1
|
Wang W, Huang L, Lv J, Miao Z, Jin S, Li S, Cheng Q. Silencing circRNA-ZFAND6 induces trophoblast apoptosis by activating the mitochondrial pathway through the miR-575/SOD2 axis in unexplained recurrent spontaneous abortion. BMC Womens Health 2025; 25:164. [PMID: 40200350 PMCID: PMC11977909 DOI: 10.1186/s12905-025-03682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Unexplained recurrent spontaneous abortion (URSA) is a major problem in the field of human reproductive health. At present, several circRNAs have been reported to be differentially expressed and play an important biological function in pregnancy-related diseases. However, the role of circRNAs in URSA remains unclear. METHODS Levels of circRNA and miRNA were examined by RT-qPCR. The si-RNA and overexpression plasmid were respectively used to silence and overexpress circRNA-ZFAND6. We investigated the biological function of circRNA-ZFAND6 on trophoblasts through CCK8, EdU, Flow cytometric assay, Wound-healing assays and Transwell. Dual luciferase activity assay was conducted to identify the interaction between miR-575 and circRNA-ZFAND6. RESULTS We confirmed that circRNA-ZFAND6 was a stable circular RNA and was mostly localized in the cytoplasm. CircRNA-ZFAND6 was downregulated in placental villous tissues of URSA. CCK-8 and EdU assays showed that circRNA-ZFAND6 promoted the proliferation of HTR-8/SVneo cells. Flow cytometry and western blot assays prompted that circRNA-ZFAND6 obviously reduced cells apoptosis. Scratch wound healing and transwell assays revealed that circRNA-ZFAND6 had no effect on cell migration and invasion. CircRNA-ZFAND6 worked by adsorbing miR-575 through the ceRNA mechanism. MiR-575 can inhibit the proliferation and promote the apoptosis of HTR8/SVneo cells. SOD2 was identified as a direct target of miR-575 and was associated with mitochondrial apoptosis. Transmission electron microscopy, TMRM and ROS staining assays both suggested that circRNA-ZFAND6 affected mitochondrial apoptosis. Excessive trophoblast apoptosis was a key event to promote the development of URSA. CONCLUSION CircRNA-ZFAND6, which is low expressed in URSA and regulates the apoptosis of trophoblast cells, may affect the expression of SOD2 and thus affect mitochondrial apoptosis by regulating miR-575. This is closely related to the occurrence of URSA.
Collapse
Affiliation(s)
- Wenting Wang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Linxiang Huang
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Juan Lv
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Zhijing Miao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Shuping Jin
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Shan Li
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China.
| | - Qing Cheng
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
2
|
Chen J, Kuang S, Cen J, Zhang Y, Shen Z, Qin W, Huang Q, Wang Z, Gao X, Huang F, Lin Z. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci 2024; 16:41. [PMID: 38777841 PMCID: PMC11111693 DOI: 10.1038/s41368-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.
Collapse
Affiliation(s)
- Jiayao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuhong Kuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jietao Cen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiting Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianling Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
4
|
Jensen LT, Phyu T, Jain A, Kaewwanna C, Jensen AN. Decreased accumulation of superoxide dismutase 2 within mitochondria in the yeast model of Shwachman-Diamond syndrome. J Cell Biochem 2019; 120:13867-13880. [PMID: 30938873 DOI: 10.1002/jcb.28660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Mutations in the human SBDS gene is the most common cause of Shwachman-Diamond syndrome (SDS). The SBDS protein participates in ribosome biogenesis; however, effects beyond reduced translation efficiency are thought to be involved in SDS progression. Impaired mitochondrial function has been reported for cells lacking either SBDS or Sdo1p, the Saccharomyces cerevisiae SBDS ortholog. To better understand how the loss of SBDS/Sdo1p leads to mitochondria damage, we utilized the S. cerevisiae model of SDS. Yeast deleted for SDO1 show increased oxidative damage to mitochondrial proteins and a marked decrease in protein levels and activity of mitochondrial superoxide dismutase 2 (Sod2p), a key enzyme involved in defense against oxidants. Immature forms of Sod2p are observed in sdo1∆ cells suggesting a defect in proteolysis of the presequence. Yeast deleted for CYM1, encoding a presequence protease, display a similar reduction in Sod2p activity as sdo1∆ cells, as well as elevated oxidative damage, to mitochondrial proteins. Sod2p protein levels and activity are largely restored in a por1∆ sdo1∆ strain, lacking the major mitochondrial voltage-dependent anion channel. Together these results indicate that mitochondrial insufficiency in sdo1∆ cells may be linked to the accumulation of immature presequence containing proteins and this effect is a consequence, at least in part, from loss of counter-regulation of Por1p by Sdo1p.
Collapse
Affiliation(s)
- Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - The Phyu
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ayushi Jain
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chonlada Kaewwanna
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
5
|
Ashtekar A, Huk D, Magner A, La Perle KMD, Boucai L, Kirschner LS. Alterations in Sod2-Induced Oxidative Stress Affect Endocrine Cancer Progression. J Clin Endocrinol Metab 2018; 103:4135-4145. [PMID: 30165401 PMCID: PMC6194813 DOI: 10.1210/jc.2018-01039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Although important advances have been made in understanding the genetics of endocrine tumors, cellular physiology is relatively understudied as a determinant of tumor behavior. Oxidative stress and reactive oxygen species are metabolic factors that may affect tumor behavior, and these are, in part, controlled by manganese-dependent superoxide dismutase (MnSod), the mitochondrial superoxide dismutase (encoded by SOD2). OBJECTIVE We sought to understand the role of MnSod in the prognosis of aggressive human endocrine cancers and directly assessed the effect of MnSod under- or overexpression on tumor behavior, using established mouse thyroid cancer models. METHODS We performed transcriptome analysis of human and mouse models of endocrine cancer. To address the role of Sod2 in endocrine tumors, we introduced a Sod2 null allele or a transgenic Sod2 overexpression allele into mouse models of benign thyroid follicular neoplasia or aggressive, metastatic follicular thyroid cancer (FTC) and monitored phenotypic changes in tumor initiation and progression. RESULTS In the thyroid, SOD2/Sod2 was downregulated in FTC but not papillary thyroid cancer. Reduced expression of SOD2 was correlated with poorer survival of patients with aggressive thyroid or adrenal cancers. In mice with benign thyroid tumors, Sod2 overexpression increased tumor burden. In contrast, in mice with aggressive FTC, overexpression of Sod2 reduced tumor proliferation and improved mortality rates, whereas its deficiency enhanced tumor growth. CONCLUSION Overall, our results indicate that SOD2 has dichotomous roles in cancer progression and acts in a context-specific manner.
Collapse
Affiliation(s)
- Amruta Ashtekar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Danielle Huk
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Alexa Magner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Krista M D La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Laura Boucai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University, Columbus, Ohio
- Correspondence and Reprint Requests: Lawrence S. Kirschner, MD, PhD, The Ohio State University, BRT 510, 460 W 12th Avenue, Columbus, Ohio 43210. E-mail:
| |
Collapse
|
6
|
Collins SJ, Tumpach C, Groveman BR, Drew SC, Haigh CL. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression. Cell Mol Life Sci 2018; 75:3231-3249. [PMID: 29574582 PMCID: PMC6063333 DOI: 10.1007/s00018-018-2790-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2023]
Abstract
Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.
Collapse
Affiliation(s)
- Steven J Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Carolin Tumpach
- Doherty Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, USA
| | - Simon C Drew
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Cathryn L Haigh
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, 59840, USA.
| |
Collapse
|
7
|
Fang G, Hong L, Liu C, Yang Q, Zhang Q, Li Y, Li B, Wu D, Wu W, Shi H. Oxidative status of cardinal ligament in pelvic organ prolapse. Exp Ther Med 2018; 16:3293-3302. [PMID: 30250520 PMCID: PMC6143997 DOI: 10.3892/etm.2018.6633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Pelvic organ prolapse (POP) is a common and distressing health problem in adult women, but the pathophysiological mechanism is yet to be fully elucidated. Previous studies have indicated that oxidative stress may be associated with POP. Thus, the aim of the present study was to investigate the oxidative status of pelvic supportive tissue in POP and further demonstrate that oxidative stress is associated with the pathogenesis of POP. A total of 60 samples were collected from females undergoing hysterectomy for POP or cervical intraepithelial neoplasia (CIN). This included 16 females with POP II, 24 females with POP III–IV (according to the POP-Q system) and 20 females with CIN II–III as the control group. Immunohistochemistry was utilized to measure the expression of oxidative biomarkers, 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE). Major antioxidative enzymes, mitochondrial superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx1) were measured through reverse transcription-quantitative polymerase chain reaction, western blotting and enzyme activity assays. The results demonstrated that in the cardinal ligament, the expression of 8-OHdG and 4-HNE was higher in the POP III–IV group compared with the POP II group and control group. The MnSOD and GPx1 protein level and enzyme activity were lower in the POP III–IV group compared with the POP II or the control group, while the mRNA expression level of MnSOD and GPx1 was increased. In conclusion, oxidative damage is increased in the pelvic supportive ligament of female patients with POP and the antioxidative defense capacity is decreased. These results support previous findings that oxidative stress is involved in the pathogenesis of POP.
Collapse
Affiliation(s)
- Gui Fang
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qifan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Debin Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenying Wu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hua Shi
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1166] [Impact Index Per Article: 166.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
9
|
Kim KY. Anti-inflammatory and ECM gene expression modulations of β-eudesmol via NF-κB signaling pathway in normal human dermal fibroblasts. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-017-0014-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Zou X, Ratti BA, O'Brien JG, Lautenschlager SO, Gius DR, Bonini MG, Zhu Y. Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling? J Bioenerg Biomembr 2017; 49:325-333. [PMID: 28616679 DOI: 10.1007/s10863-017-9718-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that mitochondria drive cellular functions and in vivo phenotypes by directing the production rate and abundance of metabolites that are proposed to function as signaling molecules (Chandel 2015; Selak et al. 2005; Etchegaray and Mostoslavsky 2016). Many of these metabolites are intermediates that make up cellular metabolism, part of which occur in mitochondria (i.e. the TCA and urea cycles), while others are produced "on demand" mainly in response to alterations in the microenvironment in order to participate in the activation of acute adaptive responses (Mills et al. 2016; Go et al. 2010). Reactive oxygen species (ROS) are well suited for the purpose of executing rapid and transient signaling due to their short lived nature (Bae et al. 2011). Hydrogen peroxide (H2O2), in particular, possesses important characteristics including diffusibility and faster reactivity with specific residues such as methionine, cysteine and selenocysteine (Bonini et al. 2014). Therefore, it is reasonable to propose that H2O2 functions as a relatively specific redox signaling molecule. Even though it is now established that mtH2O2 is indispensable, at least for hypoxic adaptation and energetic and/or metabolic homeostasis (Hamanaka et al. 2016; Guzy et al. 2005), the question of how H2O2 is produced and regulated in the mitochondria is only partially answered. In this review, some roles of this indispensable signaling molecule in driving cellular metabolism will be discussed. In addition, we will discuss how H2O2 formation in mitochondria depends on and is controlled by MnSOD. Finally, we will conclude this manuscript by highlighting why a better understanding of redox hubs in the mitochondria will likely lead to new and improved therapeutics of a number of diseases, including cancer.
Collapse
Affiliation(s)
- Xianghui Zou
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Room 3-250, Lurie Research Building, 303 East Superior, Chicago, IL, 60611, USA.,Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Driskill Graduate Program in Life Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bianca A Ratti
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, PR, Brazil.,Departments of Medicine and Pathology, University of Illinois College of Medicine in Chicago, Chicago, IL, USA
| | - Joseph Gerald O'Brien
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Room 3-250, Lurie Research Building, 303 East Superior, Chicago, IL, 60611, USA.,Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sueli O Lautenschlager
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa, PR, Brazil
| | - David R Gius
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Room 3-250, Lurie Research Building, 303 East Superior, Chicago, IL, 60611, USA.,Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcelo G Bonini
- Departments of Medicine and Pathology, University of Illinois College of Medicine in Chicago, Chicago, IL, USA
| | - Yueming Zhu
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Room 3-250, Lurie Research Building, 303 East Superior, Chicago, IL, 60611, USA. .,Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Zou X, Santa-Maria CA, O'Brien J, Gius D, Zhu Y. Manganese Superoxide Dismutase Acetylation and Dysregulation, Due to Loss of SIRT3 Activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxid Redox Signal 2016; 25:326-36. [PMID: 26935174 PMCID: PMC4991597 DOI: 10.1089/ars.2016.6641] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Breast cancer is the most common nondermatologic malignancy among women in the United States, among which endocrine receptor-positive breast cancer accounts for up to 80%. Endocrine receptor-positive breast cancers can be categorized molecularly into luminal A and B subtypes, of which the latter is an aggressive form that is less responsive to endocrine therapy with inferior prognosis. RECENT ADVANCES Sirtuin, an aging-related gene involved in mitochondrial metabolism, is associated with life span, and more importantly, murine models lacking Sirt3 spontaneously develop tumors that resemble human luminal B breast cancer. Furthermore, these tumors exhibit aberrant manganese superoxide dismutase (MnSOD) acetylation at lysine 68 and lysine 122 and have abnormally high reactive oxygen species (ROS) levels, which have been observed in many types of breast cancer. CRITICAL ISSUES The mechanism of how luminal B breast cancer develops resistance to endocrine therapy remains unclear. MnSOD, a primary mitochondrial detoxification enzyme, functions by scavenging excessive ROS from the mitochondria and maintaining mitochondrial and cellular homeostasis. Sirt3, a mitochondrial fidelity protein, can regulate the activity of MnSOD through deacetylation. In this study, we discuss a possible mechanism of how loss of SIRT3-guided MnSOD acetylation results in endocrine therapy resistance of human luminal B breast cancer. FUTURE DIRECTIONS Acetylation of MnSOD and other mitochondrial proteins, due to loss of SIRT3, may explain the connection between ROS and development of luminal B breast cancer and how luminal B breast cancer becomes resistant to endocrine therapy. Antioxid. Redox Signal. 25, 326-336.
Collapse
Affiliation(s)
- Xianghui Zou
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,3 Driskill Graduate Program in Life Science, Feinburg School of Medicine, Northwestern University , Chicago, Illinois
| | - Cesar Augusto Santa-Maria
- 4 Division of Medical Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Joseph O'Brien
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - David Gius
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Yueming Zhu
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
12
|
Pilco-Ferreto N, Calaf GM. Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int J Oncol 2016; 49:753-62. [PMID: 27278553 DOI: 10.3892/ijo.2016.3558] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the leading causes of mortality among women worldwide due to aggressive behavior, early metastasis, resistance to existing chemotherapeutic agent and high mortality rate. Doxorubicin (Dox) is a powerful antitumoral drug. It is one of the most active agents for treatment of breast cancer. The aim of the present study was to evaluate the influence of Dox in apoptosis and oxidative stress in the breast cancer cell lines MCF-10F, MCF-7 and MDA-MB-231. These studies showed that Dox decreased anti-apoptotic Bcl-2 protein expression and affected oxidative stress by increasing hydrogen peroxide production and simultaneously decreasing NF-κB gene and protein expression in MCF-7, a tumorigenic triple-positive cell line. Results also indicated that Dox induced apoptosis by upregulating Bax, caspase-8 and caspase-3 and downregulation of Bcl-2 protein expression. On the contrary, ROS damage decreased by increasing SOD2 gene and protein expression and hydrogen peroxide production with parallel NF-κB protein expression decrease in MDA-MB-231, a tumorigenic triple-negative breast cancer cell line. It can be concluded that Dox activated apoptosis by inducing proteolytic processing of Bcl-2 family, caspases and simultaneously decreased oxidative stress by influencing ROS damage in MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
| | - Gloria M Calaf
- Institute for Advanced Research, University of Tarapacá, 8097877 Arica, Chile
| |
Collapse
|
13
|
de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion 2016; 29:35-44. [PMID: 27223841 DOI: 10.1016/j.mito.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Genistein (4',5,7-trihydroxyisoflavone; C15H10O5), an isoflavone, has been investigated as an anti-cancer agent due to its ability to trigger cell death (both intrinsic and extrinsic apoptotic pathways) in different cancer cells in vitro and in vivo. Furthermore, genistein has been viewed as a mitochondriotropic molecule due to the direct effects this isoflavone induces in mitochondria, such as modulation of enzymatic activity of components of the oxidative phosphorylation system. Apoptosis triggering may also be mediated by genistein through activation of the mitochondria-dependent pathway by a mechanism associated with mitochondrial dysfunction (i.e., disruption of the mitochondrial membrane potential - MMP, release of cytochrome c, activation of the apoptosome, among others). Efforts have been made in order to elucidate how genistein coordinate these biochemical phenomena. Nonetheless, some areas of the mitochondria-associated research (mitochondrial biogenesis, redox biology of mitochondria, and mitochondria-associated bioenergetic parameters) need to be explored regarding the role of genistein as a mitochondria-targeted agent. This is a pharmacologically relevant issue due to the possibility of using genistein as a mitochondria-targeted drug in cases of cancer, neurodegeneration, cardiovascular, and endocrine disease, for example. The present review aims to describe, compare, and discuss relevant data about the effects of genistein upon mitochondria.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Programa de Pós-Graduação em Química (PPGQ), Departamento de Química (DQ), Instituto de Ciências Exatas e da Terra (ICET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brasil.
| |
Collapse
|
14
|
Sheshadri P, Kumar A. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res 2016; 50:570-84. [DOI: 10.3109/10715762.2016.1155708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Telopodes of telocytes are influenced in vitro by redox conditions and ageing. Mol Cell Biochem 2015; 410:165-74. [PMID: 26335900 DOI: 10.1007/s11010-015-2548-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Telocytes (TCs) are a novel cell type identified among interstitial cells in various organs. TCs are characterized by very long cell processes (tens to hundreds micrometres) named telopodes (Tps) with uneven calibre: dilations (podoms) and very thin segments (podomers). However, little is known about the factors which influence Tps conformation. Recently, extracellular matrix proteins were found to influence Tps extension, adherence and spreading. Here, we show that oxidative stress and ageing influence formation of new Tps of TCs cultivated from human non-pregnant myometrium. Using real-time videomicroscopy, we found that ageing the TCs to passage 21 increased the ratio of Tps/TC number with about 50 %, whereas oxidative stress hindered formation of new Tps in both aged and young TCs (passage 7). Under oxidative stress, newly formed cell processes were up to 25 % shorter. Migration pathway length was decreased by 30-40 % for both young and aged cells in an oxidative stress environment. Contrary, addition of N-acetyl cysteine in cell culture medium shifted TCs morphology to a long and slender profile. In conclusion, we showed that TCs specific morphology in vitro is influenced by oxidative status balance, as well as ageing.
Collapse
|
16
|
Abstract
Superoxide and its derived ROS (reactive oxygen species) have been considered for a long time to be generated as toxic by-products of metabolic events. Although ROS generated in low amounts are able to act as signalling molecules, ROS appear to also play a major role in aging and in the pathogenesis of diseases such as inflammation, diabetes and cancer. Since superoxide formation, in particular in mitochondria, is often considered to be an initial step in the pathogenesis of these diseases, improper function of the MnSOD (mitochondrial superoxide dismutase; SOD2) may be critical for tissue homoeostasis. However, the underlying regulatory mechanisms appear to be multiple and this article summarizes current aspects by which MnSOD can regulate carcinogenesis under various conditions.
Collapse
|
17
|
Abstract
The concept that excess superoxide production from mitochondria is the driving, initial cellular response underlying diabetes complications has been held for the past decade. However, results of antioxidant-based trials have been largely negative. In the present review, the data supporting mitochondrial superoxide as a driving force for diabetic kidney, nerve, heart, and retinal complications are reexamined, and a new concept for diabetes complications--mitochondrial hormesis--is presented. In this view, production of mitochondrial superoxide can be an indicator of healthy mitochondria and physiologic oxidative phosphorylation. Recent data suggest that in response to excess glucose exposure or nutrient stress, there is a reduction of mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several target tissues of diabetes complications. Persistent reduction of mitochondrial oxidative phosphorylation complex activity is associated with the release of oxidants from nonmitochondrial sources and release of proinflammatory and profibrotic cytokines, and a manifestation of organ dysfunction. Restoration of mitochondrial function and superoxide production via activation of AMPK has now been associated with improvement in markers of renal, cardiovascular, and neuronal dysfunction with diabetes. With this Perspective, approaches that stimulate AMPK and PGC1α via exercise, caloric restriction, and medications result in stimulation of mitochondrial oxidative phosphorylation activity, restore physiologic mitochondrial superoxide production, and promote organ healing.
Collapse
Affiliation(s)
- Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, San Diego, CA, and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA
| |
Collapse
|
18
|
Kim HS, Park JA, Na JS, Lee KH, Bae KH. Association Between Plasma Levels of Manganese and Periodontal Status: A Study Based on the Fourth Korean National Health and Nutrition Examination Survey. J Periodontol 2014; 85:1748-54. [DOI: 10.1902/jop.2014.140250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Rhieu BH, Shinde A, Epperly MW, Dixon T, Wang H, Chaillet R, Greenberger JS. Organ-specific responses of total body irradiated doxycycline-inducible manganese superoxide dismutase Tet/Tet mice. In Vivo 2014; 28:1033-1043. [PMID: 25398796 PMCID: PMC6436100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND/AIM We evaluated doxycycline-inducible manganese superoxide dismutase (MnSOD(tet/tet)) mice after 9.25 Gy total-body irradiation (TBI) or 20 Gy thoracic irradiation. MATERIALS AND METHODS Six-week-old MnSOD(tet/tet) or control C57BL/6NHsd mice on or off doxycycline (doxy) in food received 9.25 Gy TBI, were sacrificed at day 19 and bone marrow, brain, esophagus, heart, intestine, kidney, liver, lung, spleen and tongue harvested, total RNAs extracted and transcripts for irradiation response genes quantitated by real time-polymerase chain reaction (RT-PCR). RESULTS MnSOD(tet/tet) mice only survived with daily injections of doxy beginning 5 days after birth until weaning, at which time they were placed on food containing doxy. Manganese superoxide dismutase (MnSOD) transcript levels were reduced in all tissues except the lung. Adult mice survived with low MnSOD levels, but induced by doxy or TBI. Thoracic-irradiated MnSOD(tet/tet) mice survived past day 120. CONCLUSION MnSOD(tet/tet) mice should be valuable for elucidating the role of MnSOD in growth and irradiation response.
Collapse
Affiliation(s)
- Byung Han Rhieu
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Ashwin Shinde
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Richard Chaillet
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
20
|
Tao R, Vassilopoulos A, Parisiadou L, Yan Y, Gius D. Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 2014; 20:1646-54. [PMID: 23886445 PMCID: PMC3942696 DOI: 10.1089/ars.2013.5482] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE It is a well-established scientific observation that mammalian cells contain fidelity or watchdog proteins that maintain the correct function of cellular organelles. RECENT ADVANCES Over the past several years, the Sirtuin deacetylase family protein Sirt3 has emerged as a mitochondrial fidelity protein that directs energy generation and regulates reactive oxygen species (ROS) scavenging proteins. Loss of function or genetic mutation of these fidelity proteins has been shown to create a cellular environment that is permissive for the development of cellular damage associated with processes such as aging and carcinogenesis. CRITICAL ISSUES Mitochondria are the primary organelles that direct oxidative metabolism for the production of ATP; however, this is also a significant source of ROS. Thus, it is reasonable to propose that mitochondria should contain proteins that would signal downstream target molecules and/or ROS scavenger enzymes to maintain mitochondrial and cellular homeostatic poise. It is also reasonable to hypothesize that the mitochondria contain fidelity proteins similar to those found in the nucleus and cytoplasm. We discuss a new role of Sirt3 in the direction of the primary superoxide scavenger protein, manganese superoxide dismutase (MnSOD), and how the acetylation or deacetylation of several specific lysines appears to direct MnSOD enzymatic dismutase activity. FUTURE DIRECTIONS Aberrant downstream regulation of MnSOD by Sirt3 may be a potential source of cellular damage that accumulates with aging to create a tumor-permissive phenotype. Future studies can explore the role of MnSOD in age-related illness using this new mechanism of enzymatic regulation.
Collapse
Affiliation(s)
- Randa Tao
- 1 Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | | | | | | | | |
Collapse
|
21
|
Majid T, Ali YO, Venkitaramani DV, Jang MK, Lu HC, Pautler RG. In vivo axonal transport deficits in a mouse model of fronto-temporal dementia. NEUROIMAGE-CLINICAL 2014; 4:711-7. [PMID: 24936422 PMCID: PMC4053640 DOI: 10.1016/j.nicl.2014.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
Background Axonal transport is vital for neurons and deficits in this process have been previously reported in a few mouse models of Alzheimer's disease prior to the appearance of plaques and tangles. However, it remains to be determined whether axonal transport is defective prior to the onset of neurodegeneration. The rTg4510 mouse, a fronto-temporal dementia and parkinsonism-17 (FTDP-17) tauopathy model, over-express tau-P301L mutation found in familial forms of FTDP-17, in the forebrain driven by the calcium–calmodulin kinase II promoter. This mouse model exhibits tau pathology, neurodegeneration in the forebrain, and associated behavioral deficits beginning at 4–5 months of age. Animal model rTg4510 transgenic mice were used in these studies. Mice were given 2 μL of MnCl2 in each nostril 1 h prior to Magnetic Resonance Imaging (MRI). Following MnCl2 nasal lavage, mice were imaged using Manganese enhanced Magnetic Resonance Imaging (MEMRI) Protocol with TE = 8.5 ms, TR = 504 ms, FOV = 3.0 cm, matrix size = 128 × 128 × 128, number of cycles = 15 with each cycle taking approximately 2 min, 9 s, and 24 ms using Paravision software (BrukerBioSpin, Billerica, MA). During imaging, body temperature was maintained at 37.0 °C using an animal heating system (SA Instruments, Stony Brook, NY). Data analysis Resulting images were analyzed using Paravision software. Regions of interest (ROI) within the olfactory neuronal layer (ONL) and the water phantom consisting of one pixel (ONL) and 9 pixels (water) were selected and copied across each of the 15 cycles. Signal intensities (SI) of ONL and water phantom ROIs were measured. SI values obtained for ONL were then normalized the water phantom SI values. The correlation between normalized signal intensity in the ONL and time were assessed using Prism (GraphPad Software, San Diego, CA). Results Using the MEMRI technique on 1.5, 3, 5, and 10-month old rTg4510 mice and littermate controls, we found significant axonal transport deficits present in the rTg4510 mice beginning at 3 months of age in an age-dependent manner. Using linear regression analysis, we measured rates of axonal transport at 1.5, 3, 5, and 10 months of age in rTg4510 and WT mice. Axonal transport rates were observed in rTg4510 mice at 48% of WT levels at 3 months, 40% of WT levels at 5 months, and 30% of WT levels at 10 months of age. In order to determine the point at which tau appears in the cortex, we probed for phosphorylated tau levels, and found that pSer262 is present at 3 months of age, not earlier at 1.5 months of age, but observed no pathological tau species until 6 months of age, months after the onset of the transport deficits. In addition, we saw localization of tau in the ONL at 6 months of age. Discussion In our study, we identified the presence of age-dependent axonal transport deficits beginning at 3 months of age in rTg4510 mice. We correlated these deficits at 3 months to the presence of hyperphosphorylated tau in the brain and the presence within the olfactory epithelium. We observed tau pathology not only in the soma of these neurons but also within the axons and processes of these neurons. Our characterization of axonal transport in this tauopathy model provides a functional time point that can be used for future therapeutic interventions. We used MEMRI to define axonal transport rate changes in the rTg4510 mouse. We observed significant hyperphosphorylated tau starting at 3 months of age. We found an age-dependent decline in axonal transport rates. Declines in axonal transport correlated with increases in hyperphosphorylated tau.
Collapse
Affiliation(s)
- Tabassum Majid
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA ; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, USA
| | - Yousuf O Ali
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA ; The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Deepa V Venkitaramani
- Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ming-Kuei Jang
- Institute for Applied Cancer Science, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hui-Chen Lu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA ; The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA ; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA ; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, USA ; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Malaviya R, Laskin JD, Laskin DL. Oxidative stress-induced autophagy: role in pulmonary toxicity. Toxicol Appl Pharmacol 2014; 275:145-51. [PMID: 24398106 DOI: 10.1016/j.taap.2013.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/28/2013] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Choi MK, Bae YJ. Relationship between dietary magnesium, manganese, and copper and metabolic syndrome risk in Korean adults: the Korea National Health and Nutrition Examination Survey (2007-2008). Biol Trace Elem Res 2013; 156:56-66. [PMID: 24218228 DOI: 10.1007/s12011-013-9852-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/22/2013] [Indexed: 12/16/2022]
Abstract
Recent studies have reported correlations between mineral intake and metabolic syndrome (MS), but accurate relationships and consistency in the results are difficult to confirm. Accordingly, this study aims to assess the dietary intakes of magnesium (Mg), manganese (Mn), and copper (Cu) to determine their relationship with MS. Data from a total of 5,136 adults (2,084 men, 3,052 women) was collected from the 2007-2008 Korea National Health and Nutrition Examination Survey (KNHANES), and the intakes of Mg, Mn, and Cu of the MS patients were compared with those of healthy adults. The relationship between the intakes of these minerals and the MS risks was analyzed. Diagnosis of MS was evaluated by the National Cholesterol Education Program's Adult Treatment Panel III (NCEP-ATP III) standards. Among all study subjects, 25.9 % (540 subjects) of the men and 24.5 % (748 subjects) of the women met diagnostic criteria for inclusion in the MS group. In the men, daily intakes of Mg and Cu in the MS group were significantly lower than those in control group, and in the women, daily intakes of energy, Mg, Mn, and Cu in the MS group were significantly lower than those of the control group. The women subjects with high blood pressure showed significantly lower intakes of Mg, Mn, and Cu than control subjects. In addition, in the women, the highest quartile of Mg and Cu was inversely associated with MS, but with adjustment were not maintained. However, in the postmenopausal women, MS was significant and inversely associated with the highest quartiles of Cu intake and the association remained significant after adjustments. Considering that MS incidence increases and dietary intake and nutrient density decrease with increasing age, and mineral intake is reduced accordingly, these results suggest that meal management with adequate mineral intake is advisable to control MS.
Collapse
Affiliation(s)
- Mi-Kyeong Choi
- Division of Food Science, Kongju National University, Yesan, 340-702, South Korea
| | | |
Collapse
|
24
|
Kawamura K, Sunanaga T. Senescence-associated superoxide dismutase influences mitochondrial gene expression in budding tunicates. Dev Growth Differ 2013; 55:606-14. [PMID: 23679913 DOI: 10.1111/dgd.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 11/27/2022]
Abstract
A recent study has shown that in the budding tunicate Polyandrocarpa misakiensis, the mitochondrial respiratory chain (MRC) dramatically attenuates the gene activity during senescence. In this study, we examined the possible involvement of superoxide dismutase (SOD) in the attenuation of gene expression of cytochrome c oxidase subunit 1 (COX1) in aged zooids. By RT-PCR and in situ hybridization, Cu/Zn-SOD (SOD1) was found to be expressed in most cells and tissues of buds and juvenile zooids but showed a conspicuous decline in senescent adult zooids, except in the gonad tissue in which the cytoplasm of juvenile oocytes was stained heavily. This expression pattern of SOD1 was similar to that of COX1. In contrast to SOD1, Mn-SOD (SOD2) was expressed constitutively in both somatic and germline tissues of buds, juvenile zooids, and senescent adult zooids. Knockdown of SOD1 by RNAi diminished the gene activity of not only SOD1 but also of COX1. The resultant zooids had transient deficiencies in growth and budding, and they recovered from these deficiencies approximately 1 month later. Our results indicate that in P. misakiensis, SOD1 is a senescence-associated nuclear gene and that the experimental decline in SOD1 gene expression accompanies the attenuation of MRC gene activity. Although it is uncertain how SOD1 is downregulated during tunicate senescence, the decreased SOD1 activity could be one of the main causes of MRC gene attenuation during normal senescence.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, 780-8520, Japan.
| | | |
Collapse
|
25
|
Robb EL, Stuart JA. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression. Phytother Res 2013; 28:120-31. [PMID: 23526725 DOI: 10.1002/ptr.4970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 02/06/2023]
Abstract
Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. As data on phytoestrogens continues to accumulate, it is clear that there is significant overlap in the cellular effects elicited by these various compounds. Here, we show that one mechanism by which a number of phytoestrogens achieve their growth inhibitory and cytoprotective effects is via induction of the mitochondrial manganese superoxide dismutase (MnSOD). Eight phytoestrogens, including resveratrol, coumestrol, kaempferol, genistein, daidzein, apigenin, isoliquirtigenin and glycitin, were tested for their ability to induce MnSOD expression in mouse C2C12 and primary myoblasts. Five of these, resveratrol, coumestrol, kaempferol, genistein and daidzein, significantly increased MnSOD expression, slowed proliferative growth and enhanced stress resistance (hydrogen peroxide LD50) . When siRNA was used to prevent the MnSOD induction by genistein, coumestrol or daidzein, none of these compounds exerted any effect on proliferative growth, and only the effect of coumestrol on stress resistance persisted. The estrogen antagonist ICI182780 prevented the increased MnSOD expression and also the changes in cell growth and stress resistance, indicating that these effects are mediated by estrogen receptors (ER). The absence of effects of resveratrol or coumestrol, but not genistein, in ERβ-null cells further indicated that this ER in particular is important in mediating these effects. Thus, an ER-mediated induction of MnSOD expression appears to underlie the growth inhibitory and cytoprotective activities of multiple phytoestrogens.
Collapse
Affiliation(s)
- Ellen L Robb
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, Ontario, Canada, L2S 3A1
| | | |
Collapse
|
26
|
Candas D, Fan M, Nantajit D, Vaughan AT, Murley JS, Woloschak GE, Grdina DJ, Li JJ. CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J Mol Cell Biol 2012; 5:166-75. [PMID: 23243068 DOI: 10.1093/jmcb/mjs062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD), a major antioxidant enzyme within the mitochondria, is responsible for the detoxification of free radicals generated by cellular metabolism and environmental/therapeutic irradiation. Cell cycle-dependent kinase Cdk1, along with its regulatory partner CyclinB1, plays important roles in the regulation of cell cycle progression as well as in genotoxic stress response. Herein, we identified the presence of the minimal Cdk1 phosphorylation consensus sequence ([S/T]-P; Ser106) in human MnSOD, suggesting Cdk1 as a potential upstream kinase of MnSOD. A substantial amount of CyclinB1/Cdk1 was found to localize in the mitochondrion upon irradiation. The enhanced Cdk1/MnSOD interaction and MnSOD phosphorylation were detected in both the irradiated human cells and mouse tissues. We report that CyclinB1/Cdk1 can regulate MnSOD through reversible Ser106 phosphorylation, both in vivo and in vitro. The CyclinB1/Cdk1-mediated MnSOD Ser106 resulted in increased MnSOD activity and stability, along with improved mitochondrial function and cellular resistance to radiation-induced apoptosis. These results demonstrate a unique pro-survival mechanism by which cells enhance the survival via CyclinB1/Cdk1-mediated MnSOD activation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Demet Candas
- Department of Radiation Oncology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kase BA, Northrup H, Morrison AC, Davidson CM, Goiffon AM, Fletcher JM, Ostermaier KK, Tyerman GH, Au KS. Association of copper-zinc superoxide dismutase (SOD1) and manganese superoxide dismutase (SOD2) genes with nonsyndromic myelomeningocele. ACTA ACUST UNITED AC 2012; 94:762-9. [PMID: 22972774 DOI: 10.1002/bdra.23065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/22/2012] [Accepted: 07/06/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND A common and severe neural tube defect (NTD) phenotype, myelomeningocele (MM), results from the defective closure of the caudal end of the neural tube with herniation of the spinal cord and meninges through the vertebral column. The exact mechanisms for NTDs are unknown, but excessive oxidative stress, particularly in association with maternal diabetes, has been postulated as a mechanism for MM. METHODS The SNPlex Genotyping (ABI, Foster City, CA) platform was used to investigate single nucleotide polymorphisms (SNPs) across the superoxide dismutase (SOD) 1 and 2 genes to assess their association with MM risk. The study population included 329 trio (affected child and both parents) and 281 duo (affected child and one parent) families. Only cases with documented MM were studied. Seventeen SNPs across the SOD1 and SOD2 genes met the quality-control criteria to be considered for statistical analysis. Genetic association was assessed using the family-based transmission disequilibrium test in PLINK (a genome association analysis toolset). RESULTS Four SNPs in the SOD1 gene (rs 202446, rs202447, rs4816405, and rs2070424) and one SNP in the SOD2 gene ( rs5746105) [corrected] appeared to be associated with MM risk in our population. After adjusting for multiple testing, these SNPs remained significant. CONCLUSION This study provides the first genetic evidence to support association of myelomeningocele with superoxide scavenging. The rare alleles of the five specific SNPs within SOD1 and SOD2 appear to confer a protective effect on the susceptibility for MM risk in the MM population tested. Further evaluation of the roles of superoxide scavenging and neural tube development is warranted.
Collapse
Affiliation(s)
- Benjamin A Kase
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Passos JF, Zglinicki TV. Mitochondrial dysfunction and cell senescence--skin deep into mammalian aging. Aging (Albany NY) 2012; 4:74-5. [PMID: 22337807 PMCID: PMC3314168 DOI: 10.18632/aging.100432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joao F Passos
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | | |
Collapse
|
29
|
Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol 2012; 32:200-6. [PMID: 22370992 DOI: 10.1097/jcp.0b013e3182485791] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorders are a neurodevelopmental disorders with reduced cortical functional connectivity relating to social cognition. Polyunsaturated fatty acids arachidonic acid (ARA) and docosahexaenoic acid (DHA) may have key role in brain network maturation. In particularly, ARA is important in signal transduction related to neuronal maturation. Supplementation with larger ARA doses added to DHA may therefore mitigate social impairment. In a 16-week, double-blind, randomized, placebo-controlled trial, we evaluated the efficacy of supplementation with large doses of ARA added to DHA (n = 7) or placebo (n = 6) in 13 participants (mean age, 14.6 [SD, 5.9] years). To examine underlying mechanisms underlying the effect of our supplementation regimen, we examined plasma levels of antioxidants transferrin and superoxide dismutase, which are useful markers of signal transduction. The outcome measures were the Social Responsiveness Scale and the Aberrant Behavior Checklist-Community. Repeated-measures analysis of variance revealed that our supplementation regimen significantly improved Aberrant Behavior Checklist-Community-measured social withdrawal and Social Responsiveness Scale-measured communication. Treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: treatment groups, 0.87 vs, placebo, 0.44; social withdrawal: treatment groups, 0.88, vs placebo, 0.54). There was a significant difference in the change in plasma transferrin levels and a trend toward a significant difference in the change in plasma superoxide dismutase levels between the 2 groups. This preliminary study suggests that supplementation with larger ARA doses added to DHA improves impaired social interaction in individuals with autism spectrum disorder by up-regulating signal transduction.
Collapse
|
30
|
Horan MP, Pichaud N, Ballard JWO. Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. ACTA ACUST UNITED AC 2012; 67:1022-35. [DOI: 10.1093/gerona/glr263] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Abstract
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.
Collapse
|
32
|
Hamilton RT, Walsh ME, Van Remmen H. Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging. ACTA ACUST UNITED AC 2012; Suppl 4. [PMID: 25300955 DOI: 10.4172/2161-0681.s4-005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is a complex process that affects every major system at the molecular, cellular and organ levels. Although the exact cause of aging is unknown, there is significant evidence that oxidative stress plays a major role in the aging process. The basis of the oxidative stress hypothesis is that aging occurs as a result of an imbalance between oxidants and antioxidants, which leads to the accrual of damaged proteins, lipids and DNA macromolecules with age. Age-dependent increases in protein oxidation and aggregates, lipofuscin, and DNA mutations contribute to age-related pathologies. Many transgenic/knockout mouse models over expressing or deficient in key antioxidant enzymes have been generated to examine the effect of oxidative stress on aging and age-related diseases. Based on currently reported lifespan studies using mice with altered antioxidant defense, there is little evidence that oxidative stress plays a role in determining lifespan. However, mice deficient in antioxidant enzymes are often more susceptible to age-related disease while mice overexpressing antioxidant enzymes often have an increase in the amount of time spent without disease, i.e., healthspan. Thus, by understanding the mechanisms that affect healthy aging, we may discover potential therapeutic targets to extend human healthspan.
Collapse
Affiliation(s)
- Ryan T Hamilton
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; GRECC, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
33
|
Chen H, Yu M, Li M, Zhao R, Zhu Q, Zhou W, Lu M, Lu Y, Zheng T, Jiang J, Zhao W, Xiang K, Jia W, Liu L. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol Cell Biochem 2011; 363:85-91. [DOI: 10.1007/s11010-011-1160-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
|
34
|
Tyurina YY, Kisin ER, Murray A, Tyurin VA, Kapralova VI, Sparvero LJ, Amoscato AA, Samhan-Arias AK, Swedin L, Lahesmaa R, Fadeel B, Shvedova AA, Kagan VE. Global phospholipidomics analysis reveals selective pulmonary peroxidation profiles upon inhalation of single-walled carbon nanotubes. ACS NANO 2011; 5:7342-7353. [PMID: 21800898 PMCID: PMC3557495 DOI: 10.1038/ncomms1499] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
Abstract
It is commonly believed that nanomaterials cause nonspecific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in the two most abundant phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine, and phosphatidylinositol, whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This nonrandom peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H(2)O(2)/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria-targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Frost RA, Lang CH. mTor signaling in skeletal muscle during sepsis and inflammation: where does it all go wrong? Physiology (Bethesda) 2011; 26:83-96. [PMID: 21487027 DOI: 10.1152/physiol.00044.2010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that exquisitely regulates protein metabolism in skeletal muscle. mTOR integrates input from amino acids, growth factors, and intracellular cues to make or break muscle protein. mTOR accomplishes this task by stimulating the phosphorylation of substrates that control protein translation while simultaneously inhibiting proteasomal and autophagic protein degradation. In a metabolic twist of fate, sepsis induces muscle atrophy in part by the aberrant regulation of mTOR. In this review, we track the steps of normal mTOR signaling in muscle and examine where they go astray in sepsis and inflammation.
Collapse
Affiliation(s)
- Robert A Frost
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | |
Collapse
|
36
|
Wagner BA, Venkataraman S, Buettner GR. The rate of oxygen utilization by cells. Free Radic Biol Med 2011; 51:700-12. [PMID: 21664270 PMCID: PMC3147247 DOI: 10.1016/j.freeradbiomed.2011.05.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/26/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
The discovery of oxygen is considered by some to be the most important scientific discovery of all time--from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body-on demand, i.e., just in time. Humans use oxygen to extract approximately 2550 calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 mol of dioxygen per day, or 2.5×10(-4) mol s(-1). This is an average rate of oxygen utilization of 2.5×10(-18) mol cell(-1) s(-1), i.e., 2.5 amol cell(-1) s(-1). Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell(-1) s(-1). There is a loose positive linear correlation of the rate of oxygen consumption by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology.
Collapse
Affiliation(s)
- Brett A Wagner
- Free Radical and Radiation Biology Program and ESR Facility, The University of Iowa, Iowa City, IA 52242–1181, USA
| | | | | |
Collapse
|
37
|
Miriyala S, Holley AK, St Clair DK. Mitochondrial superoxide dismutase--signals of distinction. Anticancer Agents Med Chem 2011; 11:181-90. [PMID: 21355846 DOI: 10.2174/187152011795255920] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/17/2011] [Indexed: 11/22/2022]
Abstract
Mitochondrial superoxide dismutase (MnSOD) neutralizes the highly reactive superoxide radical (O(2)(˙-)), the first member in a plethora of mitochondrial reactive oxygen species (ROS). Over the past decades, research has extended the prevailing view of mitochondrion well beyond the generation of cellular energy to include its importance in cell survival and cell death. In the normal state of a cell, endogenous antioxidant enzyme systems maintain the level of reactive oxygen species generated by the mitochondrial respiratory chain. Mammalian mitochondria are important to the production of reactive oxygen species, which underlie oxidative damage in many pathological conditions and contribute to retrograde redox signaling from the organelle to the cytosol and nucleus. Mitochondria are further implicated in various metabolic and aging-related diseases that are now postulated to be caused by misregulation of physiological systems rather than pure accumulation of oxidative damage. Thus, the signaling mechanisms within mitochondria, and between the organelle and its environment, have gained interest as potential drug targets. Here, we discuss redox events in mitochondria that lead to retrograde signaling, the role of redox events in disease, and their potential to serve as therapeutic targets.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
38
|
Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR, Gius D. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 2011; 3:102-7. [PMID: 21386137 PMCID: PMC3082006 DOI: 10.18632/aging.100291] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A fundamental observation in biology is that mitochondrial function, as measured by increased reactive oxygen species (ROS), changes significantly with age, suggesting a potential mechanistic link between the cellular processes governing longevity and mitochondrial metabolism homeostasis. In addition, it is well established that altered ROS levels are observed in multiple age-related illnesses including carcinogenesis, neurodegenerative, fatty liver, insulin resistance, and cardiac disease, to name just a few. Manganese superoxide dismutase (MnSOD) is the primary mitochondrial ROS scavenging enzyme that converts superoxide to hydrogen peroxide, which is subsequently converted to water by catalase and other peroxidases. It has recently been shown that MnSOD enzymatic activity is regulated by the reversible acetylation of specific, evolutionarily conserved lysine(s) in the protein. These results, suggest for the first time, that the mitochondria contain bidirectional post-translational signaling networks, similar to that observed in the cytoplasm and nucleus, and that changes in lysine acetylation alter MnSOD enzymatic activity. In addition, these new results demonstrate that the mitochondrial anti-aging or fidelity / sensing protein, SIRT3, responds to changes in mitochondrial nutrient and/or redox status to alter the enzymatic activity of specific downstream targets, including MnSOD that adjusts and/or maintains ROS levels as well as metabolic homeostatic poise.
Collapse
Affiliation(s)
- Ozkan Ozden
- Departments of Cancer Biology, Pediatrics, and Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|