1
|
Esmaeili Z, Shavali Gilani P, Khosravani M, Motamedi M, Maleknejad S, Adabi M, Sadighara P. Nanotechnology-driven EGCG: bridging antioxidant and therapeutic roles in metabolic and cancer pathways. Nanomedicine (Lond) 2025; 20:621-636. [PMID: 39924937 PMCID: PMC11881875 DOI: 10.1080/17435889.2025.2462521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the primary polyphenol in green tea, is renowned for its potent antioxidant properties. EGCG interacts with various cellular targets, inhibiting cancer cell proliferation through apoptosis and cell cycle arrest induction, while also modulating metabolic pathways. Studies have demonstrated its potential in addressing cancer development, obesity, and diabetes. Given the rising prevalence of metabolic diseases and cancers, EGCG is increasingly recognized as a promising therapeutic agent. This review provides a comprehensive overview of the latest findings on the effects of both free and nano-encapsulated EGCG on mechanisms involved in the management and prevention of hyperlipidemia, diabetes, and gastrointestinal (GI) cancers. The review highlights EGCG role in modulating key signaling pathways, enhancing bioavailability through nano-formulations, and its potential applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Shavali Gilani
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Motamedi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokofeh Maleknejad
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
3
|
de Oliveira Vogado C, Ferreira MA, Nakano EY, Azevedo S, Magalhães KG, Fernandes Arruda S, Botelho PB. Interaction between green tea and metformin and its effects on oxidative stress and inflammation in overweight women: a randomised clinical trial. Br J Nutr 2024:1-9. [PMID: 39494829 DOI: 10.1017/s0007114524002356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This study evaluated the effect of green tea extract and metformin and its interaction on markers of oxidative stress and inflammation in overweight women with insulin resistance. After screening, 120 women were randomly allocated in 4 groups: Placebo (PC): 1g of microcrystalline cellulose/day; Green tea (GT): 1 g (558 mg polyphenols) of standardized dry extract of green tea/day and 1 g of placebo/day; Metformin (MF): 1 g of metformin/day and 1 g of placebo/day; Green Tea and Metformin (GTMF): 1 g (558 mg polyphenols) and 1 g of metformin/day. All groups were followed-up for 12 weeks with assessment of oxidative damage to lipids and proteins, specific activity of antioxidant enzymes and inflammatory cytokine serum levels. The association of green tea with metformin significantly reduced IL-6 (GTMF: -29.7((-62.6)-20.2))(p = 0.004). Green tea and metformin isolated reduced TNF-α (GT: -12.1((-18.0)-(-3.5)); MF: -24.5((-38.60)-(-4.4)) compared to placebo (PB: 13.8 (1.2-29.2))(P < 0.001). Also, isolated metformin reduced TGF-β (MF: -25.1((-64.4)-0.04)) in comparison to placebo (PB: 6.3((-1.0)-16.3))(p = 0.038). However, when combined, their effects were nullified either for TNF-α (GTMF: 6.0((-5.7)-23.9) and for TGF-β (GTMF: -1.8((-32.1)-8.5). This study showed that there is a drug-nutrient interaction between green tea and metformin that is dependent on the cytokine analyzed.
Collapse
Affiliation(s)
| | - Monalisa Alves Ferreira
- Laboratory of Research in Clinical Nutrition and Sports, Nutrition Faculty, Federal University of Goias, Goiania, Goias, Brazil
| | | | - Sabrina Azevedo
- Laboratory of Immunology and Inflammation, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | | | | |
Collapse
|
4
|
Wei Y, Shao J, Pang Y, Wen C, Wei K, Peng L, Wang Y, Wei X. Antidiabetic Potential of Tea and Its Active Compounds: From Molecular Mechanism to Clinical Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11837-11853. [PMID: 38743877 DOI: 10.1021/acs.jafc.3c08492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic β-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuxuan Pang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Caican Wen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, P.R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
5
|
Tada R, Nagai Y, Ogasawara M, Saito M, Ohshima A, Yamanaka D, Kunisawa J, Adachi Y, Negishi Y. Polymeric Caffeic Acid Acts as an Antigen Delivery Carrier for Mucosal Vaccine Formulation by Forming a Complex with an Antigenic Protein. Vaccines (Basel) 2024; 12:449. [PMID: 38793700 PMCID: PMC11126084 DOI: 10.3390/vaccines12050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine system in mice using enzymatically polymerized caffeic acid (pCA). However, we do not yet understand the molecular mechanisms by which pCA stimulates antigen-specific mucosal immune responses. In this study, we hypothesized that pCA might activate mucosal immunity at the site of administration based on our previous findings that pCA possesses immune-activating properties. However, contrary to our initial hypothesis, the intranasal administration of pCA did not enhance the expression of various genes involved in mucosal immune responses, including the enhancement of IgA responses. Therefore, we investigated whether pCA forms a complex with antigenic proteins and enhances antigen delivery to mucosal dendritic cells located in the lamina propria beneath the mucosal epithelial layer. Data from gel filtration chromatography indicated that pCA forms a complex with the antigenic protein ovalbumin (OVA). Furthermore, we examined the promotion of OVA delivery to nasal mucosal dendritic cells (mDCs) after the intranasal administration of pCA in combination with OVA and found that OVA uptake by mDCs was increased. Therefore, the data from gel filtration chromatography and flow cytometry imply that pCA enhances antigen-specific antibody production in both mucosal and systemic compartments by serving as an antigen-delivery vehicle.
Collapse
Affiliation(s)
- Rui Tada
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (Y.N.); (M.O.); (M.S.); (A.O.); (Y.N.)
| | - Yuzuho Nagai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (Y.N.); (M.O.); (M.S.); (A.O.); (Y.N.)
| | - Miki Ogasawara
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (Y.N.); (M.O.); (M.S.); (A.O.); (Y.N.)
| | - Momoko Saito
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (Y.N.); (M.O.); (M.S.); (A.O.); (Y.N.)
| | - Akihiro Ohshima
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (Y.N.); (M.O.); (M.S.); (A.O.); (Y.N.)
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (D.Y.); (Y.A.)
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki 567-0085, Osaka, Japan;
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (D.Y.); (Y.A.)
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (Y.N.); (M.O.); (M.S.); (A.O.); (Y.N.)
| |
Collapse
|
6
|
Bakand A, Moghaddam SV, Naseroleslami M, André H, Mousavi-Niri N, Alizadeh E. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: potential application in colon cancer therapy. J Biol Eng 2023; 17:58. [PMID: 37749603 PMCID: PMC10521571 DOI: 10.1186/s13036-023-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
A number of molecular biofactors have been documented in pathogenesis and poor prognosis of colorectal cancer (CRC). Among them, the Hypoxia-Inducible Factor (HIF-1a) is frequently reported to become over-expressed, and its targeting could restrict and control a variety of essential hallmarks of CRC. Niosomes are innovative drug delivery vehicles with the encapsulating capacity for co-loading both hydrophilic and hydrophobic drugs at the same time. Also, they can enhance the local accumulation while minimizing the dose and side effects of drugs. YC-1 and PX-12 are two inhibitors of HIF-1a. The purpose of this work was to synthesize dual-loaded YC-1 and PX-12 niosomes to efficiently target HIF-1α in CRC, HT-29 cells. The niosomes were prepared by the thin-film hydration method, then the niosomal formulation of YC-1 and PX-12 (NIO/PX-YC) was developed and optimized by the central composition method (CCD) using the Box-Behnken design in terms of size, polydispersity index (PDI), entrapment efficiency (EE). Also, they are characterized by DLS, FESEM, and TEM microscopy, as well as FTIR spectroscopy. Additionally, entrapment efficiency, in vitro drug release kinetics, and stability were assessed. Cytotoxicity, apoptosis, and cell cycle studies were performed after the treatment of HT-29 cells with NIO/PX-YC. The expression of HIF-1αat both mRNA and protein levels were studied after NIO/PX-YC treatment. The prepared NIO/PX-YC showed a mean particle size of 185 nm with a zeta potential of about-7.10 mv and a spherical morphology. Also, PX-12 and YC-1 represented the entrapment efficiency of about %78 and %91, respectively, with a sustainable and controllable release. The greater effect of NIO/PX-YC than the free state of PX-YC on the cell survival rate, cell apoptosis, and HIF-1α gene/protein expression were detected (p < 0.05). In conclusion, dual loading of niosomes with YC-1 and PX-12 enhanced the effect of drugs on HIF-1α inhibition, thus boosting their anticancer effects.
Collapse
Affiliation(s)
- Azar Bakand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282, Stockholm, Sweden
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients 2023; 15:3022. [PMID: 37447347 DOI: 10.3390/nu15133022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Armachius James
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Tanzania Agricultural Research Institute (TARI), Makutupora Center, Dodoma P.O. Box 1676, Tanzania
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
9
|
Angel-Isaza J, Carmona-Hernandez JC, González-Correa CH, Narváez-Solarte WV. Potential Hypoglycemic and Antilipidemic Activity of Polyphenols from Passiflora ligularis (Granadilla). Molecules 2023; 28:molecules28083551. [PMID: 37110785 PMCID: PMC10143080 DOI: 10.3390/molecules28083551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The consumption of fruits or by-products from plants of the Passifloraceae family has been associated with multiple health and nutritional benefits, due to their phenolic compound content. Likewise, the effects of polyphenols from Camellia sinensis (green tea) have been explored and are considered a reference for different biological actions of these bioactive substances. This study compared the hypoglycemic and antilipemic activity of polyphenol-rich extracts of Passiflora ligularis Juss (passion fruit) and Camellia sinensis (green tea) given to a group of Wistar rats induced to be overweight. The individuals were subjected to three doses of supplementation of both sources of polyphenols in the drinking water. An additional group without polyphenol supplementation served as a control group. Water consumption, weight gain, glycemia, cholesterol, serum triglycerides and percentage of fecal ethereal extracts were analyzed. Although Passiflora ligularis Juss had five times less polyphenol content than Camellia sinensis, rats fed doses of 2.5 and 3.0 g/L Passiflora ligularis Juss showed reduced glycemia by 16%, suggesting an antiglycemic activity similar to that of Camellia sinensis. On the other hand, higher doses of polyphenols from Passiflora ligularis Juss and Camellia sinensis significantly reduced triglyceride levels (p = 0.05) by more than 17% compared to the unsupplemented control group. The polyphenol-rich extracts produced effective inhibitory activity of lipemic metabolites with a reduction in the percentage of fecal lipids (p < 0.05), with no side effects on liver tissue. The 3.0 g/L dose produced the best result on signs of metabolic syndrome associated with excess weight. Polyphenols extracted from fresh Colombian passion fruit showed the potential to decrease metabolic syndrome risk factors in a murine model.
Collapse
Affiliation(s)
- Jaime Angel-Isaza
- Research Group on Nutrition, Metabolism and Food Security (NUTRIMESA), Universidad de Caldas, Manizales 170001, Colombia
| | - Juan Carlos Carmona-Hernandez
- Medical Research Group, Metabolism-Nutrition-Polyphenols (MeNutrO), Universidad de Manizales, Manizales 170004, Colombia
| | - Clara Helena González-Correa
- Research Group on Nutrition, Metabolism and Food Security (NUTRIMESA), Universidad de Caldas, Manizales 170001, Colombia
| | | |
Collapse
|
10
|
Ito A, Matsui Y, Takeshita M, Katashima M, Goto C, Kuriki K. Gut microbiota-mediated associations of green tea and catechin intakes with glucose metabolism in individuals without type 2 diabetes mellitus: a four-season observational study with mediation analysis. Arch Microbiol 2023; 205:191. [PMID: 37059897 PMCID: PMC10104920 DOI: 10.1007/s00203-023-03522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
This four-season observational study aimed to examine the mediating role of the gut microbiota in the associations between green tea and catechin intakes and glucose metabolism in individuals without type 2 diabetes mellitus (T2DM). In each of the 4 seasons, 85 individuals without T2DM (56 male [65.9%]; mean [standard deviation] age: 43.3 [9.4] years) provided blood samples, stool samples, 3-day weighed dietary records, and green tea samples. Catechin intake was estimated by analyzing the tea samples. Linear mixed-effects model analysis showed that green tea intake was negatively associated with fasting blood glucose and insulin levels, even after considering the seasonal variations. Of the gut microbial species associated with green tea intake, the mediation analysis revealed that Phocaeicola vulgatus mediated the association between green tea intake and fasting blood glucose levels. These findings indicate that green tea can improve glucose metabolism by decreasing the abundance of P. vulgatus that is associated with elevated blood glucose levels in individuals without T2DM.
Collapse
Affiliation(s)
- Aoi Ito
- Laboratory of Public Health, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, Japan
| | - Yuji Matsui
- R&D - Health & Wellness Products Research, Kao Corporation, Tokyo, Japan
| | - Masao Takeshita
- R&D - Health & Wellness Products Research, Kao Corporation, Tokyo, Japan
| | | | - Chiho Goto
- Department of Health and Nutrition, Nagoya Bunri University, Aichi, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, Japan.
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
11
|
Green tea extract exhibits antidiabetic effects partly through regulating dipeptidyl peptidase-4 expression in adipose tissue. J Nutr Biochem 2023; 111:109173. [PMID: 36228975 DOI: 10.1016/j.jnutbio.2022.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.
Collapse
|
12
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
13
|
Guidelines for cellular and animal models of insulin resistance in type 2 diabetes. EFOOD 2022. [DOI: 10.1002/efd2.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
15
|
Identifying Glucose Metabolism Status in Nondiabetic Japanese Adults Using Machine Learning Model with Simple Questionnaire. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1026121. [PMID: 36118835 PMCID: PMC9481387 DOI: 10.1155/2022/1026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
We aimed to identify the glucose metabolism statuses of nondiabetic Japanese adults using a machine learning model with a questionnaire. In this cross-sectional study, Japanese adults (aged 20–64 years) from Tokyo and surrounding areas were recruited. Participants underwent an oral glucose tolerance test (OGTT) and completed a questionnaire regarding lifestyle and physical characteristics. They were classified into four glycometabolic categories based on the OGTT results: category 1: best glucose metabolism, category 2: low insulin sensitivity, category 3: low insulin secretion, and category 4: combined characteristics of categories 2 and 3. A total of 977 individuals were included; the ratios of participants in categories 1, 2, 3, and 4 were 46%, 21%, 14%, and 19%, respectively. Machine learning models (decision tree, support vector machine, random forest, and XGBoost) were developed for identifying the glycometabolic category using questionnaire responses. Then, the top 10 most important variables in the random forest model were selected, and another random forest model was developed using these variables. Its areas under the receiver operating characteristic curve (AUCs) to classify category 1 and the others, category 2 and the others, category 3 and the others, and category 4 and the others were 0.68 (95% confidence intervals: 0.62–0.75), 0.66 (0.58–0.73), 0.61 (0.51–0.70), and 0.70 (0.62–0.77). For external validation of the model, the same dataset of 452 Japanese adults in Hokkaido was obtained. The AUCs to classify categories 1, 2, 3, and 4 and the others were 0.66 (0.61–0.71), 0.57 (0.51–0.62), 0.60 (0.50–0.69), and 0.64 (0.57–0.71). In conclusion, our model could identify the glucose metabolism status using only 10 factors of lifestyle and physical characteristics. This model may help the larger general population without diabetes to understand their glucose metabolism status and encourage lifestyle improvement to prevent diabetes.
Collapse
|
16
|
Deng X, Chen B, Luo Q, Zao X, Liu H, Li Y. Hulless barley polyphenol extract inhibits adipogenesis in 3T3-L1 cells and obesity related-enzymes. Front Nutr 2022; 9:933068. [PMID: 35990339 PMCID: PMC9389463 DOI: 10.3389/fnut.2022.933068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is characterized by excessive lipid accumulation, hypertrophy, and hyperplasia of adipose cells. Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is the principal crop grown in the Qinghai-Tibet plateau. Polyphenols, the major bioactive compound in hulless barley, possess antioxidant, anti-inflammatory, and antibacterial properties. However, the anti-obesity effect of hulless barley polyphenol (HBP) extract has not been explored. Therefore, the current study assessed the impact of HBP extract on preventing obesity. For this purpose, we evaluated the inhibitory effect of HBP extract against obesity-related enzymes. Moreover, we investigated the effect of HBP extract on adipocyte differentiation and adipogenesis through 3T3-L1 adipocytes. Our results demonstrated that HBP extract could inhibit α-amylase, α-glucosidase (α-GLU), and lipase in a dose-dependent manner. In addition, HBP extract inhibited the differentiation of 3T3-L1 preadipocytes by arresting the cell cycle at the G0/G1 phase. Furthermore, the extract suppressed the expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), regulating fatty acid synthase (FAS), fatty acid-binding protein 4 (FABP4), and adipose triglyceride lipase (ATGL). It was also observed that HBP extract alleviated intracellular lipid accumulation by attenuating oxidative stress. These findings specify that HBP extract could inhibit obesity-related enzymes, adipocyte differentiation, and adipogenesis. Therefore, it is potentially beneficial in preventing obesity.
Collapse
Affiliation(s)
- Xianfeng Deng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bi Chen
- School of Life and Health Science, Kaili University, Kaili, China
| | - Qin Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xingru Zao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haizhe Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongqiang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
17
|
Shin S, Lee JE, Loftfield E, Shu XO, Abe SK, Rahman MS, Saito E, Islam MR, Tsugane S, Sawada N, Tsuji I, Kanemura S, Sugawara Y, Tomata Y, Sadakane A, Ozasa K, Oze I, Ito H, Shin MH, Ahn YO, Park SK, Shin A, Xiang YB, Cai H, Koh WP, Yuan JM, Yoo KY, Chia KS, Boffetta P, Ahsan H, Zheng W, Inoue M, Kang D, Potter JD, Matsuo K, Qiao YL, Rothman N, Sinha R. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: a pooled analysis of prospective studies from the Asia Cohort Consortium. Int J Epidemiol 2022; 51:626-640. [PMID: 34468722 PMCID: PMC9308394 DOI: 10.1093/ije/dyab161] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that consuming coffee may lower the risk of death, but evidence regarding tea consumption in Asians is limited. We examined the association between coffee and tea consumption and mortality in Asian populations. METHODS We used data from 12 prospective cohort studies including 248 050 men and 280 454 women from the Asia Cohort Consortium conducted in China, Japan, Korea and Singapore. We estimated the study-specific association of coffee, green tea and black tea consumption with mortality using Cox proportional-hazards regression models and the pooled study-specific hazard ratios (HRs) using a random-effects model. RESULTS In total, 94 744 deaths were identified during the follow-up, which ranged from an average of 6.5 to 22.7 years. Compared with coffee non-drinkers, men and women who drank at least five cups of coffee per day had a 24% [95% confidence interval (CI) 17%, 29%] and a 28% (95% CI 19%, 37%) lower risk of all-cause mortality, respectively. Similarly, we found inverse associations for coffee consumption with cardiovascular disease (CVD)-specific and cancer-specific mortality among both men and women. Green tea consumption was associated with lower risk of mortality from all causes, CVD and other causes but not from cancer. The association of drinking green tea with CVD-specific mortality was particularly strong, with HRs (95% CIs) of 0.79 (0.68, 0.91) for men and 0.78 (0.68, 0.90) for women who drank at least five cups per day of green tea compared with non-drinkers. The association between black tea consumption and mortality was weak, with no clear trends noted across the categories of consumption. CONCLUSIONS In Asian populations, coffee consumption is associated with a lower risk of death overall and with lower risks of death from CVD and cancer. Green tea consumption is associated with lower risks of death from all causes and CVD.
Collapse
Affiliation(s)
- Sangah Shin
- Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Krull Abe
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Md Shafiur Rahman
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Eiko Saito
- Division of Cancer Statistics Integration, Center for Cancer Control & Information Services, National Cancer Center, Tokyo, Japan
| | - Md Rashedul Islam
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Ichiro Tsuji
- Department of Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiki Kanemura
- Department of Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Sugawara
- Department of Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasutake Tomata
- Department of Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Myung-Hee Shin
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Gyeonggi-do, Korea
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keun-Young Yoo
- The Veterans Health Service Medical Center, Seoul, Korea
| | - Kee Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Republic of Singapore
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manami Inoue
- Division of Prevention, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - John D Potter
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - You-Lin Qiao
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
18
|
Papuc C, Goran GV, Predescu CN, Tudoreanu L, Ștefan G. Plant polyphenols mechanisms of action on insulin resistance and against the loss of pancreatic beta cells. Crit Rev Food Sci Nutr 2022; 62:325-352. [PMID: 32901517 DOI: 10.1080/10408398.2020.1815644] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus describes a group of metabolic disorders characterized by a prolonged period hyperglycemia with long-lasting detrimental effects on the cardiovascular and nervous systems, kidney, vision, and immunity. Many plant polyphenols are shown to have beneficial activity for the prevention and treatment of diabetes, by different mechanisms. This review article is focused on synthesizing the mechanisms by which polyphenols decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function. To achieve the objectives, this review summarizes the results of the researches realized in recent years in clinical trials and in various experimental models, on the effects of foods rich in polyphenols, polyphenolic extracts, and commercially polyphenols on insulin resistance and β-cells death. Dietary polyphenols are able to reduce insulin resistance alleviating the IRS-1/PI3-k/Akt signaling pathway, and to reduce the loss of pancreatic islet β-cell mass and function by several molecular mechanisms, such as protection of the surviving machinery of cells against the oxidative insult; increasing insulin secretion in pancreatic β-cells through activation of the FFAR1; cytoprotective effect on β-cells by activation of autophagy; protection of β-cells to act as activators for anti-apoptotic pathways and inhibitors for apoptotic pathway; stimulating of insulin release, presumably by transient ATP-sensitive K+ channel inhibition and whole-cell Ca2+ stimulation; involvement in insulin release that act on ionic currents and membrane potential as inhibitor of delayed-rectifier K+ current (IK(DR)) and activator of current. dietary polyphenols could be used as potential anti-diabetic agents to prevent and alleviate diabetes and its complications, but further studies are needed.
Collapse
Affiliation(s)
- Camelia Papuc
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Gheorghe V Goran
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Corina N Predescu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| | - Georgeta Ștefan
- Faculty of Veterinary Medicine, UASVM of Bucharest, Bucharest, Romania
| |
Collapse
|
19
|
Xiang P, Zhu Q, Tukhvatshin M, Cheng B, Tan M, Liu J, Wang X, Huang J, Gao S, Lin D, Zhang Y, Wu L, Lin J. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:478. [PMID: 34670494 PMCID: PMC8527772 DOI: 10.1186/s12870-021-03260-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/08/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Catechins are crucial in determining the flavour and health benefits of tea, but it remains unclear that how the light intensity regulates catechins biosynthesis. Therefore, we cultivated tea plants in a phytotron to elucidate the response mechanism of catechins biosynthesis to light intensity changes. RESULTS In the 250 μmol·m- 2·s- 1 treatment, the contents of epigallocatechin, epigallocatechin gallate and total catechins were increased by 98.94, 14.5 and 13.0% respectively, compared with those in the 550 μmol·m- 2·s- 1 treatment. Meanwhile, the photosynthetic capacity was enhanced in the 250 μmol·m- 2·s- 1 treatment, including the electron transport rate, net photosynthetic rate, transpiration rate and expression of related genes (such as CspsbA, CspsbB, CspsbC, CspsbD, CsPsbR and CsGLK1). In contrast, the extremely low or high light intensity decreased the catechins accumulation and photosynthetic capacity of the tea plants. The comprehensive analysis revealed that the response of catechins biosynthesis to the light intensity was mediated by the photosynthetic capacity of the tea plants. Appropriately high light upregulated the expression of genes related to photosynthetic capacity to improve the net photosynthetic rate (Pn), transpiration rate (Tr), and electron transfer rate (ETR), which enhanced the contents of substrates for non-esterified catechins biosynthesis (such as EGC). Meanwhile, these photosynthetic capacity-related genes and gallic acid (GA) biosynthesis-related genes (CsaroB, CsaroDE1, CsaroDE2 and CsaroDE3) co-regulated the response of GA accumulation to light intensity. Eventually, the epigallocatechin gallate content was enhanced by the increased contents of its precursors (EGC and GA) and the upregulation of the CsSCPL gene. CONCLUSIONS In this study, the catechin content and photosynthetic capacity of tea plants increased under appropriately high light intensities (250 μmol·m- 2·s- 1 and 350 μmol·m- 2·s- 1) but decreased under extremely low or high light intensities (150 μmol·m- 2·s- 1 or 550 μmol·m- 2·s- 1). We found that the control of catechin accumulation by light intensity in tea plants is mediated by the plant photosynthetic capacity. The research provided useful information for improving catechins content and its light-intensity regulation mechanism in tea plant.
Collapse
Affiliation(s)
- Ping Xiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Marat Tukhvatshin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingjian Wang
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, 361008, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilian Gao
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongyi Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
20
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114:11-24. [PMID: 34054222 PMCID: PMC8146271 DOI: 10.1016/j.tifs.2021.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Background The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of (−)-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19. Scope and approach Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated. Key findings and conclusions EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Keyi Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wangjun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
21
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
22
|
Chávez-Castillo M, Nuñez V, Rojas M, Ortega Á, Durán P, Pirela D, Marquina M, Cano C, Chacín M, Velasco M, Rojas-Quintero J, Bermúdez V. Exploring Phytotherapeutic Alternatives for Obesity, Insulin Resistance and Diabetes Mellitus. Curr Pharm Des 2021; 26:4430-4443. [PMID: 32611293 DOI: 10.2174/1381612826666200701205132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
At present, the pathologic spectrum of obesity-insulin resistance (IR)-diabetes mellitus (DM) represents not only a pressing matter in public health but also a paramount object of study in biomedical research, as they constitute major risk factors for cardiovascular disease (CVD), and other chronic non-communicable diseases (NCD). Phytotherapy, the use of medicinal herbs (MH) with treatment purposes, offers a wide array of opportunities for innovation in the management of these disorders; mainly as pharmacological research on small molecules accumulates. Several MH has displayed varied mechanisms of action relevant to the pathogenesis of obesity, IR and DM, including immunological and endocrine modulation, reduction of inflammation and oxidative stress (OS), regulation of appetite, thermogenesis and energy homeostasis, sensitisation to insulin function and potentiation of insulin release, among many others. However, the clinical correlates of these molecular phenomena remain relatively uncertain, with only a handful of MH boasting convincing clinical evidence in this regard. This review comprises an exploration of currently available preclinical and clinical research on the role of MH in the management of obesity, IR, and DM.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Psychiatric Hospital of Maracaibo, Maracaibo, Venezuela,Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Victoria Nuñez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Daniela Pirela
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Marquina
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacology Unit, José María Vargas School of Medicine, Central University of Venezuela, Caracas-Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
23
|
Sharma T, Kaur D, Grewal AK, Singh TG. Therapies modulating insulin resistance in Parkinson's disease: A cross talk. Neurosci Lett 2021; 749:135754. [PMID: 33610666 DOI: 10.1016/j.neulet.2021.135754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder linked with aging and primarily involves dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc). The deregulation of genes associated with T2D has been demonstrated by proteomic research on Parkinson's symptoms patients. Various common pathways likely to link neurodegenerative mechanisms of PD include abnormal mitochondrial function, inflammation, apoptosis/autophagy and insulin signalling/glucose metabolism in T2DM. Several pathway components including phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt), glycogen synthase kinase-3 beta (GSK-3β) and nuclear factor kappa B (NF-κB) impairment is observed in PD. Numerous novel targets are being pursued in preclinical and clinical trials that target metabolic dysfunction in PD; that elevate insulin signaling pathways in dopaminergic neurons, and show improvement in motor and cognitive measures and produce significant neuroprotective effects in PD patients.
Collapse
Affiliation(s)
- Tanya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Darshpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
24
|
Chen TS, Liou SY, Lin HH, Hung MY, Lin CC, Lin YM, Lin KH, Padma VV, Yao CH, Kuo WW, Huang CY. Oral administration of green tea Epigallocatechin-3-gallate reduces oxidative stress and enhances restoration of cardiac function in diabetic rats receiving autologous transplantation of adipose-derived stem cells. Arch Physiol Biochem 2021; 127:82-89. [PMID: 31112046 DOI: 10.1080/13813455.2019.1614631] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cardio-dysfunction is one of the complications in patients with diabetes mellitus (DM). This paper aimed to investigate if oral administration of green tea Epigallocatechin-3-gallate (EGCG, E) and transplantation of adipose-derived stem cells (ADSC) show cross effects on the treatment of cardiomyopathy in rats with type 1 DM. MATERIALS AND METHODS Wistar male rats were divided into four groups (each group contained 8 animals) including sham, DM (diabetic group), DM + ADSC (DM group with ADSC treatment) and DM + ADSC + E (DM + ADSC group with oral administration of EGCG). RESULTS Pathological parameters including hypertrophy, inflammation, and fibrosis were activated in DM group. By contrast, all parameters were significantly improved in treatment group (DM + ADSC group). In addition, improvement of pathological parameters in DM + ADSC + E was significantly better than DM + ADSC. CONCLUSION We found that EGCG can increase expression of survival marker in ADSC under high glucose environment and reduce serum oxidative stress in DM rats.
Collapse
Affiliation(s)
- Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Show-Yih Liou
- Formosan Blood Purification Foundation, Taipei, Taiwan
| | - Hsin-Hung Lin
- Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chien-Chung Lin
- Orthopaedic Department, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Exosomes and Mitochondria's Related-Diseases Medical Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Ormazabal P, Herrera K, Cifuentes M, Paredes A, Morales G, Cruz G. Protective effect of the hydroalcoholic extract from Lampaya medicinalis Phil. (Verbenaceae) on palmitic acid- impaired insulin signaling in 3T3-L1 adipocytes. Obes Res Clin Pract 2020; 14:573-579. [PMID: 33208251 DOI: 10.1016/j.orcp.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Obesity is strongly associated with insulin resistance (IR). IR at the molecular level may be defined as a diminished activation of insulin signaling-related molecules (IRS-1/Akt/AS160) as well as reduced glucose uptake. Subject with obesity have elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which triggers insulin signaling disruption in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in folk medicine of Northern Chile to counteract inflammatory diseases. Hydroethanolic extracts of lampaya (HEL) contain considerable amounts of flavonoids that may explain the biological activity of the plant. The aim of this study was to assess whether HEL exposure protects against PA-disrupted insulin signaling and glucose uptake in adipocytes. METHODS Cytotoxicity of a range of HEL concentrations (0.01-10 μg/mL) was evaluated in 3T3-L1 adipocytes. Cells were exposed or not to 0.1 μg/mL of HEL before adding 0.65 mM PA or vehicle and incubated with 100 nM insulin (or vehicle) for 15 min. Phosphorylation of Tyr-IRS-1, Ser-Akt, Thr-AS160 was evaluated by Western blot. Glucose uptake was assessed using the 2-NBDG analogue. RESULTS HEL was not cytotoxic at any concentration assessed. PA-induced reduction in insulin-stimulated phosphorylation of IRS-1, Akt and AS160 and glucose uptake were abolished by co-treatment with HEL. CONCLUSION These findings give new insights about the effect of HEL ameliorating PA- impaired IRS-1/Akt/AS160 pathway and glucose uptake in adipocytes. More studies should focus on lampaya, since might represent a preventive approach in individuals whose circulating PA levels contribute to IR.
Collapse
Affiliation(s)
- Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000 Rancagua, Chile; Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile.
| | - Karin Herrera
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Química Biológica, Instituto Antofagasta (IA) and Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, 2360102 Valparaíso, Chile
| |
Collapse
|
26
|
Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NC. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sci 2020; 259:118260. [PMID: 32795541 DOI: 10.1016/j.lfs.2020.118260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Cigarette smoke (CS), the major risk factor of chronic obstructive pulmonary disease (COPD), contains numerous free radicals that can cause oxidative stress and exaggerated inflammatory responses in the respiratory system. Lipid peroxidation which is oxidative degradation of polyunsaturated fatty acids and results in cell damage has also been associated with COPD pathogenesis. Increased levels of lipid peroxidation as well as its end product 4-hydroxynonenal have indeed been detected in COPD patients. Additionally, reactive oxygen species such as those contained in CS can activate nuclear factor-κB signaling pathway, initiating cascades of proinflammatory mediator expression. As emerging evidence attests to the antioxidative and anti-inflammatory properties of tea catechins, we sought to determine whether epigallocatechin gallate, the most abundant tea catechin, can provide protection against oxidative stress, lipid peroxidation, and inflammatory responses caused by CS. We found that EGCG treatment blocked cigarette smoke extract (CSE)-induced oxidative stress as indicated by decreased production and accumulation of reactive oxygen species in airway epithelial cells (AECs). Likewise, lipid peroxidation in CSE-stimulated AECs was suppressed by EGCG. Our findings further suggest that EGCG sequestered 4-hydroxynonenal and interfered with its protein adduct formation. Lastly, we show that EGCG inhibited nuclear factor-κB activation and the downstream expression of proinflammatory mediators. In summary, our study describing the antioxidative and anti-inflammatory effects of EGCG in CSE-exposed AECs provide valuable information about the therapeutic potential of this tea catechin for COPD.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India.
| | - Aravind T Reddy
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - N Ch Varadacharyulu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
27
|
The Root of Polygonum multiflorum Thunb. Alleviates Non-Alcoholic Steatosis and Insulin Resistance in High Fat Diet-Fed Mice. Nutrients 2020; 12:nu12082353. [PMID: 32781739 PMCID: PMC7468938 DOI: 10.3390/nu12082353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatosis and insulin resistance are critical health problems and cause metabolic complications worldwide. In this study, we investigated the molecular mechanism of Polygonum multiflorum Thunb. (PM) against hepatic lipid accumulation and insulin resistance by using in vitro and in vivo models. PM extract significantly attenuated the accumulation of lipid droplets and hepatic triglyceride in free fatty acid (FFA)-exposed HepG2 cells. PM extract increased the AMPK and ACC phosphorylation and GLUT4 expression, whose levels were downregulated in FFA-exposed cells. PM extract also decreased precursor and mature forms of SREBP-1 in FFA-exposed cells. C57BL/6 mice fed with normal diet (ND) or high-fat diet (HFD) were administered PM extract (100 mg/kg) or vehicle orally for 16 weeks. PM extract attenuated the increases of the epididymal and perirenal fats on HFD feeding. PM extract markedly reduced hepatic lipid accumulation and fasting glucose levels, and improved glucose and insulin sensitivity in HFD-fed mice. HFD-fed mice decreased the AMPK and ACC phosphorylation and GLUT4 expression, and increased precursor and mature forms of SREBP-1; these changes were significantly restored by PM extract. In conclusion, PM extract alleviates non-alcoholic steatosis and insulin resistance through modulating the expression of proteins on lipid metabolism and glucose transport in the liver.
Collapse
|
28
|
The Intrinsic Virtues of EGCG, an Extremely Good Cell Guardian, on Prevention and Treatment of Diabesity Complications. Molecules 2020; 25:molecules25133061. [PMID: 32635492 PMCID: PMC7411588 DOI: 10.3390/molecules25133061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
The pandemic proportion of diabesity—a combination of obesity and diabetes—sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complications.
Collapse
|
29
|
Malinowski B, Fajardo Leighton RI, Hill CG, Szandorowski P, Wiciński M. Bioactive Compounds and Their Effect on Blood Pressure-A Review. Nutrients 2020; 12:E1659. [PMID: 32503160 PMCID: PMC7352988 DOI: 10.3390/nu12061659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated blood pressure affects a great part of the elderly population and is the leading risk factor for cardiovascular disease. New approaches have been taken in the fight against this growing problem, in the form of diets (Mediterranean, Dietary Approaches to Stop Hypertension (DASH) and intermittent fasting). Recent research has shown the promising results regarding diets and their effect on the prevention and improvement of elevated blood pressure. This review attempts to take this a step further, reviewing 26 studies in the search for dietary elements that may be causing this improvement. Although good evidence was found in favor of lycopene, Docosahexaenoic acid (DHA), fiber and anthocyanin, further evidence is needed before any conclusions can be made. In contrast, the evidence shows that licorice increases blood pressure.
Collapse
Affiliation(s)
- Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85–090 Bydgoszcz, Poland; (R.I.F.L.); (C.G.H.); (P.S.); (M.W.)
| | | | | | | | | |
Collapse
|
30
|
Márquez Campos E, Jakobs L, Simon MC. Antidiabetic Effects of Flavan-3-ols and Their Microbial Metabolites. Nutrients 2020; 12:nu12061592. [PMID: 32485837 PMCID: PMC7352288 DOI: 10.3390/nu12061592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Diet is one of the pillars in the prevention and management of diabetes mellitus. Particularly, eating patterns characterized by a high consumption of foods such as fruits or vegetables and beverages such as coffee and tea could influence the development and progression of type 2 diabetes. Flavonoids, whose intake has been inversely associated with numerous negative health outcomes in the last few years, are a common constituent of these food items. Therefore, they could contribute to the observed positive effects of certain dietary habits in individuals with type 2 diabetes. Of all the different flavonoid subclasses, flavan-3-ols are consumed the most in the European region. However, a large proportion of the ingested flavan-3-ols is not absorbed. Therefore, the flavan-3-ols enter the large intestine where they become available to the colonic bacteria and are metabolized by the microbiota. For this reason, in addition to the parent compounds, the colonic metabolites of flavan-3-ols could take part in the prevention and management of diabetes. The aim of this review is to present the available literature on the effect of both the parent flavan-3-ol compounds found in different food sources as well as the specific microbial metabolites of diabetes in order to better understand their potential role in the prevention and treatment of the disease.
Collapse
|
31
|
Chuang WY, Hsieh YC, Lee TT. The Effects of Fungal Feed Additives in Animals: A Review. Animals (Basel) 2020; 10:E805. [PMID: 32384791 PMCID: PMC7278461 DOI: 10.3390/ani10050805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
As probiotics, fungi enhance animal health and are suitable animal feed additives. In addition to brewing fungi, there are also edible and medicinal fungi. Common fungi utilized in feeding programs include Saccharomyces cerevisiae, Aspergillus oryzae, Pleurotus spp., Antrodia cinnamomea, and Cordyceps militaris. These fungi are rich in glucans, polysaccharides, polyphenols, triterpenes, ergosterol, adenosine, and laccases. These functional components play important roles in antioxidant, anti-inflammatory, anti-obesity, and immune system regulation. As such, fungal feed additives could be of potential use when breeding livestock. In previous studies, fungal feed additives enhanced body weight and egg production in poultry and improved the feed conversion rate. Several mycotoxins can be produced by hazardous fungi but fortunately, the cell walls constituents and enzymes of fungal probiotics can also act to decrease the toxicity of mycotoxins. Overall, fungal feed additives are of value, but their safety and usage must be studied further, including cost-benefit economic analyses.
Collapse
Affiliation(s)
- Wen Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Yun Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
32
|
Ren Z, Yang Z, Lu Y, Zhang R, Yang H. Anti‑glycolipid disorder effect of epigallocatechin‑3‑gallate on high‑fat diet and STZ‑induced T2DM in mice. Mol Med Rep 2020; 21:2475-2483. [PMID: 32236613 PMCID: PMC7185284 DOI: 10.3892/mmr.2020.11041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is beneficial for inhibiting dyslipidemia and reducing hyperlipidemic risk. The purpose of the present study was to investigate the glycolipid regulatory effects and potential mechanisms of EGCG in a high-fat diet and streptozotocin-induced type 2 diabetes mellitus (T2DM) mouse model. The results demonstrated that EGCG can decrease blood glucose levels and increase insulin resistance in T2DM mice. In addition, EGCG can regulate serum lipid levels, including those of total cholesterol, triglyceride and low-density lipoprotein receptor (LDL-r), and reduce lipid deposition in vascular endothelial cells in a dose-dependent manner. In addition, the gene and protein expression of related scavenger receptors, including cluster of differentiation 36, sterol regulatory element binding protein 2 (SREBP), SREBP cleavage-activating protein and LDL-r, were downregulated in a dose-dependent manner. The present study noted that EGCG possesses potential as a natural product for preventing and treating metabolic hyperlipidemia syndrome, probably by reducing the blood lipid levels, alleviating vascular endothelial cell damage, maintaining normal lipid metabolism in blood vessels and ameliorating glycolipid disorders.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Medical Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Medical Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
33
|
Chuang WY, Liu CL, Tsai CF, Lin WC, Chang SC, Shih HD, Shy YM, Lee TT. Evaluation of Waste Mushroom Compost as a Feed Supplement and Its Effects on the Fat Metabolism and Antioxidant Capacity of Broilers. Animals (Basel) 2020; 10:ani10030445. [PMID: 32155947 PMCID: PMC7143042 DOI: 10.3390/ani10030445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Mushroom waste compost is the main byproduct when cultivating mushrooms. Due to its high mycelium content, mushroom waste compost may improve animal health by increasing antioxidant capacity. Furthermore, increasing evidence suggests that supplementing animal diets with fiber could improve body composition and health. The results showed that supplementation with mushroom waste compost accelerates adipolysis and enhances the antioxidant capacity of broilers. Among all treatment groups, broilers given dietary supplementation with 0.5% mushroom waste compost showed improved feed conversion rate and the highest adipose metabolism. Abstract Pennisetum purpureum Schum No. 2 waste mushroom compost (PWMC) is the main byproduct when cultivating Pleurotus eryngii. Due to the high mycelium levels in PWMC, it may have potential as a feed supplement for broilers. This study investigated the effects of PWMC supplementation on antioxidant capacity and adipose metabolism in broilers. In the study, 240 broilers were randomly allocated to one of four treatment groups: basal diet (control), 0.5%, 1%, or 2% PWMC supplementation. Each treatment group had 60 broilers, divided into three replicates. The results showed that supplementation with 0.5% PWMC decreased the feed conversion rate (FCR) from 1.36 to 1.28, compared to the control. Supplementation with 0.5% or 2% PWMC decreased glucose and triglyceride levels, compared to the control (p < 0.0001), the concentrations of adiponectin and oxytocin increased from 5948 to 5709, 11820, and 7938 ng/ mL; and 259 to 447, 873, and 963 pg/ mL, respectively. Toll-like receptor 4 was slightly increased in the 0.5% and 1% PWMC groups. Both interferon-γ (IFN-γ) and interleukin-1ß (IL-1ß) were significantly decreased, by about three to five times for IFN-γ (p < 0.0001) and 1.1 to 1.6 times for IL-1ß (p = 0.0002). All antioxidant-related mRNA, including nuclear factor erythroid 2–related factor 2 (Nrf-2) and superoxidase dismutase-1 (SOD-1), increased significantly following PWMC supplementation. Both claudin-1 and zonula occludens 1 increased, especially in the 2% PWMC group. Excitatory amino acid transporter 3 (EAAT3) significantly increased by about 5, 12, and 11 times in the 0.5%, 1%, and 2% PWMC groups. All adipolysis-related mRNA were induced in the PWMC treatment groups, further enhancing adipolysis. Overall, 0.5% PWMC supplementation was recommended due to its improving FCR, similar antioxidant capacity, and upregulated adipolysis.
Collapse
Affiliation(s)
- Wen Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Chu Ling Liu
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Chia Fen Tsai
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Wei Chih Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
| | - Shen Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Tainan 71246, Taiwan;
| | - Hsin Der Shih
- Taiwan Agricultural Research Institute Council of Agriculture, Executive Yuan, Taichung City 41362, Taiwan;
| | - Yi Ming Shy
- Hsinchu Branch, Taiwan Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan;
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (C.L.L.); (C.F.T.); (W.C.L.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22840366; Fax: +886-4-22860265
| |
Collapse
|
34
|
Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1356893. [PMID: 32148647 PMCID: PMC7042557 DOI: 10.1155/2020/1356893] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is a metabolic disorder that majorly affects the endocrine gland, and it is symbolized by hyperglycemia and glucose intolerance owing to deficient insulin secretory responses and beta cell dysfunction. This ailment affects as many as 451 million people worldwide, and it is also one of the leading causes of death. In spite of the immense advances made in the development of orthodox antidiabetic drugs, these drugs are often considered not successful for the management and treatment of T2DM due to the myriad side effects associated with them. Thus, the exploration of medicinal herbs and natural products as therapeutic sources for the treatment of T2DM is promoted because they have little or no side effects. Bioactive molecules isolated from natural sources have been proven to lower blood glucose levels via regulating one or more of the following mechanisms: improvement of beta cell function, insulin resistance, glucose (re)absorption, and glucagon-like peptide-1 homeostasis. In recent times, the mechanisms of action of different bioactive molecules with antidiabetic properties and phytochemistry are gaining a lot of attention in the area of drug discovery. This review article presents an update of the findings from clinical research into medicinal plant therapy for T2DM.
Collapse
|
35
|
Transcriptome profiling reveals the antihyperglycemic mechanism of pelargonidin-3-O-glucoside extracted from wild raspberry. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
36
|
Polyphenol-rich green tea extract induces thermogenesis in mice by a mechanism dependent on adiponectin signaling. J Nutr Biochem 2019; 78:108322. [PMID: 32120266 DOI: 10.1016/j.jnutbio.2019.108322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Adiponectin is downregulated in obesity negatively impacting the thermogenesis and impairing white fat browning. Despite the notable effects of green tea (GT) extract in the enhancement of thermogenesis, if its effects are being mediated by adiponectin has been scarcely explored. For this purpose, we investigated the role of adiponectin in the thermogenic actions of GT extract by using an adiponectin-knockout mice model. Male wild-type (WT) and knockout (AdipoKO) C57Bl/6 mice (3 months) were divided into 6 groups: mice fed a standard diet+gavage with water (SD WT, and SD AdipoKO), high-fat diet (HFD)+gavage with water (HFD WT, and HFD AdipoKO), and HFD + gavage with 500 mg/kg of body weight (BW) of GT extract (HFD + GT WT, and HFD + GT AdipoKO). After 20 weeks of experimentation, mice were euthanized and adipose tissue was properly removed. Our findings indicate that treatment with GT extract reversed complications of obesity in WT mice by decreasing final BW gain, adiposity index, adipocyte size and insulin resistance (IR). However, the action of the GT extract was not effective in reversing those markers in the AdipoKO mice, although GT acts independently in the reversal of IR. GT-treatment induced enhancement in energy expenditure (EE), BAT thermogenesis, and promoted browning phenotype in the subcutaneous WAT (scWAT) of WT mice. On the other hand, the thermogenic program was markedly impaired in BAT and scWAT of AdipoKO mice. Our outcomes unveiled adiponectin as a key direct signal for GT extract inducing adaptive thermogenesis and browning in scWAT.
Collapse
|
37
|
Karatas A, Dagli AF, Orhan C, Gencoglu H, Ozgen M, Sahin N, Sahin K, Koca SS. Epigallocatechin 3-gallate attenuates arthritis by regulating Nrf2, HO-1, and cytokine levels in an experimental arthritis model. Biotechnol Appl Biochem 2019; 67:317-322. [PMID: 31746064 DOI: 10.1002/bab.1860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a polyphenol that has been shown to have antioxidant and anti-inflammatory effects. In this study, collagen-induced arthritis (CIA) model, in Wistar albino rats, was used to elucidate the effect of EGCG on pathogenetic pathways in inflammatory arthritis. The levels of serum TNF-α, IL-17, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx); the expression levels of tissue heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); histopathologically, perisynovial inflammation and cartilage-bone destruction were examined. In the sham group, serum TNF-α, IL-17, and MDA levels increased, while SOD, CAT, GPx levels, and the expressions of Nrf2 and HO-1 decreased. On the other hand, in the EGCG administered groups, serum TNF-α, IL-17, and MDA levels improved, while SOD, CAT, GPx levels and the expressions of Nrf2 and HO-1 increased. Moreover, histopathological analysis has shown that perisynovial inflammation and cartilage-bone destruction decreased in the EGCG administered groups. These results suggest that EGCG has an antiarthritic effect by regulating the oxidative-antioxidant balance and cytokine levels in the CIA model, which is a surrogate experimental model of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ahmet Karatas
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey
| | - Adile Ferda Dagli
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Metin Ozgen
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | | |
Collapse
|
38
|
Wang R, Huang J, Chen J, Yang M, Wang H, Qiao H, Chen Z, Hu L, Di L, Li J. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3- gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102068. [PMID: 31374249 DOI: 10.1016/j.nano.2019.102068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Colon adenocarcinoma is the third most common cause of cancer-related deaths worldwide owing to its aggressive nature. Here, we developed a novel oral drug delivery system (DDS) that comprised active targeted nanoparticles made from gelatin and chitosan (non-toxic polymers). The nanoparticles were fabricated using a complex coacervation method, which was accompanied by conjugation of wheat germ agglutinin (WGA) onto their surface by glutaraldehyde cross-linking. Specifically, we integrated 5-fluorouracil (5-FU), the first-line treatment agent against colon cancer, and (-)-epigallocatechin-3-gallate (EGCG), which inhibits tumor growth via anti-angiogenesis and apoptosis-inducing effects, into the nanoparticles, named WGA-EF-NP. The 5-FU and EGCG co-loaded nanoparticles showed sustained drug release, enhanced cellular uptake, and longer circulation time. WGA-EF-NP exhibited superior anti-tumor activity and pro-apoptotic efficacy compared to the drugs and nanoparticles without WGA decoration owing to better bioavailability and longer circulation time in vivo. Thus, WGA-EF-NP shows promise as a DDS for enhanced efficacy against colon cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Jian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
39
|
Meng JM, Cao SY, Wei XL, Gan RY, Wang YF, Cai SX, Xu XY, Zhang PZ, Li HB. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants (Basel) 2019; 8:E170. [PMID: 31185622 PMCID: PMC6617012 DOI: 10.3390/antiox8060170] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus has become a serious and growing public health concern. It has high morbidity and mortality because of its complications, such as diabetic nephropathy, diabetic cardiovascular complication, diabetic neuropathy, diabetic retinopathy, and diabetic hepatopathy. Epidemiological studies revealed that the consumption of tea was inversely associated with the risk of diabetes mellitus and its complications. Experimental studies demonstrated that tea had protective effects against diabetes mellitus and its complications via several possible mechanisms, including enhancing insulin action, ameliorating insulin resistance, activating insulin signaling pathway, protecting islet β-cells, scavenging free radicals, and decreasing inflammation. Moreover, clinical trials also confirmed that tea intervention is effective in patients with diabetes mellitus and its complications. Therefore, in order to highlight the importance of tea in the prevention and management of diabetes mellitus and its complications, this article summarizes and discusses the effects of tea against diabetes mellitus and its complications based on the findings from epidemiological, experimental, and clinical studies, with the special attention paid to the mechanisms of action.
Collapse
Affiliation(s)
- Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuan-Feng Wang
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Shu-Xian Cai
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
40
|
Green Tea Ameliorates Hyperglycemia by Promoting the Translocation of Glucose Transporter 4 in the Skeletal Muscle of Diabetic Rodents. Int J Mol Sci 2019; 20:ijms20102436. [PMID: 31100973 PMCID: PMC6566303 DOI: 10.3390/ijms20102436] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
It is known that green tea helps prevent obesity and diabetes mellitus. In this study, we aimed to determine whether green tea ameliorates hyperglycemia and the mechanism involved in diabetic rodents. Green tea consumption reduced blood glucose and ameliorated glucose intolerance, which was assessed using an oral glucose tolerance test in both streptozotocin-induced type 1 diabetic rats and type 2 diabetic KK-Ay mice. Green tea also reduced the plasma fructosamine and glycated hemoglobin concentrations in both models. Furthermore, it increased glucose uptake into the skeletal muscle of both model animals, which was accompanied by greater translocation of glucose transporter 4 (GLUT4). Moreover, epigallocatechin gallate (EGCG), the principal catechin in green tea, also ameliorated glucose intolerance in high-fat diet-induced obese and diabetic mice. These results suggest that green tea can ameliorate hyperglycemia in diabetic rodents by stimulating GLUT4-mediated glucose uptake in skeletal muscle, and that EGCG is one of the effective compounds that mediate this effect.
Collapse
|
41
|
Russo B, Picconi F, Malandrucco I, Frontoni S. Flavonoids and Insulin-Resistance: From Molecular Evidences to Clinical Trials. Int J Mol Sci 2019; 20:E2061. [PMID: 31027340 PMCID: PMC6539502 DOI: 10.3390/ijms20092061] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
Insulin-resistance is one of the main factors responsible for the onset and progression of Metabolic Syndrome (MetS). Among all polyphenols, the effects of flavonoids and their main food sources on insulin sensitivity have been widely evaluated in molecular and clinical studies. The aim of this review is to analyse the data observed in vitro, in vivo and in clinical trials concerning the effects of flavonoids on insulin resistance and to determine the molecular mechanisms with which flavonoids interact with insulin signaling.
Collapse
Affiliation(s)
- Benedetta Russo
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
| | - Fabiana Picconi
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Ilaria Malandrucco
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
| | - Simona Frontoni
- Unit of Endocrinology, Diabetes and Metabolism, S.Giovanni Calibita, Fatebenefratelli Hospital, 00186 Rome, Italy.
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
42
|
Burton-Freeman B, Brzeziński M, Park E, Sandhu A, Xiao D, Edirisinghe I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019; 11:E841. [PMID: 31013914 PMCID: PMC6520947 DOI: 10.3390/nu11040841] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM.
Collapse
Affiliation(s)
- Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Michał Brzeziński
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
- Department of Public Health and Social Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Eunyoung Park
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Amandeep Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
43
|
In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients 2019; 11:nu11030530. [PMID: 30823474 PMCID: PMC6470730 DOI: 10.3390/nu11030530] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/10/2023] Open
Abstract
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions.
Collapse
|
44
|
Casanova E, Salvadó J, Crescenti A, Gibert-Ramos A. Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review. Int J Mol Sci 2019; 20:ijms20030532. [PMID: 30691224 PMCID: PMC6387143 DOI: 10.3390/ijms20030532] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Obesity is associated with the hypertrophy and hyperplasia of adipose tissue, affecting the healthy secretion profile of pro- and anti-inflammatory adipokines. Increased influx of fatty acids and inflammatory adipokines from adipose tissue can induce muscle oxidative stress and inflammation and negatively regulate myocyte metabolism. Muscle has emerged as an important mediator of homeostatic control through the consumption of energy substrates, as well as governing systemic signaling networks. In muscle, obesity is related to decreased glucose uptake, deregulation of lipid metabolism, and mitochondrial dysfunction. This review focuses on the effect of epigallocatechin-gallate (EGCG) on oxidative stress and inflammation, linked to the metabolic dysfunction of skeletal muscle in obesity and their underlying mechanisms. EGCG works by increasing the expression of antioxidant enzymes, by reversing the increase of reactive oxygen species (ROS) production in skeletal muscle and regulating mitochondria-involved autophagy. Moreover, EGCG increases muscle lipid oxidation and stimulates glucose uptake in insulin-resistant skeletal muscle. EGCG acts by modulating cell signaling including the NF-κB, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase (MAPK) signaling pathways, and through epigenetic mechanisms such as DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Ester Casanova
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| | - Josepa Salvadó
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| | - Anna Crescenti
- Technological Unit of Nutrition and Health, EURECAT-Technology Centre of Catalonia, Avinguda Universitat 1, 43204 Reus, Spain.
| | - Albert Gibert-Ramos
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili (URV), Campus Sescelades, 43007 Tarragona, Spain.
| |
Collapse
|
45
|
The Potential of South African Herbal Tisanes, Rooibos and Honeybush in the Management of Type 2 Diabetes Mellitus. Molecules 2018; 23:molecules23123207. [PMID: 30563087 PMCID: PMC6321617 DOI: 10.3390/molecules23123207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a metabolic disease that can lead to high morbidity, mortality and long-term complications. Available treatment strategies, which are mainly based on treating hyperglycemia, with insulin and other pharmacological agents are not completely efficient and can even lead to development of unwanted side effects. Scientific evidence suggests that bioactive compounds from teas and other plant-based foods, which are known source of natural antioxidants, could be an attractive strategy to preferentially treat and manage type 2 diabetes mellitus (T2DM) and thus, have significant therapeutic implications. In this review, we attempt an in-depth analysis and discussion of the current progress in our understanding of the antidiabetic potential of two commercialized South Africa herbal tisanes—Rooibos and Honeybush and their polyphenols.
Collapse
|
46
|
Mi Y, Liu X, Tian H, Liu H, Li J, Qi G, Liu X. EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes. Food Funct 2018; 9:3374-3386. [PMID: 29868672 DOI: 10.1039/c8fo00167g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The global rise in obesity and type 2 diabetes has precipitated the need for therapeutic intervention in the arsenal against adiposity. (-)-Epigallocatechin-3-gallate (EGCG), a major nutraceutical component of green tea, has been regarded as a nutraceutical that has powerful antioxidant and anti-obesity bioactivities. In the present study, we showed that EGCG alleviates intracellular lipid accumulation markedly, and the inhibitory effect was largely limited to the early stage of adipocyte differentiation. Consistently, EGCG notably evoked the phosphorylation of AMPK and ACC and blunted the key enzymes of de novo lipogenesis. Interestingly, EGCG elicited iWAT-preadipocyte-derived mature white adipocyte beiging via activating thermogenic gene Ucp1 expression and mitochondrial biogenesis. Furthermore, our results also revealed that EGCG attenuated insulin signaling pathway blockage induced by TNF-α through the abrogation of redox imbalance and mitochondrial dysfunction. These findings indicate that EGCG is capable of suppressing adipogenesis and evoking white adipocyte beiging and therefore it may potentially serve as a novel approach to combat obesity.
Collapse
Affiliation(s)
- Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tada R, Yamanaka D, Ogasawara M, Saito M, Ohno N, Kiyono H, Kunisawa J, Aramaki Y. Polymeric Caffeic Acid Is a Safer Mucosal Adjuvant That Augments Antigen-Specific Mucosal and Systemic Immune Responses in Mice. Mol Pharm 2018; 15:4226-4234. [PMID: 30107747 DOI: 10.1021/acs.molpharmaceut.8b00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infections remain a major threat to human lives. To overcome the threat caused by pathogens, mucosal vaccines are considered a promising strategy. However, no inactivated and/or subunit mucosal vaccine has been approved for human use, largely because of the lack of a safe and effective mucosal adjuvant. Here, we show that enzymatically synthesized polymeric caffeic acid (pCA) can act as a potent mucosal adjuvant in mice. Intranasal administration of ovalbumin (OVA) in combination with pCA resulted in the induction of OVA-specific mucosal IgA and serum IgG, especially IgG1. Importantly, pCA was synthesized from caffeic acid and horseradish peroxidase from coffee beans and horseradish, respectively, which are commonly consumed. Therefore, pCA is believed to be a highly safe material. In fact, administration of pCA did not show distinct toxicity in mice. These data indicate that pCA has merit for use as a mucosal adjuvant for nasal vaccine formulations.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroshi Kiyono
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science , The University of Tokyo , Tokyo 108-8639 , Japan
| | - Jun Kunisawa
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, Department of Microbiology and Immunology, The Institute of Medical Science , The University of Tokyo , Tokyo 108-8639 , Japan.,Laboratory of Vaccine Materials , National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN) , Osaka 567-0085 , Japan
| | | |
Collapse
|
48
|
Yang H, Xue X, Li H, Apandi SN, Tay-Chan SC, Ong SP, Tian EF. The relative antioxidant activity and steric structure of green tea catechins – A kinetic approach. Food Chem 2018; 257:399-405. [DOI: 10.1016/j.foodchem.2018.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/19/2022]
|
49
|
Zou B, Xiao G, Xu Y, Wu J, Yu Y, Fu M. Persimmon vinegar polyphenols protect against hydrogen peroxide-induced cellular oxidative stress via Nrf2 signalling pathway. Food Chem 2018; 255:23-30. [DOI: 10.1016/j.foodchem.2018.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
|
50
|
Stress exposure alters brain mRNA expression of the genes involved in insulin signalling, an effect modified by a high fat/high fructose diet and cinnamon supplement. PLoS One 2018; 13:e0197094. [PMID: 29813096 PMCID: PMC5973592 DOI: 10.1371/journal.pone.0197094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
In occidental societies, high fat and high sugar diets often coincide with episodes of stress. The association is likely to modify brain energy control. Brain insulin signalling is rarely studied in stressed individuals consuming high fat diets. Furthermore the effects of cinnamon supplement are not known in these conditions. Therefore, we exposed rats, over a 12-week period, to a control (C) or a high fat/high fructose (HF/HFr) diet that induces peripheral insulin resistance. A cinnamon supplement (C+CN and HF/HFr +CN) was added or not. After diet exposure, one group of rats was exposed to a 30-min restraint followed by a 10-min open-field test, their combination featuring a moderate stressor, the other rats staying unstressed in their home cages. The insulin signalling in hippocampus and frontal cortex was studied through the mRNA expression of the following genes: insulin receptor (Ir), insulin receptor substrate (Irs1), glucose transporters (Glut1 and Glut3), glycogen synthase (Gys1) and their modulators, Akt1 and Pten. In C rats, stress enhanced the expression of Ir, Irs1, Glut1, Gys1 and Akt1 mRNA. In C+CN rats, stress induced an increase in Pten but a decrease in Gys1 mRNA expression. In HF/HFr rats, stress was associated with an increase in Pten mRNA expression. In HF/HFr+CN rats, stress increased Pten mRNA expression but also decreased Gys1 mRNA expression. This suggests that a single moderate stress favours energy refilling mechanisms, an effect blunted by a previous HF/HFr diet and cinnamon supplement.
Collapse
|