1
|
Cao R, Zhou J, Liu J, Wang Y, Dai Y, Jiang Y, Yamauchi A, Atlas D, Jin T, Zhou J, Wang C, Tan Q, Chen Y, Yodoi J, Tian H. TXM-CB13 Improves the Intestinal Mucosal Barrier and Alleviates Colitis by Inhibiting the ROS/TXNIP/TRX/NLRP3 and TLR4/MyD88/NF-κB/NLRP3 Pathways. Inflammation 2025:10.1007/s10753-025-02282-9. [PMID: 40085192 DOI: 10.1007/s10753-025-02282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
The activation of inflammasomes (NLRP3 and NLRP1) is central to the pathogenesis of inflammatory bowel disease (IBD). Here we examined the protective effects of a thioredoxin-mimetic peptide CB13 (TXM-CB13), known for its antioxidative stress and anti-inflammatory properties. We examined the effects of TXM-CB13 on dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation in RAW264.7 macrophages. TXM-CB13 appeared to alleviate symptoms of DSS-induced colitis and to significantly suppress the protein and mRNA levels of NLRP3, Mlck, and IL-1β in colonic tissues. Additionally, TXM-CB13 treatment increased the levels of the intestinal barrier proteins Occludin, ZO-1, and NLRP1, as shown through immunohistochemistry and Western blot analysis. In vitro, TXM-CB13 inhibited LPS-induced TLR4 signaling, reducing MyD88 levels and consequently attenuating the activation of the NF-κB pathways, including p-IκB-α/IκB-α and p-NF-κB-p65/NF-κB-p65. This inhibition further reduced the activation of the NLRP3 inflammasome components, NLRP3, ASC, Caspase-1, GSDMD, and IL-1β. In addition, TXM-CB13 prevented the ROS-mediated dissociation of TXNIP from TRX, inhibiting NLRP3 activation. These findings suggest that TXM-CB13 is a potential therapeutic candidate for IBD through its modulation of the TLR4/MyD88/NF-κB/NLRP3 and ROS/TXNIP/TRX/NLRP3 pathways.
Collapse
Affiliation(s)
- Ruijie Cao
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jinhui Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jiale Liu
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yaxuan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yandong Dai
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yun Jiang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Akira Yamauchi
- Department of Breast Surgery, Misugi-kai Sato Hospital Breast Center, HIrakata, Osaka, Japan
| | - Daphne Atlas
- Dept. Of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tiancheng Jin
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Qihuan Tan
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Yifei Chen
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China.
- Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing, China.
| |
Collapse
|
2
|
Liao G, Yang Q, Mao X, Zhao Y, Chen B, Zhang K, Zhang Y, Zhang P, Chen Z, Huang S. Targeting ASK1 by CS17919 alleviates kidney- and liver-related diseases in murine models. Animal Model Exp Med 2025; 8:102-113. [PMID: 38873818 PMCID: PMC11798738 DOI: 10.1002/ame2.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Apoptosis signal-regulating kinase 1 (ASK1) is a MAP3K kinase in the MAPK signaling pathway activated by stressors and triggers downstream biological effects such as inflammation and apoptosis; therefore, inhibition of ASK1 kinase activity can protect cells from pathological injury. In this study, we designed and synthesized a novel selective ASK1 inhibitor, CS17919, and investigated its pharmacological effects in various animal models of metabolic injury. METHODS First, we validated the ability of CS17919 to inhibit ASK1 in vitro and then tested the safety profile of CS17919 in cell lines compared with Selonsertib (GS-4997), a phase III ASK1 inhibitor. We then conducted pharmacokinetic (PK) studies in mice. Finally, we tested the in vivo efficacy of CS17919 in murine models of chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH). RESULTS Compared to GS-4997, CS17919 demonstrated comparable inhibition of ASK1 in vitro, exhibited lower toxicity, and provided greater protection in palmitic acid-treated LO2 cells. CS17919 also showed pronounced pharmacokinetic properties such as a high plasma concentration. In the unilateral ureteral obstruction model (UUO), CS17919 and GS-4997 preserved kidney function and showed a non-significant tendency to alleviate kidney fibrosis. In the diabetic kidney disease (DKD) model, CS17919 significantly improved serum creatinine and glomerular sclerosis. In the NASH model, the combination of CS17919 and a THRβ agonist (CS27109) was found to significantly improve liver inflammation and substantially reduced liver fibrosis. CONCLUSIONS CS17919 showed cell protective, anti-inflammatory, and antifibrotic effects in vitro and in vivo, suggesting its therapeutic potential for metabolic-related kidney and liver diseases.
Collapse
Affiliation(s)
- Guoqiang Liao
- Chengdu Chipscreen Pharmaceutical Corp., Ltd.ChengduSichuanP.R. China
- Laboratory of Experimental Animal Disease ModelCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengduSichuanP.R. China
| | - Qianjiao Yang
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenGuangdongP.R. China
| | - Xuhua Mao
- Chengdu Chipscreen Pharmaceutical Corp., Ltd.ChengduSichuanP.R. China
| | - Yiru Zhao
- Chengdu Chipscreen Pharmaceutical Corp., Ltd.ChengduSichuanP.R. China
| | - Beizhong Chen
- Chengdu Chipscreen Pharmaceutical Corp., Ltd.ChengduSichuanP.R. China
| | - Kun Zhang
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenGuangdongP.R. China
| | - Yu Zhang
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenGuangdongP.R. China
| | - Ping Zhang
- Chengdu Chipscreen Pharmaceutical Corp., Ltd.ChengduSichuanP.R. China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease ModelCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengduSichuanP.R. China
| | - Shengjian Huang
- Chengdu Chipscreen Pharmaceutical Corp., Ltd.ChengduSichuanP.R. China
- Shenzhen Chipscreen Biosciences Co., Ltd.ShenzhenGuangdongP.R. China
| |
Collapse
|
3
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Martin V, Trus M, Atlas D. Thiol-Based Redox Molecules: Potential Antidotes for Acrylamide Toxicity. Antioxidants (Basel) 2024; 13:1431. [PMID: 39765760 PMCID: PMC11672525 DOI: 10.3390/antiox13121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Acrylamide (ACR) is a low-molecular weight, non-aromatic reagent, widely used in industry, such as in the manufacture of paper, textiles, plastics, cosmetics, and dyes. ACR is formed during the cooking of starchy food and its toxicity results mainly by conferring oxidative stress by elevating reactive oxygen species (ROS). To identify potential antidotes for ACR toxicity, we evaluated the efficacy of several thiol-based molecules known for ROS-scavenging, disulfide-reducing properties, and inhibition of oxidative stress-induced activation of the mitogen-activated protein kinases (MAPKs): the extracellular-signal-regulated-kinases (ERK1/2), p38-mitogen-activated-protein-kinases (p38MAPK), and c-Jun-N-terminal-kinases (JNKs). We established a reproducible assay testing N-acetylcysteine (NAC), AD4/NACA, and the N-and C-blocked tri- and tetra-thioredoxin-mimetic (TXM) peptides, in PC12 cells. Our results demonstrate that these compounds exhibited high efficacy in suppressing ACR-induced MAPK activation, either prior to or subsequent to ACR exposure. The inhibition by single cysteine (Cys) residue, NAC and AD4/NACA (NAC-amide), 2 Cys peptides TXM-CB30, AcDCys-Gly-DCysNH2, TXM-CB20, AcCys-Gly-CysNH2, SuperDopa (SD, Ac-CysL-Levodopa-CysNH2, TXM-CB13, AcCys-Met-Lys-CysNH2, and a 3-Cys peptide, TXM-CB16, AcCys-γGlu-Cys-CysNH2 was dose-dependent and potency displayed a direct correlation with the number of Cys residues. Cellular proteolysis of SD, which consists of levodopa flanked by two Cys, may suppress the manifestation of Parkinson's disease (PD)-like symptoms mediated by chronic ACR exposure not only through lowering oxidative stress but also by replenishing cellular levels of dopamine. Overall, these results could advance the clinical application of TXM peptides as potential treatments for acute and/or chronic exposure to ACR and show promise as antidotes for preventing ACR-triggered PD-like neurotoxic symptoms.
Collapse
Affiliation(s)
| | | | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (V.M.); (M.T.)
| |
Collapse
|
5
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Borrmann K, Troschel FM, Brücksken KA, Espinoza-Sánchez NA, Rezaei M, Eder KM, Kemper B, Eich HT, Greve B. Antioxidants Hydroxytyrosol and Thioredoxin-Mimetic Peptide CB3 Protect Irradiated Normal Tissue Cells. Antioxidants (Basel) 2024; 13:961. [PMID: 39199207 PMCID: PMC11351936 DOI: 10.3390/antiox13080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Reducing side effects in non-cancerous tissue is a key aim of modern radiotherapy. Here, we assessed whether the use of the antioxidants hydroxytyrosol (HT) and thioredoxin-mimetic peptide CB3 (TMP) attenuated radiation-induced normal tissue toxicity in vitro. We used primary human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (HaCaT) as normal tissue models. Cells were treated with HT and TMP 24 h or immediately prior to irradiation. Reactive oxygen species (ROS) were assessed via luminescent- and fluorescence-based assays, migration was investigated using digital holographic microscopy, and clonogenic survival was quantified by colony formation assays. Angiogenesis and wound healing were evaluated via time-dependent microscopy. Secreted cytokines were validated in quantitative polymerase chain reaction (qPCR) studies. Treatment with HT or TMP was well tolerated by cells. The application of either antioxidant before irradiation resulted in reduced ROS formation and a distinct decrease in cytokines compared to similarly irradiated, but otherwise untreated, controls. Antioxidant treatment also increased post-radiogenic migration and angiogenesis while accelerating wound healing. HT or TMP treatment immediately before radiotherapy increased clonogenic survival after radiotherapy, while treatment 24 h before radiotherapy enhanced baseline proliferation. Both antioxidants may decrease radiation-induced normal tissue toxicity and deserve further pre-clinical investigation.
Collapse
Affiliation(s)
- Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | | | | | - Nancy Adriana Espinoza-Sánchez
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149 Münster, Germany
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Kai Moritz Eder
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, 48149 Münster, Germany (B.K.)
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Romagnoli A, Rexha J, Perta N, Di Cristofano S, Borgognoni N, Venturini G, Pignotti F, Raimondo D, Borsello T, Di Marino D. Peptidomimetics design and characterization: Bridging experimental and computer-based approaches. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:279-327. [PMID: 40122649 DOI: 10.1016/bs.pmbts.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Peptidomimetics, designed to mimic peptide biological activity with more drug-like properties, are increasingly pivotal in medicinal chemistry. They offer enhanced systemic delivery, cell penetration, target specificity, and protection against peptidases when compared to their native peptide counterparts. Already utilized in treating diverse diseases like neurodegenerative disorders, cancer and infectious diseases, their future in medicine seems bright, with many peptidomimetics in clinical trials or development stages. Peptidomimetics are well-suited for addressing disturbed protein-protein interactions (PPIs), which often underlie various pathologies. Structural biology and computational methods like molecular dynamics simulations facilitate rational design, whereas machine learning algorithms accelerate protein structure prediction, enabling efficient drug development. Experimental validation via various spectroscopic, biophysical, and biochemical assays confirms computational predictions and guides further optimization. Peptidomimetics, with their tailored constrained structures, represent a frontier in drug design focused on targeting PPIs. In this overview, we present a comprehensive landscape of peptidomimetics, encompassing perspectives on involvement in pathologies, chemical strategies, and methodologies for their characterization, spanning in silico, in vitro and in cell approaches. With increasing interest from pharmaceutical sectors, peptidomimetics hold promise for revolutionizing therapeutic approaches, marking a new era of precision drug discovery.
Collapse
Affiliation(s)
- Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy.
| | - Jesmina Rexha
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | - Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Noemi Borgognoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | - Gloria Venturini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Francesco Pignotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Spienza University of Rome, Rome, Italy; National Biodiversity Future Center (NBFC), Rome, Italy
| | - Tiziana Borsello
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; New York-Marche Structural Biology Centre (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy; Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| |
Collapse
|
8
|
Noch EK, Palma L, Yim I, Bullen N, Barnett D, Walsh A, Bhinder B, Benedetti E, Krumsiek J, Gurvitch J, Khwaja S, Atlas D, Elemento O, Cantley LC. Cysteine induces mitochondrial reductive stress in glioblastoma through hydrogen peroxide production. Proc Natl Acad Sci U S A 2024; 121:e2317343121. [PMID: 38359293 PMCID: PMC10895255 DOI: 10.1073/pnas.2317343121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.
Collapse
Affiliation(s)
- Evan K. Noch
- Department of Neurology, Division of Neuro-Oncology, Weill Cornell Medicine, Cornell University, New York, NY10021
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Laura Palma
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Isaiah Yim
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Nayah Bullen
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Daniel Barnett
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY10021
| | - Alexander Walsh
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY10021
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Justin Gurvitch
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Sumaiyah Khwaja
- Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY10021
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem9190401, Israel
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY10021
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY10021
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA02114
| |
Collapse
|
9
|
Govednik T, Lainšček D, Kuhar U, Lachish M, Janežič S, Štrbenc M, Krapež U, Jerala R, Atlas D, Manček-Keber M. TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences. Antiviral Res 2024; 222:105806. [PMID: 38211737 DOI: 10.1016/j.antiviral.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.
Collapse
Affiliation(s)
- Tea Govednik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Marva Lachish
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, 2000, Maribor, Slovenia
| | - Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Daphne Atlas
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Alejandra Llanes-Cuesta M, Hoi V, Ha R, Tan H, Imamul Islam M, Eftekharpour E, Wang JF. Redox Protein Thioredoxin Mediates Neurite Outgrowth in Primary Cultured Mouse Cerebral Cortical Neurons. Neuroscience 2024; 537:165-173. [PMID: 38070592 DOI: 10.1016/j.neuroscience.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Thioredoxin system plays an important role in maintaining the cellular redox balance. Recent evidence suggests that thioredoxin (Trx) system may promote cell survival and neuroprotection. In this study, we explored the role of thioredoxin system in neuronal differentiation using a primary mouse cortical neuronal cell culture. First, Trx and Trx reductase (TrxR) protein levels were analyzed in cultured neurons from 1 to 32 days in vitro (DIV). The result showed that Trx and TrxR protein levels time-dependently increased in the neuron cell culture from 1 to 18 DIV. To establish the role of Trx in neuronal differentiation, Trx gene expression was knockdown in cultured neurons using Trx sgRNA CRISPR/Cas9 technology. Treatment with CRISPR/Cas9/Trx sgRNA decreased Trx protein levels and caused a reduction in dendritic outgrowth and branching of cultured neurons. Then, primary cortical neurons were treated with the Trx inhibitor PX12 to block Trx reducing activity. Treatment with PX12 also reduced dendritic outgrowth and branching. Furthermore, PX12 treatment reduced the ratio of phosphorylated cyclic AMP response element-binding protein (CREB)/total CREB protein levels. To investigate whether CREB phosphorylation is redox regulated, SH-SY5Y cells were treated with H2O2, which reduced phosphorylated CREB protein levels and increased CREB thiol oxidation. However, treatment with CB3, a Trx-mimetic tripeptide, rescued H2O2-decreased CREB phosphorylation. Our results suggest that Trx regulates neuronal differentiation and maturation of primary mouse cortical neurons by targeting CREB neurotrophic pathway. Trx may regulate CREB activation by maintaining the cellular redox balance.
Collapse
Affiliation(s)
- M Alejandra Llanes-Cuesta
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Vanessa Hoi
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Ryan Ha
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hua Tan
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Md Imamul Islam
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada, University of Manitoba, Winnipeg, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada, University of Manitoba, Winnipeg, Canada
| | - Jun-Feng Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
11
|
Medali T, Couchie D, Mougenot N, Mihoc M, Bergmann O, Derks W, Szweda LI, Yacoub M, Soliman S, Aguib Y, Wagdy K, Ibrahim AM, Friguet B, Rouis M. Thioredoxin-1 and its mimetic peptide improve systolic cardiac function and remodeling after myocardial infarction. FASEB J 2024; 38:e23291. [PMID: 38095283 DOI: 10.1096/fj.202300792rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Myocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects. Therefore, a Trx-1 mimetic peptide called CB3 was tested as an alternative way to restore CMs. This study aimed to investigate the effects of Trx-1, Trx-80, and CB3 on mice with experimental MI and study the underlying mechanism of CB3 on CMs. Mouse cardiac parameters were quantified by echocardiography, and infarction size and fibrosis determined using Trichrome and Picro-Sirius Red staining. The study found that Trx-1 and CB3 improved mouse cardiac function, reduced the size of cardiac infarct and fibrosis, and decreased the expression of cardiac inflammatory markers. Furthermore, CB3 polarized macrophages into M2 phenotype, reduced apoptosis and oxidative stress after MI, and increased CM proliferation in cell culture and in vivo. CB3 effectively protected against myocardial infarction and could represent a new class of compounds for treating MI.
Collapse
Affiliation(s)
- Tania Medali
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Dominique Couchie
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Nathalie Mougenot
- Faculté de Médecine, INSERM, Plateforme PECMV, UMS28, Sorbonne Université, Paris, France
| | - Maria Mihoc
- Faculté de Médecine, INSERM, Plateforme PECMV, UMS28, Sorbonne Université, Paris, France
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- CRTD, TU Dresden, Dresden, Germany
| | - Wouter Derks
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- CRTD, TU Dresden, Dresden, Germany
| | - Luke I Szweda
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | - Bertrand Friguet
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| | - Mustapha Rouis
- CNRS, INSERM, Institut de Biologie Paris Seine, Biological Adaptation and Ageing (B2A-IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Eligini S, Munno M, Atlas D, Banfi C. N-acetylcysteine Amide AD4/NACA and Thioredoxin Mimetic Peptides Inhibit Platelet Aggregation and Protect against Oxidative Stress. Antioxidants (Basel) 2023; 12:1395. [PMID: 37507934 PMCID: PMC10376080 DOI: 10.3390/antiox12071395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In the present study, we tested the effect of small-molecular-weight redox molecules on collagen-induced platelet aggregation. We used N-acetylcysteine amide (AD4/NACA), the amide form of N-acetylcysteine (NAC), a thiol antioxidant with improved lipophilicity and bioavailability compared to NAC, and the thioredoxin-mimetic (TXM) peptides, TXM-CB3, TXM-CB13, and TXM-CB30. All compounds significantly inhibited platelet aggregation induced by collagen, with TXM-peptides and AD4 being more effective than NAC. The levels of TxB2 and 12-HETE, the main metabolites derived from the cyclooxygenase and lipoxygenase pathways following platelet activation, were significantly reduced in the presence of AD4, TXM peptides, or NAC, when tested at the highest concentration (0.6 mM). The effects of AD4, TXM-peptides, and NAC were also tested on the clotting time (CT) of whole blood. TXM-CB3 and TXM-CB30 showed the greatest increase in CT. Furthermore, two representative compounds, TXM-CB3 and NAC, showed an increase in the anti-oxidant free sulfhydryl groups of plasma detected via Ellman's method, suggesting a contribution of plasma factors to the antiaggregating effects. Our results suggest that these small-molecular-weight redox peptides might become useful for the prevention and/or treatment of oxidative stress conditions associated with platelet activation.
Collapse
Affiliation(s)
- Sonia Eligini
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, 20138 Milan, Italy
| | - Marco Munno
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, 20138 Milan, Italy
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, 20138 Milan, Italy
| |
Collapse
|
13
|
Pei XD, Li F, Zhang YM, Huang XN, Yu FT, Su LY, Liu XL, Wang CH. Preparation, Purification, and Identification of Novel Feather Keratin-Derived Peptides with Antioxidative and Xanthine Oxidase Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8061-8070. [PMID: 37161263 DOI: 10.1021/acs.jafc.3c01131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Feather keratin is an underappreciated protein resource of high quality, with limited bioavailability, and it urgently requires eco-friendly methods to enhance its value. Here, we report on the preparation, purification, and identification of novel peptides with antioxidant and xanthine oxidase (XOD) inhibitory activities from fermented feather broth, using Bacillus licheniformis 8-4. Two peptides, namely, DLCRPCGPTPLA (DA-12) and ANSCNEPCVR (AR-10), displayed remarkable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities with half-maximal inhibitory concentrations (IC50) values of 0.048, 0.034, and 0.95, 0.84 mg/mL, respectively. These values exceed those of the previously reported feather keratin-derived antioxidant peptides. Another peptide, GNQQVHLQSQDM (GM-12), demonstrated XOD activity inhibition, with an IC50 value of 12.15 mg/mL, and it quenched the fluorescence of XOD. Furthermore, after simulating gastrointestinal digestion, DA-12, AR-10, and GM-12 retained their biological activities. Meanwhile, DA-12 and GM-12 showed an unexpected synergistic inhibition on XOD activity accompanied by fluorescence quenching. This study provides new insights into the potential applications of feather keratin, including functionalized feed with antioxidative and antigout (anti-hyperuricemia) activities.
Collapse
Affiliation(s)
- Xiao-Dong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yan-Mei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiao-Ni Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fu-Tian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Lin-Ying Su
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiao-Ling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
14
|
Xinastle-Castillo LO, Landa A. Physiological and modulatory role of thioredoxins in the cellular function. Open Med (Wars) 2022; 17:2021-2035. [PMID: 36568514 PMCID: PMC9746700 DOI: 10.1515/med-2022-0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Thioredoxins (TRXs) are a class of ubiquitous and multifunctional protein. Mammal cells present three isoforms: a cytosolic and extracellular called thioredoxin 1 (TRX1), a mitochondrial (TRX2), and one specific in spermatozoids (TRX3). Besides, a truncated form called TRX80 exists, which results from the post-translational cleavage performed on TRX1. TRXs' main function is to maintain the reduction-oxidation homeostasis of the cell, reducing the proteins through a thiol-disulfide exchange that depends on two cysteines located in the active site of the protein (Cys32-X-X-Cys35 in humans). In addition, TRX1 performs S-nitrosylation, a post-translational modification of proteins that depends on cysteines of its C-terminal region (Cys62, Cys69, and Cys73 in human TRX1). These modifications allow the TRXs to modulate the protein function and participate in regulating diverse cellular processes, such as oxidative stress, transcription, signaling cascades, apoptosis, inflammation, and immunologic response. This points out the crucial relevance of TRXs for cell function, signaling it as a strategic target for the treatment of many diseases and its possible use as a therapeutic factor.
Collapse
Affiliation(s)
- Luis Omar Xinastle-Castillo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2o Piso. Ciudad Universitaria, Ciudad de México, 04510, México
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Edificio A, 2o Piso. Ciudad Universitaria, Ciudad de México, 04510, México
| |
Collapse
|
15
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
16
|
Dailah HG. Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review. Molecules 2022; 27:molecules27175542. [PMID: 36080309 PMCID: PMC9458015 DOI: 10.3390/molecules27175542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing and major global health problem. COPD is also the third leading cause of death worldwide. Oxidative stress (OS) takes place when various reactive species and free radicals swamp the availability of antioxidants. Reactive nitrogen species, reactive oxygen species (ROS), and their counterpart antioxidants are important for host defense and physiological signaling pathways, and the development and progression of inflammation. During the disturbance of their normal steady states, imbalances between antioxidants and oxidants might induce pathological mechanisms that can further result in many non-respiratory and respiratory diseases including COPD. ROS might be either endogenously produced in response to various infectious pathogens including fungi, viruses, or bacteria, or exogenously generated from several inhaled particulate or gaseous agents including some occupational dust, cigarette smoke (CS), and air pollutants. Therefore, targeting systemic and local OS with therapeutic agents such as small molecules that can increase endogenous antioxidants or regulate the redox/antioxidants system can be an effective approach in treating COPD. Various thiol-based antioxidants including fudosteine, erdosteine, carbocysteine, and N-acetyl-L-cysteine have the capacity to increase thiol content in the lungs. Many synthetic molecules including inhibitors/blockers of protein carbonylation and lipid peroxidation, catalytic antioxidants including superoxide dismutase mimetics, and spin trapping agents can effectively modulate CS-induced OS and its resulting cellular alterations. Several clinical and pre-clinical studies have demonstrated that these antioxidants have the capacity to decrease OS and affect the expressions of several pro-inflammatory genes and genes that are involved with redox and glutathione biosynthesis. In this article, we have summarized the role of OS in COPD pathogenesis. Furthermore, we have particularly focused on the therapeutic potential of numerous chemicals, particularly antioxidants in the treatment of COPD.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
17
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
18
|
Wiesen T, Atlas D. Novel anti-apoptotic L-DOPA precursors SuperDopa and SuperDopamide as potential neuroprotective agents for halting/delaying progression of Parkinson’s disease. Cell Death Dis 2022; 13:227. [PMID: 35277478 PMCID: PMC8917195 DOI: 10.1038/s41419-022-04667-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
Abstract
Parkinson’s disease (PD) is characterized by a gradual degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpC). Levodopa, the standard PD treatment, provides the missing dopamine in SNpC, but ultimately after a honeymoon with levodopa treatment the neurodegenerative process and the progression of the disease continue. Aimed at prolonging the life of dopaminergic cells, we prepared the levodopa precursors SuperDopa (SD) and SueprDopamide (SDA), in which levodopa is merged with the antioxidant N-acetylcysteine (NAC) into a single molecule. Rotenone is a mitochondrial complex inhibitor often used as experimental model of PD. In vivo, SD and SDA treatment show a significant relief of motor disabilities in rotenone-injected rats. SD and SDA also lower rotenone-induced-α-synuclein (α-syn) expression in human SH-SY5Y cells, and α-syn oligomerization in α-syn-overexpressing-HEK293 cells. In the neuronal SH-SY5Y cells, SD and SDA reverse oxidative stress-induced phosphorylation of cJun-N-terminal kinase (JNK) and p38-mitogen-activated kinase (p38MAPK). Attenuation of the MAPK-inflammatory/apoptotic pathway in SH-SY5Y cells concurrent with protection of rotenone-triggered motor impairment in rats, is a manifestation of the combined antioxidant/anti-inflammatory activity of SD and SDA together with levodopa release. The concept of joined therapies into a single molecule, where levodopa precursors confer antioxidant activity by enabling NAC delivery across the BBB, provides a potential disease-modifying treatment for slowing PD progression.
Collapse
|
19
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
20
|
Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2021; 477:3649-3672. [PMID: 33017470 DOI: 10.1042/bcj20200064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.
Collapse
|
21
|
Jia J, Zeng X, Xu G, Wang Z. The Potential Roles of Redox Enzymes in Alzheimer's Disease: Focus on Thioredoxin. ASN Neuro 2021; 13:1759091421994351. [PMID: 33557592 PMCID: PMC7876756 DOI: 10.1177/1759091421994351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Physiology, Jiaxing University Medical
College, Jiaxing, China
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Xiansi Zeng
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
- Department of Biochemistry, Jiaxing University Medical
College, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Jiaxing University
Medical College, Jiaxing, China
| | - Zhanqi Wang
- College of Life Sciences, Huzhou University, Huzhou,
China
| |
Collapse
|
22
|
Pender SC, Smith AM, Finnoff JT, Huston J, Stuart MJ. Concussions in Ice Hockey - Moving Toward Objective Diagnoses and Point-of-care Treatment: A Review. Curr Sports Med Rep 2020; 19:380-386. [PMID: 32925378 DOI: 10.1249/jsr.0000000000000752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incidence of sport-related concussion coupled with a doubling of the participation rate in youth hockey over the past two decades provides impetus for the review of the most promising concussion treatment options. This narrative review summarizes the future treatment options for sport-related concussions in ice hockey, while acknowledging their generalizability to concussion in all sports. Symptom assessment, sign observation, as well as cognitive and balance testing, have historically been used to diagnose a concussion. These methods continue to improve, but the need for effective treatments is clear. Pharmacologic, transcranial light, and nutritional supplement treatment options for concussion warranting further investigation have been identified. Dimethyl fumarate is an immunomodulatory compound thought to trigger antioxidant gene expression. Memantine reduces apoptosis and astrogliosis by inhibiting the calcium influx into cells normally caused by glutamate's activation of N-methyl-D-aspartate receptors. Thioredoxin-mimetic peptides and transcranial photobiomodulation temper the effects of the energy crisis by acting as free radical scavengers. In addition, seven neuroprotective nutritional supplements have been identified: berberine, creatine, curcumin, melatonin, omega-3 fatty acids, resveratrol, and vitamins. An estimated US $1.1 billion has been spent on unsuccessful traumatic brain injury clinical trials. As our ability to accurately diagnose concussion improves, dimethyl fumarate, memantine, thioredoxin-mimetic peptides, transcranial photobiomodulation, and nutritional supplements (berberine, creatine, curcumin, melatonin, omega-3 fatty acids, resveratrol, and vitamins) warrant further preclinical and clinical examination in advancing the treatment of sport-related concussions.
Collapse
Affiliation(s)
- Sara C Pender
- School of Medicine, University College Dublin, Dublin, IRELAND
| | | | - Jonathan T Finnoff
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Michael J Stuart
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN
| |
Collapse
|
23
|
Hemling P, Zibrova D, Strutz J, Sohrabi Y, Desoye G, Schulten H, Findeisen H, Heller R, Godfrey R, Waltenberger J. Hyperglycemia-induced endothelial dysfunction is alleviated by thioredoxin mimetic peptides through the restoration of VEGFR-2-induced responses and improved cell survival. Int J Cardiol 2019; 308:73-81. [PMID: 31955977 DOI: 10.1016/j.ijcard.2019.12.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Diabetes mellitus is an important cardiovascular risk factor characterized by elevated plasma glucose levels. High glucose (HG) negatively influences endothelial cell (EC) function, which is characterized by the inability of ECs to respond to vascular endothelial growth factor (VEGF-A) stimulation. We aimed to identify potential strategies to improve EC function in diabetes. METHODS AND RESULTS Human umbilical cord endothelial cells (HUVECs) were subjected to hyperglycemic milieu by exposing cells to HG together with glucose metabolite, methylglyoxal (MG) in vitro. Hyperglycemic cells showed reduced chemotactic responses towards VEGF-A as revealed by Boyden chamber migration assays, indicating the development of "VEGF resistance" phenotype. Furthermore, HG/MG-exposed cells were defective in their general migratory and proliferative responses and were in a pro-apoptotic state. Mechanistically, the exposure to HG/MG resulted in reactive oxygen species (ROS) accumulation which is secondary to the impairment of thioredoxin (Trx) activity in these cells. Pharmacological and genetic targeting of Trx recapitulated VEGF resistance. Functional supplementation of Trx using thioredoxin mimetic peptides (TMP) reversed the HG/MG-induced ROS generation, improved the migration, proliferation, survival and restored VEGF-A-induced chemotaxis and sprouting angiogenesis of hyperglycemic ECs. Importantly, TMP treatment reduced ROS accumulation and improved VEGF-A responses of placental arterial endothelial cells isolated from gestational diabetes mellitus patients. CONCLUSIONS Our findings suggest a putative role for Trx in modulating EC function and its functional impairment in HG conditions contribute to EC dysfunction. Supplementation of TMP could be used as a novel strategy to improve endothelial cell function in diabetes.
Collapse
Affiliation(s)
- Pia Hemling
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Darya Zibrova
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Jasmin Strutz
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria
| | - Yahya Sohrabi
- Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Hannes Findeisen
- Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Molecular Cardiology, Department of Cardiology I - Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Münster, Germany; Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany; Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany; Department of Internal Medicine I, SRH Central Hospial, Suhl, Germany.
| |
Collapse
|
24
|
Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid Redox Signal 2019; 31:722-751. [PMID: 30450940 PMCID: PMC6708273 DOI: 10.1089/ars.2018.7656] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Significance: Type 2 diabetes development involves multiple changes in β-cells, related to the oxidative stress and impaired redox signaling, beginning frequently by sustained overfeeding due to the resulting lipotoxicity and glucotoxicity. Uncovering relationships among the dysregulated metabolism, impaired β-cell "well-being," biogenesis, or cross talk with peripheral insulin resistance is required for elucidation of type 2 diabetes etiology. Recent Advances: It has been recognized that the oxidative stress, lipotoxicity, and glucotoxicity cannot be separated from numerous other cell pathology events, such as the attempted compensation of β-cell for the increased insulin demand and dynamics of β-cell biogenesis and its "reversal" at dedifferentiation, that is, from the concomitantly decreasing islet β-cell mass (also due to transdifferentiation) and low-grade islet or systemic inflammation. Critical Issues: At prediabetes, the compensation responses of β-cells, attempting to delay the pathology progression-when exaggerated-set a new state, in which a self-checking redox signaling related to the expression of Ins gene expression is impaired. The resulting altered redox signaling, diminished insulin secretion responses to various secretagogues including glucose, may lead to excretion of cytokines or chemokines by β-cells or excretion of endosomes. They could substantiate putative stress signals to the periphery. Subsequent changes and lasting glucolipotoxicity promote islet inflammatory responses and further pathology spiral. Future Directions: Should bring an understanding of the β-cell self-checking and related redox signaling, including the putative stress signal to periphery. Strategies to cure or prevent type 2 diabetes could be based on the substitution of the "wrong" signal by the "correct" self-checking signal.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1826303. [PMID: 31249641 PMCID: PMC6556329 DOI: 10.1155/2019/1826303] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic β-cells are vulnerable to oxidative stress due to their low content of redox buffers, such as glutathione, but possess a rich content of thioredoxin, peroxiredoxin, and other proteins capable of redox relay, transferring redox signaling. Consequently, it may be predicted that cytosolic antioxidants could interfere with the cytosolic redox signaling and should not be recommended for any potential therapy. In contrast, mitochondrial matrix-targeted antioxidants could prevent the primary oxidative stress arising from the primary superoxide sources within the mitochondrial matrix, such as at the flavin (IF) and ubiquinone (IQ) sites of superoxide formation within respiratory chain complex I and the outer ubiquinone site (IIIQ) of complex III. Therefore, using time-resolved confocal fluorescence monitoring with MitoSOX Red, we investigated various effects of mitochondria-targeted antioxidants in model pancreatic β-cells (insulinoma INS-1E cells) and pancreatic islets. Both SkQ1 (a mitochondria-targeted plastoquinone) and a suppressor of complex III site Q electron leak (S3QEL) prevented superoxide production released to the mitochondrial matrix in INS-1E cells with stimulatory glucose, where SkQ1 also exhibited an antioxidant role for UCP2-silenced cells. SkQ1 acted similarly at nonstimulatory glucose but not in UCP2-silenced cells. Thus, UCP2 can facilitate the antioxidant mechanism based on SkQ1+ fatty acid anion− pairing. The elevated superoxide formation induced by antimycin A was largely prevented by S3QEL, and that induced by rotenone was decreased by SkQ1 and S3QEL and slightly by S1QEL, acting at complex I site Q. Similar results were obtained with the MitoB probe, for the LC-MS-based assessment of the 4 hr accumulation of reactive oxygen species within the mitochondrial matrix but for isolated pancreatic islets. For 2 hr INS-1E incubations, some samples were influenced by the cell death during the experiment. Due to the frequent dependency of antioxidant effects on metabolic modes, we suggest a potential use of mitochondria-targeted antioxidants for the treatment of prediabetic states after cautious nutrition-controlled tests. Their targeted delivery might eventually attenuate the vicious spiral leading to type 2 diabetes.
Collapse
|
26
|
Božok V, Yu LY, Palgi J, Arumäe U. Antioxidative CXXC Peptide Motif From Mesencephalic Astrocyte-Derived Neurotrophic Factor Antagonizes Programmed Cell Death. Front Cell Dev Biol 2018; 6:106. [PMID: 30234112 PMCID: PMC6132022 DOI: 10.3389/fcell.2018.00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a potent survival-promoting protein with neurorestorative effect for neurodegenerative diseases. Its mechanism of action, albeit poorly known, depends strongly on the CXXC motif (CKGC). Here we studied the survival-promoting properties of the CKGC tetrapeptide from MANF. In the Jurkat T lymphocytic cell line, CKGC potently inhibits death receptor Fas-induced apoptosis and mildly counteracts mitochondrial apoptosis and necroptosis. The peptide with serines instead of cysteines (SKGS) has no survival-promoting activity. The cytoprotective efficiency of the peptide against Fas-induced apoptosis is significantly improved by reduction of its cysteines by dithiotreitol, suggesting that it protects the cells via cysteine thiol groups, partially as an antioxidant. CKGC neutralizes the reactive oxygen species, maintains the mitochondrial membrane potential and prevents activation of the effector caspases in the Jurkat cells with activated Fas. The peptide does not require intracellular administration, as it is endocytosed and resides mainly in the Golgi. Finally, the peptide also potently promotes survival of cultured primary dopaminergic neurons.
Collapse
Affiliation(s)
- Valentina Božok
- Division of Gene Technology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Li-Ying Yu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jaan Palgi
- Division of Gene Technology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Urmas Arumäe
- Division of Gene Technology, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Liles JT, Corkey BK, Notte GT, Budas GR, Lansdon EB, Hinojosa-Kirschenbaum F, Badal SS, Lee M, Schultz BE, Wise S, Pendem S, Graupe M, Castonguay L, Koch KA, Wong MH, Papalia GA, French DM, Sullivan T, Huntzicker EG, Ma FY, Nikolic-Paterson DJ, Altuhaifi T, Yang H, Fogo AB, Breckenridge DG. ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J Clin Invest 2018; 128:4485-4500. [PMID: 30024858 DOI: 10.1172/jci99768] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is an underlying component of acute and chronic kidney disease. Apoptosis signal-regulating kinase 1 (ASK1) is a widely expressed redox-sensitive serine threonine kinase that activates p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase kinases, and induces apoptotic, inflammatory, and fibrotic signaling in settings of oxidative stress. We describe the discovery and characterization of a potent and selective small-molecule inhibitor of ASK1, GS-444217, and demonstrate the therapeutic potential of ASK1 inhibition to reduce kidney injury and fibrosis. Activation of the ASK1 pathway in glomerular and tubular compartments was confirmed in renal biopsies from patients with diabetic kidney disease (DKD) and was decreased by GS-444217 in several rodent models of kidney injury and fibrosis that collectively represented the hallmarks of DKD pathology. Treatment with GS-444217 reduced progressive inflammation and fibrosis in the kidney and halted glomerular filtration rate decline. Combination of GS-444217 with enalapril, an angiotensin-converting enzyme inhibitor, led to a greater reduction in proteinuria and regression of glomerulosclerosis. These results identify ASK1 as an important target for renal disease and support the clinical development of an ASK1 inhibitor for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael Lee
- Gilead Sciences, Foster City, California, USA
| | | | - Sarah Wise
- Gilead Sciences, Foster City, California, USA
| | | | | | | | - Keith A Koch
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | | | | | | | | | | | - Frank Y Ma
- Department of Nephrology and Monash University Centres for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Centres for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria, Australia
| | - Tareq Altuhaifi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
28
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
29
|
Yodoi J, Matsuo Y, Tian H, Masutani H, Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients 2017; 9:nu9101081. [PMID: 28961169 PMCID: PMC5691698 DOI: 10.3390/nu9101081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human thioredoxin (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, which is induced by biological stress due to oxidative damage, metabolic dysfunction, chemicals, infection/inflammation, irradiation, or hypoxia/ischemia-reperfusion. Our research has demonstrated that exogenous TRX is effective in a wide variety of inflammatory diseases, including viral pneumonia, acute lung injury, gastric injury, and dermatitis, as well as in the prevention and amelioration of food allergies. Preclinical and clinical studies using recombinant TRX (rhTRX) are now underway. We have also identified substances that induce the expression of TRX in the body, in vegetables and other plant ingredients. Skincare products are being developed that take advantage of the anti-inflammatory and anti-allergic action of TRX. Furthermore, we are currently engaged in the highly efficient production of pure rhTRX in several plants, such as lettuce, grain and rice.
Collapse
Affiliation(s)
- Junji Yodoi
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Hai Tian
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Department of Anatomy, Basic Medicine Science, Medical College, Shaoxing University, No 900 Cengnan Avenue, Shaoxing 312000, China.
| | - Hiroshi Masutani
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Takashi Inamoto
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| |
Collapse
|
30
|
The L-type Voltage-Gated Calcium Channel co-localizes with Syntaxin 1A in nano-clusters at the plasma membrane. Sci Rep 2017; 7:11350. [PMID: 28900128 PMCID: PMC5595989 DOI: 10.1038/s41598-017-10588-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
The secretory signal elicited by membrane depolarization traverses from the Ca2+-bound α11.2 pore-forming subunit of the L-type Ca2+-channel (Cav1.2) to syntaxin 1 A (Sx1A) via an intra-membrane signaling mechanism. Here, we report the use of two-color Photo-Activated-Localization-Microscopy (PALM) to determine the relation between Cav1.2 and Sx1A in single-molecule detail. We observed nanoscale co-clusters of PAmCherry-tagged Sx1A and Dronpa-tagged α11.2 at a ~1:1 ratio. PAmCherry-tagged Sx1AC145A, or PAmCherry-tagged Sx2, an inactive Cav1.2 modulator, in which Cys145 is a Ser residue, showed no co-clustering. These results are consistent with the crucial role of the single cytosolic Sx1ACys145 in clustering with Cav1.2. Cav1.2 and the functionally inactive transmembrane-domain double mutant Sx1AC271V/C272V engendered clusters with a ~2:1 ratio. A higher extent of co-clustering, which coincides with compromised depolarization-evoked transmitter-release, was observed also by oxidation of Sx1ACys271 and Cys272. Our super-resolution-imaging results set the stage for studying co-clustering of the channel with other exocytotic proteins at a single-molecule level.
Collapse
|
31
|
Tyuryaeva II, Lyublinskaya OG, Podkorytov IS, Skrynnikov NR. Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties. Sci Rep 2017; 7:40217. [PMID: 28091523 PMCID: PMC5238392 DOI: 10.1038/srep40217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022] Open
Abstract
Antitumor GO peptides have been designed as dimerization inhibitors of prominent oncoprotein mucin 1. In this study we demonstrate that activity of GO peptides is independent of the level of cellular expression of mucin 1. Furthermore, these peptides prove to be broadly cytotoxic, causing cell death also in normal cells such as dermal fibroblasts and endometrial mesenchymal stem cells. To explore molecular mechanism of their cytotoxicity, we have designed and tested a number of new peptide sequences containing the key CxC or CxxC motifs. Of note, these sequences bear no similarity to mucin 1 except that they also contain a pair of proximal cysteines. Several of the new peptides turned out to be significantly more potent than their GO prototypes. The results suggest that cytotoxicity of these peptides stems from their (moderate) activity as disulfide oxidoreductases. It is expected that such peptides, which we have termed DO peptides, are involved in disulfide-dithiol exchange reaction, resulting in formation of adventitious disulfide bridges in cell proteins. In turn, this leads to a partial loss of protein function and rapid onset of apoptosis. We anticipate that coupling DO sequences with tumor-homing transduction domains can create a potentially valuable new class of tumoricidal peptides.
Collapse
Affiliation(s)
- Irina I. Tyuryaeva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga G. Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ivan S. Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
32
|
Lejnev K, Khomsky L, Bokvist K, Mistriel-Zerbib S, Naveh T, Farb TB, Alsina-Fernandez J, Atlas D. Thioredoxin-mimetic peptides (TXM) inhibit inflammatory pathways associated with high-glucose and oxidative stress. Free Radic Biol Med 2016; 99:557-571. [PMID: 27658743 DOI: 10.1016/j.freeradbiomed.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Impaired insulin signaling and the associated insulin-resistance in liver, adipose tissue, and skeletal muscle, represents a hallmark of the pathogenesis of type 2-diabetes-mellitus. Here we show that in the liver of db/db mice, a murine model of obesity, type 2 diabetes, and dyslipidemia, the elevated activities of mitogen-activated protein kinases (MAPK; ERK1/2 and p38MAPK), and Akt/PKB are abolished by rosiglitazone-treatment, which normalizes blood glucose in db/db mice. This is unequivocal evidence of a functional link between the activation of the MAPK specific inflammatory-pathway and high-blood sugar. A similar reduction in ERK1/2, p38MAPK, and Akt activities but without affecting blood-glucose was observed in the liver of db/db mice treated with a molecule that mimics the action of thioredoxin, called thioredoxin-mimetic peptide (TXM). N-Acetyl-Cys-Pro-Cys-amide (TXM-CB3) is a free radical scavenger, a reducing and denitrosylating reagent that protects the cells from early death induced by inflammatory pathways. TXM-CB3 also lowered MAPK signaling activated by the disruption of the thioredoxin-reductase-thioredoxin (Trx-TrxR) redox-system and restored Akt activity in rat hepatoma FAO cells. Similarly, two other TXM-peptides, N-Acetyl-Cys-Met-Lys-Cys-amide (TXM-CB13; DY70), and N-Acetyl-Cys-γGlu-Cys-Cys-amide (TXM-CB16; DY71), lowered insulin- and oxidative stress-induced ERK1/2 activation, and rescued HepG2 cells from cell death. The potential impact of TXM-peptides on inhibiting inflammatory pathways associated with high-glucose could be effective in reversing low-grade inflammation. TXM-peptides might also have the potential to improve insulin resistance by protecting from posttranslational modifications like nitrosylation.
Collapse
Affiliation(s)
- Katia Lejnev
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lena Khomsky
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Krister Bokvist
- Lilly Research Labs DC0522, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Shani Mistriel-Zerbib
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tahel Naveh
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Thomas Bradley Farb
- Lilly Research Labs DC0522, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jorge Alsina-Fernandez
- Lilly Research Labs DC0522, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
33
|
N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology (Berl) 2016; 233:3437-48. [PMID: 27469021 DOI: 10.1007/s00213-016-4388-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Chronic exposure to drugs of abuse changes glutamatergic transmission in human addicts and animal models. N-acetylcysteine (NAC) is a cysteine prodrug that indirectly activates cysteine-glutamate antiporters. In the extrasynaptic space, NAC restores basal glutamate levels during drug abstinence and normalizes increased glutamatergic tone in rats during reinstatement to drugs of abuse. In initial clinical trials, repeated NAC administration seems to be promising for reduced craving in cocaine addicts. OBJECTIVE In this study, NAC-amide, called AD4 or NACA, was examined in intravenous cocaine self-administration and extinction/reinstatement procedures in rats. We investigated the behavioral effects of AD4 in the olfactory bulbectomized (OBX) rats, considered an animal model of depression. Finally, we tested rats injected with AD4 or NAC during 10-daily extinction training sessions to examine subsequent cocaine seeking. RESULTS AD4 (25-75 mg kg(-1)) given acutely did not alter the rewarding effects of cocaine in OBX rats and sham-operated controls. However, at 6.25-50 mg kg(-1), AD4 decreased dose-dependently cocaine seeking and relapse triggered by cocaine priming or drug-associated conditioned cues in both phenotypes. Furthermore, repeated treatment with AD4 (25 mg kg(-1)) or NAC (100 mg kg(-1)) during daily extinction trials reduced reinstatement of drug-seeking behavior in sham-operated controls. In the OBX rats only, AD4 effectively blocked cocaine-seeking behavior. CONCLUSIONS Our results demonstrate that AD4 is effective at blocking cocaine-seeking behavior, highlighting its potential clinical use toward cocaine use disorder.
Collapse
|
34
|
Baratz-Goldstein R, Deselms H, Heim LR, Khomski L, Hoffer BJ, Atlas D, Pick CG. Thioredoxin-Mimetic-Peptides Protect Cognitive Function after Mild Traumatic Brain Injury (mTBI). PLoS One 2016; 11:e0157064. [PMID: 27285176 PMCID: PMC4902227 DOI: 10.1371/journal.pone.0157064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is recognized as a common injury among children, sportsmen, and elderly population. mTBI lacks visible objective structural brain damage but patients frequently suffer from long-lasting cognitive, behavioral and emotional difficulties associated with biochemical and cellular changes. Currently there is no effective treatment for patients with mTBI. The thioredoxin reductase/thioredoxin pathway (TrxR/Trx1) has both anti-inflammatory and anti-oxidative properties. If the system is compromised, Trx1 remains oxidized and triggers cell death via an ASK1-Trx1 signal transduction mechanism. We previously showed tri and tetra peptides which were derived from the canonical -CxxC- motif of the Trx1-active site, called thioredoxin mimetic (TXM) peptides, reversed inflammatory and oxidative stress damage mimicking Trx1 activity. Here, TXM-peptides were examined for protecting cognitive function following weight drop closed-head injury in a mouse model of mTBI. TXM-CB3 (AcCys-Pro-CysNH2), TXM-CB13 (DY-70; AcCys-Met-Lys-CysNH2) or AD4 (ACysNH2) were administered at 50 mg/kg, 60 min after injury and cognitive performance was monitored by the novel-object-recognition and Y-maze tests. Behavioral deficits subsequent to mTBI injury were reversed by a single dose of TXM-CB3, TXM-CB13 and, to a lesser extent, by AD4. TXM-CB13 similar to TXM-CB3 and AD4 reversed oxidative stress-induced phosphorylation of mitogen-activated kinases, p38MAPK and c-Jun N-terminal kinase, (JNK) in human neuronal SH-SY5Y cells. We conclude that significantly improved cognitive behavior post mTBI by the TXM-peptides could result from anti-apoptotic, and/or anti-inflammatory activities. Future preclinical studies are required to establish the TXM-peptides as potential therapeutic drugs for brain injuries.
Collapse
Affiliation(s)
- Renana Baratz-Goldstein
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (RBG); (DA)
| | - Hanna Deselms
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Leore Raphael Heim
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lena Khomski
- Department Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Daphne Atlas
- Department Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- * E-mail: (RBG); (DA)
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Nakamura T, Lipton SA. Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends Pharmacol Sci 2015; 37:73-84. [PMID: 26707925 DOI: 10.1016/j.tips.2015.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. By contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. We highlight here protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent post-translational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics.
Collapse
Affiliation(s)
| | - Stuart A Lipton
- Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92039, USA.
| |
Collapse
|
36
|
Kronenfeld G, Engelman R, Weisman-Shomer P, Atlas D, Benhar M. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents. Free Radic Biol Med 2015; 79:138-46. [PMID: 25483557 DOI: 10.1016/j.freeradbiomed.2014.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023]
Abstract
S-nitrosylation, the coupling of a nitric oxide moiety to a reactive cysteine residue to form an S-nitrosothiol (SNO), is an important posttranslational mechanism for regulating protein activity. Growing evidence indicates that hyper-S-nitrosylation may contribute to cellular dysfunction associated with various human diseases. It is also increasingly appreciated that thioredoxin and thioredoxin reductase play significant roles in the cellular catabolism of SNO and protection from nitrosative stress. Here, we investigated the SNO reductase activity and protective effects of thioredoxin-mimetic peptides (TXMs), Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4), both under cell-free conditions and in nitrosatively stressed cultured cells. In vitro biochemical analyses revealed that the TXM peptides reduced small-molecule SNO compounds, such as S-nitrosoglutathione (GSNO), and acted as general and efficient protein-denitrosylating agents. In particular, CB3 was found to be a highly potent SNO-metabolizing agent. Notably, CB3 mimicked the activity of thioredoxin by coupling with thioredoxin reductase to enhance GSNO reduction. Moreover, in a cell-free lysate system, both CB3 and CB4 synergized with an NADPH-dependent activity to denitrosylate proteins. Further investigation revealed that the TXM peptides protect the peroxiredoxin-thioredoxin system from SNO-dependent inhibition. Indeed, SNO-inhibited Prx1 was efficiently denitrosylated and reactivated by CB3 or CB4. In addition, CB3 protected thioredoxin reductase from SNO-mediated inactivation both in vitro and in intact cells. Finally, CB3 and CB4 partially rescued human neuroblastoma SH-SY5Y cells and rat insulinoma INS-1 832/13 cells from GSNO-induced growth inhibition. Collectively, the present findings indicate the efficient denitrosylation activity and protective effects of TXM peptides and suggest their potential therapeutic value in treating pathological conditions related to nitrosative stress.
Collapse
Affiliation(s)
- Gali Kronenfeld
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Rotem Engelman
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Pnina Weisman-Shomer
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
37
|
Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 2014; 9:1207-24. [PMID: 25378921 PMCID: PMC4207545 DOI: 10.2147/copd.s51226] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress occurs when free radicals and other reactive species overwhelm the availability of antioxidants. Reactive oxygen species (ROS), reactive nitrogen species, and their counterpart antioxidant agents are essential for physiological signaling and host defense, as well as for the evolution and persistence of inflammation. When their normal steady state is disturbed, imbalances between oxidants and antioxidants may provoke pathological reactions causing a range of nonrespiratory and respiratory diseases, particularly chronic obstructive pulmonary disease (COPD). In the respiratory system, ROS may be either exogenous from more or less inhalative gaseous or particulate agents such as air pollutants, cigarette smoke, ambient high-altitude hypoxia, and some occupational dusts, or endogenously generated in the context of defense mechanisms against such infectious pathogens as bacteria, viruses, or fungi. ROS may also damage body tissues depending on the amount and duration of exposure and may further act as triggers for enzymatically generated ROS released from respiratory, immune, and inflammatory cells. This paper focuses on the general relevance of free radicals for the development and progression of both COPD and pulmonary emphysema as well as novel perspectives on therapeutic options. Unfortunately, current treatment options do not suffice to prevent chronic airway inflammation and are not yet able to substantially alter the course of COPD. Effective therapeutic antioxidant measures are urgently needed to control and mitigate local as well as systemic oxygen bursts in COPD and other respiratory diseases. In addition to current therapeutic prospects and aspects of genomic medicine, trending research topics in COPD are presented.
Collapse
Affiliation(s)
- Wolfgang Domej
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karl Oettl
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
38
|
Bachnoff N, Cohen-Kutner M, Trus M, Atlas D. Intra-membrane signaling between the voltage-gated Ca2+-channel and cysteine residues of syntaxin 1A coordinates synchronous release. Sci Rep 2014; 3:1620. [PMID: 23567899 PMCID: PMC3621091 DOI: 10.1038/srep01620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022] Open
Abstract
The interaction of syntaxin 1A (Sx1A) with voltage-gated calcium channels (VGCC) is required for depolarization-evoked release. However, it is unclear how the signal is transferred from the channel to the exocytotic machinery and whether assembly of Sx1A and the calcium channel is conformationally linked to triggering synchronous release. Here we demonstrate that depolarization-evoked catecholamine release was decreased in chromaffin cells infected with semliki forest viral vectors encoding Sx1A mutants, Sx1AC271V, or Sx1AC272V, or by direct oxidation of these Sx1A transmembrane (TM) cysteine residues. Mutating or oxidizing these highly conserved Sx1A Cys271 and Cys272 equally disrupted the Sx1A interaction with the channel. The results highlight the functional link between the VGCC and the exocytotic machinery, and attribute the redox sensitivity of the release process to the Sx1A TM C271 and C272. This unique intra-membrane signal-transduction pathway enables fast signaling, and triggers synchronous release by conformational-coupling of the channel with Sx1A.
Collapse
Affiliation(s)
- Niv Bachnoff
- The Hebrew University of Jerusalem, Institute of Life Sciences, Department of Biological Chemistry, Givat-Ram, Jerusalem, Israel
| | | | | | | |
Collapse
|
39
|
JEŽEK P, OLEJÁR T, SMOLKOVÁ K, JEŽEK J, DLASKOVÁ A, PLECITÁ-HLAVATÁ L, ZELENKA J, ŠPAČEK T, ENGSTOVÁ H, PAJUELO REGUERA D, JABŮREK M. Antioxidant and Regulatory Role of Mitochondrial Uncoupling Protein UCP2 in Pancreatic β-cells. Physiol Res 2014; 63:S73-91. [DOI: 10.33549/physiolres.932633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on brown adipose tissue and its hallmark protein, mitochondrial uncoupling protein UCP1, has been conducted for half a century and has been traditionally studied in the Institute of Physiology (AS CR, Prague), likewise UCP2 residing in multiple tissues for the last two decades. Our group has significantly contributed to the elucidation of UCP uncoupling mechanism, fully dependent on free fatty acids (FFAs) within the inner mitochondrial membrane. Now we review UCP2 physiological roles emphasizing its roles in pancreatic β-cells, such as antioxidant role, possible tuning of redox homeostasis (consequently UCP2 participation in redox regulations), and fine regulation of glucose-stimulated insulin secretion (GSIS). For example, NADPH has been firmly established as being a modulator of GSIS and since UCP2 may influence redox homeostasis, it likely affects NADPH levels. We also point out the role of phospholipase iPLA2 isoform in providing FFAs for the UCP2 antioxidant function. Such initiation of mild uncoupling hypothetically precedes lipotoxicity in pancreatic β-cells until it reaches the pathological threshold, after which the antioxidant role of UCP2 can be no more cell-protective, for example due to oxidative stress-accumulated mutations in mtDNA. These mechanisms, together with impaired autocrine insulin function belong to important causes of Type 2 diabetes etiology.
Collapse
Affiliation(s)
- P. JEŽEK
- Department of Membrane Transport Biophysics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain. Redox Biol 2014; 2:447-56. [PMID: 24624334 PMCID: PMC3949098 DOI: 10.1016/j.redox.2013.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological disorders associated with diabetes. Thioredoxin mimeitics peptides (TXM) lower apoptosis in the brain of ZDF rat. TxM peptides prevent TXNIP/TBP-2 expression in the brain of ZDF rat. TxM peptides could become beneficial for preventing diabetes associated neurological disorders.
Collapse
|
41
|
Atlas D. Voltage-gated calcium channels function as Ca2+-activated signaling receptors. Trends Biochem Sci 2014; 39:45-52. [PMID: 24388968 DOI: 10.1016/j.tibs.2013.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction.
Collapse
Affiliation(s)
- Daphne Atlas
- Department of Biological Chemistry, The Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| |
Collapse
|
42
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
43
|
Boycott HE, Dallas ML, Elies J, Pettinger L, Boyle JP, Scragg JL, Gamper N, Peers C. Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin. FASEB J 2013; 27:3395-407. [PMID: 23671274 DOI: 10.1096/fj.13-227249] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
T-type Ca(2+) channels play diverse roles in tissues such as sensory neurons, vascular smooth muscle, and cancers, where increased expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1) is often found. Here, we report regulation of T-type Ca(2+) channels by carbon monoxide (CO) a HO-1 by-product. CO (applied as CORM-2) caused a concentration-dependent, poorly reversible inhibition of all T-type channel isoforms (Cav3.1-3.3, IC50 ∼3 μM) expressed in HEK293 cells, and native T-type channels in NG108-15 cells and primary rat sensory neurons. No recognized CO-sensitive signaling pathway could account for the CO inhibition of Cav3.2. Instead, CO sensitivity was mediated by an extracellular redox-sensitive site, which was also highly sensitive to thioredoxin (Trx). Trx depletion (using auranofin, 2-5 μM) reduced Cav3.2 currents and their CO sensitivity by >50% but increased sensitivity to dithiothreitol ∼3-fold. By contrast, Cav3.1 and Cav3.3 channels, and their sensitivity to CO, were unaffected in identical experiments. Our data propose a novel signaling pathway in which Trx acts as a tonic, endogenous regulator of Cav3.2 channels, while HO-1-derived CO disrupts this regulation, causing channel inhibition. CO modulation of T-type channels has widespread implications for diverse physiological and pathophysiological mechanisms, such as excitability, contractility, and proliferation.
Collapse
Affiliation(s)
- Hannah E Boycott
- Leeds Institute of Genetics, Health, and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cohen-Kutner M, Khomsky L, Trus M, Aisner Y, Niv MY, Benhar M, Atlas D. Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells. Biochem Pharmacol 2013; 85:977-90. [PMID: 23327993 DOI: 10.1016/j.bcp.2013.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/11/2023]
Abstract
The thioredoxin reductase/thioredoxin system (TrxR/Trx1) plays a major role in protecting cells from oxidative stress. Disruption of the TrxR-Trx1 system keeps Trx1 in the oxidized state leading to cell death through activation of the ASK1-Trx1 apoptotic pathway. The potential mechanism and ability of tri- and tetra-oligopeptides derived from the canonical -CxxC- motif of the Trx1-active site to mimic and enhance Trx1 cellular activity was examined. The Trx mimetics peptides (TXM) protected insulinoma INS 832/13 cells from oxidative stress induced by selectively inhibiting TrxR with auranofin (AuF). TXM reversed the AuF-effects preventing apoptosis, and increasing cell-viability. The TXM peptides were effective in inhibiting AuF-induced MAPK, JNK and p38(MAPK) phosphorylation, in correlation with preventing caspase-3 cleavage and thereby PARP-1 dissociation. The ability to form a disulfide-bridge-like conformation was estimated from molecular dynamics simulations. The TXM peptides restored insulin secretion and displayed Trx1 denitrosylase activity. Their potency was 10-100-fold higher than redox reagents like NAC, AD4, or ascorbic acid. Unable to reverse ERK1/2 phosphorylation, TXM-CB3 (NAc-Cys-Pro-Cys amide) appeared to function in part, through inhibiting ASK1-Trx dissociation. These highly effective anti-apoptotic effects of Trx1 mimetic peptides exhibited in INS 832/13 cells could become valuable in treating adverse oxidative-stress related disorders such as diabetes.
Collapse
Affiliation(s)
- Moshe Cohen-Kutner
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 919104, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|
46
|
Yu M, Lau TY, Carr SA, Krieger M. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI. Biochemistry 2012. [PMID: 23205738 DOI: 10.1021/bi301203x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
47
|
Rahman I, Kinnula VL. Strategies to decrease ongoing oxidant burden in chronic obstructive pulmonary disease. Expert Rev Clin Pharmacol 2012; 5:293-309. [PMID: 22697592 DOI: 10.1586/ecp.12.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity globally, and its development is mainly associated with tobacco/biomass smoke-induced oxidative stress. Hence, targeting systemic and local oxidative stress with agents that can balance the antioxidant/redox system can be expected to be useful in the treatment of COPD. Preclinical and clinical trials have revealed that antioxidants/redox modulators can detoxify free radicals and oxidants, control expression of redox and glutathione biosynthesis genes, chromatin remodeling and inflammatory gene expression; and are especially useful in preventing COPD exacerbations. In this review, various novel approaches and problems associated with these approaches in COPD are reviewed.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
48
|
Rahman I, MacNee W. Antioxidant pharmacological therapies for COPD. Curr Opin Pharmacol 2012; 12:256-65. [PMID: 22349417 DOI: 10.1016/j.coph.2012.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 12/28/2022]
Abstract
Increased oxidative stress occurs in the lungs and systemically in COPD, which plays a role in many of the pathogenic mechanisms in COPD. Hence, targeting local lung and systemic oxidative stress with agents that modulate the antioxidants/redox system or boost endogenous antioxidants would be a useful therapeutic approach in COPD. Thiol antioxidants (N-acetyl-l-cysteine [NAC] and N-acystelyn, carbocysteine, erdosteine, and fudosteine) have been used to increase lung thiol content. Modulation of cigarette smoke (CS) induced oxidative stress and its consequent cellular changes have also been reported to be effected by synthetic molecules, such as spin traps (α-phenyl-N-tert-butyl nitrone), catalytic antioxidants (superoxide dismutase [ECSOD] mimetics), porphyrins, and lipid peroxidation and protein carbonylation blockers/inhibitors (edaravone and lazaroids/tirilazad). Preclinical and clinical trials have shown that these antioxidants can reduce oxidative stress, affect redox and glutathione biosynthesis genes, and proinflammatory gene expression. In this review the approaches to enhance lung antioxidants in COPD and the potential beneficial effects of antioxidant therapy on the course of the disease are discussed.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| | | |
Collapse
|
49
|
Rahman I. Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim Biophys Acta Mol Basis Dis 2011; 1822:714-28. [PMID: 22101076 DOI: 10.1016/j.bbadis.2011.11.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS and myeloperoxidase inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|