1
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. mBio 2025:e0014125. [PMID: 40162779 DOI: 10.1128/mbio.00141-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug-resistant Gc to antibiotics. C9-depleted serum also exerts bactericidal activity against Gc and, unlike other Gram-negative bacteria, disrupts both the outer and inner membranes. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin and ceftriaxone, but not lysozyme or nisin. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest that complement manipulation can be used to combat drug-resistant gonorrhea. IMPORTANCE The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea, its complications like infertility, and high-frequency resistance to multiple antibiotics make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found that the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme and nisin, but azithromycin and ceftriaxone activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Lamb ER, Criss AK. Terminal complement complexes with or without C9 potentiate antimicrobial activity against Neisseria gonorrhoeae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633325. [PMID: 39868146 PMCID: PMC11760736 DOI: 10.1101/2025.01.16.633325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity. In the absence of C9, C5b-C8 complexes can form 2-4 nm pores on membranes, but their relevance to microbial control is poorly understood. Deficiencies in terminal complement components uniquely predispose individuals to infections by pathogenic Neisseria, including N. gonorrhoeae (Gc). Increasing antibiotic resistance in Gc makes new therapeutic strategies a priority. Here, we demonstrate that MAC formed by complement activity in human serum disrupts the Gc outer and inner membranes, potentiating the activity of antimicrobials against Gc and re-sensitizing multidrug resistant Gc to antibiotics. C9-depleted serum also disrupts Gc membranes and exerts antigonococcal activity, effects that are not reported in other Gram-negative bacteria. C5b-C8 complex formation potentiates Gc sensitivity to azithromycin but not lysozyme. These findings expand our mechanistic understanding of complement lytic activity, suggest a size limitation for terminal complement-mediated enhancement of antimicrobials against Gc, and suggest complement manipulation can be used to combat drug-resistant gonorrhea. Importance The complement cascade is a front-line arm of the innate immune system against pathogens. Complement activation results in membrane attack complex (MAC) pores forming on the outer membrane of Gram-negative bacteria, resulting in bacterial death. Individuals who cannot generate MAC are specifically susceptible to infection by pathogenic Neisseria species including N. gonorrhoeae (Gc). High rates of gonorrhea and its complications like infertility, and high-frequency resistance to multiple antibiotics, make it important to identify new approaches to combat Gc. Beyond direct anti-Gc activity, we found the MAC increases the ability of antibiotics and antimicrobial proteins to kill Gc and re-sensitizes multidrug-resistant bacteria to antibiotics. The most terminal component, C9, is needed to potentiate the anti-Gc activity of lysozyme, but azithromycin activity is potentiated regardless of C9. These findings highlight the unique effects of MAC on Gc and suggest novel translational avenues to combat drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
3
|
Swenson KA, Min K, Konopka JB. Candida albicans pathways that protect against organic peroxides and lipid peroxidation. PLoS Genet 2024; 20:e1011455. [PMID: 39432552 PMCID: PMC11527291 DOI: 10.1371/journal.pgen.1011455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Human fungal pathogens must survive diverse reactive oxygen species (ROS) produced by host immune cells that can oxidize a range of cellular molecules including proteins, lipids, and DNA. Formation of lipid radicals can be especially damaging, as it leads to a chain reaction of lipid peroxidation that causes widespread damage to the plasma membrane. Most previous studies on antioxidant pathways in fungal pathogens have been conducted with hydrogen peroxide, so the pathways used to combat organic peroxides and lipid peroxidation are not well understood. The most well-known peroxidase in Candida albicans, catalase, can only act on hydrogen peroxide. We therefore characterized a family of four glutathione peroxidases (GPxs) that were predicted to play an important role in reducing organic peroxides. One of the GPxs, Gpx3 is also known to activate the Cap1 transcription factor that plays the major role in inducing antioxidant genes in response to ROS. Surprisingly, we found that the only measurable role of the GPxs is activation of Cap1 and did not find a significant role for GPxs in the direct detoxification of peroxides. Furthermore, a CAP1 deletion mutant strain was highly sensitive to organic peroxides and oxidized lipids, indicating an important role for antioxidant genes upregulated by Cap1 in protecting cells from organic peroxides. We identified GLR1 (Glutathione reductase), a gene upregulated by Cap1, as important for protecting cells from oxidized lipids, implicating glutathione utilizing enzymes in the protection against lipid peroxidation. Furthermore, an RNA-sequencing study in C. albicans showed upregulation of a diverse set of antioxidant genes and protein damage pathways in response to organic peroxides. Overall, our results identify novel mechanisms by which C. albicans responds to oxidative stress resistance which open new avenues for understanding how fungal pathogens resist ROS in the host.
Collapse
Affiliation(s)
- Kara A. Swenson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
4
|
Margalin B, Arfijanto MV, Hadi U. Effector function and neutrophil cell death in the severity of sepsis with diabetes mellitus. NARRA J 2024; 4:e532. [PMID: 38798871 PMCID: PMC11125301 DOI: 10.52225/narra.v4i1.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024]
Abstract
Sepsis, a life-threatening condition resulting from immune dysregulation, is typically triggered by bacterial infections and commonly coexists with diabetes mellitus. Neutrophils are the first responders to infection and require regulated activation to control pathogen and damage-associated molecular patterns. Dysregulation of neutrophil activation leads to uncontrolled inflammatory responses, often observed in both sepsis and diabetes patients. Neutrophil dysregulation, characterized by effector dysfunction and inadequate cell death processes, can serve as a biomarker for assessing sepsis severity, particularly in diabetic patients. This review provides information on the relationship between effector function, neutrophil cell death, and the severity of sepsis in individuals with diabetes mellitus, aiming to shed light on the mechanisms underlying sepsis progression. Topics covered in the review include an overview of effector function of neutrophil cells, mechanisms of neutrophil cell death, and dysregulation of effectors and neutrophil cell death processes in sepsis severity with diabetes mellitus.
Collapse
Affiliation(s)
- Brilliant Margalin
- Postgraduate Doctoral Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad V. Arfijanto
- Department of Internal Medicine, Dr. Soetomo Genaral Academic Hospital – Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Usman Hadi
- Department of Internal Medicine, Dr. Soetomo Genaral Academic Hospital – Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Douglas LM, Min K, Konopka JB. Candida albicans resistance to hypochlorous acid. mBio 2023; 14:e0267123. [PMID: 38032204 PMCID: PMC10746268 DOI: 10.1128/mbio.02671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Hypochlorous acid (HOCl), commonly known as bleach, is generated during the respiratory burst by phagocytes and is a key weapon used to attack Candida albicans and other microbial pathogens. However, the effects of hypochlorous acid on C. albicans have been less well studied than H2O2, a different type of oxidant produced by phagocytes. HOCl kills C. albicans more effectively than H2O2 and results in disruption of the plasma membrane. HOCl induced a very different transcriptional response than H2O2, and there were significant differences in the susceptibility of mutant strains of C. albicans to these oxidants. Altogether, these results indicate that HOCl has distinct effects on cells that could be targeted in novel therapeutic strategies to enhance the killing of C. albicans and other pathogens.
Collapse
Affiliation(s)
- Lois M. Douglas
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Kyunghun Min
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Mihalic ZN, Kloimböck T, Cosic-Mujkanovic N, Valadez-Cosmes P, Maitz K, Kindler O, Wadsack C, Heinemann A, Marsche G, Gauster M, Pollheimer J, Kargl J. Myeloperoxidase enhances the migration and invasion of human choriocarcinoma JEG-3 cells. Redox Biol 2023; 67:102885. [PMID: 37776707 PMCID: PMC10556814 DOI: 10.1016/j.redox.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundant proteins in neutrophil granules. It catalyzes the production of reactive oxygen species, which are important in inflammation and immune defense. MPO also binds to several proteins, lipids, and DNA to alter their function. MPO is present at the feto-maternal interface during pregnancy, where neutrophils are abundant. In this study, we determined the effect of MPO on JEG-3 human choriocarcinoma cells as a model of extravillous trophoblasts (EVTs) during early pregnancy. We found that MPO was internalized by JEG-3 cells and localized to the cytoplasm and nuclei. MPO internalization and activity enhanced JEG-3 cell migration and invasion, whereas this effect was impaired by pre-treating cells with heparin, to block cellular uptake, and MPO-activity inhibitor 4-ABAH. This study identifies a novel mechanism for the effect of MPO on EVT function during normal pregnancy and suggests a potential role of MPO in abnormal pregnancies.
Collapse
Affiliation(s)
- Z N Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - T Kloimböck
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - N Cosic-Mujkanovic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - P Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - K Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - O Kindler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - C Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - A Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - G Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - M Gauster
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-Fetal Immunology Group, Medical University of Vienna, Austria
| | - J Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
7
|
Crompton ME, Gaessler LF, Tawiah PO, Polzer L, Camfield SK, Jacobson GD, Naudszus MK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. J Bacteriol 2023; 205:e0006423. [PMID: 37791752 PMCID: PMC10601744 DOI: 10.1128/jb.00064-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Luca F. Gaessler
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Patrick O. Tawiah
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lisa Polzer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sydney K. Camfield
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Grady D. Jacobson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Maren K. Naudszus
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Colton Johnson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kennadi Meurer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mehdi Bennis
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Brendan Roseberry
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sadia Sultana
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
8
|
Kao PHN, Ch'ng JH, Chong KKL, Stocks CJ, Wong SL, Kline KA. Enterococcus faecalis suppresses Staphylococcus aureus-induced NETosis and promotes bacterial survival in polymicrobial infections. FEMS MICROBES 2023; 4:xtad019. [PMID: 37900578 PMCID: PMC10608956 DOI: 10.1093/femsmc/xtad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/09/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen that is frequently co-isolated with other microbes in wound infections. While E. faecalis can subvert the host immune response and promote the survival of other microbes via interbacterial synergy, little is known about the impact of E. faecalis-mediated immune suppression on co-infecting microbes. We hypothesized that E. faecalis can attenuate neutrophil-mediated responses in mixed-species infection to promote survival of the co-infecting species. We found that neutrophils control E. faecalis infection via phagocytosis, ROS production, and degranulation of azurophilic granules, but it does not trigger neutrophil extracellular trap formation (NETosis). However, E. faecalis attenuates Staphylococcus aureus-induced NETosis in polymicrobial infection by interfering with citrullination of histone, suggesting E. faecalis can actively suppress NETosis in neutrophils. Residual S. aureus-induced NETs that remain during co-infection do not impact E. faecalis, further suggesting that E. faecalis possess mechanisms to evade or survive NET-associated killing mechanisms. E. faecalis-driven reduction of NETosis corresponds with higher S. aureus survival, indicating that this immunomodulating effect could be a risk factor in promoting the virulence polymicrobial infection. These findings highlight the complexity of the immune response to polymicrobial infections and suggest that attenuated pathogen-specific immune responses contribute to pathogenesis in the mammalian host.
Collapse
Affiliation(s)
- Patrick Hsien-Neng Kao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Jun-Hong Ch'ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456
- Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
- Infectious Disease Translational Research Program, National University Health System, Singapore 117545
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Claudia J Stocks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
| | - Siu Ling Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Tan Tock Seng Hospital, National Healthcare Group, Singapore 308433
| | - Kimberly A Kline
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland 1211
| |
Collapse
|
9
|
Wang H, Yin X, Zhang Z, Wang Y, Zhang L, Guo J, Li M. Evaluation of 0.01% Hypochlorous Acid Eye Drops Combined with Conventional Treatment in the Management of Fungal Corneal Ulcers: Randomized Controlled Trial. Curr Eye Res 2023; 48:887-893. [PMID: 37493085 DOI: 10.1080/02713683.2023.2226374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE To evaluate the efficacy and safety of hypochlorous acid (HOCI) eye drops in the treatment of fungal keratitis. METHODS A total of 96 patients (96 eyes) with fungal keratitis were randomly divided into two groups: group Ι (conventional treatment + topical HOCI eye drops); The group II (conventional treatment). According to its severity, those patients were divided into grade Ι or grade II. Use of fungal scraping and culture to identify the type of fungal infection, slit lamp examination, and corneal fluorescein staining to observe regression, and confocal corneal microscopy to assess fungal mycelial changes. The main outcome measures were the success rate, healing time, visual recovery, and complications. The Kaplan-Meier curve method was used to analysis of the survival function of days to cure between the two groups. RESULTS There were no statistical differences between the two groups in terms of general condition, medical history, and grading. Corneal scraping results showed that all patients had filamentous fungi. For grade Ι patients, all patients were cured, and the patients in Group I showed faster healing speed than that in Group II (t = -3.665, p < .01). For grade II patients, the recovery time (t = -4.121, p < .01) and the disappearance of hypopyon (t = -4.291, p < .01) were significantly faster in the combination group. In grade Ι and II patients, the final visual acuity and the incidence of complications such as corneal neovascularization, cataract, and hyphema showed no differences in both groups. The survival curve showed that the healing rate of ulcers in the combination treatment group was faster than that in the conventional treatment group (χ2 = 14.332, p = .001). CONCLUSION HOCI can accelerate the healing of fungal keratitis without obvious complications, indicating a promising future in the field of keratitis treatment.
Collapse
Affiliation(s)
- He Wang
- Department of Ophthalmology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiaoyue Yin
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhaowei Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yining Wang
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ling Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jianxin Guo
- Department of Ophthalmology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mingxin Li
- Department of Ophthalmology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Ofori EA, Garcia-Senosiain A, Naghizadeh M, Kana IH, Dziegiel MH, Adu B, Singh S, Theisen M. Human blood neutrophils generate ROS through FcγR-signaling to mediate protection against febrile P. falciparum malaria. Commun Biol 2023; 6:743. [PMID: 37463969 PMCID: PMC10354059 DOI: 10.1038/s42003-023-05118-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.
Collapse
Affiliation(s)
- Ebenezer Addo Ofori
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hanefeld Dziegiel
- Blood Bank KI 2034, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Subhash Singh
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Jennings S, Hu Y, Wellems D, Luo M, Scull C, Taylor CM, Nauseef WM, Wang G. Neutrophil defect and lung pathogen selection in cystic fibrosis. J Leukoc Biol 2023; 113:604-614. [PMID: 36976023 DOI: 10.1093/jleuko/qiad033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Cystic fibrosis is a life-threatening genetic disorder caused by mutations in the CFTR chloride channel. Clinically, over 90% of patients with cystic fibrosis succumb to pulmonary complications precipitated by chronic bacterial infections, predominantly by Pseudomonas aeruginosa and Staphylococcus aureus. Despite the well-characterized gene defect and clearly defined clinical sequelae of cystic fibrosis, the critical link between the chloride channel defect and the host defense failure against these specific pathogens has not been established. Previous research from us and others has uncovered that neutrophils from patients with cystic fibrosis are defective in phagosomal production of hypochlorous acid, a potent microbicidal oxidant. Here we report our studies to investigate if this defect in hypochlorous acid production provides P. aeruginosa and S. aureus with a selective advantage in cystic fibrosis lungs. A polymicrobial mixture of cystic fibrosis pathogens (P. aeruginosa and S. aureus) and non-cystic fibrosis pathogens (Streptococcus pneumoniae, Klebsiella pneumoniae, and Escherichia coli) was exposed to varied concentrations of hypochlorous acid. The cystic fibrosis pathogens withstood higher concentrations of hypochlorous acid than did the non-cystic fibrosis pathogens. Neutrophils derived from F508del-CFTR HL-60 cells killed P. aeruginosa less efficiently than did the wild-type counterparts in the polymicrobial setting. After intratracheal challenge in wild-type and cystic fibrosis mice, the cystic fibrosis pathogens outcompeted the non-cystic fibrosis pathogens and exhibited greater survival in the cystic fibrosis lungs. Taken together, these data indicate that reduced hypochlorous acid production due to the absence of CFTR function creates an environment in cystic fibrosis neutrophils that provides a survival advantage to specific microbes-namely, S. aureus and P. aeruginosa-in the cystic fibrosis lungs.
Collapse
Affiliation(s)
- Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Yawen Hu
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Dianne Wellems
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Callie Scull
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| | - William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, 501 EMRB, 431 Newton Road, Iowa City, IA, United States
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA, United States
| |
Collapse
|
12
|
Crompton ME, Gaessler LF, Tawiah PO, Pfirsching L, Camfield SK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543251. [PMID: 37398214 PMCID: PMC10312555 DOI: 10.1101/2023.06.01.543251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acids side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections (UTIs), have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. The regulon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB . rcrB encodes the putative membrane protein RcrB, deletion of which substantially increases UPEC's susceptibility to HOCl. However, many questions regarding RcrB's role remain open including whether (i) the protein's mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. Here, we provide evidence that RcrB expression is sufficient to E. coli 's protection from HOCl and induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health exacerbating the demand for alternative treatment options. UPEC, the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be well equipped with powerful defense systems to fend off the toxic effects of RCS. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system towards HOCl-stress and phagocytosis. Thus, this novel HOCl-stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Luca F. Gaessler
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Patrick O. Tawiah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Lisa Pfirsching
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sydney K. Camfield
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Kennadi Meurer
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Mehdi Bennis
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Brendan Roseberry
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sadia Sultana
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
13
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Zhang H, Wu Y, Wan X, Shen Y, Le Q, Yang P, Zhou S, Zhou X, Zhou F, Gu H, Hong J. Effect of Hypochlorous Acid on Blepharitis through Ultrasonic Atomization: A Randomized Clinical Trial. J Clin Med 2023; 12:jcm12031164. [PMID: 36769811 PMCID: PMC9917691 DOI: 10.3390/jcm12031164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate the efficacy and safety of eyelid hygiene using topical 0.01% hypochlorous acid (HOCL) through ultrasonic atomization after 2 weeks in patients with blepharitis. DESIGN Randomized controlled trial. METHODS Patients with blepharitis were randomized into two groups: topical 0.01% HOCL through ultrasonic atomization (HOCL group, 42 eyes) or eyelid scrubs (control group, 37 eyes). Patients in both groups received warm compresses twice daily and topical 0.5% levofloxacin three times a day. Primary outcomes were the ocular surface disease index scores (OSDI), lid margin redness, lid margin abnormalities, meibum expressibility, meibum quality, and noninvasive breakup time after 2 weeks. Secondary outcomes were conjunctiva redness, corneal fluorescein staining, and tear meniscus height. A questionnaire of treatment adherence with a free response section was administered to confirm patient compliance and comments. RESULTS Sixty-seven participants participated in this study. Both groups show an improvement in all primary outcomes, while statistically significant improvements in OSDI, lid margin redness, lid margin abnormality, meibum expressibility and quality are only limited to the HOCL group after 2 weeks of treatment (p < 0.05, p < 0.05, p < 0.001, p < 0.001 and p < 0.001, respectively). Subgroup analysis in HOCL reveals that only the change in lid margin abnormality and meibum expressibility in the mild-moderate meibomian glands loss patients at baseline has a statistically significant difference p < 0.05). Multiple linear regression shows that the improvement in OSDI is negatively associated with meibum expressibility score at the baseline (95% CI [-28.846, -1.815], p = 0.028). The patient compliance is 7.1 ± 2.0 in the HOCL group and 7.1 ± 1.8 in the control group (p > 0.05). No adverse events are reported. CONCLUSION Topical 0.01% HOCL through ultrasonic atomization is a tolerable and effective eyelid hygiene treatment for blepharitis.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Yuqing Wu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Xichen Wan
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Yan Shen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Qihua Le
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Pei Yang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Shuyun Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
| | - Feng Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jiaxu Hong
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200437, China
- Correspondence:
| |
Collapse
|
15
|
Kettle AJ, Ashby LV, Winterbourn CC, Dickerhof N. Superoxide: The enigmatic chemical chameleon in neutrophil biology. Immunol Rev 2023; 314:181-196. [PMID: 36609987 DOI: 10.1111/imr.13183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The burst of superoxide produced when neutrophils phagocytose bacteria is the defining biochemical feature of these abundant immune cells. But 50 years since this discovery, the vital role superoxide plays in host defense has yet to be defined. Superoxide is neither bactericidal nor is it just a source of hydrogen peroxide. This simple free radical does, however, have remarkable chemical dexterity. Depending on its environment and reaction partners, superoxide can act as an oxidant, a reductant, a nucleophile, or an enzyme substrate. We outline the evidence that inside phagosomes where neutrophils trap, kill, and digest bacteria, superoxide will react preferentially with the enzyme myeloperoxidase, not the bacterium. By acting as a cofactor, superoxide will sustain hypochlorous acid production by myeloperoxidase. As a substrate, superoxide may give rise to other forms of reactive oxygen. We contend that these interactions hold the key to understanding the precise role superoxide plays in neutrophil biology. State-of-the-art techniques in mass spectrometry, oxidant-specific fluorescent probes, and microscopy focused on individual phagosomes are needed to identify bactericidal mechanisms driven by superoxide. This work will undoubtably lead to fascinating discoveries in host defense and give a richer understanding of superoxide's varied biology.
Collapse
Affiliation(s)
- Anthony J Kettle
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Louisa V Ashby
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Christine C Winterbourn
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Nina Dickerhof
- Department of Pathology & Biomedical Science, Mātai Hāora: Centre for Redox Biology & Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
16
|
Crespo-Yanez X, Oddy J, Lamrabet O, Jauslin T, Marchetti A, Cosson P. Sequential action of antibacterial effectors in Dictyostelium discoideum phagosomes. Mol Microbiol 2023; 119:74-85. [PMID: 36416195 PMCID: PMC10107278 DOI: 10.1111/mmi.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.
Collapse
Affiliation(s)
- Xènia Crespo-Yanez
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022; 23:ijms232214049. [PMID: 36430532 PMCID: PMC9692786 DOI: 10.3390/ijms232214049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the impact of reactive species RS (of oxygen ROS, nitrogen RNS and halogens RHS) on various amino acids, analyzed from a reactive point of view of how during these reactions, the molecules are hydroxylated, nitrated, or halogenated such that they can lose their capacity to form part of the proteins or peptides, and can lose their function. The reactions of the RS with several amino acids are described, and an attempt was made to review and explain the chemical mechanisms of the formation of the hydroxylated, nitrated, and halogenated derivatives. One aim of this work is to provide a theoretical analysis of the amino acids and derivatives compounds in the possible positions. Tyrosine, methionine, cysteine, and tryptophan can react with the harmful peroxynitrite or •OH and •NO2 radicals and glycine, serine, alanine, valine, arginine, lysine, tyrosine, histidine, cysteine, methionine, cystine, tryptophan, glutamine and asparagine can react with hypochlorous acid HOCl. These theoretical results may help to explain the loss of function of proteins subjected to these three types of reactive stresses. We hope that this work can help to assess the potential damage that reactive species can cause to free amino acids or the corresponding residues when they are part of peptides and proteins.
Collapse
|
18
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Role of Reactive Species on Innate Immunity. Vaccines (Basel) 2022; 10:vaccines10101735. [PMID: 36298601 PMCID: PMC9609844 DOI: 10.3390/vaccines10101735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a “respiratory burst” after activation. The anion superoxide •O2− and hydrogen peroxide H2O2 are detrimental to the microbial population. NADPH oxidase NOx, as an •O2− producer is essential for microbial destruction, and patients lacking this functional oxidase are more susceptible to microbial infections. Reactive nitrogen species RNS (the most important are nitric oxide radical -•NO, peroxynitrite ONOO— and its derivatives), are also harmful to microorganisms, including bacteria, viruses, and parasites. Hypochlorous acid HOCl and hypothiocyanous acid HOSCN synthesized through the enzyme myeloperoxidase MPO, which catalyzes the reaction between H2O2 and Cl− or SCN−, are important inorganic bactericidal molecules, effective against a wide range of microbes. This review also discusses the role of antimicrobial peptides AMPs and their induction of ROS. In summary, reactive species RS are the heart of the innate immune system, and they are necessary for microbial lysis in infections that can affect mammals throughout their lives.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Spain
- Correspondence:
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
19
|
Mahaseth T, Kuzminov A. Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli. Nucleic Acids Res 2022; 50:11013-11027. [PMID: 36243965 PMCID: PMC9638926 DOI: 10.1093/nar/gkac865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli cells treated with a combination of cyanide (CN) and hydrogen peroxide (HP) succumb to catastrophic chromosome fragmentation (CCF), detectable in pulsed-field gels as >100 double-strand breaks per genome equivalent. Here we show that CN + HP-induced double-strand breaks are independent of replication and occur uniformly over the chromosome,—therefore we used CCF to probe the nucleoid structure by measuring DNA release from precipitated nucleoids. CCF releases surprisingly little chromosomal DNA from the nucleoid suggesting that: (i) the nucleoid is a single DNA-protein complex with only limited stretches of protein-free DNA and (ii) CN + HP-induced breaks happen within these unsecured DNA stretches, rather than at DNA attachments to the central scaffold. Mutants lacking individual nucleoid-associated proteins (NAPs) release more DNA during CCF, consistent with NAPs anchoring chromosome to the central scaffold (Dps also reduces the number of double-strand breaks directly). Finally, significantly more broken DNA is released once ATP production is restored, with about two-thirds of this ATP-dependent DNA release being due to transcription, suggesting that transcription complexes act as pulleys to move DNA loops. In addition to NAPs, recombinational repair of double-strand breaks also inhibits DNA release by CCF, contributing to a dynamic and complex nucleoid structure.
Collapse
Affiliation(s)
- Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
20
|
Host Cell Antimicrobial Responses against Helicobacter pylori Infection: From Biological Aspects to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms231810941. [PMID: 36142852 PMCID: PMC9504325 DOI: 10.3390/ijms231810941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023] Open
Abstract
The colonization of Helicobacter pylori (H. pylori) in human gastric mucosa is highly associated with the occurrence of gastritis, peptic ulcer, and gastric cancer. Antibiotics, including amoxicillin, clarithromycin, furazolidone, levofloxacin, metronidazole, and tetracycline, are commonly used and considered the major treatment regimens for H. pylori eradication, which is, however, becoming less effective by the increasing prevalence of H pylori resistance. Thus, it is urgent to understand the molecular mechanisms of H. pylori pathogenesis and develop alternative therapeutic strategies. In this review, we focus on the virulence factors for H. pylori colonization and survival within host gastric mucosa and the host antimicrobial responses against H. pylori infection. Moreover, we describe the current treatments for H. pylori eradication and provide some insights into new therapeutic strategies for H. pylori infection.
Collapse
|
21
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
22
|
Redox-Mediated Inactivation of the Transcriptional Repressor RcrR is Responsible for Uropathogenic Escherichia coli's Increased Resistance to Reactive Chlorine Species. mBio 2022; 13:e0192622. [PMID: 36073817 PMCID: PMC9600549 DOI: 10.1128/mbio.01926-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ability to overcome stressful environments is critical for pathogen survival in the host. One challenge for bacteria is the exposure to reactive chlorine species (RCS), which are generated by innate immune cells as a critical part of the oxidative burst. Hypochlorous acid (HOCl) is the most potent antimicrobial RCS and is associated with extensive macromolecular damage in the phagocytized pathogen. However, bacteria have evolved defense strategies to alleviate the effects of HOCl-mediated damage. Among these are RCS-sensing transcriptional regulators that control the expression of HOCl-protective genes under non-stress and HOCl stress. Uropathogenic Escherichia coli (UPEC), the major causative agent of urinary tract infections (UTIs), is particularly exposed to infiltrating neutrophils during pathogenesis; however, their responses to and defenses from HOCl are still completely unexplored. Here, we present evidence that UPEC strains tolerate higher levels of HOCl and are better protected from neutrophil-mediated killing compared with other E. coli. Transcriptomic analysis of HOCl-stressed UPEC revealed the upregulation of an operon consisting of three genes, one of which encodes the transcriptional regulator RcrR. We identified RcrR as a HOCl-responsive transcriptional repressor, which, under non-stress conditions, is bound to the operator and represses the expression of its target genes. During HOCl exposure, however, the repressor forms reversible intermolecular disulfide bonds and dissociates from the DNA resulting in the derepression of the operon. Deletion of one of the target genes renders UPEC significantly more susceptible to HOCl and phagocytosis indicating that the HOCl-mediated induction of the regulon plays a major role for UPEC’s HOCl resistance.
Collapse
|
23
|
Nascimento RO, Prado FM, de Medeiros MHG, Ronsein GE, Di Mascio P. Singlet Molecular Oxygen Generation in the Reaction of Biological Haloamines of Amino Acids and Polyamines with Hydrogen Peroxide. Photochem Photobiol 2022; 99:661-671. [PMID: 36047912 DOI: 10.1111/php.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Leucocytes generate hypohalous acids (HOCl and HOBr) to defend against pathogens. In cells, hypohalous acids react with amine-containing molecules, such as amino acids and polyamines, producing chloramines and bromamines, reservoirs of oxidizing power that can potentially damage host tissues at sites of inflammation. Hypohalous acids also react with H2 O2 to produce stoichiometric amounts of singlet molecular oxygen (1 O2 ), but its generation in leucocytes is still under debate. Additionally, it is unclear if haloamines generate 1 O2 following a reaction with H2 O2 . Herein, we provide evidence of the generation of 1 O2 in the reactions between amino acid-derived (taurine, N-α-acetyl-Lysine, and glycine) and polyamine-derived (spermine and spermidine) haloamines and H2 O2 in an aqueous solution. The unequivocal formation of 1 O2 was detected by monitoring its characteristic monomol light emission at 1270 nm in the near-infrared region. For amino acid-derived haloamines, the presence of 1 O2 was further confirmed by chemical trapping with anthracene-9,10-divinylsulfonate and HPLC-MS/MS detection. Altogether, photoemission and chemical trapping studies demonstrated that chloramines were less effective at producing 1 O2 than bromamines of amino acids and polyamines. Thus, 1 O2 formation via bromamines and H2 O2 may be a potential source of 1 O2 in non-illuminated biological systems.
Collapse
Affiliation(s)
| | - Fernanda Manso Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
24
|
Nascimento RO, Prado FM, Massafera MP, Di Mascio P, Ronsein GE. Dehydromethionine is a common product of methionine oxidation by singlet molecular oxygen and hypohalous acids. Free Radic Biol Med 2022; 187:17-28. [PMID: 35580773 DOI: 10.1016/j.freeradbiomed.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Methionine is one of the main targets for biological oxidants. Its reaction with the majority of oxidants generates only methionine sulfoxide. However, when N-terminal methionine reacts with hypohalous acids (HOCl and HOBr) or singlet molecular oxygen (1O2), it can also generate a cyclic product called dehydromethionine (DHM). Previously, DHM was suggested as a biomarker of oxidative stress induced by hypohalous acids. However, DHM can also be generated by 1O2 -oxidation of methionine, and the contribution of this pathway of DHM formation in a context of a site-specific redox imbalance in an organism is unknown. In this work, a through comparison of the reactions of hypohalous acids and 1O2 with methionine, either free or inserted in peptides and proteins was undertaken. In addition, we performed methionine photooxidation in heavy water (H218O) to determine the influence of the pH in the mechanism of DHM formation. We showed that for free methionine, or methionine-containing peptides, the yields of DHM formation in the reactions with 1O2 were close to those achieved by HOBr oxidation, but much higher than the yields obtained with HOCl as the oxidant. This was true for all pH tested (5, 7.4, and 9). Interestingly, for the protein ubiquitin, DHM yields after reaction with 1O2 were higher than those obtained with both hypohalous acids. Our results indicate that 1O2 may also be an important source of DHM in biological systems.
Collapse
Affiliation(s)
| | - Fernanda Manso Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Mariana Pereira Massafera
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
25
|
Yu C, Zhan X, Liang T, Chen L, Zhang Z, Jiang J, Xue J, Chen J, Liu C. Mechanism of Hip Arthropathy in Ankylosing Spondylitis: Abnormal Myeloperoxidase and Phagosome. Front Immunol 2021; 12:572592. [PMID: 34880852 PMCID: PMC8647161 DOI: 10.3389/fimmu.2021.572592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background The pathogenesis of Ankylosing spondylitis (AS) has not been elucidated, especially involving hip joint disease. The purpose of this study was to analyze the proteome of diseased hip in AS and to identify key protein biomarkers. Material and Methods We used label-free quantification combined with liquid chromatography mass spectrometry (LC–MS/MS) to screen for differentially expressed proteins in hip ligament samples between AS and No-AS groups. Key protein was screened by Bioinformatics methods. and verified by in vitro experiments. Results There were 3,755 identified proteins, of which 92.916% were quantified. A total of 193 DEPs (49 upregulated proteins and 144 downregulated proteins) were identified according to P < 0.01 and Log|FC| > 1. DEPs were mainly involved in cell compartment, including the vacuolar lumen, azurophil granule, primary lysosome, etc. The main KEGG pathway included Phagosome, Glycerophospholipid metabolism, Lysine degradation, Pentose phosphate pathway. Myeloperoxidase (MPO) was identified as a key protein involved in Phagosome pathway. The experiment of siRNA interfering with cells further confirmed that the upregulated MPO may promote the inflammatory response of fibroblasts. Conclusions The overexpression of MPO may contribute to the autoimmune inflammatory response of AS-affected hip joint through the phagosome pathway.
Collapse
Affiliation(s)
- Chaojie Yu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tuo Liang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zide Zhang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Jiang
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiang Xue
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiarui Chen
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
26
|
Zai W, Kang L, Dong T, Wang H, Yin L, Gan S, Lai W, Ding Y, Hu Y, Wu J. E. coli Membrane Vesicles as a Catalase Carrier for Long-Term Tumor Hypoxia Relief to Enhance Radiotherapy. ACS NANO 2021; 15:15381-15394. [PMID: 34520168 DOI: 10.1021/acsnano.1c07621] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypoxia is one of the most important factors that limit the effect of radiotherapy, and the abundant H2O2 in tumor tissues will also aggravate hypoxia-induced radiotherapy resistance. Delivering catalase to decompose H2O2 into oxygen is an effective strategy to relieve tumor hypoxia and radiotherapy resistance. However, low stability limits catalase's in vivo application, which is one of the most common limitations for almost all proteins' internal utilization. Here, we develop catalase containing E. coli membrane vesicles (EMs) with excellent protease resistance to relieve tumor hypoxia for a long time. Even treated with 100-fold of protease, EMs showed higher catalase activity than free catalase. After being injected into tumors post 12 h, EMs maintained their hypoxia relief ability while free catalase lost its activity. Our results indicate that EMs might be an excellent catalase delivery for tumor hypoxia relief. Combined with their immune stimulation features, EMs could enhance radiotherapy and induce antitumor immune memory effectively.
Collapse
Affiliation(s)
- Wenjing Zai
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lin Kang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lining Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shaoju Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjia Lai
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yibing Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Georgiou CD, Margaritis LH. Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. Int J Mol Sci 2021; 22:10041. [PMID: 34576203 PMCID: PMC8470280 DOI: 10.3390/ijms221810041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.
Collapse
Affiliation(s)
- Christos D. Georgiou
- Department of Biology, Section of Genetics, Cell & Developmental Biology, University of Patras, 10679 Patras, Greece;
| | - Lukas H. Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 26504 Athens, Greece
| |
Collapse
|
28
|
Amunugama K, Kolar GR, Ford DA. Neutrophil Myeloperoxidase Derived Chlorolipid Production During Bacteria Exposure. Front Immunol 2021; 12:701227. [PMID: 34489949 PMCID: PMC8416994 DOI: 10.3389/fimmu.2021.701227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are the most abundant white blood cells recruited to the sites of infection and inflammation. During neutrophil activation, myeloperoxidase (MPO) is released and converts hydrogen peroxide to hypochlorous acid (HOCl). HOCl reacts with plasmalogen phospholipids to liberate 2-chlorofatty aldehyde (2-ClFALD), which is metabolized to 2-chlorofatty acid (2-ClFA). 2-ClFA and 2-ClFALD are linked with inflammatory diseases and induce endothelial dysfunction, neutrophil extracellular trap formation (NETosis) and neutrophil chemotaxis. Here we examine the neutrophil-derived chlorolipid production in the presence of pathogenic E. coli strain CFT073 and non-pathogenic E. coli strain JM109. Neutrophils cocultured with CFT073 E. coli strain and JM109 E. coli strain resulted in 2-ClFALD production. 2-ClFA was elevated only in CFT073 coculture. NETosis is more prevalent in CFT073 cocultures with neutrophils compared to JM109 cocultures. 2-ClFA and 2-ClFALD were both shown to have significant bactericidal activity, which is more severe in JM109 E. coli. 2-ClFALD metabolic capacity was 1000-fold greater in neutrophils compared to either strain of E. coli. MPO inhibition reduced chlorolipid production as well as bacterial killing capacity. These findings indicate the chlorolipid profile is different in response to these two different strains of E. coli bacteria.
Collapse
Affiliation(s)
- Kaushalya Amunugama
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Grant R. Kolar
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Research Microscopy and Histology Core, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
29
|
Fuku K, Kanai H, Todoroki M, Mishima N, Akagi T, Kamegawa T, Ikenaga N. Heterogeneous Fenton Degradation of Organic Pollutants in Water Enhanced by Combining Iron-type Layered Double Hydroxide and Sulfate. Chem Asian J 2021; 16:1887-1892. [PMID: 34018338 DOI: 10.1002/asia.202100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Indexed: 11/06/2022]
Abstract
Water pollution derived from organic pollutants is one of the global environmental problems. The Fenton reaction using Fe2+ as a homogeneous catalyst has been known as one of clean methods for oxidative degradation of organic pollutants. Here, a layered double hydroxide (Fe2+ Al3+ -LDH) containing Fe2+ and Al3+ in the structure was used to develop a "heterogeneous" Fenton catalyst capable of mineralizing organic pollutants. We found that sulfate ion (SO4 2- ) immobilized on the Fe2+ Al3+ -LDH significantly facilitated oxidative degradation (mineralization) of phenol as a model compound of water pollutants to carbon dioxide (CO2 ) in a heterogeneous Fenton process. The phenol conversion and mineralization efficiency to CO2 reached >99% and ca. 50%, respectively, even with a reaction time of only 60 min.
Collapse
Affiliation(s)
- Kojiro Fuku
- Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, 564-8680, Suita, Osaka, Japan
| | - Honami Kanai
- Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, 564-8680, Suita, Osaka, Japan
| | - Masanobu Todoroki
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, 564-8680, Suita, Osaka, Japan
| | - Nanako Mishima
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, 564-8680, Suita, Osaka, Japan
| | - Taisei Akagi
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, 564-8680, Suita, Osaka, Japan
| | - Takashi Kamegawa
- Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, 599-8570, Sakai, Osaka, Japan
| | - Naoki Ikenaga
- Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, 564-8680, Suita, Osaka, Japan
| |
Collapse
|
30
|
Dupuy E, Collet JF. Fort CnoX: Protecting Bacterial Proteins From Misfolding and Oxidative Damage. Front Mol Biosci 2021; 8:681932. [PMID: 34017858 PMCID: PMC8129009 DOI: 10.3389/fmolb.2021.681932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
How proteins fold and are protected from stress-induced aggregation is a long-standing mystery and a crucial question in biology. Here, we present the current knowledge on the chaperedoxin CnoX, a novel type of protein folding factor that combines holdase chaperone activity with a redox protective function. Focusing on Escherichia coli CnoX, we explain the essential role played by this protein under HOCl (bleach) stress, discussing how it protects its substrates from both aggregation and irreversible oxidation, which could otherwise interfere with refolding. Finally, we highlight the unique ability of CnoX, apparently conserved during evolution, to cooperate with the GroEL/ES folding machinery.
Collapse
Affiliation(s)
- Emile Dupuy
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-François Collet
- WELBIO, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
31
|
Fokam Tagne MA, Noubissi PA, Gaffo EF, Fankem GO, Ngakou Mukam J, Kamgang R, Essame Oyono JL. Effects of aqueous extract of Anogeissus leiocarpus (DC) guill. Et Perr. (Combretaceae) leaves on acetic acid‐induced ulcerative colitis in rats. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Chen SJ, Shu HY, Lin GH. Regulation of tert-Butyl Hydroperoxide Resistance by Chromosomal OhrR in A. baumannii ATCC 19606. Microorganisms 2021; 9:microorganisms9030629. [PMID: 33803549 PMCID: PMC8002998 DOI: 10.3390/microorganisms9030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we show that Acinetobacter baumannii ATCC 19606 harbors two sets of ohrR-ohr genes, respectively encoded in chromosomal DNA and a pMAC plasmid. We found no significant difference in organic hydroperoxide (OHP) resistance between strains with or without pMAC. However, a disk diffusion assay conducted by exposing wild-type, ∆ohrR-C, C represented gene on chromosome, or ∆ohr-C single mutants, or ∆ohrR-C∆ohr-C double mutants to tert-butyl hydroperoxide (tBHP) found that the ohrR-p-ohr-p genes, p represented genes on pMAC plasmid, may be able to complement the function of their chromosomal counterparts. Interestingly, ∆ohr-C single mutants generated in A. baumannii ATCC 17978, which does not harbor pMAC, demonstrated delayed exponential growth and loss of viability following exposure to 135 μg of tBHP. In a survival assay conducted with Galleria mellonella larvae, these mutants demonstrated almost complete loss of virulence. Via an electrophoretic mobility shift assay (EMSA), we found that OhrR-C was able to bind to the promoter regions of both chromosomal and pMAC ohr-p genes, but with varying affinity. A gain-of-function assay conducted in Escherichia coli showed that OhrR-C was not only capable of suppressing transformed ohr-C genes but may also repress endogenous enzymes. Taken together, our findings suggest that chromosomal ohrR-C-ohr-C genes act as the major system in protecting A. baumannii ATCC 19606 from OHP stresses, but the ohrR-p-ohr-p genes on pMAC can provide a supplementary protective effect, and the interaction between these genes may affect other aspects of bacterial viability, such as growth and virulence.
Collapse
Affiliation(s)
- Shih-Jie Chen
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan;
| | - Guang-Huey Lin
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- International College, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: or
| |
Collapse
|
33
|
Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol 2021; 37:38. [DOI: 10.1007/s11274-021-03004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
|
34
|
Königstorfer A, Ashby LV, Bollar GE, Billiot CE, Gray MJ, Jakob U, Hampton MB, Winterbourn CC. Induction of the reactive chlorine-responsive transcription factor RclR in Escherichia coli following ingestion by neutrophils. Pathog Dis 2021; 79:ftaa079. [PMID: 33351093 PMCID: PMC7797021 DOI: 10.1093/femspd/ftaa079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.
Collapse
Affiliation(s)
- Andreas Königstorfer
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Louisa V Ashby
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Gretchen E Bollar
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Caitlin E Billiot
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, 845 19th St, Birmingham AL 35294, United States
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N-University, Ann Arbor MI 48109-1085, United States
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago Christchurch, 2 Riccarton Ave, Christchurch 8011, New Zealand
| |
Collapse
|
35
|
Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J Inflamm Res 2020; 13:1057-1073. [PMID: 33293849 PMCID: PMC7719303 DOI: 10.2147/jir.s275595] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism’s lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.
Collapse
Affiliation(s)
- Javier Checa
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
36
|
Al-Shehri SS. Reactive oxygen and nitrogen species and innate immune response. Biochimie 2020; 181:52-64. [PMID: 33278558 DOI: 10.1016/j.biochi.2020.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022]
Abstract
The innate immune system is the first line of defense against pathogens and is characterized by its fast but nonspecific response. One important mechanism of this system is the production of the biocidal reactive oxygen and nitrogen species, which are widely distributed within biological systems, including phagocytes and secretions. Reactive oxygen and nitrogen species are short-lived intermediates that are biochemically synthesized by various enzymatic reactions in aerobic organisms and are regulated by antioxidants. The physiological levels of reactive species play important roles in cellular signaling and proliferation. However, higher concentrations and prolonged exposure can fight infections by damaging important microbial biomolecules. One feature of the reactive species generation system is the interaction between its components to produce more biocidal agents. For example, the phagocytic NADPH oxidase complex generates superoxide, which functions as a precursor for antimicrobial hydrogen peroxide synthesis. Peroxide is then used by myeloperoxidase in the same cells to generate hypochlorous acid, a highly microbicidal agent. Studies on animal models and microorganisms have shown that deficiency of these antimicrobial agents is associated with severe recurrent infections and immunocompromised diseases, such as chronic granulomatous disease. There is accumulating evidence that reactive species have important positive aspects on human health and immunity; however, some important promising features of this system remain obscure.
Collapse
Affiliation(s)
- Saad S Al-Shehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
37
|
Abstract
Neutrophils kill invading microbes and therefore represent the first line of defense of the innate immune response. Activated neutrophils assemble NADPH oxidase to convert substantial amounts of molecular oxygen into superoxide, which, after dismutation into peroxide, serves as the substrate for the generation of the potent antimicrobial hypochlorous acid (HOCl) in the phagosomal space. In this minireview, we explore the most recent insights into physiological consequences of HOCl stress. Not surprisingly, Gram-negative bacteria have evolved diverse posttranslational defense mechanisms to protect their proteins, the main targets of HOCl, from HOCl-mediated damage. We discuss the idea that oxidation of conserved cysteine residues and partial unfolding of its structure convert the heat shock protein Hsp33 into a highly active chaperone holdase that binds unfolded proteins and prevents their aggregation. We examine two novel members of the Escherichia coli chaperone holdase family, RidA and CnoX, whose thiol-independent activation mechanism differs from that of Hsp33 and requires N-chlorination of positively charged amino acids during HOCl exposure. Furthermore, we summarize the latest findings with respect to another bacterial defense strategy employed in response to HOCl stress, which involves the accumulation of the universally conserved biopolymer inorganic polyphosphate. We then discuss sophisticated adaptive strategies that bacteria have developed to enhance their survival during HOCl stress. Understanding bacterial defense and survival strategies against one of the most powerful neutrophilic oxidants may provide novel insights into treatment options that potentially compromise the ability of pathogens to resist HOCl stress and therefore may increase the efficacy of the innate immune response.
Collapse
|
38
|
Maliehe M, Ntoi MA, Lahiri S, Folorunso OS, Ogundeji AO, Pohl CH, Sebolai OM. Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis. Microorganisms 2020; 8:microorganisms8020180. [PMID: 32012843 PMCID: PMC7074686 DOI: 10.3390/microorganisms8020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly.
Collapse
|
39
|
Hann J, Bueb JL, Tolle F, Bréchard S. Calcium signaling and regulation of neutrophil functions: Still a long way to go. J Leukoc Biol 2019; 107:285-297. [PMID: 31841231 DOI: 10.1002/jlb.3ru0719-241r] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in blood and disruption in their functions often results in an increased risk of serious infections and inflammatory autoimmune diseases. Following recent discoveries in their influence over disease progression, a resurgence of interest for neutrophil biology has taken place. The multitude of signaling pathways activated by the engagement of numerous types of receptors, with which neutrophils are endowed, reflects the functional complexity of these cells. It is therefore not surprising that there remains a huge lack in the understanding of molecular mechanisms underlining neutrophil functions. Moreover, studies on neutrophils are undoubtedly limited by the difficulty to efficiently edit the cell's genome. Over the past 30 years, compelling evidence has clearly highlighted that Ca2+ -signaling is governing the key processes associated with neutrophil functions. The confirmation of the role of an elevation of intracellular Ca2+ concentration has come from studies on NADPH oxidase activation and phagocytosis. In this review, we give an overview and update of our current knowledge on the role of Ca2+ mobilization in the regulation of pro-inflammatory functions of neutrophils. In particular, we stress the importance of Ca2+ in the formation of NETs and cytokine secretion in the light of newest findings. This will allow us to embrace how much further we have to go to understand the complex dynamics of Ca2+ -dependent mechanisms in order to gain more insights into the role of neutrophils in the pathogenesis of inflammatory diseases. The potential for therapeutics to regulate the neutrophil functions, such as Ca2+ influx inhibitors to prevent autoimmune and chronic inflammatory diseases, has been discussed in the last part of the review.
Collapse
Affiliation(s)
- J Hann
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - J-L Bueb
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - F Tolle
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| | - S Bréchard
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
40
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
41
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
42
|
Widianingrum DC, Noviandi CT, Salasia SIO. Antibacterial and immunomodulator activities of virgin coconut oil (VCO) against Staphylococcus aureus. Heliyon 2019; 5:e02612. [PMID: 31673647 PMCID: PMC6817632 DOI: 10.1016/j.heliyon.2019.e02612] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023] Open
Abstract
Antibiotics have components to inhibit infections against Staphylococcus aureus, but they depend on judicious use to minimize the incidence of resistance forms. Strategies to improve the current situation include research in finding a new antimicrobial from virgin coconut oil (VCO). The saturated fatty acid, lauric acid (LA) (C12) contain in VCO was reported to have antibacterial activities. This study developed antimicrobial of VCO as an antimicrobial and immunomodulatory agent. Staphylococcus aureus used in this study had been isolated and identified from the mastitis milk crossbreed Etawa goat from Riau, Indonesia. The susceptibility of S. aureus to VCO was tested using the broth dilution method. The inhibition mechanisms of S. aureus had been studied by scanning electron microscopy (SEM) after treatment with VCO, and potential of VCO, which is known in phagocytosis macrophage. In vitro test confirmed the inhibitory effect of VCO on the growth of S. aureus at the concentration of 200 μl (equal to 0.102 % LA). Based on the result of the phagocytosing assay, VCO could increase the ability of the macrophage cells to phagocyte S. aureus significantly at a concentration of 200 μL (equal to 0.102% LA). This study concluded that the VCO could inhibit the growth of S. aureus with destructive mechanisms of bacterial cell walls and increase the ability of the phagocytic immune cells.
Collapse
Affiliation(s)
- Desy Cahya Widianingrum
- Department of Animal Science, Faculty of Agriculture, Jember University, Jl. Kalimantan 37, Jember 68121, Indonesia
| | - Cuk Tri Noviandi
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Karangmalang, Yogyakarta 55281, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna 2, Karangmalang, Yogyakarta 55281, Indonesia
| |
Collapse
|
43
|
Atosuo J, Suominen E. A real-time-based in vitro assessment of the oxidative antimicrobial mechanisms of the myeloperoxidase-hydrogen peroxide-halide system. Mol Immunol 2019; 116:38-44. [PMID: 31593870 DOI: 10.1016/j.molimm.2019.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/27/2019] [Accepted: 09/14/2019] [Indexed: 12/23/2022]
Abstract
Mammals have evolved a special cellular mechanism for killing invading microbes, which is called the phagocytosis. Neutrophils are the first phagocytosing cells that migrate into the site of infection. In these cells, hypochlorite (HOCl) and other hypohalites, generated in the myeloperoxidase (MPO)-hydrogen peroxide (H2O2)-halide system is primarily responsible for oxidative killing. Here, we present a method for assessing these oxidative mechanisms in an in vitro cell-free system in a kinetical real-time-based manner by utilizing a bioluminescent bacterial probe called Escherichia coli-lux. The E. coli-lux method provides a practical tool for assessing the effects of various elementary factors in the MPO-H2O2-halide system. Due to the reported versatile intracellular pH and halide concentration during the formation of the phagolysosome and respiratory burst, the antimicrobial activity of the MPO-H2O2-halide system undergoes extensive alterations. Here, we show that at a physiological pH or lower, the antimicrobial activity of MPO is high, and the system effectively enhances the H2O2-dependent oxidative killing of E. coli by chlorination. The HOCl formed in this reaction is a prominent microbe killer. During the respiratory burst, there is a shift to a more alkaline environment. At pH 7.8, the chlorinating activity of MPO was shown to be absent, and the activity of the HOCl decreased. At this higher pH, the activity of H2O2 is enhanced and high enough to kill E. coli without the participation of MPO, and the lowered chloride concentration seemed still to enhance the H2O2-dependent killing capacity.
Collapse
Affiliation(s)
- Janne Atosuo
- Department of Biochemistry/Laboratory of Immunochemistry, Clinical Department/Clinical Research Unit TROSSI University of Turku Biocity, Tykistökatu 6, 6th floor, 20250 Turku Finland.
| | - Eetu Suominen
- Department of Biochemistry/Laboratory of Immunochemistry, Clinical Department/Clinical Research Unit TROSSI University of Turku Biocity, Tykistökatu 6, 6th floor, 20250 Turku Finland.
| |
Collapse
|
44
|
Fankem GO, Fokam Tagne MA, Noubissi PA, Foyet Fondjo A, Kamtchouing I, Ngwewondo A, Wambe H, Ngakou Mukam J, Kamgang R. Antioxidant activity of dichloromethane fraction of Dichrocephala integrifolia in Salmonella typhi-infected rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:438-445. [PMID: 31611062 DOI: 10.1016/j.joim.2019.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/07/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Infectious diseases such as typhoid fever lead to the formation of free radicals which can damage the body. Many medicinal plants have antioxidant molecules that neutralize free radicals. The present work evaluated the antioxidant activity and histopathological effects of the dichloromethane fraction of Dichrocephala integrifolia in Salmonella typhi-infected rats. METHODS The S. typhi-infected rats concurrently received daily doses of D. integrifolia extract at doses of 25, 50 and 100 mg/kg body weight or ciprofloxacin (5 mg/kg body weight) for 15 days. Body temperature was measured daily during infection and treatment periods. At the end of treatment period, the animals were sacrificed and biological responses including hematological parameters, superoxide dismutase and catalase activities, and glutathione, malondialdehyde and nitric oxide concentrations were evaluated. RESULTS The elevated body temperature induced by infection was significantly decreased in animals treated with 25, 50 or 100 mg/kg of the extract. Platelet levels decreased slightly in infected rats, while treatment with the dichloromethane fraction of D. integrifolia significantly increased platelet levels; this response was greater than that elicited by ciprofloxacin. The doses of 50 and 100 mg/kg of the dichloromethane fraction of D. integrifolia notably decreased monocyte and neutrophil values. Activity of superoxide dismutase and catalase and levels of glutathione in the tissues of treated animals were increased significantly (P < 0.01), while malondialdehyde and nitric oxide levels were significantly decreased (P < 0.01), following treatment with the dichloromethane fraction of D. integrifolia. CONCLUSION The results of this study show that the dichloromethane fraction of D. integrifolia has protective effects against a series of pathological conditions initiated by oxidation and tissue damage in the course of a S. typhi infection.
Collapse
Affiliation(s)
- Gaëtan Olivier Fankem
- Animal Physiology Laboratory, Faculty of Science, University of Yaoundé I, 237, Cameroon
| | | | - Paul Aimé Noubissi
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, 237, Cameroon
| | - Angèle Foyet Fondjo
- Department of Applied Sciences for Health, Higher Institute of Applied Sciences, University Institute of Gulf of Guinea, 237, Cameroon
| | - Idrice Kamtchouing
- Animal Physiology Laboratory, Faculty of Science, University of Yaoundé I, 237, Cameroon
| | - Adela Ngwewondo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé 237, Cameroon
| | - Henri Wambe
- Department of Biological Science, Faculty of Science, University of Dschang, 237, Cameroon
| | - Joseph Ngakou Mukam
- Animal Physiology Laboratory, Faculty of Science, University of Yaoundé I, 237, Cameroon
| | - René Kamgang
- Animal Physiology Laboratory, Faculty of Science, University of Yaoundé I, 237, Cameroon; Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé 237, Cameroon
| |
Collapse
|
45
|
Goemans CV, Collet JF. Stress-induced chaperones: a first line of defense against the powerful oxidant hypochlorous acid. F1000Res 2019; 8. [PMID: 31583082 PMCID: PMC6758839 DOI: 10.12688/f1000research.19517.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/12/2023] Open
Abstract
Hypochlorous acid (HOCl; bleach) is a powerful weapon used by our immune system to eliminate invading bacteria. Yet the way HOCl actually kills bacteria and how they defend themselves from its oxidative action have only started to be uncovered. As this molecule induces both protein oxidation and aggregation, bacteria need concerted efforts of chaperones and antioxidants to maintain proteostasis during stress. Recent advances in the field identified several stress-activated chaperones, like Hsp33, RidA, and CnoX, which display unique structural features and play a central role in protecting the bacterial proteome during HOCl stress.
Collapse
Affiliation(s)
- Camille V Goemans
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | |
Collapse
|
46
|
Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients 2019; 11:nu11092101. [PMID: 31487871 PMCID: PMC6769590 DOI: 10.3390/nu11092101] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.
Collapse
Affiliation(s)
- Olivia M Guillin
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, CIRI, 69007 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité U1111, 69007 Lyon, France.
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
- Université Claude Bernard Lyon 1 (UCBL1), 69622 Lyon, France.
- Unité Mixte de Recherche 5308 (UMR5308), Centre national de la recherche scientifique (CNRS), 69007 Lyon, France.
| |
Collapse
|
47
|
Komaki Y, Simpson AMA, Choe JK, Pinney MM, Herschlag D, Chuang YH, Mitch WA. Serum electrolytes can promote hydroxyl radical-initiated biomolecular damage from inflammation. Free Radic Biol Med 2019; 141:475-482. [PMID: 31349038 DOI: 10.1016/j.freeradbiomed.2019.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
Abstract
Chronic inflammatory disorders are associated with biomolecular damage attributed partly to reactions with Reactive Oxygen Species (ROS), particularly hydroxyl radicals (•OH). However, the impacts of serum electrolytes on ROS-associated damage has received little attention. We demonstrate that the conversion of •OH to carbonate and halogen radicals via reactions with serum-relevant carbonate and halide concentrations fundamentally alters the targeting of amino acids and loss of enzymatic activity in catalase, albumin and carbonic anhydrase, three important blood proteins. Chemical kinetic modeling indicated that carbonate and halogen radical concentrations should exceed •OH concentrations by 6 and 2 orders of magnitude, respectively. Steady-state γ-radiolysis experiments demonstrated that serum-level carbonates and halides increased tyrosine, tryptophan and enzymatic activity losses in catalase up to 6-fold. These outcomes were specific to carbonates and halides, not general ionic strength effects. Serum carbonates and halides increased the degradation of tyrosines and methionines in albumin, and increased the degradation of histidines while decreasing enzymatic activity loss in carbonic anhydrase. Serum electrolytes increased the degradation of tyrosines, tryptophans and enzymatic activity in the model enzyme, ketosteroid isomerase, predominantly due to carbonate radical reactions. Treatment of a mutant ketosteroid isomerase indicated that preferential targeting of the active site tyrosine accounted for half of the total tyrosine loss. The results suggest that carbonate and halogen radicals may be more significant than •OH as drivers for protein degradation in serum. Accounting for the selective targeting of biomolecules by these daughter radicals is important for developing a mechanistic understanding of the consequences of oxidative stress.
Collapse
Affiliation(s)
- Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Adam M-A Simpson
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Margaux M Pinney
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Yi-Hsueh Chuang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
Breda CNDS, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol 2019; 26:101255. [PMID: 31247505 PMCID: PMC6598836 DOI: 10.1016/j.redox.2019.101255] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023] Open
Abstract
Nearly 130 years after the first insights into the existence of mitochondria, new rolesassociated with these organelles continue to emerge. As essential hubs that dictate cell fate, mitochondria integrate cell physiology, signaling pathways and metabolism. Thus, recent research has focused on understanding how these multifaceted functions can be used to improve inflammatory responses and prevent cellular dysfunction. Here, we describe the role of mitochondria on the development and function of immune cells, highlighting metabolic aspects and pointing out some metabolic- independent features of mitochondria that sustain cell function.
Collapse
Affiliation(s)
- Cristiane Naffah de Souza Breda
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo José Basso
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Pedro Manoel Mendes Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
49
|
Boulougouris X, Rogiers C, Van Poucke M, De Spiegeleer B, Peelman L, Duchateau L, Burvenich C. Methylation of selected CpG islands involved in the transcription of myeloperoxidase and superoxide dismutase 2 in neutrophils of periparturient and mid-lactation cows. J Dairy Sci 2019; 102:7421-7434. [PMID: 31178179 DOI: 10.3168/jds.2018-16027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
It is generally accepted that intracellular killing of microorganisms by production of reactive oxygen species (ROS) in the phagosome of the neutrophil is an important arm of innate defense. High-producing dairy cows are prone to periparturient metabolic and infectious diseases. Both myeloperoxidase (MPO) activity and ROS production decrease the day of parturition. Several studies have demonstrated changes in the expression of genes involved in, for example, metabolism and defense in the circulating neutrophil during peripartum. In this study, we wanted to further characterize the periparturient neutrophil in terms of its oxidative killing capacity by analyzing the oxidative burst at 3 levels. First, the ROS phenotype was evaluated using chemiluminescence. The cows (sampled within 24 h after parturition and at 135 d in milk) showed a significantly slower production of ROS at parturition. Both primiparous (n = 13) and multiparous (n = 12) cows were included in this study, but parity did not affect the kinetics of ROS production. Second, the expression of 11 genes involved in ROS production was measured in the same cows: cytochrome b-245 α and β chain (CYBA, CYBB; coding for membrane-bound constituents of NADPH oxidase); neutrophil cytosolic factors 1, 2, and 4 (NCF1, NCF2, and NCF4); Rac family small GTPase 1 and 2 (RAC1 and RAC2; coding for regulatory proteins of NADPH oxidase); superoxide dismutase 2 (SOD2); catalase (CAT); myeloperoxidase (MPO; coding for enzymes involved in metabolizing downstream ROS); and spleen-associated tyrosine kinase (SYK; involved in signaling). During peripartum, a shift in expression in the oxidative killing pathway was observed, characterized by a downregulation of MPO and a simultaneous upregulation of the genes coding for NADPH oxidase. Third, as total DNA methylation is known to change during pregnancy, we investigated whether the observed differences were due to different methylation patterns. Promotor regions initiate transcription of particular genes; therefore, we analyzed the methylation status in annotated CpG islands of MPO and SOD2, 2 genes with a significant difference in expression between both lactation stages. The differences in methylation of these CpG islands were nonsignificant. High-throughput techniques may be necessary to obtain more detailed information on the total DNA methylation dynamics in bovine neutrophils and increase our understanding of how gene expression is controlled in neutrophils.
Collapse
Affiliation(s)
- Xanthippe Boulougouris
- Animal Genetics Laboratory, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Carolien Rogiers
- Animal Genetics Laboratory, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Mario Van Poucke
- Animal Genetics Laboratory, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| | - Luc Peelman
- Animal Genetics Laboratory, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Luc Duchateau
- Animal Genetics Laboratory, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium
| | - Christian Burvenich
- Animal Genetics Laboratory, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, Merelbeke, Belgium.
| |
Collapse
|
50
|
Rienksma RA, Schaap PJ, Martins dos Santos VAP, Suarez-Diez M. Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular Mycobacterium tuberculosis. Front Cell Infect Microbiol 2019; 9:144. [PMID: 31139575 PMCID: PMC6519342 DOI: 10.3389/fcimb.2019.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
Little is known about the metabolic state of Mycobacterium tuberculosis (Mtb) inside the phagosome, a compartment inside phagocytes for killing pathogens and other foreign substances. We have developed a combined model of Mtb and human metabolism, sMtb-RECON and used this model to predict the metabolic state of Mtb during infection of the host. Amino acids are predicted to be used for energy production as well as biomass formation. Subsequently we assessed the effect of increasing dosages of drugs targeting metabolism on the metabolic state of the pathogen and predict resulting metabolic adaptations and flux rerouting through various pathways. In particular, the TCA cycle becomes more important upon drug application, as well as alanine, aspartate, glutamate, proline, arginine and porphyrin metabolism, while glycine, serine, and threonine metabolism become less important. We modeled the effect of 11 metabolically active drugs. Notably, the effect of eight could be recreated and two major profiles of the metabolic state were predicted. The profiles of the metabolic states of Mtb affected by the drugs BTZ043, cycloserine and its derivative terizidone, ethambutol, ethionamide, propionamide, and isoniazid were very similar, while TMC207 is predicted to have quite a different effect on metabolism as it inhibits ATP synthase and therefore indirectly interferes with a multitude of metabolic pathways.
Collapse
Affiliation(s)
- Rienk A. Rienksma
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|