1
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Oliveira RHDM, Annex BH, Popel AS. Endothelial cells signaling and patterning under hypoxia: a mechanistic integrative computational model including the Notch-Dll4 pathway. Front Physiol 2024; 15:1351753. [PMID: 38455844 PMCID: PMC10917925 DOI: 10.3389/fphys.2024.1351753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction: Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between endothelial cells under normoxia and hypoxia and their response to different stimuli can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis. Methods: We calibrate and fit the model parameters based on well-established modeling techniques that include structural and practical parameter identifiability, uncertainty quantification, and global sensitivity. Results: Our results indicate that the main pathways involved in patterning tip and stalk endothelial cells under hypoxia differ, and the time under hypoxia interferes with how different stimuli affect patterning. Additionally, our simulations indicate that Notch signaling might regulate vascular permeability and establish different Nitric Oxide release patterns for tip/stalk cells. Following simulations with various stimuli, our model suggests that factors such as time under hypoxia and oxygen availability must be considered for EC pattern control. Discussion: This project provides insights into the signaling and patterning of endothelial cells under various oxygen levels and stimulation by VEGFA and is our first integrative approach toward achieving EC control as a method for improving angiogenesis. Overall, our model provides a computational framework that can be built on to test angiogenesis-related therapies by modulation of different pathways, such as the Notch pathway.
Collapse
Affiliation(s)
| | - Brian H. Annex
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Kimura K, Jackson TLB, Huang RCC. Interaction and Collaboration of SP1, HIF-1, and MYC in Regulating the Expression of Cancer-Related Genes to Further Enhance Anticancer Drug Development. Curr Issues Mol Biol 2023; 45:9262-9283. [PMID: 37998757 PMCID: PMC10670631 DOI: 10.3390/cimb45110580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Specificity protein 1 (SP1), hypoxia-inducible factor 1 (HIF-1), and MYC are important transcription factors (TFs). SP1, a constitutively expressed housekeeping gene, regulates diverse yet distinct biological activities; MYC is a master regulator of all key cellular activities including cell metabolism and proliferation; and HIF-1, whose protein level is rapidly increased when the local tissue oxygen concentration decreases, functions as a mediator of hypoxic signals. Systems analyses of the regulatory networks in cancer have shown that SP1, HIF-1, and MYC belong to a group of TFs that function as master regulators of cancer. Therefore, the contributions of these TFs are crucial to the development of cancer. SP1, HIF-1, and MYC are often overexpressed in tumors, which indicates the importance of their roles in the development of cancer. Thus, proper manipulation of SP1, HIF-1, and MYC by appropriate agents could have a strong negative impact on cancer development. Under these circumstances, these TFs have naturally become major targets for anticancer drug development. Accordingly, there are currently many SP1 or HIF-1 inhibitors available; however, designing efficient MYC inhibitors has been extremely difficult. Studies have shown that SP1, HIF-1, and MYC modulate the expression of each other and collaborate to regulate the expression of numerous genes. In this review, we provide an overview of the interactions and collaborations of SP1, HIF1A, and MYC in the regulation of various cancer-related genes, and their potential implications in the development of anticancer therapy.
Collapse
Affiliation(s)
| | | | - Ru Chih C. Huang
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
4
|
Grzymajło K, Dutkiewicz A, Czajkowska J, Carolak E, Aleksandrowicz A, Waszczuk W. Salmonella adhesion is decreased by hypoxia due to adhesion and motility structure crosstalk. Vet Res 2023; 54:99. [PMID: 37875985 PMCID: PMC10598919 DOI: 10.1186/s13567-023-01233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 10/26/2023] Open
Abstract
Initial stages of Salmonella Typhimurium infection involve a series of coordinated events aimed at reaching, attaching to, and invading host cells. Virulence factors such as flagella, fimbriae, and secretion systems play crucial roles in these events and are regulated in response to the host environment. The first point of contact between the pathogen and host is the intestinal epithelial layer, which normally serves as a barrier against invading pathogens, but can also be an entry site for pathogens. The integrity of this barrier can be modulated by the hypoxic environment of the intestines, created by the presence of trillions of microbes. Variable oxygen concentrations can strongly affect many functions of the gut, including secretion of cytokines and growth factors from the host site and affect the ability of Salmonella to persist, invade, and replicate. In this study, we investigated the first stages of Salmonella Typhimurium infection under hypoxic conditions in vitro and found that low oxygen levels significantly decreased bacterial adhesion. Using adhesion and motility assays, biofilm formation tests, as well as gene expression and cytokine secretion analysis, we identified a hypoxia-specific cross-talk between the expression of type 1 fimbriae and flagella, suggesting that altered flagellin expression levels affect the motility of bacteria and further impact their adhesion level, biofilm formation ability, and innate immune response. Overall, understanding how Salmonella interacts with its variable host environment provides insights into the virulence mechanisms of the bacterium and information regarding strategies for preventing or treating infections. Further research is required to fully understand the complex interplay between Salmonella and its host environment.
Collapse
Affiliation(s)
- Krzysztof Grzymajło
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Agata Dutkiewicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Joanna Czajkowska
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Carolak
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adrianna Aleksandrowicz
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Wiktoria Waszczuk
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Bechmann N, Westermann F, Eisenhofer G. HIF and MYC signaling in adrenal neoplasms of the neural crest: implications for pediatrics. Front Endocrinol (Lausanne) 2023; 14:1022192. [PMID: 37361539 PMCID: PMC10286580 DOI: 10.3389/fendo.2023.1022192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Pediatric neural crest-derived adrenal neoplasms include neuroblastoma and pheochromocytoma. Both entities are associated with a high degree of clinical heterogeneity, varying from spontaneous regression to malignant disease with poor outcome. Increased expression and stabilization of HIF2α appears to contribute to a more aggressive and undifferentiated phenotype in both adrenal neoplasms, whereas MYCN amplification is a valuable prognostic marker in neuroblastoma. The present review focuses on HIF- and MYC signaling in both neoplasms and discusses the interaction of associated pathways during neural crest and adrenal development as well as potential consequences on tumorigenesis. Emerging single-cell methods together with epigenetic and transcriptomic analyses provide further insights into the importance of a tight regulation of HIF and MYC signaling pathways during adrenal development and tumorigenesis. In this context, increased attention to HIF-MYC/MAX interactions may also provide new therapeutic options for these pediatric adrenal neoplasms.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Westermann
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Antonelli A, Scarpa ES, Bruzzone S, Astigiano C, Piacente F, Bruschi M, Fraternale A, Di Buduo CA, Balduini A, Magnani M. Anoxia Rapidly Induces Changes in Expression of a Large and Diverse Set of Genes in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065157. [PMID: 36982232 PMCID: PMC10049254 DOI: 10.3390/ijms24065157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University in Boston, Boston, MA 02111, USA
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
7
|
Łoboda A, Dulak J. Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration. Antioxid Redox Signal 2023; 38:619-642. [PMID: 36597355 DOI: 10.1089/ars.2022.0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Significance: Skeletal muscles have a robust regenerative capacity in response to acute and chronic injuries. Muscle repair and redox homeostasis are intimately linked; increased generation of reactive oxygen species leads to cellular dysfunction and contributes to muscle wasting and progression of muscle diseases. In exemplary muscle disease, Duchenne muscular dystrophy (DMD), caused by mutations in the DMD gene that encodes the muscle structural protein dystrophin, the regeneration machinery is severely compromised, while oxidative stress contributes to the progression of the disease. The nuclear factor erythroid 2-related factor 2 (NRF2) and its target genes, including heme oxygenase-1 (HO-1), provide protective mechanisms against oxidative insults. Recent Advances: Relevant advances have been evolving in recent years in understanding the mechanisms by which NRF2 regulates processes that contribute to effective muscle regeneration. To this end, pathways related to muscle satellite cell differentiation, oxidative stress, mitochondrial metabolism, inflammation, fibrosis, and angiogenesis have been studied. The regulatory role of NRF2 in skeletal muscle ferroptosis has been also suggested. Animal studies have shown that NRF2 pathway activation can stop or reverse skeletal muscle pathology, especially when endogenous stress defence mechanisms are imbalanced. Critical Issues: Despite the growing recognition of NRF2 as a factor that regulates various aspects of muscle regeneration, the mechanistic impact on muscle pathology in various models of muscle injury remains imprecise. Future Directions: Further studies are necessary to fully uncover the role of NRF2 in muscle regeneration, both in physiological and pathological conditions, and to investigate the possibilities for development of new therapeutic modalities. Antioxid. Redox Signal. 38, 619-642.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
8
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
9
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
10
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
11
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
12
|
Sonoda K, Bogahawatta S, Katayama A, Ujike S, Kuroki S, Kitagawa N, Hirotsuru K, Suzuki N, Miyata T, Kawaguchi SI, Tsujita T. Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress. ACS Pharmacol Transl Sci 2022; 5:362-372. [PMID: 35592438 PMCID: PMC9112412 DOI: 10.1021/acsptsci.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-α (HIF-α) activation has shown promising results in the treatment of ischemia, such as stroke, myocardial infarction, and chronic kidney disease. A number of HIF-α activators have been developed to improve the symptoms of these diseases. Many feature 2-oxoglutarate (2-OG) scaffolds that interact with the active centers of prolyl hydroxylase domain-containing proteins (PHDs), displacing the coenzyme 2-OG. This stabilizes HIF-α. Therefore, the specificity of the 2-OG analogs is not high. Here, we identified 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (PyrzA) among over 10 000 compounds as a novel HIF activator that does not contain a 2-OG scaffold. In cultured cells, PyrzA enhanced HIF-α stability and upregulated the expression of HIF target genes. Interestingly, PyrzA decreased HIF-1α prolyl hydroxylation, suggesting that PyrzA may activate HIF to prevent the degradation of HIF-α. These results indicate that PyrzA stabilizes HIF via a novel mechanism and could be a potential HIF activator candidate.
Collapse
Affiliation(s)
- Kento Sonoda
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Sudarma Bogahawatta
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Akito Katayama
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Saki Ujike
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Sae Kuroki
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Naho Kitagawa
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Kohichi Hirotsuru
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8575, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
13
|
A novel mechanism for A-to-I RNA-edited AZIN1 in promoting tumor angiogenesis in colorectal cancer. Cell Death Dis 2022; 13:294. [PMID: 35365616 PMCID: PMC8975946 DOI: 10.1038/s41419-022-04734-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Adenosine (A) to inosine (I) RNA editing catalyzed by adenosine deaminases acting on RNA (ADAR) enzymes is a post-transcriptional modification that emerged as a key player in tumorigenesis and cancer progression. Antizyme inhibitor 1 (AZIN1) is one of the most frequent A-to-I RNA alterations in many human cancers. RNA-edited AZIN1 is known to confer a gain-of-function phenotype associated with aggressive tumors. However, the functional impact of RNA-edited AZIN1 in cancer angiogenesis remains unexplored. We showed here that RNA-edited AZIN1 promoted tumor angiogenesis through the upregulation of IL-8 via in vitro and in vivo experiments. And we subsequently demonstrated that delaying c-Myc degradation by OAZ2-mediated ubiquitin-independent proteasome pathway contributed to increase mRNA level and the secretion of angiogenic factor IL-8. Our study suggests an important contribution of RNA-edited AZIN1 to the tumor vascular microenvironment and highlights its translational potential. Thus, we revealed a potential approach to explore small-molecule antagonists such as reparixin attenuating IL-8 signaling for treatment of human cancer patients detected with hyper-editing.
Collapse
|
14
|
Davis L, Recktenwald M, Hutt E, Fuller S, Briggs M, Goel A, Daringer N. Targeting HIF-2α in the Tumor Microenvironment: Redefining the Role of HIF-2α for Solid Cancer Therapy. Cancers (Basel) 2022; 14:1259. [PMID: 35267567 PMCID: PMC8909461 DOI: 10.3390/cancers14051259] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit, driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and future directions.
Collapse
Affiliation(s)
- Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Schuyler Fuller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madison Briggs
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Nichole Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
15
|
Shih HJ, Chang HF, Chen CL, Torng PL. Differential expression of hypoxia-inducible factors related to the invasiveness of epithelial ovarian cancer. Sci Rep 2021; 11:22925. [PMID: 34824343 PMCID: PMC8616920 DOI: 10.1038/s41598-021-02400-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages, with recurrences after treatments. Treatment failure and resistance are due to hypoxia-inducible factors (HIFs) activated by cancer cells adapt to hypoxia. IGFBP3, which was previously identified as a growth/invasion/metastasis suppressor of ovarian cancer, plays a key role in inhibiting tumor angiogenesis. Although IGFBP3 can effectively downregulate tumor proliferation and vasculogenesis, its effects are only transient. Tumors enter a hypoxic state when they grow large and without blood vessels; then, the tumor cells activate HIFs to regulate cell metabolism, proliferation, and induce vasculogenesis to adapt to hypoxic stress. After IGFBP3 was transiently expressed in highly invasive ovarian cancer cell line and heterotransplant on mice, the xenograft tumors demonstrated a transient growth arrest with de-vascularization, causing tumor cell hypoxia. Tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. In the down-expression of IGFBP3 in xenograft tumors and transfectants, HIF-2α was the major activated protein. This study suggests that HIF-2α presentation is crucial in the switching of epithelial ovarian cancer from dormancy to proliferation states. In highly invasive cells, the cancer hallmarks associated with aggressiveness could be activated to escape from the growth restriction state.
Collapse
Affiliation(s)
- Ho-Jun Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fang Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Ling Torng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Obstetrics and Gynecology, Hsin-Chu Branch, National Taiwan University Hospital, Hsin-Chu, Taiwan.
| |
Collapse
|
16
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
17
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
18
|
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules 2020; 10:biom10121614. [PMID: 33260307 PMCID: PMC7759989 DOI: 10.3390/biom10121614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.
Collapse
|
19
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
20
|
Koper-Lenkiewicz OM, Kamińska J, Reszeć J, Dymicka-Piekarska V, Ostrowska H, Karpińska M, Matowicka-Karna J, Tylicka M. Elevated plasma 20S proteasome chymotrypsin-like activity is correlated with IL-8 levels and associated with an increased risk of death in glial brain tumor patients. PLoS One 2020; 15:e0238406. [PMID: 32886667 PMCID: PMC7473512 DOI: 10.1371/journal.pone.0238406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/15/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION In cancer treatment an attempt has been made to pharmacologically regulate the proteasome functions, thus the aim was to test whether 20S proteasome chymotrypsin-like (ChT-L) activity has a role in glial brain tumors. Furthermore, we analyzed the correlation between proteasome activity and IL-8, CCL2, NF-κB1 and NF-κB2 concentrations, which impact on brain tumors has already been indicated. METHODS Plasma 20S proteasome ChT-L activity was assayed using the fluorogenic peptide substrate Suc-Leu-Leu-Val-Tyr-AMC in the presence of SDS. IL-8, CCL2, NF-κB1 and NF-κB2 concentration was analyzed with the use of ELISA method. Immunohistochemistry for IDH1-R132H was done on 5-microns-thick formalin-fixed, paraffin-embedded tumor sections with the use of antibody specific for the mutant IDH1-R132H protein. Labelled streptavidin biotin kit was used as a detection system. RESULTS Brain tumor patients had statistically higher 20S proteasome ChT-L activity (0.649 U/mg) compared to non-tumoral individuals (0.430 U/mg). IDH1 wild-type patients had statistically higher 20S proteasome ChT-L activity (1.025 U/mg) compared to IDH1 mutants (0.549 U/mg). 20S proteasome ChT-L activity in brain tumor patients who died as the consequence of a tumor (0.649) in the following 2 years was statistically higher compared to brain tumor patients who lived (0.430 U/mg). In brain tumor patients the 20S proteasome ChT-L activity positively correlated with IL-8 concentration. CONCLUSIONS Elevated 20S proteasome ChT-L activity was related to the increased risk of death in glial brain tumor patients. A positive correlation between 20S proteasome ChT-L activity and IL-8 concentration may indicate the molecular mechanisms regulating glial tumor biology. Thus research on proteasomes may be important and should be carried out to verify if this protein complexes may represent a potential therapeutic target to limit brain tumor invasion.
Collapse
Affiliation(s)
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | | | - Halina Ostrowska
- Department of Biology, Medical University of Białystok, Białystok, Poland
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
21
|
Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q, Zhao M. Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother 2020; 128:110338. [PMID: 32526454 DOI: 10.1016/j.biopha.2020.110338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia, the decline of tissue oxygen stress, plays a role in mediating cellular processes. Cardiovascular disease, relatively widespread with increased mortality, is closely correlated with oxygen homeostasis regulation. Besides, hypoxia-inducible factor-1(HIF-1) is reported to be a crucial component in regulating systemic hypoxia-induced physiological and pathological modifications like oxidative stress, damage, angiogenesis, vascular remodeling, inflammatory reaction, and metabolic remodeling. In addition, HIF1 controls the movement, proliferation, apoptosis, differentiation and activity of numerous core cells, such as cardiomyocytes, endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages. Here we review the molecular regulation of HIF-1 in cardiovascular diseases, intended to improve therapeutic approaches for clinical diagnoses. Better knowledge of the oxygen balance control and the signal mechanisms involved is important to advance the development of hypoxia-related diseases.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Quyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Linyong Xu
- Xiangya School of Life Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| |
Collapse
|
22
|
Aydin Y, Kurt R, Song K, Lin D, Osman H, Youngquist B, Scott JW, Shores NJ, Thevenot P, Cohen A, Dash S. Hepatic Stress Response in HCV Infection Promotes STAT3-Mediated Inhibition of HNF4A- miR-122 Feedback Loop in Liver Fibrosis and Cancer Progression. Cancers (Basel) 2019; 11:1407. [PMID: 31547152 PMCID: PMC6827087 DOI: 10.3390/cancers11101407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection compromises the natural defense mechanisms of the liver leading to a progressive end stage disease such as cirrhosis and hepatocellular carcinoma (HCC). The hepatic stress response generated due to viral replication in the endoplasmic reticulum (ER) undergoes a stepwise transition from adaptive to pro-survival signaling to improve host cell survival and liver disease progression. The minute details of hepatic pro-survival unfolded protein response (UPR) signaling that contribute to HCC development in cirrhosis are unknown. This study shows that the UPR sensor, the protein kinase RNA-like ER kinase (PERK), mediates the pro-survival signaling through nuclear factor erythroid 2-related factor 2 (NRF2)-mediated signal transducer and activator of transcription 3 (STAT3) activation in a persistent HCV infection model of Huh-7.5 liver cells. The NRF2-mediated STAT3 activation in persistently infected HCV cell culture model resulted in the decreased expression of hepatocyte nuclear factor 4 alpha (HNF4A), a major liver-specific transcription factor. The stress-induced inhibition of HNF4A expression resulted in a significant reduction of liver-specific microRNA-122 (miR-122) transcription. It was found that the reversal of hepatic adaptive pro-survival signaling and restoration of miR-122 level was more efficient by interferon (IFN)-based antiviral treatment than direct-acting antivirals (DAAs). To test whether miR-122 levels could be utilized as a biomarker of hepatic adaptive stress response in HCV infection, serum miR-122 level was measured among healthy controls, and chronic HCV patients with or without cirrhosis. Our data show that serum miR-122 expression level remained undetectable in most of the patients with cirrhosis (stage IV fibrosis), suggesting that the pro-survival UPR signaling increases the risk of HCC through STAT3-mediated suppression of miR-122. In conclusion, our data indicate that hepatic pro-survival UPR signaling suppresses the liver-specific HNF4A and its downstream target miR-122 in cirrhosis. These results provide an explanation as to why cirrhosis is a risk factor for the development of HCC in chronic HCV infection.
Collapse
Affiliation(s)
- Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Ramazan Kurt
- Section of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Kyoungsub Song
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Dong Lin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Hanadi Osman
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Brady Youngquist
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - John W Scott
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Nathan J Shores
- Section of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Paul Thevenot
- Liver Transplant Surgery Section, Ochsner Medical Center, New Orleans, LA 70121, USA.
| | - Ari Cohen
- Liver Transplant Surgery Section, Ochsner Medical Center, New Orleans, LA 70121, USA.
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
- Section of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
23
|
Matsuo J, Sakai K, Okubo T, Yamaguchi H. Chlamydia pneumoniaeenhances Interleukin 8 (IL-8) production with reduced azithromycin sensitivity under hypoxia. APMIS 2019; 127:131-138. [DOI: 10.1111/apm.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Junji Matsuo
- Department of Medical Laboratory Science; Faculty of Health Sciences; Hokkaido University; Sapporo Japan
| | - Kohei Sakai
- Department of Medical Laboratory Science; Faculty of Health Sciences; Hokkaido University; Sapporo Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science; Faculty of Health Sciences; Hokkaido University; Sapporo Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science; Faculty of Health Sciences; Hokkaido University; Sapporo Japan
| |
Collapse
|
24
|
Liu YS, Hsu JW, Lin HY, Lai SW, Huang BR, Tsai CF, Lu DY. Bradykinin B1 receptor contributes to interleukin-8 production and glioblastoma migration through interaction of STAT3 and SP-1. Neuropharmacology 2019; 144:143-154. [PMID: 30366000 DOI: 10.1016/j.neuropharm.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor, has a poor prognosis due to the ease of migration to surrounding healthy brain tissue. Recent studies have shown that bradykinin receptors are involved in the progression of various cancers. However, the molecular mechanism and pathological role of bradykinin receptors remains unclear. We observed the expressions of two major bradykinin receptors, B1R and B2R, in two different human GBM cell lines, U87 and GBM8901. Cytokine array analysis showed that bradykinin increases the production of interleukin (IL)-8 in GBM via B1R. Higher B1R levels correlate with IL-8 expression in U87 and GBM8901. We observed increased levels of phosphorylated STAT3 and SP-1 in the nucleus as well. Using chromatin immunoprecipitation assay, we found that STAT3 and SP-1 mediate IL-8 expression, which gets abrogated by the inhibition of FAK and STAT3. We further demonstrated that IL-8 expression and cell migration are also regulated by the SP-1. In addition, expression levels of STAT3 and SP-1 positively correlate with clinicopathological grades of gliomas. Interestingly, our results found that inhibition of HDAC increases IL-8 expression. Moreover, stimulation with bradykinin caused increases in acetylated SP-1 and p300 complex formation, which are abrogated by inhibition of FAK and STAT3. Meanwhile, knockdown of SP-1 and p300 decreased the augmentation of bradykinin-induced IL-8 expression. These results indicate that bradykinin-induced IL-8 expression is dependent on B1R which causes phosphorylated STAT3 and acetylated SP-1 to translocate to the nucleus, hence resulting in GBM migration.
Collapse
Affiliation(s)
- Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Jhih-Wen Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
25
|
Praditi C, Prijanti AR, Jusman SW, Sadikin M. Relative hypoxia and oxidative stress in spleen lymphocytes of immunized Balb/c mice as indicated by HIF-1α, HIF-2α, Nrf2 expression, and glutathione peroxidase activity. MEDICAL JOURNAL OF INDONESIA 2018. [DOI: 10.13181/mji.v27i4.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Background: Lymphocytes activated by immunization must increase their metabolism to meet the energy requirements for mitosis, differentiation, and protein synthesis, which may subject the cell to conditions of relative hypoxia and oxidative stress. This study was conducted to investigate the increase in the levels of transcription factors involved in both conditions.Methods: Male Balb/c mice were divided into the following four groups, each consisting of six animals: the control and three experimental groups. The experimental groups were immunized by injection of 0.2 ml of 2% sheep red blood cells (SRBC) suspended in phosphate-buffered saline (PBS). Lymphocytes were harvested from the spleens of each group at time intervals of 24-, 48-, and 72-h post-immunization. The buffy coat from splenocytes was separated using Ficoll Histopaque as the medium. The lymphocytes were separated from adherent cells by incubating the purified splenocytes in microtubes for 2-h. Cells were lysed by three freeze–thaw cycles (−80°C and 37°C) and used to analyze the levels of HIF-1α and HIF-2α (mRNA and protein), Nrf2 (protein), and glutathione peroxidase (GPx) activity.Results: The treatment caused an increase in GPx activity and HIF-1α protein concentration 24-h post-immunization, whereas the HIF-1α mRNA levels remained static. Elevated Nrf2 protein levels were detected within 48-h after treatment. Meanwhile, the HIF-2α mRNA and protein levels increased within72-h after immunization.Conclusion: Immunization with SRBC suspension induced relative hypoxia, elevated reactive oxygen species (ROS), and oxidative stress in the lymphocytes as indicated by the increase in both HIF-1α and HIF-2α protein and mRNA levels, GPx activity, and Nrf2 protein levels.
Collapse
|
26
|
Aydin Y, Stephens CM, Chava S, Heidari Z, Panigrahi R, Williams DD, Wiltz K, Bell A, Wilson W, Reiss K, Dash S. Chaperone-Mediated Autophagy Promotes Beclin1 Degradation in Persistently Infected Hepatitis C Virus Cell Culture. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2339-2355. [PMID: 30075149 PMCID: PMC6168955 DOI: 10.1016/j.ajpath.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Liver cirrhosis is an independent risk factor for hepatocellular carcinoma (HCC). The mechanisms that contribute to HCC development in the cirrhotic microenvironment are unknown. We found that HCC grown in the highly stressed cirrhotic microenvironment undergoes autophagy switching from a protective state characterized by high macroautophagy with low chaperone-mediated autophagy (CMA) to an HCC-promoting state characterized by low macroautophagy with high CMA. This study examined how the stress response executes oncogenic cell programming through autophagy switching using hepatitis C virus cell culture. Protein kinase R-like endoplasmic reticulum kinase expression increased to high levels in hepatitis C virus culture. Protein kinase R-like endoplasmic reticulum kinase-dependent activation of nuclear factor erythroid 2-related factor (Nrf2) led to increased transcription of the cytoprotective genes: heat shock cognate 70 kDa protein and lysosome-associated membrane protein 2A (LAMP2A) and precipitated the induction of CMA. CMA selectively targeted beclin1 degradation, leading to accumulation of the autophagy flux protein p62 due to impaired autophagosome-endosome fusion. This impaired autophagosome-endosome fusion due to beclin1 degradation inhibited endocytosis and degradation of epidermal growth factor receptor. Silencing Nrf2 and LAMP2A reduced cell viability, suggesting that the stress response activates CMA as a compensatory mechanism of cell survival. We report a novel mechanism through which stress response triggers oncogenic Nrf2 signaling that promotes autophagy switching to favor cell survival.
Collapse
Affiliation(s)
- Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Christopher M Stephens
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Zahra Heidari
- Department of Chemical and Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Rajesh Panigrahi
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Donkita D Williams
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Kylar Wiltz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Antoinette Bell
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Wallace Wilson
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
27
|
Stachurska A, Sarna T. Regulation of Melanopsin Signaling: Key Interactions of the Nonvisual Photopigment. Photochem Photobiol 2018; 95:83-94. [DOI: 10.1111/php.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Stachurska
- Labolatory of Imaging and Force Spectroscopy; Malopolska Centre of Biotechnology; Jagiellonian University; Krakow Poland
| | - Tadeusz Sarna
- Department of Biophysics; Faculty of Biochemistry, Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| |
Collapse
|
28
|
Serum and Tissue HIF-2 Alpha Expression in CIN, N-Acetyl Cysteine, and Sildenafil-Treated Rat Models: An Experimental Study. ACTA ACUST UNITED AC 2018; 54:medicina54040054. [PMID: 30344285 PMCID: PMC6174349 DOI: 10.3390/medicina54040054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
Background and Objectives: Contrast-induced nephropathy (CIN), is acute renal damage due to contrast agents. This study is conducted to evaluate serum and renal heterodimeric nuclear transcription factor (HIF)-2 alpha levels and its tissue expression in contrast-induced nephropathy, and in N-acetyl cysteine (NAC)-and Sildenafil-treated rat models. Materials/Methods: This randomized, controlled, interventional animal study was conducted on Wistar rats. Rats (n = 36) were randomly assigned to four groups: control (n = 9), CIN group (n = 9), CIN + NAC group (n = 9), and sildenafil (n = 9). The rat model was used to form iohexol-originated CIN. During the modeling, prophylactic treatment was performed at the 24th and 48th h. After 48 h of modeling, blood, urine, and tissue samples were obtained for biochemical analyses. HIF-2-α levels were measured in renal tissue, serum, and urine samples. Renal sections were also performed for histopathologic and immunohistochemical evaluations of renal injury and HIF-2-α expression. Results: In the CIN model, HIF-2α levels and other biochemical parameters were significantly increased (p < 0.01). Both sildenafil and NAC efficiently decreased renal damage due to contrast agents, as shown in histopathologic examinations (p < 0.05). Similarly, after treatment with sildenafil and NAC, HIF-2α levels were significantly decreased (p < 0.05). Conclusions: The current study shows that serum and tissue HIF-2α levels decrease in CIN. Besides, the levels and tissue expression of HIF-2α decrease with both NAC and sildenafil treatments. With further studies, HIF-2α can be investigated as a biomarker of CIN and can be used in the follow-up of patients with CIN.
Collapse
|
29
|
Murugesan T, Rajajeyabalachandran G, Kumar S, Nagaraju S, Jegatheesan SK. Targeting HIF-2α as therapy for advanced cancers. Drug Discov Today 2018; 23:1444-1451. [DOI: 10.1016/j.drudis.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
|
30
|
Makarevich PI, Dergilev KV, Tsokolaeva ZI, Boldyreva MA, Shevchenko EK, Gluhanyuk EV, Gallinger JO, Menshikov MY, Parfyonova YV. Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat model of myocardial infarction. PLoS One 2018; 13:e0197566. [PMID: 29787588 PMCID: PMC5963747 DOI: 10.1371/journal.pone.0197566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/05/2018] [Indexed: 12/31/2022] Open
Abstract
Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both—VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both–VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both–VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.
Collapse
Affiliation(s)
- Pavel I. Makarevich
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Therapy, Institute of Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Konstantin V. Dergilev
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - Zoya I. Tsokolaeva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Boldyreva
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeniy K. Shevchenko
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny V. Gluhanyuk
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - Julia O. Gallinger
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
| | - Mikhail Yu. Menshikov
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yelena V. Parfyonova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, Moscow, Russia
- Laboratory of Gene and Cell Technology, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
31
|
A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens Bioelectron 2018; 102:652-660. [DOI: 10.1016/j.bios.2017.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
32
|
Hahne M, Schumann P, Mursell M, Strehl C, Hoff P, Buttgereit F, Gaber T. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor. Microvasc Res 2018; 116:34-44. [DOI: 10.1016/j.mvr.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
33
|
Rexius-Hall ML, Rehman J, Eddington DT. A microfluidic oxygen gradient demonstrates differential activation of the hypoxia-regulated transcription factors HIF-1α and HIF-2α. Integr Biol (Camb) 2017; 9:742-750. [PMID: 28840922 PMCID: PMC5603417 DOI: 10.1039/c7ib00099e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas-perfused microchannels generated a linear oxygen gradient via diffusion across a 100 μm polydimethylsiloxane (PDMS) membrane. The device enabled exposure of a single monolayer of cells sharing culture media to a heterogeneous oxygen landscape, thus reflecting the oxygen gradients found at the microscale in the physiological setting and allowing for the real-time exchange of paracrine factors and metabolites between cells exposed to varying oxygen levels. By tuning the distance between two gas supply channels, the slope of the oxygen gradient was controlled. We studied the hypoxic activation of the transcription factors HIF-1α and HIF-2α in human endothelial cells within a spatial linear gradient of oxygen. Quantification of the nuclear to cytosolic ratio of HIF immunofluorescent staining demonstrated that the threshold for HIF-1α activation was below 2.5% O2 while HIF-2α was activated throughout the entire linear gradient. We show for the first time HIF-2α is subject to hyproxya, hypoxia by proxy, wherein hypoxic cells activate HIF in close-proximity normoxic cells. These results underscore the differences between HIF-1α and HIF-2α regulation and suggest that a microfluidic oxygen gradient is a novel tool for identifying distinct hypoxic signaling activation and interactions between differentially oxygenated cells.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Department of Bioengineering, The University of Illinois College of Engineering and College of Medicine, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, The University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - David T. Eddington
- Department of Bioengineering, The University of Illinois College of Engineering and College of Medicine, Chicago, IL, 60612, USA
| |
Collapse
|
34
|
Luo F, Zou Z, Liu X, Ling M, Wang Q, Wang Q, Lu L, Shi L, Liu Y, Liu Q, Zhang A. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis 2017; 38:615-626. [PMID: 28419250 DOI: 10.1093/carcin/bgx034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Xinlu Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Min Ling
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Lu Lu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Le Shi
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qizhan Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| |
Collapse
|
35
|
Aydin Y, Chedid M, Chava S, Danielle Williams D, Liu S, Hagedorn CH, Sumitran-Holgersson S, Reiss K, Moroz K, Lu H, Balart LA, Dash S. Activation of PERK-Nrf2 oncogenic signaling promotes Mdm2-mediated Rb degradation in persistently infected HCV culture. Sci Rep 2017; 7:9223. [PMID: 28835697 PMCID: PMC5569052 DOI: 10.1038/s41598-017-10087-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The mechanism of how chronic hepatitis C virus (HCV) infection leads to such a high rate of hepatocellular carcinoma (HCC) is unknown. We found that the PERK axis of endoplasmic reticulum (ER) stress elicited prominent nuclear translocation of Nrf2 in 100% of HCV infected hepatocytes. The sustained nuclear translocation of Nrf2 in chronically infected culture induces Mdm2-mediated retinoblastoma protein (Rb) degradation. Silencing PERK and Nrf2 restored Mdm2-mediated Rb degradation, suggesting that sustained activation of PERK/Nrf2 axis creates oncogenic stress in chronically infected HCV culture model. The activation of Nrf2 and its nuclear translocation were prevented by ER-stress and PERK inhibitors, suggesting that PERK axis is involved in the sustained activation of Nrf2 signaling during chronic HCV infection. Furthermore, we show that HCV clearance induced by interferon-α based antiviral normalized the ER-stress response and prevented nuclear translocation of Nrf2, whereas HCV clearance by DAAs combination does neither. In conclusion, we report here a novel mechanism for how sustained activation of PERK axis of ER-stress during chronic HCV infection activates oncogenic Nrf2 signaling that promotes hepatocyte survival and oncogenesis by inducing Mdm2-mediated Rb degradation.
Collapse
Affiliation(s)
- Yucel Aydin
- Department of Medicine, Division of Gastroenterology and Hepatology, New Orleans, Louisiana, USA
| | - Milad Chedid
- Department of Pathology and Laboratory Medicine, New Orleans, Louisiana, USA
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, New Orleans, Louisiana, USA
| | | | - Shuanghu Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Curt H Hagedorn
- Department of Medicine and Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Krzysztof Reiss
- School of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, New Orleans, Louisiana, USA
| | - Hua Lu
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Luis A Balart
- Department of Medicine, Division of Gastroenterology and Hepatology, New Orleans, Louisiana, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, New Orleans, Louisiana, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, New Orleans, Louisiana, USA.
| |
Collapse
|
36
|
Wu W, Hu Z, Wang F, Gu H, Jiang X, Xu J, Zhan X, Zheng D, Zhang Z. Mxi1-0 regulates the growth of human umbilical vein endothelial cells through extracellular signal-regulated kinase 1/2 (ERK1/2) and interleukin-8 (IL-8)-dependent pathways. PLoS One 2017; 12:e0178831. [PMID: 28575053 PMCID: PMC5456372 DOI: 10.1371/journal.pone.0178831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/28/2023] Open
Abstract
Mxi1 plays an important role in the regulation of cell proliferation. Mxi1-0, a Mxi1 isoform, has a different N-terminal amino acid sequence, intracellular location and expression profile from Mxi1. However, the precise role of Mxi1-0 in cell proliferation and the molecular mechanism underlying its function remain poorly understood. Here, we showed that Mxi1-0 suppression decreased the proliferation of human umbilical vein endothelial cells (HUVECs) along with cell accumulation in the G2/M phase. Mxi1-0 suppression also significantly decreased the expression and secretion of interleukin (IL-8). Neutralizing IL-8 in conditioned medium (CM) from Mxi1-0-overexpressed HUVECs significantly eliminated CM-induced proliferation of HUVECs. In addition, Mxi1-0 suppression significantly decreased the activity of MAP kinase ERK1/2. Treatment of HUVECs with U0126, an ERK1/2 signaling inhibitor, attenuated autocrine production of IL-8 induced by Mxi1-0 overexpression. On the other hand, Mxi1-0 overexpression-induced IL-8 increased the level of phosphorylated ERK1/2 in HUVECs, and such increasing was diminished in cells incubated with CM, which neutralized with anti-IL-8 antibody. Taken together, our results suggest that Mxi1-0 regulates the growth of HUVECs via the IL-8 and ERK1/2 pathways, which apparently reciprocally activate each other.
Collapse
Affiliation(s)
- Weiling Wu
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Hu
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Feng Wang
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Hao Gu
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
| | - Xiuqin Jiang
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jinjin Xu
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xi Zhan
- Center for Vascular and inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Datong Zheng
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
- * E-mail:
| | - Zhengdong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
| |
Collapse
|
37
|
Song J, Sundar K, Gangaraju R, Prchal JT. Regulation of erythropoiesis after normoxic return from chronic sustained and intermittent hypoxia. J Appl Physiol (1985) 2017; 123:1671-1675. [PMID: 28522758 DOI: 10.1152/japplphysiol.00119.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypoxia increases erythropoiesis mediated by hypoxia-inducible transcription factors (HIF), which regulate erythropoietin transcription. Neocytolysis is a physiological mechanism that corrects polycythemia from chronic sustained hypoxemia by transient, preferential destruction of young RBCs after normoxia is restored. We showed that neocytolysis is caused by excessive mitochondrial-derived reactive oxygen species in reticulocytes mediated by downregulation of HIF-controlled BNIP3L regulated mitophagy and a decrease in RBC antioxidant catalase (CAT) in hypoxia-produced erythrocytes. Decreased CAT results from hypoxia-induced miR-21 that downregulates CAT. This correlates with a transient acute decrease of HIF-1 at normoxic return that is associated with normalization of red cell mass.
Collapse
|
38
|
Wang S, Zhang T, Yang Z, Lin J, Cai B, Ke Q, Lan W, Shi J, Wu S, Lin W. Heme oxygenase-1 protects spinal cord neurons from hydrogen peroxide-induced apoptosis via suppression of Cdc42/MLK3/MKK7/JNK3 signaling. Apoptosis 2017; 22:449-462. [PMID: 27864650 DOI: 10.1007/s10495-016-1329-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanisms by which oxidative stress induces spinal cord neuron death has not been completely understood. Investigation on the molecular signal pathways involved in oxidative stress-mediated neuronal death is important for development of new therapeutics for oxidative stress-associated spinal cord disorders. In current study we examined the role of heme oxygenase-1 (HO-1) in the modulation of MLK3/MKK7/JNK3 signaling, which is a pro-apoptotic pathway, after treating primary spinal cord neurons with H2O2. We found that MLK3/MKK7/JNK3 signaling was substantially activated by H2O2 in a time-dependent manner, demonstrated by increase of activating phosphorylation of MLK3, MKK7 and JNK3. H2O2 also induced expression of HO-1. Transduction of neurons with HO-1-expressing adeno-associated virus before H2O2 treatment introduced expression of exogenous HO-1 in neurons. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7 and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased H2O2-induced neuronal apoptosis and necrosis. Furthermore, we found that exogenous HO-1 inhibited expression of Cdc42, which is crucial for MLK3 activation. In addition, HO-1-induced down-regulation of MLK3/MKK7/JNK3 signaling might be related to up-regulation of microRNA-137 (mir-137). A mir-137 inhibitor alleviated the inhibitory effect of HO-1 on JNK3 activation. This inhibitor also increased neuronal death even when exogenous HO-1 was expressed. Therefore, our study suggests a novel mechanism by which HO-1 exerted its neuroprotective efficacy on oxidative stress.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Tao Zhang
- Department of Orthopedic Surgery, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Zhen Yang
- Department of Orthopedic Surgery, The People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Jianhua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Bin Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Qingfeng Ke
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenbin Lan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Jinxing Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Shiqiang Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China.
| |
Collapse
|
39
|
MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis 2017; 20:325-340. [PMID: 28197812 PMCID: PMC5511613 DOI: 10.1007/s10456-017-9540-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Monocyte Chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, is encoded by the ZC3H12a gene, and it mediates inflammatory processes by regulating the stability of transcripts coding for proinflammatory cytokines and controlling activity of transcription factors, such as NF-κB and AP1. We found that MCPIP1 transcript and protein levels are strongly downregulated in clear cell renal cell carcinoma (ccRCC) samples, which were derived from patients surgically treated for renal cancer compared to surrounded normal tissues. Using Caki-1 cells as a model, we analyzed the role of MCPIP1 in cancer development. We showed that MCPIP1 expression depends on the proteasome activity; however, hypoxia and hypoxia inducible factor 2 alfa (HIF2α) are key factors lowering MCPIP1 expression. Furthermore, we found that MCPIP1 negatively regulates HIF1α and HIF2α levels and in the case of the last one, the mechanism is based on the regulation of the half time of transcript coding for HIF2α. Enhanced expression of MCPIP1 in Caki-1 cells results in a downregulation of transcripts encoding VEGFA, GLUT1, and IL-6. Furthermore, MCPIP1 decreases the activity of mTOR and protein kinase B (Akt) in normoxic conditions. Taken together, MCPIP1 contributes to the ccRCC development.
Collapse
|
40
|
Lin W, Wang S, Yang Z, Lin J, Ke Q, Lan W, Shi J, Wu S, Cai B. Heme Oxygenase-1 Inhibits Neuronal Apoptosis in Spinal Cord Injury through Down-Regulation of Cdc42-MLK3-MKK7-JNK3 Axis. J Neurotrauma 2017; 34:695-706. [PMID: 27526795 DOI: 10.1089/neu.2016.4608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanism by which spinal cord injury (SCI) induces neuronal death has not been thoroughly understood. Investigation on the molecular signal pathways involved in SCI-mediated neuronal apoptosis is important for development of new therapeutics for SCI. In the current study, we explore the role of heme oxygenase-1 (HO-1) in the modulation of mixed lineage kinase 3/mitogen-activated protein kinase kinase/cJUN N-terminal kinase 3 (MLK3/MKK7/JNK3) signaling, which is a pro-apoptotic pathway, after SCI. We found that MLK3/MKK7/JNK3 signaling was activated by SCI in a time-dependent manner, demonstrated by increase in activating phosphorylation of MLK3, MKK7, and JNK3. SCI also induced HO-1 expression. Administration of HO-1-expressing adeno-associated virus before SCI introduced expression of exogenous HO-1 in injured spinal cords. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7, and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased SCI-induced neuronal apoptosis and improved neurological score. Further, we found that exogenous HO-1 inhibited expression of cell division cycle 42 (Cdc42), which is crucial for MLK3 activation. In vitro experiments indicated that Cdc42 was essential for neuronal apoptosis, while transduction of neurons with HO-1-expressing adeno-associated virus significantly reduced neuronal apoptosis to enhance neuronal survival. Therefore, our study disclosed a novel mechanism by which HO-1 exerted its neuroprotective efficacy. Our discovery might be valuable for developing a new therapeutic approach for SCI.
Collapse
Affiliation(s)
- Wenping Lin
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Siyuan Wang
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Zhen Yang
- 2 Department of Orthopedic Surgery, the People's Hospital of Guizhou Province , Guiyang, China
| | - Jianhua Lin
- 3 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Qingfeng Ke
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Wenbin Lan
- 3 Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| | - Jinxing Shi
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Shiqiang Wu
- 1 Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University , Quanzhou, China
| | - Bin Cai
- 4 Department of Neurology and Institute of Neurology, the First Affiliated Hospital, Fujian Medical University , Fuzhou, China
| |
Collapse
|
41
|
Li NA, Wang H, Zhang J, Zhao E. Knockdown of hypoxia inducible factor-2α inhibits cell invasion via the downregulation of MMP-2 expression in breast cancer cells. Oncol Lett 2016; 11:3743-3748. [PMID: 27313686 DOI: 10.3892/ol.2016.4471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Hypoxia inducible factors (HIFs) are important regulatory molecules of the intracellular oxygen-signaling pathway. The role of HIF-1α has been confirmed in breast carcinoma; however, little is understood concerning the function of HIF-2α. The present study treated human breast adenocarcinoma MCF-7 cells with the HIF activator cobalt chloride, and transfected HIF-2α small interfering RNAs (siRNAs) into MCF-7 cells to suppress HIF-2α expression. The siRNAs significantly reduced the levels of HIF-2α and matrix metalloproteinase (MMP)-2 in the treated MCF-7 cells. An invasion assay demonstrated that the siRNAs targeting HIF-2α inhibited the invasion potency of the cells. The present study concludes that loss of HIF-2α may be associated with a decreased risk for the progression of human breast cancer, due to the downregulation of the expression of MMP-2.
Collapse
Affiliation(s)
- N A Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxing Wang
- Department of Clinical Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jie Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Erchen Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
42
|
Lin WP, Xiong GP, Lin Q, Chen XW, Zhang LQ, Shi JX, Ke QF, Lin JH. Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J Neuroinflammation 2016; 13:52. [PMID: 26925775 PMCID: PMC4772494 DOI: 10.1186/s12974-016-0521-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Background Understanding the mechanisms underlying neuronal death in spinal cord injury (SCI) and developing novel therapeutic approaches for SCI-induced damage are critical for functional recovery. Here we investigated the role of heme oxygenase-1 (HO-1) in neuroprotection after SCI. Methods Adeno-associated virus expressing HO-1 was prepared and injected into rat spinal cords before SCI model was performed. HO-1 expression, inflammasome activation, and the presence of inflammatory cytokines were determined by quantitative polymerase chain reaction, immunohistological staining, immunoblot, and immunoprecipitation. Neuronal apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling. The hindlimb locomotor function was evaluated for extent of neurologic damage. In an in vitro model, hydrogen peroxide was used to induce similar inflammasome activation in cultured primary spinal cord neurons, followed by evaluation of above parameters with or without transduction of HO-1-expressing adeno-associated virus. Results Endogenous HO-1 expression was found in spinal cord neurons after SCI in vivo, in association with the expression of Nod-like receptor protein 1 (NLRP1) and the formation of NLRP1 inflammasomes. Administration of HO-1-expressing adeno-associated virus effectively decreased expression of NLRP1, therefore alleviating NLRP1 inflammasome-induced neuronal death and improving functional recovery. In the in vitro model, exogenous HO-1 expression protected neurons from hydrogen peroxide-induced neuronal death by inhibiting NLRP1 expression. In addition, HO-1 inhibited expression of activating transcription factor 4 (ATF4), which is a transcription factor regulating NLRP1 expression. Conclusions HO-1 protects spinal cord neurons after SCI through inhibiting NLRP1 inflammasome formation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0521-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Ping Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China.
| | - Gong-Peng Xiong
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, China.
| | - Qing Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China.
| | - Xuan-Wei Chen
- Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| | - Li-Qun Zhang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| | - Jin-Xing Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China.
| | - Qing-Feng Ke
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China.
| | - Jian-Hua Lin
- Department of Orthopedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
43
|
Diverse Mechanisms of Sp1-Dependent Transcriptional Regulation Potentially Involved in the Adaptive Response of Cancer Cells to Oxygen-Deficient Conditions. Cancers (Basel) 2015; 8:cancers8010002. [PMID: 26703734 PMCID: PMC4728449 DOI: 10.3390/cancers8010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
The inside of a tumor often contains a hypoxic area caused by a limited supply of molecular oxygen due to aberrant vasculature. Hypoxia-inducible factors (HIFs) are major transcription factors that are required for cancer cells to adapt to such stress conditions. HIFs, complexed with the aryl hydrocarbon receptor nuclear translocator, bind to and activate target genes as enhancers of transcription. In addition to this common mechanism, the induction of the unfolded protein response and mTOR signaling in response to endoplasmic reticulum stress is also known to be involved in the adaptation to hypoxia conditions. Sp1 is a ubiquitously-expressed transcription factor that plays a vital role in the regulation of numerous genes required for normal cell function. In addition to the well-characterized stress response mechanisms described above, increasing experimental evidence suggests that Sp1 and HIFs collaborate to drive gene expression in cancer cells in response to hypoxia, thereby regulating additional adaptive responses to cellular oxygen deficiency. However, these characteristics of Sp1 and their biological merits have not been summarized. In this review, we will discuss the diverse mechanisms of transcriptional regulation by Sp1 and their potential involvement in the adaptive response of cancer cells to hypoxic tumor microenvironments.
Collapse
|
44
|
Interactions between Myc and Mediators of Inflammation in Chronic Liver Diseases. Mediators Inflamm 2015; 2015:276850. [PMID: 26508814 PMCID: PMC4609837 DOI: 10.1155/2015/276850] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
Most chronic liver diseases (CLDs) are characterized by inflammatory processes with aberrant expressions of various pro- and anti-inflammatory mediators in the liver. These mediators are the driving force of many inflammatory liver disorders, which often result in fibrosis, cirrhosis, and liver tumorigenesis. c-Myc is involved in many cellular events such as cell growth, proliferation, and differentiation. c-Myc upregulates IL-8, IL-10, TNF-α, and TGF-β, while IL-1, IL-2, IL-4, TNF-α, and TGF-β promote c-Myc expression. Their interactions play a central role in fibrosis, cirrhosis, and liver cancer. Molecular interference of their interactions offers possible therapeutic potential for CLDs. In this review, current knowledge of the molecular interactions between c-Myc and various well known inflammatory mediators is discussed.
Collapse
|
45
|
Habryka A, Gogler-Pigłowska A, Sojka D, Kryj M, Krawczyk Z, Scieglinska D. Cell type-dependent modulation of the gene encoding heat shock protein HSPA2 by hypoxia-inducible factor HIF-1: Down-regulation in keratinocytes and up-regulation in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1155-69. [PMID: 26164067 DOI: 10.1016/j.bbagrm.2015.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
Abstract
HSPA2 belongs to the multigene HSPA family, whose members encode chaperone proteins. Although expression and function of HSPA2 is mainly associated with spermatogenesis, recent studies demonstrated that in humans, the gene is active in various cancers, as well as in normal tissues, albeit in a cell type-specific manner. In the epidermis, HSPA2 is expressed in keratinocytes in the basal layer. Currently, the mechanisms underlying the regulation of HSPA2 expression remain unknown. This study was aimed at determining whether HIF-1 and its binding site, the hypoxia-response element (HRE) located in the HSPA2 promoter, are involved in HSPA2 regulation. As a model system, we used an immortal human keratinocyte line (HaCaT) and cervical cancer cells (HeLa) grown under control or hypoxic conditions. Using an in vitro gene reporter assay, we demonstrated that in keratinocytes HSPA2 promoter activity is reduced under conditions that facilitate stabilization of HIF-1α, whereas HIF-1 inhibitors abrogated the suppressive effect of hypoxia on promoter activity. Chromatin immunoprecipitation revealed that HIF-1α binds to the HSPA2 promoter. In keratinocytes, hypoxia or overexpression of a stable form of HIF-1α attenuated the expression of endogenous HSPA2, whereas targeted repression of HIF-1α by RNAi increased transcription of HSPA2 under hypoxia. Conversely, in HeLa cells, HSPA2 expression increased under conditions that stimulated HIF-1α activity, whereas inhibition of HIF-1α abrogated hypoxia-induced up-regulation of HSPA2 expression. Taken together, our results demonstrate that HIF-1 can exert differential, cell context-dependent regulatory control of the HSPA2 gene. Additionally, we also showed that HSPA2 expression can be stimulated during hypoxia/reoxygenation stress.
Collapse
Affiliation(s)
- Anna Habryka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Damian Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Mariusz Kryj
- The Oncologic and Reconstructive Surgery Clinic, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
46
|
Zhao J, Du F, Luo Y, Shen G, Zheng F, Xu B. The emerging role of hypoxia-inducible factor-2 involved in chemo/radioresistance in solid tumors. Cancer Treat Rev 2015; 41:623-33. [PMID: 25981453 DOI: 10.1016/j.ctrv.2015.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 01/30/2023]
Abstract
The hypoxic condition is a common feature that negatively impacts the efficacy of radio- and chemotherapy in solid tumors. Hypoxia-inducible factors (HIF-1, 2, 3) predominantly regulate the adaptation to hypoxia at the cellular or organismal level. HIF-2 is one of the three known alpha subunits of HIF transcription factors. Previous studies have shown that HIF-1 is associated with chemotherapy failure. Accumulating evidence in recent years suggests that HIF-2 also contributes to chemo/radioresistance in solid tumors. Despite sharing similar structures, HIF-1α and HIF-2α had highly divergent and even opposing roles in solid tumors under hypoxic conditions. Recent studies have also implied that HIF-2α had a role in chemo/radioresistance through different mechanisms, at least partly, compared to HIF-1α. The present paper summarizes the function of HIF-2 in chemo/radioresistance in solid tumors as well as some of its novel mechanisms that contributed to this pathological process.
Collapse
Affiliation(s)
- Jiuda Zhao
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China; Affiliated Hospital of Qinghai University, Xining, China
| | - Feng Du
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China
| | - Yang Luo
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China
| | - Guoshuang Shen
- Affiliated Hospital of Qinghai University, Xining, China
| | - Fangchao Zheng
- Affiliated Hospital of Qinghai University, Xining, China
| | - Binghe Xu
- Department of Medical Oncology, Cancer Institute & Hospital, Peking Union Medical College, Beijing, China; Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
47
|
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 2015; 67:145-59. [PMID: 25899846 DOI: 10.1002/iub.1358] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
48
|
The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis 2015; 6:e1600. [PMID: 25590810 PMCID: PMC4669763 DOI: 10.1038/cddis.2014.565] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/24/2023]
Abstract
Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies.
Collapse
|
49
|
Bordji K, Grandval A, Cuhna-Alves L, Lechapt-Zalcman E, Bernaudin M. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells. FEBS J 2014; 281:5220-36. [DOI: 10.1111/febs.13062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/29/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Karim Bordji
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| | - Alexandra Grandval
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| | - Leilane Cuhna-Alves
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| | - Emmanuèle Lechapt-Zalcman
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
- CHU de Caen; Service d'Anatomie et Cytologie Pathologique; Caen France
| | - Myriam Bernaudin
- CNRS; UMR 6301 ISTCT; CERVOxy group; GIP Cyceron; Caen France
- CEA; DSV/I2BM; UMR 6301 ISTCT; Caen France
- Université de Basse-Normandie; UMR 6301 ISTCT; Caen France
- Normandie University; Caen France
| |
Collapse
|
50
|
Bhandari T, Nizet V. Hypoxia-Inducible Factor (HIF) as a Pharmacological Target for Prevention and Treatment of Infectious Diseases. Infect Dis Ther 2014; 3:159-74. [PMID: 25134687 PMCID: PMC4269623 DOI: 10.1007/s40121-014-0030-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
In the present era of ever-increasing antibiotic resistance and increasingly complex and immunosuppressed patient populations, physicians and scientists are seeking novel approaches to battle difficult infectious disease conditions. Development of a serious infection implies a failure of innate immune capabilities in the patient, and one may consider whether pharmacological strategies exist to correct and enhance innate immune cell function. Hypoxia-inducible factor-1 (HIF-1), the central regulator of the cellular response to hypoxic stress, has recently been recognized to control the activation state and key microbicidal functions of immune cells. HIF-1 boosting drugs are in clinical development for anemia and other indications, and could be repositioned as infectious disease therapeutics. With equal attention to opportunities and complexities, we review our current understanding of HIF-1 regulation of microbial host-pathogen interactions with an eye toward future drug development.
Collapse
Affiliation(s)
- Tamara Bhandari
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA
| | - Victor Nizet
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA.
- Center for Immunity, Infection and Inflammation, Medical Sciences Research 4113, University of California, San Diego, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.
| |
Collapse
|