1
|
Li L, Wang Y. Identification of Potential Biomarkers for Patients with DWI-Negative Ischemic Stroke. J Mol Neurosci 2024; 74:68. [PMID: 38995420 PMCID: PMC11245437 DOI: 10.1007/s12031-024-02229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Ischemic stroke is the leading cause of long-term disability in adults, accounting for 80% of stroke cases. Diffusion weighted imaging (DWI) examination is the main test for acute ischemic stroke, but in recent years, several studies have shown that some patients show negative DWI examination after the onset of ischemic stroke with symptoms of significant neurological deficits. In this study, we investigated potential biomarkers related to immune metabolism in the peripheral blood of DWI-negative versus DWI-positive patients after ischemic stroke and explored their possible regulatory processes in ischemic stroke. The datasets related to ischemic stroke were downloaded from the GEO database, immune-related genes and metabolism-related genes were obtained from the ImmPort database and MSigDB database, respectively, and immune-related differential genes were obtained based on immune scores using the algorithm of the R software package "GSVA." Candidate genes were selected based on intersections, hub genes were screened using the algorithm in Cytoscape software, and finally, GeneMANIA analysis, GSEA enrichment analysis, subcellular localization, gene transcription factor and gene-drug interaction networks, and disease correlation analyses were performed for the hub genes. Five hub genes (GART, TYMS, PPAT, CTPS1, and PAICS) were obtained by PPI network analysis and software analysis. Among them, PPAT and PAICS may be the real hub genes with consistent and significantly differentiated results from the discovery and validation sets. The functions of these hub genes may be related to pathways such as nucleotide biosynthetic processes. The constructed hub gene ceRNA network showed that hsa-10a-5p is the key miRNA connecting PAICS and multiple lncRNAs in this study. Differential genes related to immunity and metabolism in DWI-negative and DWI-positive patients after IS were identified using bioinformatics analysis, and their pathways and related TF-RNAs, miRNAs, and lncRNAs were identified. These genes may be considered effective targets for the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China
| | - Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China.
| |
Collapse
|
2
|
Jackson EK, Tofovic SP, Chen Y, Birder LA. 8-Aminopurines in the Cardiovascular and Renal Systems and Beyond. Hypertension 2023; 80:2265-2279. [PMID: 37503660 PMCID: PMC10592300 DOI: 10.1161/hypertensionaha.123.20582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Screening of compounds comprising 8-substituted guanine revealed that 8-aminoguanosine and 8-aminoguanine cause diuresis/natriuresis/glucosuria, yet decrease potassium excretion. Subsequent investigations demonstrated that 8-aminoguanosine's effects are mediated by its metabolite 8-aminoguanine. The mechanism by which 8-aminoguanine causes diuresis/natriuresis/glucosuria involves inhibition of PNPase (purine nucleoside phosphorylase), which increases renal interstitial inosine levels. Additional evidence suggests that inosine, via indirect or direct adenosine A2B receptor activation, increases renal medullary blood flow which enhances renal excretory function. Likely, 8-aminoguanine has pleiotropic actions that also alter renal excretory function. Indeed, the antikaliuretic effects of 8-aminoguanine are independent of PNPase inhibition. 8-Aminoguanine is an endogenous molecule; nitrosative stress leads to production of biomolecules containing 8-nitroguanine moieties. Degradation of these biomolecules releases 8-nitroguanosine and 8-nitro-2'-deoxyguanosine which are converted to 8-aminoguanine. Also, guanosine and guanine per se may contribute to 8-aminoguanine formation. 8-Aminoinosine, 8-aminohypoxanthine, and 8-aminoxanthine likewise induce diuresis/natriuresis/glucosuria, yet do not reduce potassium excretion. Thus, there are several pharmacologically active 8-aminopurines with nuanced effects on renal excretory function. Chronic treatment with 8-aminoguanine attenuates hypertension in deoxycorticosterone/salt rats, prevents strokes, and increases lifespan in Dahl salt-sensitive rats on a high salt diet and attenuates the metabolic syndrome in rats; 8-aminoguanosine retards progression of pulmonary hypertension in rats and anemia and organ damage in sickle cell mice. 8-Aminoguanine reverses age-associated lower urinary tract dysfunction and retinal degeneration. 8-Aminopurines represent a new class of agents (and potentially endogenous factors) that have beneficial effects on the cardiovascular system and kidneys and may turn back the clock in age-associated diseases.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Stevan P. Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Yuanyuan Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Lori A. Birder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
3
|
Sapwarobol S, Saphyakhajorn W, Astina J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr Metab Insights 2021; 14:11786388211058559. [PMID: 34898989 PMCID: PMC8655829 DOI: 10.1177/11786388211058559] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rice bran (RB) is a nutrient-rich by-product of the rice milling process. It consists of pericarp, seed coat, nucellus, and aleurone layer. RB is a rich source of a protein, fat, dietary fibers, vitamins, minerals, and phytochemicals (mainly oryzanols and tocopherols), and is currently mostly used as animal feed. Various studies have revealed the beneficial health effects of RB, which result from its functional components including dietary fiber, rice bran protein, and gamma-oryzanol. The health effects of RB including antidiabetic, lipid-lowering, hypotensive, antioxidant, and anti-inflammatory effects, while its consumption also improves bowel function. These health benefits have drawn increasing attention to RB in food applications and as a nutraceutical product to mitigate metabolic risk factors in humans. This review therefore focuses on RB and its health benefits.
Collapse
Affiliation(s)
- Suwimol Sapwarobol
- The Medical Food Research Group, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weeraya Saphyakhajorn
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Junaida Astina
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Shin SK, Kim KO, Kim SH, Kwon OS, Choi CS, Jeong SH, Kim YS, Kim JH, Chung MH. Exogenous 8-hydroxydeoxyguanosine ameliorates liver fibrosis through the inhibition of Rac1-NADPH oxidase signaling. J Gastroenterol Hepatol 2020; 35:1078-1087. [PMID: 31907970 DOI: 10.1111/jgh.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Exogenous 8-hydroxydeoxyguanosine (8-OHdG) was suggested as an inhibitor of Rac1 and NADPH oxidase (NOX). The aim of this study was to evaluate the effects of the exogenous 8-OHdG on hepatic fibrogenesis in vitro and in vivo model of liver fibrosis. METHODS Adult Sprague-Dawley rats were allocated to sham-operated rats (n = 7), rats that underwent bile duct ligation (BDL) (n = 6), and BDL rats treated with 8-OHdG (60 mg/kg/day by gavage, n = 6). All rats were sacrificed on day 21. Double immunofluorescence staining between either NOX1 or NOX2 and α-smooth muscle actin (SMA) in liver was performed. Hepatic fibrotic contents were assessed by hydroxyproline assay and quantified by Sirius red staining. In vitro, hepatic stellate cell (HSC) line LX-2 and HHSteC cells were stimulated by angiotensin II (10 μM). The reactive oxygen species (ROS) production was measured by confocal microscopy. The expressions of NOX1, NOX2, α-SMA, transforming growth factor (TGF)-β1, and collagen Iα were analyzed by quantitative real-time polymerase chain reaction or immunoblotting. RESULTS The 8-OHdG treatment in BDL rats reduced the NOX1 and NOX2 protein expression, which overlapped with α-SMA compared with BDL rats. The 8-OHdG treatment in BDL rats significantly decreased the mRNA expression of NOX1, NOX2, α-SMA, TGF-β1, and collagen Iα, and fibrotic contents. Increases of ROS production, Rac1 activation, NOX1, NOX2, and fibronectin expression induced by angiotensin II in HSCs were attenuated by 8-OHdG. CONCLUSIONS Rac1 activation and NOX-derived ROS are implicated to liver fibrosis. The 8-OHdG ameliorates liver fibrosis through the inhibition of Rac1 activation and NOX-derived ROS.
Collapse
Affiliation(s)
- Seung Kak Shin
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Se-Hee Kim
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Oh Sang Kwon
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Cheol Soo Choi
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Sung Hwan Jeong
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Yun Soo Kim
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Ju Hyun Kim
- Department of Internal medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Myung-Hee Chung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, Korea
| |
Collapse
|
5
|
Jackson EK, Mi Z, Kleyman TR, Cheng D. 8-Aminoguanine Induces Diuresis, Natriuresis, and Glucosuria by Inhibiting Purine Nucleoside Phosphorylase and Reduces Potassium Excretion by Inhibiting Rac1. J Am Heart Assoc 2019; 7:e010085. [PMID: 30608204 PMCID: PMC6404173 DOI: 10.1161/jaha.118.010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background 8-Aminoguanosine and 8-aminoguanine are K+-sparing natriuretics that increase glucose excretion. Most effects of 8-aminoguanosine are due to its metabolism to 8-aminoguanine. However, the mechanism by which 8-aminoguanine affects renal function is unknown and is the focus of this investigation. Methods and Results Because 8-aminoguanine has structural similarities with inhibitors of the epithelial sodium channel (ENaC), Na+/H+ exchangers, and adenosine A1 receptors, we examined the effects of 8-aminoguanine on EN aC activity in mouse collecting duct cells, on intracellular pH of human proximal tubular epithelial cells, on responses to a selective A1-receptor agonist in vivo, and on renal excretory function in A1-receptor knockout rats. These experiments showed that 8-aminoguanine did not block EN aC, Na+/H+ exchangers, or A1 receptors. Because Rac1 enhances activity of mineralocorticoid receptors and some guanosine analogues inhibit Rac1, we examined the effects of 8-aminoguanine on Rac1 activity in mouse collecting duct cells. Rac1 activity was significantly inhibited by 8-aminoguanine. Because in vitro 8-aminoguanine is a purine nucleoside phosphorylase ( PNP ase) inhibitor, we examined the effects of a natriuretic dose of 8-aminoguanine on urinary excretion of PNP ase substrates and products. 8-Aminoguanine increased and decreased, respectively, urinary excretion of PNP ase substrates and products. Next we compared in rats the renal effects of intravenous doses of 9-deazaguanine ( PNP ase inhibitor) versus 8-aminoguanine. 8-Aminoguanine and 9-deazaguanine induced similar increases in urinary Na+ and glucose excretion, yet only 8-aminoguanine reduced K+ excretion. Nsc23766 (Rac1 inhibitor) mimicked the effects of 8-aminoguanine on K+ excretion. Conclusions 8-Aminoguanine increases Na+ and glucose excretion by blocking PNP ase and decreases K+ excretion by inhibiting Rac1.
Collapse
Affiliation(s)
- Edwin K Jackson
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Zaichuan Mi
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| | - Thomas R Kleyman
- 1 Renal-Electrolyte Division Department of Medicine University of Pittsburgh School of Medicine Pittsburgh PA
| | - Dongmei Cheng
- 2 Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine Pittsburgh PA
| |
Collapse
|
6
|
Marmiy NV, Ivnitsky SB, Esipov DS. Protective effect of exogenous 8-oxo-2'-deoxyguanosine on Drosophila melanogaster larval stages under heat shock. J Therm Biol 2019; 86:102446. [PMID: 31789234 DOI: 10.1016/j.jtherbio.2019.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/21/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
The influence of exogenous 8-oxo-2'-deoxyguanosine on the development of Drosophila melanogaster under normal conditions, and under the influence of short-term heat shock was studied. It was shown that 8-oxo-2'-deoxyguanosine was not toxic at concentrations of up to 1 μM. A tendency to accelerate larval development and fly emergence was observed under the influence of this compound in our experiments. Short-term heat shock causes a 50-80% decrease in the number of larvae that complete development. The addition of exogenous 8-oxo-2'-deoxyguanosine to the food before thermal influence negates this effect and brings the levels of the imago emergence indicators back to the basal level. The obtained results are further evidence of the possible bioregulatory and adaptogen functions of 8-oxo-2'-deoxyguanosine.
Collapse
Affiliation(s)
- N V Marmiy
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory, Moscow, 119991, Russian Federation.
| | - S B Ivnitsky
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory, Moscow, 119991, Russian Federation
| | - D S Esipov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory, Moscow, 119991, Russian Federation.
| |
Collapse
|
7
|
Xu L, Hao H, Hao Y, Wei G, Li G, Ma P, Xu L, Ding N, Ma S, Chen AF, Jiang Y. Aberrant MFN2 transcription facilitates homocysteine-induced VSMCs proliferation via the increased binding of c-Myc to DNMT1 in atherosclerosis. J Cell Mol Med 2019; 23:4611-4626. [PMID: 31104361 PMCID: PMC6584594 DOI: 10.1111/jcmm.14341] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
It is well‐established that homocysteine (Hcy) is an independent risk factor for atherosclerosis. Hcy can promote vascular smooth muscle cell (VSMC) proliferation, it plays a key role in neointimal formation and thus contribute to arteriosclerosis. However, the molecular mechanism on VSMCs proliferation underlying atherosclerosis is not well elucidated. Mitofusin‐2 (MFN2) is an important transmembrane GTPase in the mitochondrial outer membrane and it can block cells in the G0/G1 stage of the cell cycle. To investigate the contribution of aberrant MFN2 transcription in Hcy‐induced VSMCs proliferation and the underlying mechanisms. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase in atherosclerotic plaque of APOE−/− mice with hyperhomocystinaemia (HHcy) as well as in VSMCs exposed to Hcy in vitro. The DNA methylation level of MFN2 promoter was obviously increased in VSMCs treated with Hcy, leading to suppressed promoter activity and low expression of MFN2. In addition, we found that the expression of c‐Myc was increased in atherosclerotic plaque and VSMCs treated with Hcy. Further study showed that c‐Myc indirectly regulates MFN2 expression is duo to the binding of c‐Myc to DNMT1 promoter up‐regulates DNMT1 expression leading to DNA hypermethylation of MFN2 promoter, thereby inhibits MFN2 expression in VSMCs treated with Hcy. In conclusion, our study demonstrated that Hcy‐induced hypermethylation of MFN2 promoter inhibits the transcription of MFN2, leading to VSMCs proliferation in plaque formation, and the increased binding of c‐Myc to DNMT1 promoter is a new and relevant molecular mechanism.
Collapse
Affiliation(s)
- Long Xu
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongyi Hao
- The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yinju Hao
- The People's Hospital in Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guo Wei
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guizhong Li
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Pengjun Ma
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lingbo Xu
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Ding
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shengchao Ma
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yideng Jiang
- Ningxia Vascular Injury and Repair Research Key Laboratory, Ningxia Medical University, Yinchuan, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Therapeutic Effects of Topical 8-Oxo-2'-deoxyguanosine on Ethanol-Induced Ocular Chemical Injury Models. Cornea 2018; 37:1311-1317. [PMID: 29923862 DOI: 10.1097/ico.0000000000001671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) on experimental ocular chemical injury models. METHODS We created ocular chemical injury models with 8-week-old BALB/c mice (n = 70) by applying 100% ethanol; the mice were then treated with 8-oxo-dG eye drops 10 and 5 mg/mL and phosphate-buffered saline (PBS) twice daily. After 7 days, clinical findings such as corneal integrity, clarity, and neovascularization were assessed. Histology, immunohistochemistry findings, and inflammatory cytokine levels using real-time polymerase chain reactions in the corneas of the mice were also analyzed. RESULTS Topical application of 8-oxo-dG eye drops resulted in a significant improvement of epithelial defects and clarity, dose dependently (each P < 0.001). Inflammatory cell infiltration and corneal stromal edema were also decreased in the 8-oxo-dG-treated mice compared with PBS-treated controls, based on hematoxylin and eosin staining. The expressions of F4/80 and neutrophil elastase-positive inflammatory cells and IL-1 and TNF-α cytokine levels were significantly reduced in the 8-oxo-dG group compared with the PBS group (each P < 0.01). CONCLUSIONS Topical 8-oxo-dG application showed an excellent therapeutic effect in ocular chemical injury models by suppressing inflammation.
Collapse
|
9
|
Song C, Zhao X. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion. Biosci Rep 2018; 38:BSR20170939. [PMID: 29097484 PMCID: PMC6048215 DOI: 10.1042/bsr20170939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
In patients with cerebral infarction (CI), elevated serum uric acid (UA) level may exacerbate the occurrence and development of carotid atherosclerosis (AS). Our study intended to explore the underlying mechanism. We enrolled 86 patients with CI, and divided them into four groups: Non-AS, AS-mild, AS-moderate, and AS-severe groups; the levels of UA and oxidative stress-related factors in serum were detected. The middle cerebral artery occlusion (MCAO) model was used to stimulate CI in rats, and different doses of UA were administrated. The levels of oxidative stress-related factors in serum were detected. Hematoxylin & eosin (H&E) staining was used to observe the morphological alterations, and the apoptotic cell death detection kit was used to detect apoptotic cells. Increased UA concentration and enhanced oxidative stress were found in AS patients. H&E staining results showed that UA treatment exacerbated morphological damage in rats with MCAO, promoted oxidative stress, and enhanced vascular endothelial cell apoptosis in rats with MCAO.
Collapse
Affiliation(s)
- Chengfu Song
- Department of Geratology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200093, China
| | - Xiangdong Zhao
- Department of Geratology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200093, China
| |
Collapse
|
10
|
Young BE, Patinkin ZW, Pyle L, de la Houssaye B, Davidson BS, Geraghty S, Morrow AL, Krebs N. Markers of Oxidative Stress in Human Milk do not Differ by Maternal BMI But are Related to Infant Growth Trajectories. Matern Child Health J 2018; 21:1367-1376. [PMID: 28138825 DOI: 10.1007/s10995-016-2243-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective Obesity in adults is associated with inflammation and oxidative stress. Whether or not this phenotype is reflected in human milk (HM) composition, or may impact infant growth remains unknown. We investigated whether HM from overweight/obese (OW/Ob) mothers exhibited higher concentrations of inflammatory cytokines and markers of oxidative stress. We also correlated these bioactive components with infant growth patterns. Methods This was an observational cohort of 56 breastfeeding mothers and their infants [33 normal weight (NW) and 23 OW/Ob]. Infants were followed until 6 months of age and HM collected at 2-weeks and 4-months. Results Markers of oxidative stress, 8-hydroxy-deoxyguanosine (8OHdG) and 4-hydroxynonenol (HNE), decreased in HM over time (p < 0.001) and did not differ between NW and OW/Ob women. Concentrations of inflammatory cytokines, IL-6, IL-8, and TNF-α, were all inter-correlated (p < 0.001) but did not differ between NW and OW/Ob women. HM fat, protein, lactose, and total calories did not differ between NW and OW/Ob women. Infant growth patterns did not differ by group. In a model of infant weight-for-length-Z score trajectory, there was a significant interaction between both lactose and 8OHdG with maternal group: HM lactose and 8OHdG concentrations were both positively associated with increases in WLZ trajectory only among infants breastfed by OW/Ob mothers. Conclusions for Practice HM composition was relatively stable between NW and OW/Ob women. In exclusively breastfed infants, HM concentrations of lactose and 8OHdG, a marker of oxidative stress, may contribute to regulation of infant weight gain, especially among infants of OW/Ob women.
Collapse
Affiliation(s)
- Bridget E Young
- Department of Pediatrics Section of Nutrition, University of Colorado School of Medicine, 12700 E 19th Ave, Aurora, CO, 80045, USA.
| | - Zachary W Patinkin
- Department of Pediatrics Section of Nutrition, University of Colorado School of Medicine, 12700 E 19th Ave, Aurora, CO, 80045, USA
| | - Laura Pyle
- Department of Pediatrics Section of Nutrition, University of Colorado School of Medicine, 12700 E 19th Ave, Aurora, CO, 80045, USA.,Department of Biostatistics and Informatics, University of Colorado School of Public Health, 12477 E 19Th Avenue, Box A036, Aurora, CO, 80045, USA
| | - Becky de la Houssaye
- Department of Pediatrics Section of Neonatology, University of Colorado School of Medicine, 12801 East 17th Ave, Box 8106, Aurora, CO, 80045, USA
| | - Barbara S Davidson
- Department of Pediatrics, Center for Interdisciplinary Research in Human Milk and Lactation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Sheela Geraghty
- Center for Breastfeeding Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ardythe L Morrow
- Department of Pediatrics, Center for Interdisciplinary Research in Human Milk and Lactation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Nancy Krebs
- Department of Pediatrics Section of Nutrition, University of Colorado School of Medicine, 12700 E 19th Ave, Aurora, CO, 80045, USA
| |
Collapse
|
11
|
Chernikov AV, Gudkov SV, Usacheva AM, Bruskov VI. Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: Biomedical properties, mechanisms of action, and therapeutic potential. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
An electrochemical aptasensor for the highly sensitive detection of 8-hydroxy-2'-deoxyguanosine based on the hybridization chain reaction. Talanta 2017; 179:414-419. [PMID: 29310253 DOI: 10.1016/j.talanta.2017.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
In the present work a highly sensitive and selective aptasensor was developed for the determination of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) based on the hybridization chain reaction (HCR) signal amplification. It was observed that the aptamer of 8-OH-dG could hybridize with the capture DNA immobilized on the gold electrode with a sticky tail left, which initiated the HCR and led to the formation of extended dsDNA structure on the electrode surface. Then the electroactive species ([Ru(NH3)6]3+, RuHex) intercalated into the dsDNA grooves to generate the amplified signal. However, in the presence of 8-OH-dG, the aptamer containing G-rich nucleic acid sequences would be induced to form a G-quadruplex structure, which made it impossible to continue the HCR. So the detection signal will significantly decrease. Under the optimal conditions, the peak current of RuHex was linear with the logarithm of 8-OH-dG concentration in the range from 10pM to 100μM with the detection limit of 2.5pM. By integrating the merits of enzyme-free amplification power of the HCR and the inherent high sensitivity of the electrochemical technique, the prepared aptasensor not only showed high sensitivity for the detection of 8-OH-dG, but also exhibited good selectivity against to the uric acid, an important interferent in the urine sample. Particularly, the aptasensor was applied to detect 8-OH-dG in urine samples with satisfactory results.
Collapse
|
13
|
Park JM, Han YM, Jeong M, Chung MH, Kwon CI, Ko KH, Hahm KB. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase. Free Radic Biol Med 2017; 110:151-161. [PMID: 28602912 DOI: 10.1016/j.freeradbiomed.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023]
Abstract
8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| | - Migyeong Jeong
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea
| | - Myung Hee Chung
- Lee Gil Ya Diabetes and Cancer Institute, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Chang Il Kwon
- CHA University Bundang Medical Center, Digestive Disease Center, Seongnam 13496, Republic of Korea
| | - Kwang Hyun Ko
- CHA University Bundang Medical Center, Digestive Disease Center, Seongnam 13496, Republic of Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam 13488, Republic of Korea; CHA University Bundang Medical Center, Digestive Disease Center, Seongnam 13496, Republic of Korea.
| |
Collapse
|
14
|
Huh JY, Jung I, Piao L, Ha H, Chung MH. 8-Hydroxy-2-deoxyguanosine ameliorates high-fat diet-induced insulin resistance and adipocyte dysfunction in mice. Biochem Biophys Res Commun 2017; 491:890-896. [DOI: 10.1016/j.bbrc.2017.07.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
|
15
|
Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 2017; 8:139-163. [PMID: 27442895 PMCID: PMC5584733 DOI: 10.1080/21541248.2016.1211398] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Seifermann M, Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic Biol Med 2017; 107:258-265. [PMID: 27871818 DOI: 10.1016/j.freeradbiomed.2016.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review.
Collapse
Affiliation(s)
- Marco Seifermann
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| |
Collapse
|
17
|
Marinković G, Heemskerk N, van Buul JD, de Waard V. The Ins and Outs of Small GTPase Rac1 in the Vasculature. J Pharmacol Exp Ther 2015; 354:91-102. [PMID: 26036474 DOI: 10.1124/jpet.115.223610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 12/16/2022] Open
Abstract
The Rho family of small GTPases forms a 20-member family within the Ras superfamily of GTP-dependent enzymes that are activated by a variety of extracellular signals. The most well known Rho family members are RhoA (Ras homolog gene family, member A), Cdc42 (cell division control protein 42), and Rac1 (Ras-related C3 botulinum toxin substrate 1), which affect intracellular signaling pathways that regulate a plethora of critical cellular functions, such as oxidative stress, cellular contacts, migration, and proliferation. In this review, we describe the current knowledge on the role of GTPase Rac1 in the vasculature. Whereas most recent reviews focus on the role of vascular Rac1 in endothelial cells, in the present review we also highlight the functional involvement of Rac1 in other vascular cells types, namely, smooth muscle cells present in the media and fibroblasts located in the adventitia of the vessel wall. Collectively, this overview shows that Rac1 activity is involved in various functions within one cell type at distinct locations within the cell, and that there are overlapping but also cell type-specific functions in the vasculature. Chronically enhanced Rac1 activity seems to contribute to vascular pathology; however, Rac1 is essential to vascular homeostasis, which makes Rac1 inhibition as a therapeutic option a delicate balancing act.
Collapse
Affiliation(s)
- Goran Marinković
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels Heemskerk
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Kotani K, Yamada T. Association between urinary 8-OHdG and pulse wave velocity in hypertensive patients with type 2 diabetes mellitus. Singapore Med J 2015; 55:202-8. [PMID: 24763836 DOI: 10.11622/smedj.2014053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oxidative stress, assessed using 8-hydroxy-2'-deoxyguanosine (8-OHdG), can be associated with arterial stiffness in patients with type 2 diabetes mellitus (T2DM) and/or hypertension (HT). We investigated the correlation between urinary 8-OHdG and pulse wave velocity (PWV) in hypertensive and non-hypertensive T2DM patients with fair glycaemic control to determine the clinical significance of HT as a comorbidity in the diabetic state. METHODS Clinical data, including traditional cardiovascular risk factors, diabetic complications, prescribed agents, urinary 8-OHdG level and brachial-ankle PWV, was collected from T2DM patients with and without HT. RESULTS There were 76 patients (45 men, 31 women; mean age 61 years; mean haemoglobin A1c level 6.5%) in the study cohort. T2DM patients with HT had significantly higher mean PWV than patients without HT (1,597 cm/s vs 1,442 cm/s; p < 0.05). Patients with HT showed no significant difference in 8-OHdG levels relative to those without HT (median 7.9 ng/mg creatinine vs 8.8 ng/mg creatinine; p > 0.05). Simple linear correlation and stepwise multiple linear regression analyses revealed that 8-OHdG levels correlated independently, significantly and positively with PWV among T2DM patients with HT (r = 0.33, p < 0.05; β= 0.23, p < 0.05). No significant correlation was observed between 8-OHdG levels and PWV among T2DM patients without HT. CONCLUSION In the hypertensive state, oxidative stress can be responsible for the development of arterial stiffness, even in patients with fairly well controlled T2DM. Oxidative stress management may be necessary for the prevention of cardiovascular disease in this population.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | | |
Collapse
|
19
|
Role of small GTPase protein Rac1 in cardiovascular diseases: development of new selective pharmacological inhibitors. J Cardiovasc Pharmacol 2014; 62:425-35. [PMID: 23921306 DOI: 10.1097/fjc.0b013e3182a18bcc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A pathway-based genome-wide association analysis has recently identified Rac1 as one of the biologically important gene in coronary heart diseases. The role of the small GTPase Rac1 in cardiac hypertrophy and atherosclerosis has also been documented in clinical studies with the HMG-CoA reductase inhibitors and in in vitro and in vivo settings using transgenic and knockout mice. Thus, Rac1 has emerged as a new pharmacological target for the treatment of cardiovascular diseases. The activation state of Rac1 depends on the release of guanosine diphosphate and the binding of guanosine triphosphate. This cycling is regulated by the guanine nucleotide exchange factors, as activators, and by the GTPase-activating proteins. Three categories of selective Rac1 inhibitors have been developed affecting different steps of this pathway: antagonists of Rac1-guanine nucleotide exchange factor interaction, allosteric inhibitors of nucleotide binding to Rac1, and antagonists of Rac1-mediated NADPH oxidase activity. These chemical compounds have shown to selectively inhibit Rac1 activation in cultured cell lines without affecting the homologous proteins RhoA and Cdc42. Moreover, pioneer studies have been conducted with Rac1 inhibitors in in vivo experimental models of cardiovascular diseases with encouraging results. The present review summarizes the current knowledge of the role of Rac1 in cardiovascular diseases and the pharmacological approaches that have been developed to selectively inhibit its function.
Collapse
|
20
|
Varela LM, Bermúdez B, Ortega-Gómez A, López S, Sánchez R, Villar J, Anguille C, Muriana FJG, Roux P, Abia R. Postprandial triglyceride-rich lipoproteins promote invasion of human coronary artery smooth muscle cells in a fatty-acid manner through PI3k-Rac1-JNK signaling. Mol Nutr Food Res 2014; 58:1349-64. [DOI: 10.1002/mnfr.201300749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Lourdes M. Varela
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| | - Beatriz Bermúdez
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| | - Almudena Ortega-Gómez
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| | - Sergio López
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| | - Rosario Sánchez
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| | - Jose Villar
- Experimental Clinic Ward for Vascular Risk, IBIS; Virgen del Rocio University Hospital, CSIC, University of Seville; Seville Spain
| | - Christelle Anguille
- Center de Recherche en Biochimie Macromoléculaire; Centre National de la Recherche Scientifique (CNRS); Universite Mixte de Recherche 5237; Montpellier France
| | - Francisco J. G. Muriana
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| | - Pierre Roux
- Center de Recherche en Biochimie Macromoléculaire; Centre National de la Recherche Scientifique (CNRS); Universite Mixte de Recherche 5237; Montpellier France
| | - Rocío Abia
- Laboratory of Cellular and Molecular Nutrition; Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC); Seville Spain
| |
Collapse
|