1
|
La Vitola P, Szegö EM, Pinto-Costa R, Rollar A, Harbachova E, Schapira AH, Ulusoy A, Di Monte DA. Mitochondrial oxidant stress promotes α-synuclein aggregation and spreading in mice with mutated glucocerebrosidase. NPJ Parkinsons Dis 2024; 10:233. [PMID: 39663354 PMCID: PMC11634889 DOI: 10.1038/s41531-024-00842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
In this study, heterozygous expression of a common Parkinson-associated GBA1 variant, the L444P mutation, was found to exacerbate α-synuclein aggregation and spreading in a mouse model of Parkinson-like pathology targeting neurons of the medullary vagal system. These neurons were also shown to become more vulnerable to oxidative and nitrative stress after L444P expression. The latter paralleled neuronal formation of reactive oxygen species and led to a pronounced accumulation of nitrated α-synuclein. A causal relationship linked mutation-induced oxidative/nitrative stress to enhanced α-synuclein aggregation and spreading that could indeed be rescued by neuronal overexpression of mitochondrial superoxide dismutase 2. Further evidence supported a key involvement of mitochondria as sources of reactive oxygen species as well as targets of oxidative and nitrative damage within L444P-expressing neurons. These findings support the conclusion that enhanced vulnerability to mitochondrial oxidative stress should be considered an important mechanism predisposing to pathology conversion in carriers of GBA1 mutations.
Collapse
Affiliation(s)
- Pietro La Vitola
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eva M Szegö
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Rita Pinto-Costa
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Angela Rollar
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eugenia Harbachova
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony Hv Schapira
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Royal Free Campus, London, UK
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Ji T, Lv Y, Liu M, Han Y, Yuan B, Gu J. Causal relationships between mitochondrial proteins and different pathological types of lung cancer: a bidirectional mendelian randomization study. Front Genet 2024; 15:1335223. [PMID: 38596213 PMCID: PMC11002161 DOI: 10.3389/fgene.2024.1335223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
An increasing number of studies point to an association between mitochondrial proteins (MPs) and lung cancer (LC). However, the causal relationship between MPs and LC remains unclear. Consequently, our study employed a bidirectional Mendelian randomization (MR) analysis to explore the causal association between MPs and different pathological types of LC. A two-sample MR study was performed using the genome-wide association study (GWAS) data publicly available. We applied the primary inverse variance weighted (IVW) method along with additional MR methods to validate the causality between MPs and different pathological types of LC. To ensure the robustness of our findings, sensitivity analyses were employed. Moreover, we performed a bi-directional MR analysis to determine the direction of the causal association. We identified a total of seven MPs had significant causal relationships on overall LC, lung squamous cell carcinoma (LUSC), and small cell lung carcinoma (SCLC). We found two MPs had significant associations with overall LC, four MPs had significant associations with LUSC, and four MPs had significant associations with SCLC. Additionally, an MP was found to have a nominal relationship with LUSC. Moreover, no causality was found between MPs and lung adenocarcinoma (LUAD). Bidirectional MR showed no reverse effect between identified MPs and different pathological types of LC. In general, our findings of this MR study suggest causal associations of specific MPs with overall LC, LUSC, and SCLC. However, no such causality was found in LUAD.
Collapse
Affiliation(s)
- Tanao Ji
- Department of General Practice, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yue Lv
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Meiqun Liu
- Department of Electrocardioeraphy, Qidong People’s Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Nantong, China
| | - Yujie Han
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong Key Laboratory of Respiratory, Nantong, China
| | - Baochang Yuan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong Key Laboratory of Respiratory, Nantong, China
| | - Jun Gu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong Key Laboratory of Respiratory, Nantong, China
| |
Collapse
|
4
|
Inyang I, White HE, Timme K, Keating AF. Biological sex differences in hepatic response to in utero dimethylbenz(a)anthracene exposure. Reprod Toxicol 2024; 124:108553. [PMID: 38307155 DOI: 10.1016/j.reprotox.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.
Collapse
Affiliation(s)
| | - Hunter E White
- Department of Animal Science, Iowa State University, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, USA
| | | |
Collapse
|
5
|
Fergany A, Zong C, Ekuban FA, Wu B, Ueha S, Shichino S, Matsushima K, Iwakura Y, Ichihara S, Ichihara G. Transcriptome analysis of the cerebral cortex of acrylamide-exposed wild-type and IL-1β-knockout mice. Arch Toxicol 2024; 98:181-205. [PMID: 37971544 PMCID: PMC10761544 DOI: 10.1007/s00204-023-03627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Acrylamide is an environmental electrophile that has been produced in large amounts for many years. There is concern about the adverse health effects of acrylamide exposure due to its widespread industrial use and also presence in commonly consumed foods and others. IL-1β is a key cytokine that protects the brain from inflammatory insults, but its role in acrylamide-induced neurotoxicity remains unknown. We reported recently that deletion of IL-1β gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1β gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1β KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1β deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1β. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1β deletion-potentiated and ACR-induced neurotoxicity in mice.
Collapse
Affiliation(s)
- Alzahraa Fergany
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Laboratory of Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Bin Wu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Building No. 15, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
6
|
Sato K, Satoshi Y, Miyauchi Y, Sato F, Kon R, Ikarashi N, Chiba Y, Hosoe T, Sakai H. Downregulation of PGC-1α during cisplatin-induced muscle atrophy in murine skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166877. [PMID: 37673360 DOI: 10.1016/j.bbadis.2023.166877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This study aimed to investigate the effects of cisplatin on adenosine triphosphate (ATP) levels, expressions of genes related to mitochondrial oxidative phosphorylation (OXPHOS), and the factors related to mitochondrial biosynthesis in skeletal muscle. Systemic cisplatin administration decreased skeletal muscle mass, skeletal muscle strength, and endurance. The mitochondrial DNA /nuclear DNA ratio was also reduced after treatment with cisplatin. Moreover, among the factors related to mitochondrial biogenesis and function, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was significantly downregulated in the cisplatin-treated group. Downregulation of PGC-1α in the skeletal muscle may contribute to muscle weakness during cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Ken Sato
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshida Satoshi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yu Miyauchi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan; Department of Bioregulatory Science, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501, Japan.
| |
Collapse
|
7
|
Hassanein EHM, Ibrahim IM, Abd El-Maksoud MS, Abd El-Aziz MK, Abd-Alhameed EK, Althagafy HS. Targeting necroptosis in fibrosis. Mol Biol Rep 2023; 50:10471-10484. [PMID: 37910384 PMCID: PMC10676318 DOI: 10.1007/s11033-023-08857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Necroptosis, a type of programmed cell death that resembles necrosis, is now known to depend on a different molecular mechanism from apoptosis, according to several recent studies. Many efforts have reported the possible influence of necroptosis in human disorders and concluded the crucial role in the pathophysiology of various diseases, including liver diseases, renal injuries, cancers, and others. Fibrosis is the most common end-stage pathological cascade of several chronic inflammatory disorders. In this review, we explain the impact of necroptosis and fibrosis, for which necroptosis has been demonstrated to be a contributing factor. We also go over the inhibitors of necroptosis and how they have been applied to fibrosis models. This review helps to clarify the role of necroptosis in fibrosis and will encourage clinical efforts to target this pathway of programmed cell death.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mostafa S Abd El-Maksoud
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mostafa K Abd El-Aziz
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
9
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
10
|
Díaz-Velasco S, Delgado J, Peña FJ, Estévez M. Ellagic Acid Triggers the Necrosis of Differentiated Human Enterocytes Exposed to 3-Nitro-Tyrosine: An MS-Based Proteomic Study. Antioxidants (Basel) 2022; 11:antiox11122485. [PMID: 36552693 PMCID: PMC9774974 DOI: 10.3390/antiox11122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
To study the molecular basis of the toxicological effect of a dietary nitrosated amino acid, namely, 3-nitrotyrosine (3-NT), differentiated human enterocytes were exposed to dietary concentrations of this species (200 μM) and analyzed for flow cytometry, protein oxidation markers and MS-based proteomics. The possible protective role of a dietary phytochemical, ellagic acid (EA) (200 μM), was also tested. The results revealed that cell viability was significantly affected by exposure to 3-NT, with a concomitant significant increase in necrosis (p < 0.05). 3-NT affected several biological processes, such as histocompatibility complex class II (MHC class II), and pathways related to type 3 metabotropic glutamate receptors binding. Addition of EA to 3-NT-treated cells stimulated the toxicological effects of the latter by reducing the abundance of proteins involved in mitochondrial conformation. These results emphasize the impact of dietary nitrosated amino acids in intestinal cell physiology and warn about the potential negative effects of ellagic acid when combined with noxious metabolites.
Collapse
Affiliation(s)
- Silvia Díaz-Velasco
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, 10003 Cáceres, Spain
| | - Josué Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, 10003 Cáceres, Spain
| | - Fernando J. Peña
- Spermatology Laboratory, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Mario Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), Universidad de Extremadura, 10003 Cáceres, Spain
- Correspondence:
| |
Collapse
|
11
|
Helwig M, Ulusoy A, Rollar A, O’Sullivan SA, Lee SSL, Aboutalebi H, Pinto-Costa R, Jevans B, Klinkenberg M, Di Monte DA. Neuronal hyperactivity-induced oxidant stress promotes in vivo α-synuclein brain spreading. SCIENCE ADVANCES 2022; 8:eabn0356. [PMID: 36044566 PMCID: PMC9432848 DOI: 10.1126/sciadv.abn0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/15/2022] [Indexed: 05/31/2023]
Abstract
Interneuronal transfer and brain spreading of pathogenic proteins are features of neurodegenerative diseases. Pathophysiological conditions and mechanisms affecting this spreading remain poorly understood. This study investigated the relationship between neuronal activity and interneuronal transfer of α-synuclein, a Parkinson-associated protein, and elucidated mechanisms underlying this relationship. In a mouse model of α-synuclein brain spreading, hyperactivity augmented and hypoactivity attenuated protein transfer. Important features of neuronal hyperactivity reported here were an exacerbation of oxidative and nitrative reactions, pronounced accumulation of nitrated α-synuclein, and increased protein aggregation. Data also pointed to mitochondria as key targets and likely sources of reactive oxygen and nitrogen species within hyperactive neurons. Rescue experiments designed to counteract the increased burden of reactive oxygen species reversed hyperactivity-induced α-synuclein nitration, aggregation, and interneuronal transfer, providing first evidence of a causal link between these pathological effects of neuronal stimulation and indicating a mechanistic role of oxidant stress in hyperactivity-induced α-synuclein spreading.
Collapse
Affiliation(s)
- Michael Helwig
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Angela Rollar
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | | | - Shirley S. L. Lee
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Helia Aboutalebi
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Rita Pinto-Costa
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Benjamin Jevans
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | | | - Donato A. Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
12
|
Rius-Pérez S, Pérez S, Toledano MB, Sastre J. p53 drives necroptosis via downregulation of sulfiredoxin and peroxiredoxin 3. Redox Biol 2022; 56:102423. [PMID: 36029648 PMCID: PMC9428851 DOI: 10.1016/j.redox.2022.102423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial dysfunction is a key contributor to necroptosis. We have investigated the contribution of p53, sulfiredoxin, and mitochondrial peroxiredoxin 3 to necroptosis in acute pancreatitis. Late during the course of pancreatitis, p53 was localized in mitochondria of pancreatic cells undergoing necroptosis. In mice lacking p53, necroptosis was absent, and levels of PGC-1α, peroxiredoxin 3 and sulfiredoxin were upregulated. During the early stage of pancreatitis, prior to necroptosis, sulfiredoxin was upregulated and localized into mitochondria. In mice lacking sulfiredoxin with pancreatitis, peroxiredoxin 3 was hyperoxidized, p53 localized in mitochondria, and necroptosis occurred faster; which was prevented by Mito-TEMPO. In obese mice, necroptosis occurred in pancreas and adipose tissue. The lack of p53 up-regulated sulfiredoxin and abrogated necroptosis in pancreas and adipose tissue from obese mice. We describe here a positive feedback between mitochondrial H2O2 and p53 that downregulates sulfiredoxin and peroxiredoxin 3 leading to necroptosis in inflammation and obesity.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain.
| |
Collapse
|
13
|
Jia R, Hou Y, Feng W, Li B, Zhu J. Alterations at biochemical, proteomic and transcriptomic levels in liver of tilapia (Oreochromis niloticus) under chronic exposure to environmentally relevant level of glyphosate. CHEMOSPHERE 2022; 294:133818. [PMID: 35114268 DOI: 10.1016/j.chemosphere.2022.133818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of glyphosate (Gly) on aquatic animals has received attention from many researchers. However, the chronic toxicity mechanism of Gly on fish has not yet been clarified entirely. Thus, this study aimed to explore the potential toxicity mechanism of Gly at 2 mg/L, a possibly existing concentration in the aquatic environment, via biochemical, transcriptomic and proteomic analyses in the liver of tilapia. Long-term Gly exposure increased lipid content, and altered redox status in liver. Transcriptomic analysis revealed that Gly exposure changed dramatically the expression of 225 genes in liver, including 94 up-regulated genes and 131 down-regulated genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that these genes were predominantly enriched in ion transport, lipid metabolism and PPAR (peroxisome proliferator-activated receptor) signaling pathway. Meanwhile, at proteomic level, long-term Gly exposure resulted in alteration of 21 proteins, which were principally related to hepatic metabolism function. In conclusion, our data displayed a potential toxicity, mainly manifested as redox imbalance and dysregulation of metabolism function, in the liver of tilapia after long-term Gly exposure at 2 mg/L. This study provided novel insight into underlying toxicity mechanism of long-term Gly exposure at an environmentally relevant concentration in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiran Hou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bing Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
14
|
Wang J, Luan Y, Fan EK, Scott MJ, Li Y, Billiar TR, Wilson MA, Jiang Y, Fan J. TBK1/IKKε Negatively Regulate LPS-Induced Neutrophil Necroptosis and Lung Inflammation. Shock 2021; 55:338-348. [PMID: 32925605 PMCID: PMC8183424 DOI: 10.1097/shk.0000000000001632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABSTRACT Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that controls cell release of inflammatory mediators from innate immune cells, such as polymorphonuclear neutrophils (PMNs), and critically regulates the progress of inflammation. Cell necroptosis features receptor-interacting protein (RIPK) 1 activation and necroptosome formation. This leads to loss of plasma membrane integrity, the release of cell contents into the extracellular space, and subsequent increased inflammation. Here, we report an intra-PMN mechanism of negative regulation of necroptosis mediated through TBK1/IKKε. Using an in vivo mouse model of intratracheal injection (i.t.) of LPS and in vitro LPS stimulation of mouse PMN, we found that LPS-TLR4 signaling in PMNs activates and phosphorylates TBK1 and IKKε, which in turn suppress LPS-induced formation of the RIPK1-RIPK3-MLKL (necrosome) complex. TBK1 dysfunction by knockdown or inhibitor significantly increases the phosphorylation of RIPK1 (∼67%), RIPK3 (∼68%), and MLKL (∼50%) and promotes RIPK1-RIPK3 and RIPK3-MLKL interactions and increases PMN necroptosis (∼83%) in response to LPS, with subsequent augmented lung inflammation. These findings suggest that the LPS-TLR4-TBK1 axis serves as a negative regulator for PMN necroptosis and might be a therapeutic target for modulating PMN death and inflammation.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingyi Luan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing China
| | - Erica K. Fan
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark A. Wilson
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yong Jiang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Shen S, Luo J, Ye J. Artesunate alleviates schistosomiasis-induced liver fibrosis by downregulation of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in hepatic stellate cells. Acta Trop 2021; 214:105781. [PMID: 33264632 DOI: 10.1016/j.actatropica.2020.105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/03/2023]
Abstract
Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. Inhibition of the HSCs activity is an ideal strategy in the treatment of fibrosis, but there is no drug yet for this strategy. Artesunate (ART) has been shown to protect liver from fibrosis through inhibition of HSCs activity. However, the mechanism of ART activity remains to be fully uncovered. In this study, we tested ART in a mouse model of hepatic fibrosis established in the schistosomiasis-infected mice. The mechanism of ART action was investigated in the HSC cell line LX-2. ART significantly inhibited hepatic fibrosis. In LX-2 cells, ART efficiently inhibited the cell activity in proliferation and mRNA expression of fibrosis marker genes including Col1a1 and Col3a1. An impact of ART on mitochondria was observed for suppression of enzymes in the citric acid cycle (TCA), such as citrate synthase (CS), isocitrate dehydrogenase (IDH2), and alpha ketoglutarate dehydrogenase (OGDH) in a dose-dependent manner. ART decreased the mitochondrial oxygen consumption rate (OCR) and the protein levels of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in HSCs. All of these alterations were observed with an increase in HSC apoptosis. This study suggests that ART may alleviate liver fibrosis by downregulation of HSC activity through suppression of NDUFB8 and UQCRC2 in mitochondria. This study provides a new insight into the mechanism of the ART activity in the inhibition of schistosomiasis-induced liver fibrosis.
Collapse
Affiliation(s)
- Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Juntao Luo
- Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jianping Ye
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
16
|
Wu Y, Dong G, Sheng C. Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharm Sin B 2020; 10:1601-1618. [PMID: 33088682 PMCID: PMC7563021 DOI: 10.1016/j.apsb.2020.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Necroptosis, a genetically programmed form of necrotic cell death, serves as an important pathway in human diseases. As a critical cell-killing mechanism, necroptosis is associated with cancer progression, metastasis, and immunosurveillance. Targeting necroptosis pathway by small molecule modulators is emerging as an effective approach in cancer therapy, which has the advantage to bypass the apoptosis-resistance and maintain antitumor immunity. Therefore, a better understanding of the mechanism of necroptosis and necroptosis modulators is necessary to develop novel strategies for cancer therapy. This review will summarize recent progress of the mechanisms and detecting methods of necroptosis. In particular, the relationship between necroptosis and cancer therapy and medicinal chemistry of necroptosis modulators will be focused on.
Collapse
|
17
|
Eskandari A, Flamme M, Xiao Z, Suntharalingam K. The Bulk Osteosarcoma and Osteosarcoma Stem Cell Activity of a Necroptosis-Inducing Nickel(II)-Phenanthroline Complex. Chembiochem 2020; 21:2854-2860. [PMID: 32415808 DOI: 10.1002/cbic.202000231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022]
Abstract
We report the anti-osteosarcoma and anti-osteosarcoma stem cell (OSC) properties of a nickel(II) complex, 1. Complex 1 displays similar potency towards bulk osteosarcoma cells and OSCs, in the micromolar range. Notably, 1 displays similar or better OSC potency than the clinically approved platinum(II) anticancer drugs cisplatin and carboplatin in two- and three-dimensional osteosarcoma cell cultures. Mechanistic studies revealed that 1 induces osteosarcoma cell death by necroptosis, an ordered form of necrosis. The nickel(II) complex, 1 triggers necrosome-dependent mitrochondrial membrane depolarisation and propidium iodide uptake. Interestingly, 1 does not evoke necroptosis by elevating intracellular reactive oxygen species (ROS) or hyperactivation of poly ADP ribose polymerase (PARP-1). ROS elevation and PARP-1 activity are traits that have been observed for established necroptosis inducers such as shikonin, TRAIL and glutamate. Thus the necroptosis pathway evoked by 1 is distinct. To the best of our knowledge, this is the first report into the anti-osteosarcoma and anti-OSC properties of a nickel complex.
Collapse
Affiliation(s)
- Arvin Eskandari
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Marie Flamme
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, 75015, France
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | |
Collapse
|
18
|
Jun W, Benjanuwattra J, Chattipakorn SC, Chattipakorn N. Necroptosis in renal ischemia/reperfusion injury: A major mode of cell death? Arch Biochem Biophys 2020; 689:108433. [PMID: 32470461 DOI: 10.1016/j.abb.2020.108433] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Ischemic acute kidney injury (AKI) is a frequent complication resulting from a myriad of conditions that decrease effective arterial blood volume to the kidneys including myocardial ischemia, sepsis, and hypovolemia. Following acute ischemic insult, restoration of renal blood flow inevitably leads to the aggravation of renal injury due to a widely researched condition known as ischemia/reperfusion (I/R) injury. For decades, apoptosis and necrosis have been proposed as being the two cell death pathways responsible for the pathogenesis of renal ischemic AKI. There is recent evidence to show that necrosis could be regulated in a caspase-independent manner. This regulated or programmed necrosis is termed necroptosis. Necroptotic markers such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain like pseudokinase (MLKL) have been identified in both in vitro and in vivo models of renal I/R injury, suggesting that necroptosis might be a potential therapeutic target to limit renal I/R injury. In this review, available reports from in vitro, in vivo and clinical reports regarding the association of necroptosis in renal I/R injury, along with its therapeutic potential, has been comprehensively summarized and discussed. Understanding this contributory mechanism could pave ways to improve therapeutic strategies in combating renal I/R injury.
Collapse
Affiliation(s)
- Wu Jun
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthipong Benjanuwattra
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
19
|
Capsaicin Alleviates the Deteriorative Mitochondrial Function by Upregulating 14-3-3 η in Anoxic or Anoxic/Reoxygenated Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1750289. [PMID: 32190168 PMCID: PMC7073486 DOI: 10.1155/2020/1750289] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are byproducts of a defective electron transport chain (ETC). The redox couples, GSH/GSSG and NAD+/NADH, play an essential role in physiology as internal defenses against excessive ROS generation by facilitating intracellular/mitochondrial (mt) redox homeostasis. Anoxia alone and anoxia/reoxygenation (A/R) are dissimilar pathological processes. In this study, we measured the impact of capsaicin (Cap) on these pathological processes using a primary cultured neonatal rat cardiomyocyte in vitro model. The results showed that overproduction of ROS was tightly associated with disturbed GSH/GSSG and NAD+/NADH suppressed mt complex I and III activities, decreased oxygen consumption rates, and elevated extracellular acidification rates. During anoxia or A/R period, these indices interact with each other causing the mitochondrial function to worsen. Cap protected cardiomyocytes against the different stages of A/R injury by rescuing NAD+/NADH, GSH/GSSG, and mt complex I/III activities and cellular energy metabolism. Importantly, Cap-mediated upregulation of 14-3-3η, a protective phosphoserine-binding protein in cardiomyocytes, ameliorated mt function caused by a disruptive redox status and an impaired ETC. In conclusion, redox pair, mt complex I/III, and metabolic equilibrium were significantly different in anoxia alone and A/R injury; Cap through upregulating 14-3-3η plays a protection against the above injury in cardiomyocyte.
Collapse
|
20
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Chen YF, Dugas TR. Endothelial mitochondrial senescence accelerates cardiovascular disease in antiretroviral-receiving HIV patients. Toxicol Lett 2019; 317:13-23. [PMID: 31562912 DOI: 10.1016/j.toxlet.2019.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023]
Abstract
Combination antiretroviral therapy (cART) has been hugely successful in reducing the mortality associated with human immunodeficiency virus (HIV) infection, resulting in a growing population of people living with HIV (PLWH). Since PLWH now have a longer life expectancy, chronic comorbidities have become the focus of the clinical management of HIV. For example, cardiovascular complications are now one of the most prevalent causes of death in PLWH. Numerous epidemiological studies show that antiretroviral treatment increases cardiovascular disease (CVD) risk and early onset of CVD in PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and two NRTIs are typically used in combination with one drug from another drug class, e.g., a fusion inhibitor. NRTIs are known to induce mitochondrial dysfunction, contributing to toxicity in numerous tissues, such as myopathy, lipoatrophy, neuropathy, and nephropathy. In in vitro studies, short-term NRTI treatment induces an endothelial dysfunction with an increased reactive oxygen species (ROS) production; long-term NRTI treatment decreases cell replication capacity, while increasing mtROS production and senescent cell accumulation. These findings suggest that a mitochondrial oxidative stress is involved in the pathogenesis of NRTI-induced endothelial dysfunction and premature senescence. Mitochondrial dysfunction, defined by a compromised mitochondrial quality control via biogenesis and mitophagy, has a causal role in premature endothelial senescence and can potentially initiate early cardiovascular disease (CVD) development in PLWH. In this review, we explore the hypothesis and present literature supporting that long-term NRTI treatment induces vascular dysfunction by interfering with endothelial mitochondrial homeostasis and provoking mitochondrial genomic instability, resulting in premature endothelial senescence.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States
| | - Tammy R Dugas
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, United States.
| |
Collapse
|
22
|
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, Kar S, Su S, Higa JK, Kawasaki NK, Matsui T. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol 2019; 317:H891-H922. [PMID: 31418596 DOI: 10.1152/ajpheart.00259.2019] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell death is a fundamental process in cardiac pathologies. Recent studies have revealed multiple forms of cell death, and several of them have been demonstrated to underlie adverse cardiac remodeling and heart failure. With the expansion in the area of myocardial cell death and increasing concerns over rigor and reproducibility, it is important and timely to set a guideline for the best practices of evaluating myocardial cell death. There are six major forms of regulated cell death observed in cardiac pathologies, namely apoptosis, necroptosis, mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and autophagic cell death. In this article, we describe the best methods to identify, measure, and evaluate these modes of myocardial cell death. In addition, we discuss the limitations of currently practiced myocardial cell death mechanisms.
Collapse
Affiliation(s)
- Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University of Bratislava, Bratislava, Slovakia
| | - Joseph A Hill
- Departments of Medicine (Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christopher P Baines
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Peter M Kang
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James M Downey
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Richmond, Virginia
| | - Hande C Piristine
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi Su
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jason K Higa
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nicholas K Kawasaki
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
23
|
Emelyanova L, Preston C, Gupta A, Viqar M, Negmadjanov U, Edwards S, Kraft K, Devana K, Holmuhamedov E, O'Hair D, Tajik AJ, Jahangir A. Effect of Aging on Mitochondrial Energetics in the Human Atria. J Gerontol A Biol Sci Med Sci 2019; 73:608-616. [PMID: 28958065 DOI: 10.1093/gerona/glx160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022] Open
Abstract
Energy production in myocardial cells occurs mainly in the mitochondrion. Although alterations in mitochondrial functions in the senescent heart have been documented, the molecular bases for the aging-associated decline in energy metabolism in the human heart are not fully understood. In this study, we examined transcription profiles of genes coding for mitochondrial proteins in atrial tissue from aged (≥65 years old) and comorbidities-matched adult (<65 years old) patients with preserved left ventricular function. We also correlated changes in functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes with gene expression changes. There was significant alteration in the expression of 10% (101/1,008) of genes coding for mitochondrial proteins, with 86% downregulated (87/101). Forty-nine percent of the altered genes were confined to mitochondrial energetic pathways. These changes were associated with a significant decrease in respiratory capacity of mitochondria oxidizing glutamate and malate and functional activity of complex I activity that correlated with the downregulation of NDUFA6, NDUFA9, NDUFB5, NDUFB8, and NDUFS2 genes coding for NADH dehydrogenase subunits. Thus, aging is associated with a decline in activity of OXPHOS within the broader transcriptional downregulation of genes regulating mitochondrial energetics, providing a substrate for reduced energetic efficiency in the senescent human atria.
Collapse
Affiliation(s)
- Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Claudia Preston
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, Rochester, Minnesota
| | - Anu Gupta
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, Rochester, Minnesota
| | - Maria Viqar
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic Rochester, Rochester, Minnesota
| | - Ulugbek Negmadjanov
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Stacie Edwards
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Kelsey Kraft
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Kameswari Devana
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin
| | - Daniel O'Hair
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - A Jamil Tajik
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging, Aurora St. Luke's Medical Center, Milwaukee, Wisconsin.,Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Milwaukee, Wisconsin
| |
Collapse
|
24
|
Figueiro-Silva J, Antequera D, Pascual C, de la Fuente Revenga M, Volt H, Acuña-Castroviejo D, Rodríguez-Franco MI, Carro E. The Melatonin Analog IQM316 May Induce Adult Hippocampal Neurogenesis and Preserve Recognition Memories in Mice. Cell Transplant 2019; 27:423-437. [PMID: 29873251 PMCID: PMC6038050 DOI: 10.1177/0963689717721217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neurogenesis in the adult hippocampus is a unique process in neurobiology that requires functional integration of newly generated neurons, which may disrupt existing hippocampal network connections and consequently loss of established memories. As neurodegenerative diseases characterized by abnormal neurogenesis and memory dysfunctions are increasing, the identification of new anti-aging drugs is required. In adult mice, we found that melatonin, a well-established neurogenic hormone, and the melatonin analog 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) were able to induce hippocampal neurogenesis, measured by neuronal nuclei (NeuN) and 5-bromo-2′-deoxyuridine (BrdU) labeling. More importantly, only IQM316 administration was able to induce hippocampal neurogenesis while preserving previously acquired memories, assessed with object recognition tests. In vitro studies with embryonic neural stem cells replicated the finding that both melatonin and IQM316 induce direct differentiation of neural precursors without altering their proliferative activity. Furthermore, IQM316 induces differentiation through a mechanism that is not dependent of melatonergic receptors (MTRs), since the MTR antagonist luzindole could not block the IQM316-induced effects. We also found that IQM316 and melatonin modulate mitochondrial DNA copy number and oxidative phosphorylation proteins, while maintaining mitochondrial function as measured by respiratory assays and enzymatic activity. These results uncover a novel pharmacological agent that may be capable of inducing adult hippocampal neurogenesis at a healthy and sustainable rate that preserves recognition memories.
Collapse
Affiliation(s)
- Joana Figueiro-Silva
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Desireé Antequera
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Consuelo Pascual
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mario de la Fuente Revenga
- 4 Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| | - Huayqui Volt
- 5 Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Darío Acuña-Castroviejo
- 5 Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | - Eva Carro
- 1 Laboratorio de Enfermedades Neurodegenerativas, Hospital 12 de Octubre, Madrid, Spain.,2 Instituto de Investigación, Hospital 12 de Octubre, Madrid, Spain.,3 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
25
|
γ-Tocotrienol inhibits oxidative phosphorylation and triggers apoptosis by inhibiting mitochondrial complex I subunit NDUFB8 and complex II subunit SDHB. Toxicology 2019; 417:42-53. [PMID: 30769052 DOI: 10.1016/j.tox.2019.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Tocotrienols (T3s) are a subgroup of vitamin E and they have been widely tested to inhibit cell growth in various tumor types. Previous studies have shown that T3s inhibit cancer cell growth by targeting multiple signaling transduction and cellular processes. However, the role of T3s in the regulation of cellular bioenergetic processes remains unclear. In this study, we found that γ-T3 interacts with mitochondrial electron transfer chain NDUFB8 (a subunit of complex I) and SDHB (a subunit of complex II) and inhibits oxidative phosphorylation (OXPHOS), and triggers the production of reactive oxygen species (ROS). In addition, we observed that γ-T3 upregulates the glycolytic capacity in cells, but it did not compensate for cellular ATP generation and decreased the ATP levels in cells. Furthermore, we performed western blots and RT-PCR to measure the mRNA and protein levels of mitochondrial electron transfer chain (ETC) proteins and complex V (ATP synthase), where the results indicated that γ-T3 specifically inhibited the levels of NDUFB8 and SDHB, whereas it had little effect on UQCRC2 (a subunit of complex III), COX4I1 (a subunit of complex IV), and ATP5F1A (a subunit of complex V). The inhibition of NDUFB8 and SDHB by γ-T3 led to the overproduction of ROS and the depletion of ATP, which may be responsible for inducing apoptosis in cancer cells. Our results suggest that mitochondrial respiration may be an effective target for anticancer treatments based on γ-T3.
Collapse
|
26
|
Zhang L, Feng Q, Wang T. Necrostatin-1 Protects Against Paraquat-Induced Cardiac Contractile Dysfunction via RIP1-RIP3-MLKL-Dependent Necroptosis Pathway. Cardiovasc Toxicol 2019; 18:346-355. [PMID: 29299822 DOI: 10.1007/s12012-017-9441-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paraquat is a highly toxic prooxidant that triggers oxidative stress and multi-organ failure including that of the heart. To date, effective treatment of paraquat toxicity is still not established. Necroptosis, a newly discovered form of programmed cell death, was recently shown to be strongly associated with cardiovascular disease. Receptor interaction proteins 1 (RIP1), receptor interaction proteins 3 (RIP3), and mixed lineage kinase domain like (MLKL) are key proteins in the necroptosis pathway. Necrostatin-1 (Nec-1) is a specific inhibitor of necroptosis which acts by blocking the interaction between RIP1 and RIP3. In the present study, we studied the effect of Nec-1 on paraquat-induced cardiac contractile dysfunction and reactive oxygen species (ROS) production in the heart tissues using a mouse model. Our results revealed impaired contractile function, deranged intracellular Ca2+ handling and echocardiographic abnormalities in mice challenged with paraquat. We further found enhanced expressions of RIP1, RIP3, and MLKL along with overproduction of ROS in mice heart tissues. Nec-1 pre-treatment prevented cardiac contractile dysfunction in paraquat-challenged mice. Furthermore, Nec-1 reduced RIP1-RIP3 interaction, down-regulated the RIP1-RIP3-MLKL signal pathway, and dramatically inhibited the production of ROS. Collectively, these findings suggest that Nec-1 alleviated paraquat-induced myocardial contractile dysfunction through inhibition of necroptosis, an effect which was likely mediated via the RIP1-RIP3-MLKL signaling cascade. Further, ROS appeared to play an important role in this process. Thus, this process may represent a novel therapeutic strategy for the treatment of paraquat-induced cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Qiming Feng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Teng Wang
- Shanghai Pudong Newarea Healthcare Hospital for Women and Children, Shanghai, 201200, China
| |
Collapse
|
27
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
28
|
The Organization of Mitochondrial Supercomplexes is Modulated by Oxidative Stress In Vivo in Mouse Models of Mitochondrial Encephalopathy. Int J Mol Sci 2018; 19:ijms19061582. [PMID: 29861458 PMCID: PMC6032222 DOI: 10.3390/ijms19061582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
We examine the effect of oxidative stress on the stability of mitochondrial respiratory complexes and their association into supercomplexes (SCs) in the neuron-specific Rieske iron sulfur protein (RISP) and COX10 knockout (KO) mice. Previously we reported that these two models display different grades of oxidative stress in distinct brain regions. Using blue native gel electrophoresis, we observed a redistribution of the architecture of SCs in KO mice. Brain regions with moderate levels of oxidative stress (cingulate cortex of both COX10 and RISP KO and hippocampus of the RISP KO) showed a significant increase in the levels of high molecular weight (HMW) SCs. High levels of oxidative stress in the piriform cortex of the RISP KO negatively impacted the stability of CI, CIII and SCs. Treatment of the RISP KO with the mitochondrial targeted antioxidant mitoTEMPO preserved the stability of respiratory complexes and formation of SCs in the piriform cortex and increased the levels of glutathione peroxidase. These results suggest that mild to moderate levels of oxidative stress can modulate SCs into a more favorable architecture of HMW SCs to cope with rising levels of free radicals and cover the energetic needs.
Collapse
|
29
|
Li X, Ling Y, Cao Z, Shen J, Chen S, Liu W, Yuan B, Wen S. Targeting intestinal epithelial cell-programmed necrosis alleviates tissue injury after intestinal ischemia/reperfusion in rats. J Surg Res 2018; 225:108-117. [PMID: 29605020 DOI: 10.1016/j.jss.2018.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/19/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Intestinal dysfunction, especially acute pathologies linked to intestinal ischemia/reperfusion (I/R) injury, is profoundly affected by inflammation and improper execution of cell death. Few studies have examined the efficacy of combined strategies in regulated intestinal epithelial necrosis after intestinal I/R. Here, we evaluated the functional interaction between poly (adenosine diphosphate-ribose) polymerase 1 (PARP-1)-induced parthanatos and receptor-interacting protein 1/3 (RIP1/3) kinase-induced necroptosis in the pathophysiological course of acute ischemic intestinal injury. METHODS Anesthetized adult male Sprague-Dawley rats were subjected to superior mesenteric artery occlusion consisting of 1.5 h of ischemia and 6 h of reperfusion. The PARP-1-specific inhibitor PJ34 (10 mg/kg) and the RIP1-specific inhibitor Necrostatin-1 (1 mg/kg) were intraperitoneally administered 30 min before the induction of ischemia. RESULTS Intestinal I/R was found to result in PARP-1 activation and RIP1/3-mediated necrosome formation. PJ34 or Necrostatin-1 treatment significantly improved the mucosal injury, while the combined inhibition of PARP-1 and RIP1/3 conferred optimal protection of the intestine. Meanwhile, results from terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay showed a decrease in intestinal epithelial cell death. Interestingly, we further showed that PARP-1 might act as a downstream signaling molecule of RIP1 in the process of I/R-induced intestinal injury and that the RIP1/PARP-1-dependent cell death signaling pathway functioned independently of caspase 3 inhibition. CONCLUSIONS The results of our study provide a molecular basis for combination therapy that targets both pathways of regulated necrosis (parthanatos and necroptosis), to treat acute intestinal I/R-induced intestinal epithelial barrier disruption.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihong Ling
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongming Cao
- Department of Anesthesiology, Guangdong Cardiovascular Institute and Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiantong Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqian Chen
- Department of Medical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baolong Yuan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shihong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Srinivas Bharath MM. Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases. J Alzheimers Dis 2018; 60:S69-S86. [PMID: 28582861 DOI: 10.3233/jad-170117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transport chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.
Collapse
Affiliation(s)
- M M Srinivas Bharath
- Department of Neurochemistry and Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
31
|
Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathol 2018; 135:409-425. [PMID: 29270838 DOI: 10.1007/s00401-017-1794-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/14/2022]
Abstract
Mitochondrial complex I deficiency occurs in the substantia nigra of individuals with Parkinson's disease. It is generally believed that this phenomenon is caused by accumulating mitochondrial DNA damage in neurons and that it contributes to the process of neurodegeneration. We hypothesized that if these theories are correct, complex I deficiency should extend beyond the substantia nigra to other affected brain regions in Parkinson's disease and correlate tightly with neuronal mitochondrial DNA damage. To test our hypothesis, we employed a combination of semiquantitative immunohistochemical analyses, Western blot and activity measurements, to assess complex I quantity and function in multiple brain regions from an extensively characterized population-based cohort of idiopathic Parkinson's disease (n = 18) and gender and age matched healthy controls (n = 11). Mitochondrial DNA was assessed in single neurons from the same areas by real-time PCR. Immunohistochemistry showed that neuronal complex I deficiency occurs throughout the Parkinson's disease brain, including areas spared by the neurodegenerative process such as the cerebellum. Activity measurements in brain homogenate confirmed a moderate decrease of complex I function, whereas Western blot was less sensitive, detecting only a mild reduction, which did not reach statistical significance at the group level. With the exception of the substantia nigra, neuronal complex I loss showed no correlation with the load of somatic mitochondrial DNA damage. Interestingly, α-synuclein aggregation was less common in complex I deficient neurons in the substantia nigra. We show that neuronal complex I deficiency is a widespread phenomenon in the Parkinson's disease brain which, contrary to mainstream theory, does not follow the anatomical distribution of neurodegeneration and is not associated with the neuronal load of mitochondrial DNA mutation. Our findings suggest that complex I deficiency in Parkinson's disease can occur independently of mitochondrial DNA damage and may not have a pathogenic role in the neurodegenerative process.
Collapse
|
32
|
Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death Differ 2018; 25:1394-1407. [PMID: 29352268 PMCID: PMC6113218 DOI: 10.1038/s41418-017-0046-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/18/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.
Collapse
|
33
|
The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 2018; 7:28849-67. [PMID: 26700624 PMCID: PMC5045361 DOI: 10.18632/oncotarget.6680] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
HSP60 undergoes changes in quantity and distribution in some types of tumors suggesting a participation of the chaperonin in the mechanism of transformation and cancer progression. Suberoylanilide hydroxamic acid (SAHA), a member of a family of histone deacetylase inhibitors (HDACi), has anti-cancer potential but its interaction, if any, with HSP60 has not been elucidated. We investigated the effects of SAHA in a human lung-derived carcinoma cell line (H292). We analysed cell viability and cycle; oxidative stress markers; mitochondrial integrity; HSP60 protein and mRNA levels; and HSP60 post-translational modifications, and its secretion. We found that SAHA is cytotoxic for H292 cells, interrupting the cycle at the G2/M phase, which is followed by death; cytotoxicity is associated with oxidative stress, mitochondrial damage, and diminution of intracellular levels of HSP60; HSP60 undergoes a post-translational modification and becomes nitrated; and nitrated HSP60 is exported via exosomes. We propose that SAHA causes ROS overproduction and mitochondrial dysfunction, which leads to HSP60 nitration and release into the intercellular space and circulation to interact with the immune system. These successive steps might constitute the mechanism of the anti-tumor action of SAHA and provide a basis to design supplementary therapeutic strategies targeting HSP60, which would be more efficacious than the compound alone.
Collapse
|
34
|
Nakamura T, Lipton SA. 'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends Endocrinol Metab 2017; 28:879-892. [PMID: 29097102 PMCID: PMC5701818 DOI: 10.1016/j.tem.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | - Stuart A Lipton
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Sci Rep 2017; 7:14669. [PMID: 29116164 PMCID: PMC5676743 DOI: 10.1038/s41598-017-14868-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/12/2017] [Indexed: 02/08/2023] Open
Abstract
Exogenous nutrient elements modulate the energetic metabolism responses that are prerequisites for cellular homeostasis and metabolic physiology. Although zinc is important in oxidative stress and cytoprotection processes, its role in the regulation of energetic metabolism remains largely unknown. In this study, we found that zinc stimulated aspect in cell motility and was essential in restoring the Ochratoxin A (OTA)-induced energetic metabolism damage in HEK293 cells. Moreover, using zinc supplementation and zinc deficiency models, we observed that zinc is conducive to mitochondrial pyruvate transport, oxidative phosphorylation, carbohydrate metabolism, lipid metabolism and ultimate energy metabolism in both normal and toxic-induced oxidative stress conditions in vitro, and it plays an important role in restoring impaired energetic metabolism. This zinc-mediated energetic metabolism regulation could also be helpful for DNA maintenance, cytoprotection and hereditary cancer traceability. Therefore, zinc can widely adjust energetic metabolism and is essential in restoring the impaired energetic metabolism of cellular physiology.
Collapse
|
36
|
Shen C, Wang C, Han S, Wang Z, Dong Z, Zhao X, Wang P, Zhu H, Sun X, Ma X, Zhu H, Zou Y, Hu K, Ge J, Sun A. Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardioprotecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1912-1918. [DOI: 10.1016/j.bbadis.2016.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
|
37
|
Jesus TF, Moreno JM, Repolho T, Athanasiadis A, Rosa R, Almeida-Val VMF, Coelho MM. Protein analysis and gene expression indicate differential vulnerability of Iberian fish species under a climate change scenario. PLoS One 2017; 12:e0181325. [PMID: 28719655 PMCID: PMC5515415 DOI: 10.1371/journal.pone.0181325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/29/2017] [Indexed: 11/19/2022] Open
Abstract
Current knowledge on the biological responses of freshwater fish under projected scenarios of climate change remains limited. Here, we examine differences in the protein configuration of two endemic Iberian freshwater fish species, Squalius carolitertii and the critically endangered S. torgalensis that inhabit in the Atlantic-type northern and in the Mediterranean-type southwestern regions, respectively. We performed protein structure modeling of fourteen genes linked to protein folding, energy metabolism, circadian rhythms and immune responses. Structural differences in proteins between the two species were found for HSC70, FKBP52, HIF1α and GPB1. For S. torgalensis, besides structural differences, we found higher thermostability for two proteins (HSP90 and GBP1), which can be advantageous in a warmer environment. Additionally, we investigated how these species might respond to projected scenarios of 3° climate change warming, acidification (ΔpH = -0.4), and their combined effects. Significant changes in gene expression were observed in response to all treatments, particularly under the combined warming and acidification. While S. carolitertii presented changes in gene expression for multiple proteins related to folding (hsp90aa1, hsc70, fkbp4 and stip1), only one such gene was altered in S. torgalensis (stip1). However, S. torgalensis showed a greater capacity for energy production under both the acidification and combined scenarios by increasing cs gene expression and maintaining ldha gene expression in muscle. Overall, these findings suggest that S. torgalensis is better prepared to cope with projected climate change. Worryingly, under the simulated scenarios, disturbances to circadian rhythm and immune system genes (cry1aa, per1a and gbp1) raise concerns for the persistence of both species, highlighting the need to consider multi-stressor effects when evaluating climate change impacts upon fish. This work also highlights that assessments of the potential of endangered freshwater species to cope with environmental change are crucial to help decision-makers adopt future conservation strategies.
Collapse
Affiliation(s)
- Tiago F. Jesus
- Centro de Ecologia Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - João M. Moreno
- Centro de Ecologia Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Repolho
- Laboratório Marítimo da Guia, MARE—Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, Cascais, Portugal
| | | | - Rui Rosa
- Laboratório Marítimo da Guia, MARE—Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, Cascais, Portugal
| | - Vera M. F. Almeida-Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brasil
| | - Maria M. Coelho
- Centro de Ecologia Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
38
|
Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species. J Neurovirol 2017; 23:756-762. [DOI: 10.1007/s13365-017-0550-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
|
39
|
Fulda S. Regulation of necroptosis signaling and cell death by reactive oxygen species. Biol Chem 2017; 397:657-60. [PMID: 26918269 DOI: 10.1515/hsz-2016-0102] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 01/12/2023]
Abstract
Necroptosis has recently been identified as an alternative form of programmed cell death that is characterized by defined molecular mechanisms. Reactive oxygen species (ROS) are involved in the regulation of numerous signaling pathways, as they are highly reactive and can cause (ir)reversible posttranslational modifications. While the role of ROS in other modes of cell death has been extensively studied, its impact on necroptotic signaling and cell death is far less clear. The current minireview discusses the evidence for and against a role of ROS in necroptosis.
Collapse
|
40
|
Flamme M, Cressey PB, Lu C, Bruno PM, Eskandari A, Hemann MT, Hogarth G, Suntharalingam K. Induction of Necroptosis in Cancer Stem Cells using a Nickel(II)-Dithiocarbamate Phenanthroline Complex. Chemistry 2017; 23:9674-9682. [PMID: 28556445 DOI: 10.1002/chem.201701837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The cytotoxic properties of a series of nickel(II)-dithiocarbamate phenanthroline complexes is reported. The complexes 1-6 kill bulk cancer cells and cancer stem cells (CSCs) with micromolar potency. Two of the complexes, 2 and 6, kill twice as many breast cancer stem cell (CSC)-enriched HMLER-shEcad cells as compared to breast CSC-depleted HMLER cells. Complex 2 inhibits mammosphere formation to a similar extent as salinomycin (a CSC-specific toxin). Detailed mechanistic studies suggest that 2 induces CSC death by necroptosis, a programmed form of necrosis. Specifically, 2 triggers MLKL phosphorylation, oligomerization, and translocation to the cell membrane. Additionally, 2 induces necrosome-mediated propidium iodide (PI) uptake and mitochondrial membrane depolarisation, as well as morphological changes consistent with necroptotosis. Strikingly, 2 does not evoke necroptosis by intracellular reactive oxygen species (ROS) production or poly(ADP) ribose polymerase (PARP-1) activation.
Collapse
Affiliation(s)
- Marie Flamme
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Paul B Cressey
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Chunxin Lu
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Peter M Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Arvin Eskandari
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Graeme Hogarth
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | | |
Collapse
|
41
|
Inflammatory mediator ultra-low-molecular-weight hyaluronan triggers necrosis of B-precursor leukemia cells with high surface CD44 expression. Cell Death Dis 2017; 8:e2857. [PMID: 28569787 PMCID: PMC5520907 DOI: 10.1038/cddis.2017.249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) with mixed lineage leukemia (MLL) gene rearrangements (MLL+ALL) has a dismal prognosis and is characterized by high surface CD44 expression. Known that CD44 has the specific binding sites for a natural ligand hyaluronan (HA), we investigated biological effects of HA with different molecular sizes on MLL+ALL cell lines, and found that the addition of ultra-low-molecular-weight (ULMW)-HA strongly suppressed their thymidine uptakes. The MLL+ALL cell line lacking surface CD44 expression established by genome editing showed no suppression of thymidine uptake. Surface CD44-high B-precursor ALL cell lines other than MLL+, but not T-ALL cell lines, were also suppressed in their thymidine uptakes. The inhibition of thymidine uptakes was because of induction of cell death, but dead cells lacked features of apoptosis on cytospin smears and flow cytometric analysis. The cell death was neither blocked by pan-caspase inhibitor nor autophagy inhibitor, but was completely blocked by necrosis inhibitor necrostatin-1. Necrotic cell death was further supported by a marked release of a high-mobility protein group B1 and morphological changes on transmission electron microscopy. Elevation of intracellular reactive oxygen species production suggested a role for inducing this necrotic cell death. ULMW-HA-triggered cell death was similarly demonstrated in surface CD44-high primary B-precursor leukemia cells. Assuming that ULMW-HA is abundantly secreted at the site of infection and inflammation, this study sheds light on understanding the mechanism of a transient inflammation-associated remission of leukemia. Further, the CD44-targeting may become an effective approach in future for the treatment of refractory B-precursor ALL by its capability of predominantly eradicating CD44-high leukemia-initiating cells.
Collapse
|
42
|
Üçal M, Kraitsy K, Weidinger A, Paier-Pourani J, Patz S, Fink B, Molcanyi M, Schäfer U. Comprehensive Profiling of Modulation of Nitric Oxide Levels and Mitochondrial Activity in the Injured Brain: An Experimental Study Based on the Fluid Percussion Injury Model in Rats. J Neurotrauma 2017; 34:475-486. [DOI: 10.1089/neu.2016.4411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Muammer Üçal
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Klaus Kraitsy
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Jamile Paier-Pourani
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, Vienna, Austria
| | - Silke Patz
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Bruno Fink
- NOXYGEN Science Transfer & Diagnostics GmbH, Elzach, Germany
| | - Marek Molcanyi
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ute Schäfer
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
43
|
Abstract
As cardiomyocytes have a limited capability for proliferation, renewal, and repair, the loss of heart cells followed by replacement with fibrous tissue is considered to result in the development of ventricular dysfunction and progression to heart failure (HF). The loss of cardiac myocytes in HF has been traditionally believed to occur mainly due to programmed apoptosis or unregulated necrosis. While extensive research work is being carried out to define the exact significance and contribution of both these cell death modalities in the development of HF, recent knowledge has indicated the existence and importance of a different form of cell death called necroptosis in the failing heart. This new cell damaging process, resembling some of the morphological features of passive necrosis as well as maladaptive autophagy, is a programmed process and is orchestrated by a complex set of proteins involving receptor-interacting protein kinase 1 and 3 (RIP1, RIP3) and mixed lineage kinase domain-like protein (MLKL). Activation of the RIP1-RIP3-MLKL signaling pathway leads to disruption of cation homeostasis, plasma membrane rupture, and finally cell death. It seems likely that inhibition of any site in this pathway may prove as an effective pharmacological intervention for preventing the necroptotic cell death in the failing heart. This review is intended to describe general aspects of the signaling pathway associated with necroptosis, to describe its relationship with cardiac dysfunction in some models of cardiac injury and discuss its potential relevance in various types of HF with respect to the underlying pathologic mechanisms.
Collapse
|
44
|
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P. Mitochondria in Multiple Sclerosis: Molecular Mechanisms of Pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:49-103. [PMID: 28069137 DOI: 10.1016/bs.ircmb.2016.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria, the organelles that function as the powerhouse of the cell, have been increasingly linked to the pathogenesis of many neurological disorders, including multiple sclerosis (MS). MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS) and a leading cause of neurological disability in young adults in the western world. Its etiology remains unknown, and while the inflammatory component of MS has been heavily investigated and targeted for therapeutic intervention, the failure of remyelination and the process of axonal degeneration are still poorly understood. Recent studies suggest a role of mitochondrial dysfunction in the neurodegenerative aspects of MS. This review is focused on mitochondrial functions under physiological conditions and the consequences of mitochondrial alterations in various CNS disorders. Moreover, we summarize recent findings linking mitochondrial dysfunction to MS and discuss novel therapeutic strategies targeting mitochondria-related pathways as well as emerging experimental approaches for modeling mitochondrial disease.
Collapse
Affiliation(s)
- S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - V Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - T Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
45
|
Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucińska-Więckowska A, Pajdowska M, Jurkiewicz E, Halat P, Kosińska J, Pollak A, Rydzanicz M, Stawinski P, Pronicki M, Krajewska-Walasek M, Płoski R. New perspective in diagnostics of mitochondrial disorders: two years' experience with whole-exome sequencing at a national paediatric centre. J Transl Med 2016; 14:174. [PMID: 27290639 PMCID: PMC4903158 DOI: 10.1186/s12967-016-0930-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
Background Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD). Methods We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. Results Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification. Conclusions We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0930-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Pronicka
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland. .,Department of Paediatrics, Nutrition and Metabolic Diseases,, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Joanna Trubicka
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Paediatrics, Nutrition and Metabolic Diseases,, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Magdalena Pajdowska
- Department of Biochemistry and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Radiology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paulina Halat
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Nadarzyn, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland
| | - Piotr Stawinski
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Nadarzyn, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland.
| |
Collapse
|
46
|
Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Res 2016; 236:148-157. [PMID: 26723136 DOI: 10.1016/j.psychres.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.
Collapse
|
47
|
Kaushal GP, Shah SV. Autophagy in acute kidney injury. Kidney Int 2016; 89:779-91. [PMID: 26924060 DOI: 10.1016/j.kint.2015.11.021] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 02/09/2023]
Abstract
Autophagy is a conserved multistep pathway that degrades and recycles damaged organelles and macromolecules to maintain intracellular homeostasis. The autophagy pathway is upregulated under stress conditions including cell starvation, hypoxia, nutrient and growth-factor deprivation, endoplasmic reticulum stress, and oxidant injury, most of which are involved in the pathogenesis of acute kidney injury (AKI). Recent studies demonstrate that basal autophagy in the kidney is vital for the normal homeostasis of the proximal tubules. Deletion of key autophagy proteins impaired renal function and increased p62 levels and oxidative stress. In models of AKI, autophagy deletion in proximal tubules worsened tubular injury and renal function, highlighting that autophagy is renoprotective in models of AKI. In addition to nonselective sequestration of autophagic cargo, autophagy can facilitate selective degradation of damaged organelles, particularly mitochondrial degradation through the process of mitophagy. Damaged mitochondria accumulate in autophagy-deficient kidneys of mice subjected to ischemia-reperfusion injury, but the precise mechanisms of regulation of mitophagy in AKI are not yet elucidated. Recent progress in identifying the interplay of autophagy, apoptosis, and regulated necrosis has revived interest in examining shared pathways/molecules in this crosstalk during the pathogenesis of AKI. Autophagy and its associated pathways pose potentially unique targets for therapeutic interventions in AKI.
Collapse
Affiliation(s)
- Gur P Kaushal
- Renal Section, Medicine Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Sudhir V Shah
- Renal Section, Medicine Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA; Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
48
|
Rodrigues FP, Carneiro ZA, Mascharak P, Curti C, da Silva RS. Incorporation of a ruthenium nitrosyl complex into liposomes, the nitric oxide released from these liposomes and HepG2 cell death mechanism. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Wang JS, Wu D, Huang DY, Lin WW. TAK1 inhibition-induced RIP1-dependent apoptosis in murine macrophages relies on constitutive TNF-α signaling and ROS production. J Biomed Sci 2015; 22:76. [PMID: 26381601 PMCID: PMC4574455 DOI: 10.1186/s12929-015-0182-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/05/2015] [Indexed: 12/29/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a key regulator of signal cascades of TNF-α receptor and TLR4, and can induce NF-κB activation for preventing cell apoptosis and eliciting inflammation response. Results TAK1 inhibitor (TAKI) can decrease the cell viability of murine bone marrow-derived macrophages (BMDM), RAW264.7 and BV-2 cells, but not dermal microvascular endothelial cells, normal human epidermal keratinocytes, THP-1 monocytes, human retinal pigment epithelial cells, microglia CHME3 cells, and some cancer cell lines (CL1.0, HeLa and HCT116). In BMDM, TAKI-induced caspase activation and cell apoptosis were enhanced by lipopolysaccharide (LPS). Moreover, TAKI treatment increased the cytosolic and mitochondrial reactive oxygen species (ROS) production, and ROS scavengers NAC and BHA can inhibit cell death caused by TAKI. In addition, RIP1 inhibitor (necrostatin-1) can protect cells against TAKI-induced mitochondrial ROS production and cell apoptosis. We also observed the mitochondrial membrane potential loss after TAKI treatment and deterioration of oxygen consumption upon combination with LPS. Notably TNF-α neutralization antibody and inhibitor enbrel can decrease the cell death caused by TAKI. Conclusions TAKI-induced cytotoxicity is cell context specific, and apoptosis observed in macrophages is dependent on the constitutive autocrine action of TNF-α for RIP1 activation and ROS production.
Collapse
Affiliation(s)
- Jang-Shiun Wang
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, No 1, Sec 1, Jen-Ai Road, Taipei, Taiwan. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, Zhou ZX, Liu J, Wang JL, Li PF. MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury Through Targeting FADD. Circ Res 2015; 117:352-363. [PMID: 26038570 DOI: 10.1161/circresaha.117.305781] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Necrosis is one of the main forms of cardiomyocyte death in heart disease. Recent studies have demonstrated that certain types of necrosis are regulated and programmed dependent on the activation of receptor-interacting serine/threonine-protein kinase (RIPK) 1 and 3 which may be negatively regulated by Fas-associated protein with death domain (FADD). In addition, microRNAs and long noncoding RNAs have been shown to play important roles in various biological processes recently. OBJECTIVE The purpose of this study was to test the hypothesis that microRNA-103/107 and H19 can participate in the regulation of RIPK1- and RIPK3-dependent necrosis in fetal cardiomyocyte-derived H9c2 cells and myocardial infarction through targeting FADD. METHODS AND RESULTS Our results show that FADD participates in H2O2-induced necrosis by influencing the formation of RIPK1 and RIPK3 complexes in H9c2 cells. We further demonstrate that miR-103/107 target FADD directly. Knockdown of miR-103/107 antagonizes necrosis in the cellular model and also myocardial infarction in a mouse ischemia/reperfusion model. The miR-103/107-FADD pathway does not participate in tumor necrosis factor-α-induced necrosis. In exploring the molecular mechanism by which miR-103/107 are regulated, we show that long noncoding RNA H19 directly binds to miR-103/107 and regulates FADD expression and necrosis. CONCLUSIONS Our results reveal a novel myocardial necrosis regulation model, which is composed of H19, miR-103/107, and FADD. Modulation of their levels may provide a new approach for preventing myocardial necrosis.
Collapse
Affiliation(s)
- Jian-Xun Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Xiao-Jie Zhang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Qian Li
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Kun Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Yin Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Jian-Qin Jiao
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Chang Feng
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Sun Teng
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Lu-Yu Zhou
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Ying Gong
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Zhi-Xia Zhou
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Jia Liu
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Jian-Ling Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Pei-feng Li
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.).
| |
Collapse
|