1
|
McGee CC, Bandyopadhyay T, McCracken CN, Talib E, Patterson CE, Outten CE. Cysteine import via the high-affinity GSH transporter Hgt1 rescues GSH auxotrophy in yeast. J Biol Chem 2025; 301:108131. [PMID: 39716489 PMCID: PMC11786745 DOI: 10.1016/j.jbc.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
Glutathione (GSH) is an abundant thiol-containing tripeptide that functions in redox homeostasis, protein folding, and iron (Fe) metabolism. In Saccharomyces cerevisiae, GSH depletion leads to increased sensitivity to oxidants and other toxic compounds, disruption of iron-sulfur (Fe-S) cluster biogenesis, and eventually cell death. GSH pools are supplied by intracellular biosynthesis and GSH import from the extracellular environment. Consequently, in GSH-depleted growth media, deletion of the gene encoding the first enzyme in the GSH biosynthetic pathway (GSH1) is lethal in yeast. At the other extreme, GSH overaccumulation via overexpression of the high-affinity GSH transporter Hgt1 is also toxic to cells, leading to reductive stress. Here, we engineered a yeast strain that combines gsh1 deletion with HGT1 overexpression to study the cellular effects of oscillating between GSH-deplete and -replete conditions. Surprisingly, we find that constitutive expression of HGT1 in gsh1Δ cells rescues the GSH auxotrophy of this strain. We also show that addition of cysteine or cysteine derivatives to the growth media is required for this rescue. GSH limitation in yeast causes intracellular Fe overload because of disruption of an Fe-S cluster-dependent pathway that regulates the activity of the low Fe-sensing transcription factors Aft1 and Aft2. Analysis of Fe regulation and other Fe-S cluster-dependent pathways reveals that HGT1 overexpression partially alleviates the Fe starvation-like response of gsh1Δ cells. Taken together, these results suggest that HGT1 overexpression facilitates import of cysteine or cysteine derivatives that allow limited Fe-S cluster biogenesis to sustain cell growth in the absence of GSH.
Collapse
Affiliation(s)
- Crystal C McGee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Tirthankar Bandyopadhyay
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Cailin N McCracken
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Evan Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Courtney E Patterson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
2
|
YILDIZ H. Effects of glutathione on mitochondrial DNA and antioxidant enzyme activities in Drosophila melanogaster. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1084592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The free radical theory in aging assumes that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. The intake of nutritional antioxidants can prevent this damage by neutralizing reactive oxygen derivatives. Glutathione (GSH; en-L-Glutamyl-L-cysteinyl glycine) is the lowest molecular weight thiol in the cells and as a cofactor of many enzymes and a potent antioxidant plays an important role in maintaining normal cell functions by destroying toxic oxygen radicals. In this study, the effects of GSH on SOD, GST and catalase enzymes and mtDNA damage were investigated at various time intervals by giving reduced glutathione to Drosophila. It was observed that 3-week GSH administration did not have a statistically significant effect on SOD and GST activities whereas GSH application decreased the catalase enzyme activities significantly. Although the decrease in antioxidant capacity with age was observed in SOD and catalase enzymes, such a situation was not observed in GST enzyme activities. There was no statistically significant difference between the control and GSH groups in mtDNA copy number values, while in the GSH group, oxidative mtDNA damage was high. These results may be due to the prooxidant effect of GSH at the dose used in this study.
Collapse
|
3
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Zhang D, Dailey OR, Simon DJ, Roca-Datzer K, Jami-Alahmadi Y, Hennen MS, Wohlschlegel JA, Koehler CM, Dabir DV. Aim32 is a dual-localized 2Fe-2S mitochondrial protein that functions in redox quality control. J Biol Chem 2021; 297:101135. [PMID: 34461091 PMCID: PMC8482512 DOI: 10.1016/j.jbc.2021.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
Collapse
Affiliation(s)
- Danyun Zhang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Owen R Dailey
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daniel J Simon
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Kamilah Roca-Datzer
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Mikayla S Hennen
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA.
| |
Collapse
|
5
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
6
|
Kang SO, Kwak MK. Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Candida albicans. J Microbiol Biotechnol 2021; 31:79-91. [PMID: 33203822 PMCID: PMC9705698 DOI: 10.4014/jmb.2010.10057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
γ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in Candida albicans. In glutathione-depleted Δgcs1, we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking MGD1 or ADH1 exhibit a poor redox state. However, there is little convincing evidence for a reciprocal relationship between methylglyoxal scavenger genes-disrupted mutants and changes in glutathione-(in)dependent redox regulation. Herein, we attempt to demonstrate a functional role for methylglyoxal scavengers, modeled on a triple disruptant (Δmgd1/Δadh1/Δgcs1), to link between antioxidative enzyme activities and their metabolites in glutathione-depleted conditions. Despite seeing elevated methylglyoxal in all of the disruptants, the result saw a decrease in pyruvate content in Δmgd1/Δadh1/Δgcs1 which was not observed in double gene-disrupted strains such as Δmgd1/Δgcs1 and Δadh1/Δgcs1. Interestingly, Δmgd1/Δadh1/Δgcs1 exhibited a significantly decrease in H2O2 and superoxide which was also unobserved in Δmgd1/Δgcs1 and Δadh1/Δgcs1. The activities of the antioxidative enzymes erythroascorbate peroxidase and cytochrome c peroxidase were noticeably higher in Δmgd1/Δadh1/Δgcs1 than in the other disruptants. Meanwhile, Glr1 activity severely diminished in Δmgd1/Δadh1/Δgcs1. Monitoring complementary gene transcripts between double gene-disrupted Δmgd1/Δgcs1 and Δadh1/Δgcs1 supported the concept of an unbalanced redox state independent of the Glr1 activity for Δmgd1/Δadh1/Δgcs1. Our data demonstrate the reciprocal use of Eapx1 and Ccp1 in the absence of both methylglyoxal scavengers; that being pivotal for viability in non-filamentous budding yeast.
Collapse
Affiliation(s)
- Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Kyu Kwak
- Department of Food and Nutrition, Institute of Food and Nutrition Science, Eulji University, Seongnam 13135, Republic of Korea
| |
Collapse
|
7
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
8
|
García-Quirós E, Alché JDD, Karpinska B, Foyer CH. Glutathione redox state plays a key role in flower development and pollen vigour. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:730-741. [PMID: 31557297 PMCID: PMC6946011 DOI: 10.1093/jxb/erz376] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/10/2019] [Indexed: 05/04/2023]
Abstract
The importance of the glutathione pool in the development of reproductive tissues and in pollen tube growth was investigated in wild-type (WT) Arabidopsis thaliana, a reporter line expressing redox-sensitive green fluorescent protein (roGFP2), and a glutathione-deficient cad2-1 mutant (cad2-1/roGFP2). The cad2-1/roGFP2 flowers had significantly less reduced glutathione (GSH) and more glutathione disulfide (GSSG) than WT or roGFP2 flowers. The stigma, style, anther, germinated pollen grains, and pollen tubes of roGFP2 flowers had a low degree of oxidation. However, these tissues were more oxidized in cad2-1/roGFP2 flowers than the roGFP2 controls. The ungerminated pollen grains were significantly more oxidized than the germinated pollen grains, indicating that the pollen cells become reduced upon the transition from the quiescent to the metabolically active state during germination. The germination percentage was lower in cad2-1/roGFP2 pollen and pollen tube growth arrested earlier than in roGFP2 pollen, demonstrating that increased cellular reduction is essential for pollen tube growth. These findings establish that ungerminated pollen grains exist in a relatively oxidized state compared with germinating pollen grains. Moreover, failure to accumulate glutathione and maintain a high GSH/GSSG ratio has a strong negative effect on pollen germination.
Collapse
Affiliation(s)
- Estefanía García-Quirós
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Christine H Foyer
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Correspondence:
| |
Collapse
|
9
|
Low Ctr1p, due to lack of Sco1p results in lowered cisplatin uptake and mediates insensitivity of rho0 yeast to cisplatin. J Inorg Biochem 2018; 187:14-24. [PMID: 30041154 DOI: 10.1016/j.jinorgbio.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Copper and cisplatin share copper transporter 1 (Ctr1) for cellular import. Copper depletion increases sensitivity of wild type yeast to cisplatin, whereas mitochondrial DNA-deficient rho0 cells are resistant to cisplatin. In the current study, we sought to determine whether copper deprivation modulates sensitivity of rho0 yeast to cisplatin. Yeast cultures grown in low copper medium and exposed to bathocuproine disulfonic acid resulted in significant reduction of intracellular copper. We report here that low copper medium rendered wild type hypersensitive to cisplatin, but failed to sensitize rho0 yeast to cisplatin. Wild type yeast grown in low copper medium exhibited ~2.0 fold enhanced cytotoxicity in survival and colony-forming ability compared to copper adequate wild type cells. The effect of copper restriction on cisplatin sensitivity was associated with upregulation of copper transporter 1 mRNA as well as protein, facilitating enhanced uptake and accumulation of cisplatin. Rho0 yeast also showed increased copper transporter 1 mRNA upon copper restriction, but failed to increase corresponding protein. Loss of synthesis of cytochrome coxidase 1 protein (Sco1) in rho0 cells deregulated copper transporter 1, impaired Pt uptake and lowered cytotoxicity, despite lowered glutathione levels. Sco1Δ mutants exhibited low copper transporter 1, reduced Pt accumulation suggesting that Sco1 mediated regulation of copper transporter 1 is responsible for altered sensitivity to cisplatin. Rho0 cells demonstrated loss of Sco1, resulting in copper deficiency by lowering copper transporter 1 abundance, via mechanism involving increased turnover due to ubiquitination. These findings reveal that a Sco1-dependent mitochondrial signal regulates cellular cisplatin import and cytotoxicity.
Collapse
|
10
|
Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 2018; 293:11984-11995. [PMID: 29871930 DOI: 10.1074/jbc.ra118.001824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jonathan D Rand
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alan J Weids
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ximeng Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris J Kershaw
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
11
|
Kwak MK, Ku M, Kang SO. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim Biophys Acta Gen Subj 2018; 1862:18-39. [DOI: 10.1016/j.bbagen.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022]
|
12
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
13
|
El-Ansary A, Bjørklund G, Chirumbolo S, Alnakhli OM. Predictive value of selected biomarkers related to metabolism and oxidative stress in children with autism spectrum disorder. Metab Brain Dis 2017; 32:1209-1221. [PMID: 28497358 DOI: 10.1007/s11011-017-0029-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Autism spectrum disorder (ASD) as a neurodevelopmental disorder is characterized by impairments in social interaction, communication, and restricted, repetitive behavior. Several and reproducible studies have suggested that oxidative stress may represent one of the primary etiological mechanism of ASD that can be targeted for therapeutic intervention. In the present study, multiple regression and combined receiver operating characteristic (ROC) analysis were used to search for a relationship between impaired energy and oxidative metabolic pathways in the etiology of ASD and to find the linear combination that maximizes the partial area under a ROC curve for a pre-identified set of markers related to energy metabolism and oxidative stress. Thirty children with ASD and 30 age and gender matched controls were enrolled in the study. Using either spectrophotometric or ELISA-colorimetric assay, levels of lipid peroxides, vitamin E, vitamin C, glutathione (GSH)/glutathione disulfide (GSSG) together with the enzymatic activity of catalase, plasma glutathione peroxidase (GPx), and blood superoxide dismutase (SOD), were measured in peripheral blood samples, as biomarkers related to oxidative stress. Creatine kinase, ectonucleotidases (ADPase and ATPase) Na+/K+ (ATPase), lactate, inorganic phosphate, and levels of adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) together with adenylate energy charge, were also measured as markers of impaired energy metabolism. Statistical analysis using ROC curves, multiple and logistic regression were performed. A remarkable increase in the area under the curve for most of the combined markers, representing both energy impaired metabolism or oxidative stress, was observed by using combined ROC analyses. Moreover, higher specificity and sensitivity of the combined markers were also reported. The present study indicated that the measurement of the predictive value of selected biomarkers related to energy metabolism and oxidative stress in children with ASD using ROC analysis should lead to the better identification of the etiological mechanism of ASD associated with metabolism and diet. Agents with activity against the impaired metabolic pathway associated with ASD including the metabolic defects and involved enzymes hold a promise as a novel therapy for ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Osima M Alnakhli
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Liu W, Xu Z, Li H, Guo M, Yang T, Feng S, Xu B, Deng Y. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum Exp Toxicol 2016; 36:949-966. [PMID: 27837179 DOI: 10.1177/0960327116677355] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mercury (Hg) represents a ubiquitous environmental heavy metal that could lead to severe toxic effects in a variety of organs usually at a low level. The present study focused on the liver oxidative stress, one of the most important roles playing in Hg hepatotoxicity, by evaluation of different concentrations of mercuric chloride (HgCl2) administration. Moreover, the protective potential of curcumin against Hg hepatotoxic effects was also investigated. Eighty-four rats were randomly divided into six groups for a three-days experiment: control, dimethyl sulfoxide control, HgCl2 treatment (0.6, 1.2, and 2.4 mg kg-1 day-1), and curcumin pretreatment (100 mg kg-1 day-1) groups. Exposure of HgCl2 resulted in acute dose-dependent hepatotoxic effects. Administration of 2.4 mg kg-1 HgCl2 significantly elevated total Hg, nonprotein sulfhydryl, reactive oxygen species formation, malondialdehyde, apoptosis levels, serum lactate dehydrogenase, and alanine transaminase activities, with an impairment of superoxide dismutase and glutathione peroxidase in the liver. Moreover, HgCl2 treatment activated nuclear factor-E2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in further investigation, with a significant upregulation of Nrf2, heme oxygenase-1, and γ-glutamylcysteine synthetase heavy subunit expression, relative to control. Pretreatment with curcumin obviously prevented HgCl2-induced liver oxidative stress, which may be due to its free radical scavenging or Nrf2-ARE pathway-inducing properties. Taking together these data suggest that curcumin counteracts HgCl2 hepatotoxicity through antagonizing liver oxidative stress.
Collapse
Affiliation(s)
- W Liu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Z Xu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - H Li
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - M Guo
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - T Yang
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - S Feng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - B Xu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yu Deng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Gostimskaya I, Grant CM. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radic Biol Med 2016; 94:55-65. [PMID: 26898146 PMCID: PMC4851219 DOI: 10.1016/j.freeradbiomed.2016.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron-sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1(M1L) mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron-sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own.
Collapse
Affiliation(s)
- Irina Gostimskaya
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chris M Grant
- University of Manchester, Faculty of Life Sciences, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
16
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
17
|
Jallouli M, El Bini Dhouib I, Dhouib H, Lasram M, Gharbi N, El Fazaa S. Disruption of steroidogenesis after dimethoate exposure and efficacy of N-acetylcysteine in rats: an old drug with new approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7975-7984. [PMID: 26769589 DOI: 10.1007/s11356-016-6070-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Organophosphates (OPs) like dimethoate (DMT), are pesticides used worldwide, which can affect both animals and human. Whereas their toxicity is due to acetylcholinesterase inhibition, their secondary toxic effects have been related to free oxygen radical biosynthesis. The present study was designed to investigate the reprotoxic effects of DMT and the protective role of N-acetylcysteine (NAC) in male rat. DMT (20 mg/ kg/body weight) was administered daily to rats via gavage in corn oil and NAC (2 g/l) was added to drinking water for 30 days. Rats were sacrificed on the 30th day, 2 h after the last administration. Markers of testis injury (steroidogenesis impairment) and oxidative stress (lipid peroxidation, reduced glutathione, and antioxidant status) were assessed. In DMT-exposed rats, the serum level of testosterone was decreased. Further, a significant increase in lipid peroxidation level and a significant decrease in the activities of antioxidant enzymes were observed in the testis of rats during DMT intoxication. Real-time PCR (RT-PCR) analysis demonstrated a decrease in messenger RNA (mRNA) levels for testicular steroidogenic acute regulatory StAR protein, cytochrome P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β hydroxysteroid dehydrogenase (17β-HSD) in the testis after DMT exposure. No significant changes in the oxidative stress status and selected reproductive variables were observed on CTN group, whereas NAC restored the oxidative stress and the steroidogenesis on NAC group. Dimethoate induces reprotoxicity and oxidative stress. N-acetylcysteine showed therapeutic recovery effects against dimethoate toxicity.
Collapse
Affiliation(s)
- Manel Jallouli
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University Tunis, Tunis, 2092, Tunisia.
| | - Ines El Bini Dhouib
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University Tunis, Tunis, 2092, Tunisia
| | - Hanène Dhouib
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University Tunis, Tunis, 2092, Tunisia
| | - Montassar Lasram
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University Tunis, Tunis, 2092, Tunisia
| | - Najoua Gharbi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University Tunis, Tunis, 2092, Tunisia
| | - Saloua El Fazaa
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, El Manar University Tunis, Tunis, 2092, Tunisia
| |
Collapse
|
18
|
Kowalec P, Grynberg M, Pająk B, Socha A, Winiarska K, Fronk J, Kurlandzka A. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov048. [PMID: 26091838 DOI: 10.1093/femsyr/fov048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.
Collapse
Affiliation(s)
- Piotr Kowalec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Pająk
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Anna Socha
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
19
|
El-Sonbaty SM, El-Hadedy DE. Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3400-7. [PMID: 23089956 DOI: 10.1007/s11356-012-1250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Exposure to environmental chemicals and oxidative stress particularly at low dose levels may produce additive or synergistic interactions not seen in single component exposure. Exposure to cadmium, lead, and ultraviolet rays occurs in many occupational settings, such as pigment and battery production, galvanization, and recycling of electric tools. However, little is known about interactions between heavy metals and ultraviolet rays. This study aimed to evaluate the interactions of ultraviolet rays of 254 nm (UV-B) with cadmium or lead on Bacillus cereus. B. cereus was treated with different concentrations of cadmium or lead followed by exposure to UV-B radiation as combined effect. Photoirradiation of B. cereus with UV-B with exposure to cadmium or lead results in DNA damage, cytotoxicity, depletion of glutathione, and formation of lipid peroxidation. UV-B rays alone enhanced glutathione production which was depleted with lead and high doses of cadmium. Lead alone does not increase DNA breaking. The mechanism behind these interactions might be repair inhibition of oxidative DNA damage, since a decrease in repair capacity will increase susceptibility to reactive oxygen species generated by cadmium or lead. Lipid peroxidation was increased with exposure to UV-B and cadmium or lead. DNA, glutathione, and lipid peroxidation can be used as biomarkers to identify possible environmental contamination in bacteria. One conclusion from this model is the existence of more than multiplicative effects for co-exposures of cadmium or lead and UV rays.
Collapse
Affiliation(s)
- S M El-Sonbaty
- Department of Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (AEA), Cairo, Egypt,
| | | |
Collapse
|
20
|
Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 2014; 15:417-38. [PMID: 25015781 DOI: 10.1007/s10522-014-9515-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.
Collapse
|
21
|
Yoboue ED, Mougeolle A, Kaiser L, Averet N, Rigoulet M, Devin A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1093-8. [PMID: 24602596 DOI: 10.1016/j.bbabio.2014.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/27/2023]
Abstract
In yeast, there is a constant growth yield during proliferation on non-fermentable substrate where the ATP generated originates from oxidative phosphorylation. This constant growth yield is due to a tight adjustment between the growth rate and the cellular mitochondrial amount. We showed that this cellular mitochondrial amount is strictly controlled by mitochondrial biogenesis. Moreover, the Ras/cAMP pathway is the cellular signaling pathway involved in the regulation of mitochondrial biogenesis, with a direct relationship between the activity of this pathway and the cellular amount of mitochondria. The cAMP protein kinase Tpk3p is the catalytic subunit specifically involved in the regulation of mitochondrial biogenesis through regulation of the mitochondrial ROS production. An overflow of mitochondrial ROS decreases mitochondrial biogenesis through a decrease in the transcriptional co-activator Hap4p, which can be assimilated to mitochondria quality control. Moreover, the glutathione redox state is shown as being an intermediate in the regulation of mitochondrial biogenesis. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Edgar D Yoboue
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Alexis Mougeolle
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Laurent Kaiser
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Nicole Averet
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Michel Rigoulet
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux, France.
| |
Collapse
|
22
|
Liu W, Xu Z, Deng Y, Xu B, Yang H, Wei Y, Feng S. Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective effects of tea polyphenols. ENVIRONMENTAL TOXICOLOGY 2014; 29:269-283. [PMID: 22223486 DOI: 10.1002/tox.21755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Methylmercury (MeHg) is a highly neurotoxic environmental pollutant that has a high appetency to the central nervous system. The underlying mechanisms of MeHg-induced neurotoxicity have not been elucidated clearly until now. Therefore, to explore the mechanisms contribute to MeHg-induced neurotoxicity, rats were exposed to different dosage of methylmercury chloride (CH3 ClHg) (0, 4, and 12 μmol kg(-1)) for 4 weeks to evaluate the neurotoxic effects of MeHg. In addition, considering the antioxidative properties of tea polyphenols (TP), 1 mmol kg(-1) TP was pretreated to observe the possible protective effects on MeHg-induced neurotoxicity. Then Hg, glutamate (Glu) and glutamine (Gln) levels, glutamine synthetase (GS), phosphate-activated glutaminase (PAG), Na(+)-K(+)-ATPase, and Ca(2+)-ATPase activities, intracellular Ca(2+) level were examined, glutathione (GSH), malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and reactive oxygen species (ROS) levels, N-methyl-D-aspartate receptors (NMDARs) mRNA and protein expressions, apoptosis level and morphological changes in the cerebral cortex were also investigated. Study results showed that compared with those in control, exposure to CH3 ClHg resulted in excitotoxicity in a concentration-dependent manner, which was shown by the Glu-Gln cycle disruption and intracellular Ca(2+) homeostasis disturbance. On the other hand, CH3 ClHg exposure resulted in oxidative damages of brain, which were supported by the significant changes on GSH, MDA, sulfhydryl, carbonyl, 8-OHdG, and ROS levels. Moreover, apoptosis rate increased obviously and many morphological changes were found after CH3 ClHg exposure. Furthermore, this research indicated that TP pretreatment significantly mitigated the toxic effects of MeHg. In conclusion, findings from this study indicated that exposure to MeHg could induce excitotoxicity and oxidative damage in cerebral cortex while TP might antagonize the MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, North 2nd Road 92, Heping Ward, Shenyang 110001, Liaoning Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Kolossov VL, Hanafin WP, Beaudoin JN, Bica DE, DiLiberto SJ, Kenis PJA, Gaskins HR. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise. Exp Biol Med (Maywood) 2014; 239:394-403. [PMID: 24586100 DOI: 10.1177/1535370214522179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The glutathione couple GSH/GSSG is the most abundant cellular redox buffer and is not at equilibrium among intracellular compartments. Perturbation of glutathione poise has been associated with tumorigenesis; however, due to analytical limitations, the underlying mechanisms behind this relationship are poorly understood. In this regard, we have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real-time glutathione redox potentials in the cytosol and mitochondrial matrix of tumorigenic and non-tumorigenic cells. First, we demonstrated that recovery time in both compartments depended upon the length of exposure to oxidative challenge with diamide, a thiol-oxidizing agent. We then monitored changes in glutathione poise in cytosolic and mitochondrial matrices following inhibition of glutathione (GSH) synthesis with L-buthionine sulphoximine (BSO). The mitochondrial matrix showed higher oxidation in the BSO-treated cells indicating distinct compartmental alterations in redox poise. Finally, the contributory role of the p53 protein in supporting cytosolic redox poise was demonstrated. Inactivation of the p53 pathway by expression of a dominant-negative p53 protein sensitized the cytosol to oxidation in BSO-treated tumor cells. As a result, both compartments of PF161-T+p53(DD) cells were equally oxidized ≈20 mV by inhibition of GSH synthesis. Conversely, mitochondrial oxidation was independent of p53 status in GSH-deficient tumor cells. Taken together, these findings indicate different redox requirements for the glutathione thiol/disulfide redox couple within the cytosol and mitochondria of resting cells and reveal distinct regulation of their redox poise in response to inhibition of glutathione biosynthesis.
Collapse
Affiliation(s)
- Vladimir L Kolossov
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Lakhani R, Vogel KR, Till A, Liu J, Burnett SF, Gibson KM, Subramani S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med 2014; 6:551-66. [PMID: 24578415 PMCID: PMC3992080 DOI: 10.1002/emmm.201303356] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA.
Collapse
Affiliation(s)
- Ronak Lakhani
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Blazhenko OV. Glutathione Deficiency Leads to Riboflavin Oversynthesis in the Yeast Pichia guilliermondii. Curr Microbiol 2014; 69:10-8. [DOI: 10.1007/s00284-014-0538-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022]
|
26
|
Hatem E, Berthonaud V, Dardalhon M, Lagniel G, Baudouin-Cornu P, Huang ME, Labarre J, Chédin S. Glutathione is essential to preserve nuclear function and cell survival under oxidative stress. Free Radic Biol Med 2014; 67:103-14. [PMID: 24145121 DOI: 10.1016/j.freeradbiomed.2013.10.807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 12/17/2022]
Abstract
Glutathione (GSH) is considered the most important redox buffer of the cell. To better characterize its essential function during oxidative stress conditions, we studied the physiological response of H2O2-treated yeast cells containing various amounts of GSH. We showed that the transcriptional response of GSH-depleted cells is severely impaired, despite an efficient nuclear accumulation of the transcription factor Yap1. Moreover, oxidative stress generates high genome instability in GSH-depleted cells, but does not activate the checkpoint kinase Rad53. Surprisingly, scarce amounts of intracellular GSH are sufficient to preserve cell viability under H2O2 treatment. In these cells, oxidative stress still causes the accumulation of oxidized proteins and the inactivation of the translational activity, but nuclear components and activities are protected against oxidative injury. We conclude that the essential role of GSH is to preserve nuclear function, allowing cell survival and growth resumption after oxidative stress release. We propose that cytosolic proteins are part of a protective machinery that shields the nucleus by scavenging reactive oxygen species before they can cross the nuclear membrane.
Collapse
Affiliation(s)
- Elie Hatem
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Véronique Berthonaud
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Michèle Dardalhon
- CNRS, Institut Curie, UMR3348 "Genotoxic Stress and Cancer," F-91405 Orsay, France
| | - Gilles Lagniel
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Peggy Baudouin-Cornu
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Meng-Er Huang
- CNRS, Institut Curie, UMR3348 "Genotoxic Stress and Cancer," F-91405 Orsay, France
| | - Jean Labarre
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Stéphane Chédin
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Ayer A, Gourlay CW, Dawes IW. Cellular redox homeostasis, reactive oxygen species and replicative ageing inSaccharomyces cerevisiae. FEMS Yeast Res 2013; 14:60-72. [DOI: 10.1111/1567-1364.12114] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anita Ayer
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney NSW Australia
- Victor Chang Cardiac Research Institute; Darlinghurst NSW Australia
| | | | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
28
|
Glutathione and γ-glutamylcysteine in the antioxidant and survival functions of mitochondria. Biochem Soc Trans 2013; 41:106-10. [PMID: 23356267 DOI: 10.1042/bst20120252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are both the main producers and targets of ROS (reactive oxygen species). Among the battery of antioxidants that protect mitochondria from ROS, GSH is thought to be essential for the organelle antioxidant function. However, mitochondria cannot synthesize GSH de novo, thus depending on an efficient transport from the cytosol to maintain their redox status. In the present article, we review recent data suggesting that the cellular redox control might not be the main function of GSH, and that its immediate precursor, γGC (γ-glutamylcysteine), can take over the antioxidant role of GSH and protect the mitochondria from excess ROS. Together, GSH and γGC may thus represent an as yet unrecognized defence system relevant for degenerative processes associated with the imbalance in the cellular redox control.
Collapse
|
29
|
Ayer A, Sanwald J, Pillay BA, Meyer AJ, Perrone GG, Dawes IW. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae. PLoS One 2013; 8:e65240. [PMID: 23762325 PMCID: PMC3676407 DOI: 10.1371/journal.pone.0065240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.
Collapse
Affiliation(s)
- Anita Ayer
- University of New South Wales, Sydney, Australia
| | | | | | | | | | - Ian W. Dawes
- University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
30
|
Toledano MB, Delaunay-Moisan A, Outten CE, Igbaria A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid Redox Signal 2013; 18. [PMID: 23198979 PMCID: PMC3771550 DOI: 10.1089/ars.2012.5033] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The thioredoxin (TRX) and glutathione (GSH) pathways are universally conserved thiol-reductase systems that drive an array of cellular functions involving reversible disulfide formation. Here we consider these pathways in Saccharomyces cerevisiae, focusing on their cell compartment-specific functions, as well as the mechanisms that explain extreme differences of redox states between compartments. RECENT ADVANCES Recent work leads to a model in which the yeast TRX and GSH pathways are not redundant, in contrast to Escherichia coli. The cytosol possesses full sets of both pathways, of which the TRX pathway is dominant, while the GSH pathway acts as back up of the former. The mitochondrial matrix also possesses entire sets of both pathways, in which the GSH pathway has major role in redox control. In both compartments, GSH has also nonredox functions in iron metabolism, essential for viability. The endoplasmic reticulum (ER) and mitochondrial intermembrane space (IMS) are sites of intense thiol oxidation, but except GSH lack thiol-reductase pathways. CRITICAL ISSUES What are the thiol-redox links between compartments? Mitochondria are totally independent, and insulated from the other compartments. The cytosol is also totally independent, but also provides reducing power to the ER and IMS, possibly by ways of reduced and oxidized GSH entering and exiting these compartments. FUTURE DIRECTIONS Identifying the mechanisms regulating fluxes of GSH and oxidized glutathione between cytosol and ER, IMS, and possibly also peroxisomes, vacuole is needed to establish the proposed model of eukaryotic thiol-redox homeostasis, which should facilitate exploration of this system in mammals and plants.
Collapse
Affiliation(s)
- Michel B Toledano
- Laboratoire Stress Oxydants et Cancer, IBITECS, CEA-Saclay, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
31
|
Pérez-Sampietro M, Casas C, Herrero E. The AMPK family member Snf1 protects Saccharomyces cerevisiae cells upon glutathione oxidation. PLoS One 2013; 8:e58283. [PMID: 23472170 PMCID: PMC3589272 DOI: 10.1371/journal.pone.0058283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023] Open
Abstract
The AMPK/Snf1 kinase has a central role in carbon metabolism homeostasis in Saccharomyces cerevisiae. In this study, we show that Snf1 activity, which requires phosphorylation of the Thr210 residue, is needed for protection against selenite toxicity. Such protection involves the Elm1 kinase, which acts upstream of Snf1 to activate it. Basal Snf1 activity is sufficient for the defense against selenite, although Snf1 Thr210 phosphorylation levels become increased at advanced treatment times, probably by inhibition of the Snf1 dephosphorylation function of the Reg1 phosphatase. Contrary to glucose deprivation, Snf1 remains cytosolic during selenite treatment, and the protective function of the kinase does not require its known nuclear effectors. Upon selenite treatment, a null snf1 mutant displays higher levels of oxidized versus reduced glutathione compared to wild type cells, and its hypersensitivity to the agent is rescued by overexpression of the glutathione reductase gene GLR1. In the presence of agents such as diethyl maleate or diamide, which cause alterations in glutathione redox homeostasis by increasing the levels of oxidized glutathione, yeast cells also require Snf1 in an Elm1-dependent manner for growth. These observations demonstrate a role of Snf1 to protect yeast cells in situations where glutathione-dependent redox homeostasis is altered to a more oxidant intracellular environment and associates AMPK to responses against oxidative stress.
Collapse
Affiliation(s)
- Maria Pérez-Sampietro
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Celia Casas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
32
|
Kasemets K, Suppi S, Künnis-Beres K, Kahru A. Toxicity of CuO Nanoparticles to Yeast Saccharomyces cerevisiae BY4741 Wild-Type and Its Nine Isogenic Single-Gene Deletion Mutants. Chem Res Toxicol 2013; 26:356-67. [DOI: 10.1021/tx300467d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kaja Kasemets
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Sandra Suppi
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
- Department of Chemical and Materials
Technology, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia
| | - Kai Künnis-Beres
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Anne Kahru
- National Institute of Chemical
Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, Tallinn 12618, Estonia
| |
Collapse
|
33
|
Mahmoud AA. Protective Effect of Myricetin on Proteins and Lipids of Erythrocytes Membranes. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajbs.2013.76.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Koffler BE, Bloem E, Zellnig G, Zechmann B. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron 2012; 45:119-28. [PMID: 23265941 PMCID: PMC3553553 DOI: 10.1016/j.micron.2012.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 01/06/2023]
Abstract
Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments.
Collapse
Affiliation(s)
- Barbara E Koffler
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
35
|
Ayer A, Fellermeier S, Fife C, Li SS, Smits G, Meyer AJ, Dawes IW, Perrone GG. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis. PLoS One 2012; 7:e44278. [PMID: 22970195 PMCID: PMC3435413 DOI: 10.1371/journal.pone.0044278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/31/2012] [Indexed: 01/10/2023] Open
Abstract
Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a cellular/organellar level are poorly understood. The genetic bases of cellular redox homeostasis were investigated using a green fluorescent protein (GFP) based redox probe, roGFP2 and a pH sensitive GFP-based probe, pHluorin. The use of roGFP2, in conjunction with pHluorin, enabled determination of pH-adjusted sub-cellular redox potential in a non-invasive and real-time manner. A genome-wide screen using both the non-essential and essential gene collections was carried out in Saccharomyces cerevisiae using cytosolic-roGFP2 to identify factors essential for maintenance of cytosolic redox state under steady-state conditions. 102 genes of diverse function were identified that are required for maintenance of cytosolic redox state. Mutations in these genes led to shifts in the half-cell glutathione redox potential by 75-10 mV. Interestingly, some specific oxidative stress-response processes were identified as over-represented in the data set. Further investigation of the role of oxidative stress-responsive systems in sub-cellular redox homeostasis was conducted using roGFP2 constructs targeted to the mitochondrial matrix and peroxisome and E(GSH) was measured in cells in exponential and stationary phase. Analyses allowed for the identification of key redox systems on a sub-cellular level and the identification of novel genes involved in the regulation of cellular redox homeostasis.
Collapse
Affiliation(s)
- Anita Ayer
- University of New South Wales, Sydney, Australia
| | | | | | - Simone S. Li
- University of New South Wales, Sydney, Australia
| | - Gertien Smits
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ian W. Dawes
- University of New South Wales, Sydney, Australia
- * E-mail:
| | | |
Collapse
|
36
|
Sun R, Eriksson S, Wang L. Oxidative stress induced S-glutathionylation and proteolytic degradation of mitochondrial thymidine kinase 2. J Biol Chem 2012; 287:24304-12. [PMID: 22661713 DOI: 10.1074/jbc.m112.381996] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein glutathionylation in response to oxidative stress can affect both the stability and activity of target proteins. Mitochondrial thymidine kinase 2 (TK2) is a key enzyme in mitochondrial DNA precursor synthesis. Using an antibody specific for glutathione (GSH), S-glutathionylated TK2 was detected after the addition of glutathione disulfide (GSSG) but not GSH. This was reversed by the addition of dithiothreitol, suggesting that S-glutathionylation of TK2 is reversible. Site-directed mutagenesis of the cysteine residues and subsequent analysis of mutant enzymes demonstrated that Cys-189 and Cys-264 were specifically glutathionylated by GSSG. These cysteine residues do not appear to be part of the active site, as demonstrated by kinetic studies of the mutant enzymes. Treatment of isolated rat mitochondria with hydrogen peroxide resulted in S-glutathionylation of added recombinant TK2. Treatment of intact cells with hydrogen peroxide led to reduction of mitochondrial TK2 activity and protein levels, as well as S-glutathionylation of TK2. Furthermore, the addition of S-glutathionylated recombinant TK2 to mitochondria isolated from hydrogen peroxide-treated cells led to degradation of the S-glutathionylated TK2, which was not observed with unmodified TK2. S-Glutathionylation on Cys-189 was responsible for the observed selective degradation of TK2 in mitochondria. These results strongly suggest that oxidative damage-induced S-glutathionylation and degradation of TK2 have significant impact on mitochondrial DNA precursor synthesis.
Collapse
Affiliation(s)
- Ren Sun
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
37
|
Dardalhon M, Kumar C, Iraqui I, Vernis L, Kienda G, Banach-Latapy A, He T, Chanet R, Faye G, Outten CE, Huang ME. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Free Radic Biol Med 2012; 52:2254-65. [PMID: 22561702 PMCID: PMC3382975 DOI: 10.1016/j.freeradbiomed.2012.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/22/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H₂O₂ bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.
Collapse
Affiliation(s)
- Michèle Dardalhon
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Chitranshu Kumar
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Ismail Iraqui
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Guy Kienda
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Agata Banach-Latapy
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Tiantian He
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Roland Chanet
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Gérard Faye
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| | - Caryn E. Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348 “Genotoxic Stress and Cancer”, Centre Universitaire, 91405 Orsay, France
- Institut Curie, Centre de Recherche, Centre Universitaire, 91405 Orsay, France
| |
Collapse
|
38
|
Brain Region-Specific Glutathione Redox Imbalance in Autism. Neurochem Res 2012; 37:1681-9. [DOI: 10.1007/s11064-012-0775-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 12/19/2022]
|
39
|
Yoboue ED, Augier E, Galinier A, Blancard C, Pinson B, Casteilla L, Rigoulet M, Devin A. cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state. J Biol Chem 2012; 287:14569-78. [PMID: 22396541 DOI: 10.1074/jbc.m111.302786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell fate and proliferation are tightly linked to the regulation of the mitochondrial energy metabolism. Hence, mitochondrial biogenesis regulation, a complex process that requires a tight coordination in the expression of the nuclear and mitochondrial genomes, has a major impact on cell fate and is of high importance. Here, we studied the molecular mechanisms involved in the regulation of mitochondrial biogenesis through a nutrient-sensing pathway, the Ras-cAMP pathway. Activation of this pathway induces a decrease in the cellular phosphate potential that alleviates the redox pressure on the mitochondrial respiratory chain. One of the cellular consequences of this modulation of cellular phosphate potential is an increase in the cellular glutathione redox state. The redox state of the glutathione disulfide-glutathione couple is a well known important indicator of the cellular redox environment, which is itself tightly linked to mitochondrial activity, mitochondria being the main cellular producer of reactive oxygen species. The master regulator of mitochondrial biogenesis in yeast (i.e. the transcriptional co-activator Hap4p) is positively regulated by the cellular glutathione redox state. Using a strain that is unable to modulate its glutathione redox state (Δglr1), we pinpoint a positive feedback loop between this redox state and the control of mitochondrial biogenesis. This is the first time that control of mitochondrial biogenesis through glutathione redox state has been shown.
Collapse
Affiliation(s)
- Edgar D Yoboue
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bulteau AL, Planamente S, Jornea L, Dur A, Lesuisse E, Camadro JM, Auchère F. Changes in mitochondrial glutathione levels and protein thiol oxidation in ∆yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:212-25. [PMID: 22200491 DOI: 10.1016/j.bbadis.2011.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/05/2011] [Accepted: 11/03/2011] [Indexed: 11/28/2022]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by low levels of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulfur cluster defects and high sensitivity to oxidative stress. Frataxin deficiency is also associated with severe impairment of glutathione homeostasis and changes in glutathione-dependent antioxidant defenses. The potential biological consequences of oxidative stress and changes in glutathione levels associated with frataxin deficiency include the oxidation of susceptible protein thiols and reversible binding of glutathione to the SH of proteins by S-glutathionylation. In this study, we isolated mitochondria from frataxin-deficient ∆yfh1 yeast cells and lymphoblasts of FRDA patients, and show evidence for a severe mitochondrial glutathione-dependent oxidative stress, with a low GSH/GSSG ratio, and thiol modifications of key mitochondrial enzymes. Both yeast and human frataxin-deficient cells had abnormally high levels of mitochondrial proteins binding an anti-glutathione antibody. Moreover, proteomics and immunodetection experiments provided evidence of thiol oxidation in α-ketoglutarate dehydrogenase (KGDH) or subunits of respiratory chain complexes III and IV. We also found dramatic changes in GSH/GSSG ratio and thiol modifications on aconitase and KGDH in the lymphoblasts of FRDA patients. Our data for yeast cells also confirm the existence of a signaling and/or regulatory process involving both iron and glutathione.
Collapse
Affiliation(s)
- A L Bulteau
- CRICM-INSERM-UMRS975, CNRS UMR 7225-UPMC, Hôpital de la Salpétrière, Physiopathologie cellulaire et moléculaire des maladies mitochondriales, 91, bd de l'hôpital, salle 336, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
42
|
Sulfurous gases as biological messengers and toxins: comparative genetics of their metabolism in model organisms. J Toxicol 2011; 2011:394970. [PMID: 22131987 PMCID: PMC3216388 DOI: 10.1155/2011/394970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 01/31/2023] Open
Abstract
Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions.
Collapse
|
43
|
Zechmann B, Liou LC, Koffler BE, Horvat L, Tomašić A, Fulgosi H, Zhang Z. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:631-42. [PMID: 22093747 PMCID: PMC3272306 DOI: 10.1111/j.1567-1364.2011.00753.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022] Open
Abstract
Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H2O2) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress.
Collapse
Affiliation(s)
- Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ihsan A, Wang X, Liu Z, Wang Y, Huang X, Liu Y, Yu H, Zhang H, Li T, Yang C, Yuan Z. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol 2011; 252:281-8. [DOI: 10.1016/j.taap.2011.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/10/2011] [Accepted: 02/24/2011] [Indexed: 01/28/2023]
|
45
|
Kumar C, Igbaria A, D'Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 2011; 30:2044-56. [PMID: 21478822 DOI: 10.1038/emboj.2011.105] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 03/17/2011] [Indexed: 11/09/2022] Open
Abstract
Glutathione contributes to thiol-redox control and to extra-mitochondrial iron-sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control.
Collapse
|