPH-dependent oxidases, collectively known as the NOX protein family, participate in a wide range of physiologic and pathophysiologic processes in both the animal and plant kingdoms has stimulated interest in the identification, localization, and quantitation of their products in biological settings. Although several tools for measuring oxidants released extracellularly are available, the specificity and selectivity of the methods for reliable analysis of intracellular oxidants have not matched the enthusiasm for studying NOX proteins. SCOPE OF REVIEW Focusing exclusively on superoxide anion and hydrogen peroxide produced by NOX proteins, this review describes the ideal probe for analysis of O2(-) and H2O2 generated extracellularly and intracellularly by NOX proteins. An overview of the components, organization, and topology of NOX proteins provides a rationale for applying specific probes for use and a context in which to interpret results and thereby construct plausible models linking NOX-derived oxidants to biological responses. The merits and shortcomings of methods currently in use to assess NOX activity are highlighted, and those assays that provide quantitation of superoxide or H2O2 are contrasted with those intended to examine spatial and temporal aspects of NOX activity. MAJOR CONCLUSIONS Although interest in measuring the extracellular and intracellular products of the NOX protein family is great, robust analytical probes are limited. GENERAL SIGNIFICANCE The widespread involvement of NOX proteins in many biological processes requires rigorous approaches to the detection, localization, and quantitation of the oxidants produced. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, IA 52240, USA.
| |
Collapse
|
16
|
Shaeib F, Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radic Biol Med 2013; 58:154-9. [PMID: 23261938 PMCID: PMC4482232 DOI: 10.1016/j.freeradbiomed.2012.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
Abstract
Here we show that hydroxyl radical ((•)OH) generated through the Fenton reaction alters metaphase-II mouse oocyte microtubules (MT) and chromosomal alignment (CH). Metaphase-II mouse oocytes, obtained commercially, were grouped as follows: control, hydrogen peroxide (H2O2), Fe(II), and combined (Fe(II) +H2O2) treatments. After 7-10 min of incubation at 37 °C, MT and CH were evaluated on fixed and stained oocytes and scored by two blinded observers. Pearson χ(2) test and Fisher exact test were used to compare outcomes between controls and treated groups and also among the treated groups. Our results showed that poor scores for MT and CH increased significantly in oocytes treated with a combination of H2O2 and Fe(II) (p<0.001); oocytes treated with H2O2 alone or Fe(II) alone showed no or few changes compared to control. Comparison of oocyte groups that received increasing concentrations of H2O2 and a fixed amount of Fe(II) showed that 70-80% demonstrated poor scores in both MT and CH when pretreated with 5 μM H2O2, and this increased up to 90-100% when treated with 10-20 μM H2O2. Hydroxyl radical generated by H2O2-driven Fenton reaction deteriorates the metaphase-II mouse oocyte spindle and CH alignment, which is thought to be a potential cause of poor oocyte quality. Thus, free iron and/or ROS scavengers could attenuate the (•)OH-mediated spindle and chromosomal damage, thereby serving as a possible approach for further examination as a therapeutic option in inflammatory states.
Collapse
Affiliation(s)
| | | | | | | | - Husam M. Abu-Soud
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Address correspondence to: Husam M Abu-Soud, Ph.D Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock Detroit, MI 48201, Tel. 313 577-6178, Fax. 313 577-8554,
| |
Collapse
|
17
|
Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Melatonin prevents hypochlorous acid-induced alterations in microtubule and chromosomal structure in metaphase-II mouse oocytes. J Pineal Res 2012; 53:122-8. [PMID: 22304486 DOI: 10.1111/j.1600-079x.2012.00977.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypochlorous acid (HOCl) is generated by myeloperoxidase, using chloride and hydrogen peroxide as substrates. Here we demonstrate that HOCl alters metaphase-II mouse oocyte microtubules and chromosomal (CH) alignment which can be prevented by melatonin. Metaphase-II mouse oocytes, obtained commercially, were grouped as: control, melatonin (150, 200nmol/mL), HOCl (10, 20, 50, and 100nmol/mL), and HOCl (50nmol/mL) pretreated with 150 and 200 nmol/mL of melatonin. Microtubule and CH alignment was studied utilizing an indirect immunofluorescence technique and scored by two observers. Pearson chi-square test and Fisher's exact test were used to compare outcomes between controls and treated groups and also among each group. Poor scores for the spindle and chromosomes increased significantly at 50nmol/mL of HOCl (P<0.001). Oocytes treated with melatonin only at 150 and 200 nmol/mL showed no changes; significant differences (P<0.001) were observed when oocytes exposed to 50nmol/mL of HOCl were compared to oocytes pretreated with 200 nmol/mL melatonin. Fifty percent of the oocytes demonstrated good scores, both in microtubule and CH alterations, when pretreated with melatonin at 150 nmol/mL compared to 0% in the HOCl-only group. HOCl alters the metaphase-II mouse oocyte spindle and CH alignment in a dose-dependant manner, which might be a potential cause of poor oocyte quality (e.g., in patients with endometriosis). Melatonin prevented the HOCl-mediated spindle and CH damage, and therefore, may be an attractive therapeutic option to prevent oocyte damage in endometriosis or inflammatory diseases where HOCl levels are known to be elevated.
Collapse
Affiliation(s)
- Jashoman Banerjee
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
18
|
Maitra D, Abdulhamid I, Diamond MP, Saed GM, Abu-Soud HM. Melatonin attenuates hypochlorous acid-mediated heme destruction, free iron release, and protein aggregation in hemoglobin. J Pineal Res 2012; 53:198-205. [PMID: 22462755 DOI: 10.1111/j.1600-079x.2012.00988.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In inflammatory diseases, where hypochlorous acid (HOCl) is elevated, iron homeostasis is disturbed, resulting in accumulation of free iron. Free iron is toxic by virtue of its ability to generate free radicals through the Fenton reaction. HOCl is generated by myeloperoxidase, (MPO) using chloride and hydrogen peroxide as substrates. Recent studies demonstrate that HOCl binds to the heme moiety of hemoglobin (Hb), which generates a transient ferric species whose formation and decay kinetics indicate it participates in protein aggregation, heme destruction, and free iron release. Here, we show that melatonin prevents HOCl-mediated Hb heme destruction and protein aggregation, using a combination of UV-vis spectrophotometry, ferrozine colorimetric assay, and in-gel heme staining. We also show that melatonin treatment prevents HOCl-mediated loss of red blood cell (RBC) viability, indicating biologic relevance of this finding. The mechanism by which melatonin prevents HOCl-mediated Hb heme destruction is by direct scavenging of HOCl and/or through the destabilization of the higher Hb oxidative states intermediates, ferryl porphyrin radical cation Hb-Fe(IV)=O(+π•) and Hb-Fe(IV)=O, which are formed through the reaction of HOCl with Hb. Our work establishes a direct mechanistic link between melatonin and its protective effect in chronic inflammatory diseases. Collectively, in addition to acting as an antioxidant and as a MPO inhibitor, melatonin can also exert its protective effect by inhibiting HOCl-mediated heme destruction of hemoproteins and subsequent free iron release.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
19
|
Abu-Soud HM, Maitra D, Byun J, Souza CEA, Banerjee J, Saed GM, Diamond MP, Andreana PR, Pennathur S. The reaction of HOCl and cyanocobalamin: corrin destruction and the liberation of cyanogen chloride. Free Radic Biol Med 2012; 52:616-625. [PMID: 22138102 PMCID: PMC3786219 DOI: 10.1016/j.freeradbiomed.2011.10.496] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 12/17/2022]
Abstract
Overproduction of hypochlorous acid (HOCl) has been associated with the development of a variety of disorders such as inflammation, heart disease, pulmonary fibrosis, and cancer through its ability to modify various biomolecules. HOCl is a potent oxidant generated by the myeloperoxidase-hydrogen peroxide-chloride system. Recently, we have provided evidence to support the important link between higher levels of HOCl and heme destruction and free iron release from hemoglobin and RBCs. Our current findings extend this work and show the ability of HOCl to mediate the destruction of metal-ion derivatives of tetrapyrrole macrocyclic rings, such as cyanocobalamin (Cobl), a common pharmacological form of vitamin B12. Cyanocobalamin is a water-soluble vitamin that plays an essential role as an enzyme cofactor and antioxidant, modulating nucleic acid metabolism and gene regulation. It is widely used as a therapeutic agent and supplement, because of its efficacy and stability. In this report, we demonstrate that although Cobl can be an excellent antioxidant, exposure to high levels of HOCl can overcome the beneficial effects of Cobl and generate proinflammatory reaction products. Our rapid kinetic, HPLC, and mass spectrometric analyses showed that HOCl can mediate corrin ring destruction and liberate cyanogen chloride (CNCl) through a mechanism that initially involves α-axial ligand replacement in Cobl to form a chlorinated derivative, hydrolysis, and cleavage of the phosphonucleotide moiety. Additionally, it can liberate free Co, which can perpetuate metal-ion-induced oxidant stress. Taken together, these results are the first report of the generation of toxic molecular products through the interaction of Cobl with HOCl.
Collapse
Affiliation(s)
- Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carlos Eduardo A Souza
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jashoman Banerjee
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Peter R Andreana
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Souza CEA, Maitra D, Saed GM, Diamond MP, Moura AA, Pennathur S, Abu-Soud HM. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. PLoS One 2011; 6:e27641. [PMID: 22132121 PMCID: PMC3222650 DOI: 10.1371/journal.pone.0027641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 12/02/2022] Open
Abstract
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H2O2) in the airways through its ability to oxidize thiocyanate (SCN−) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 µM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O2, Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN−. On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.
Collapse
Affiliation(s)
- Carlos Eduardo A. Souza
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Maitra D, Byun J, Andreana PR, Abdulhamid I, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Mechanism of hypochlorous acid-mediated heme destruction and free iron release. Free Radic Biol Med 2011; 51:364-73. [PMID: 21466849 PMCID: PMC3378337 DOI: 10.1016/j.freeradbiomed.2011.03.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 11/23/2022]
Abstract
Here, we show that hypochlorous acid (HOCl), a potent neutrophil-generated oxidant, can mediate destruction of free heme (Ht) and the heme precursor, protoporphyrin IX (PPIX). Ht displays a broad Soret absorbance peak centered at 365 and 394 nm, indicative of the presence of monomer and μ-oxo-dimer. Oxidation of Ht by HOCl was accompanied by a marked decrease in the Soret absorption peak and release of free iron. Kinetic measurements showed that the Ht-HOCl reaction was triphasic. The first two phases were HOCl concentration dependent and attributable to HOCl binding to the monomeric and dimeric forms. The third phase was HOCl concentration independent and attributed to Ht destruction with the release of free iron. HPLC and LC-ESI-MS analyses of the Ht-HOCl reaction revealed the formation of a number of degradation products, resulting from the cleavage or modification of one or more carbon-methene bridges of the porphyrin ring. Similar studies with PPIX showed that HOCl also mediated tetrapyrrole ring destruction. Collectively, this work demonstrates the ability of HOCl to modulate destruction of heme, through a process that occurs independent of the iron molecule that resides in the porphyrin center. This phenomenon may play a role in HOCl-mediated oxidative injury in pathological conditions.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding Author: Husam M. Abu-Soud, Ph.D., Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI 48201, Tel: 313 577-6178; Fax: 313 577-8554;
| |
Collapse
|
22
|
Maitra D, Byun J, Andreana PR, Abdulhamid I, Diamond MP, Saed GM, Pennathur S, Abu-Soud HM. Reaction of hemoglobin with HOCl: mechanism of heme destruction and free iron release. Free Radic Biol Med 2011; 51:374-86. [PMID: 21549834 PMCID: PMC3863628 DOI: 10.1016/j.freeradbiomed.2011.04.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 01/06/2023]
Abstract
Hypochlorous acid (HOCl) is generated by myeloperoxidase using chloride and hydrogen peroxide as substrates. HOCl and its conjugate base (OCl(-)) bind to the heme moiety of hemoglobin (Hb) and generate a transient ferric species whose formation and decay kinetics indicate it can participate in protein aggregation and heme destruction along with subsequent free iron release. The oxidation of the Hb heme moiety by OCl(-) was accompanied by marked heme destruction as judged by the decrease in and subsequent flattening of the Soret absorbance peak at 405 nm. HOCl-mediated Hb heme depletion was confirmed by HPLC analysis and in-gel heme staining. Exposure of Hb to increasing concentrations of HOCl produced a number of porphyrin degradation products resulting from oxidative cleavage of one or more of the carbon-methene bridges of the tetrapyrrole ring, as identified by their characteristic HPLC fluorescence and LC-MS. A nonreducing denaturing SDS-PAGE showed several degrees of protein aggregation. Similarly, porphyrin degradation products were identified after exposure of red blood cells to increasing concentrations of HOCl, indicating biological relevance of this finding. This work provides a direct link between Hb heme destruction and subsequent free iron accumulation, as occurs under inflammatory conditions where HOCl is formed in substantial amounts.
Collapse
Affiliation(s)
- Dhiman Maitra
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P. Diamond
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding Author: Husam M. Abu-Soud, Ph.D., Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI 48201, Tel: 313 577-6178; Fax: 313 577-8554;
| |
Collapse
|
23
|
Saed GM, Jiang ZL, Fletcher NM, Al Arab A, Diamond MP, Abu-Soud HM. Exposure to polychlorinated biphenyls enhances lipid peroxidation in human normal peritoneal and adhesion fibroblasts: a potential role for myeloperoxidase. Free Radic Biol Med 2010; 48:845-50. [PMID: 20067832 PMCID: PMC2834263 DOI: 10.1016/j.freeradbiomed.2010.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/14/2009] [Accepted: 01/05/2010] [Indexed: 01/28/2023]
Abstract
Nitric oxide, superoxide, and lipid peroxidation (LPO) produced under oxidative stress may contribute to the development of postoperative adhesions. The objective of this study was to determine the effects of polychlorinated biphenyls (PCBs) on LPO, superoxide dismutase, myeloperoxidase (MPO), and nitrite/nitrate in human normal peritoneal and adhesion fibroblasts. PCB treatment reduced inducible nitric oxide synthase (iNOS) expression as well as levels of nitrite/nitrate in both cell lines. Although there was no difference in iNOS expression between the two cell lines, adhesion fibroblasts manifested lower basal levels of MPO compared to normal peritoneal fibroblasts. There was a reduction in MPO expression and its activity in response to PCB treatment in normal peritoneal fibroblasts; however, this effect was minimal in adhesion fibroblasts. Moreover, adhesion fibroblasts manifested higher levels of LPO compared to normal peritoneal fibroblasts, whereas PCB treatment increased LPO levels in both cell types. We conclude that PCBs promote the development of the adhesion phenotype by generating an oxidative stress environment. This is evident by lower iNOS, MPO, and nitrite/nitrate and a simultaneous increase in LPO. Loss of MPO activity, possibly through a mechanism involving MPO heme depletion and free iron release, is yet another source of oxidative stress.
Collapse
Affiliation(s)
- Ghassan M Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|