1
|
Huang W, Lin S, Cao H. Stability and degradation mechanism of (-)-epicatechin in thermal processing. Food Chem 2025; 465:142038. [PMID: 39549518 DOI: 10.1016/j.foodchem.2024.142038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
(-)-Epicatechin (EC) is a commonly dietary phytochemical that presents multi-physiological activities on human health. Thermal processing is a common method to extract EC, albeit likely to degrade EC considering its thermal instability. In this study, an 85-min non-durable bathing incubation assay was designed to simulate the state of EC in boiling water while cooking. Monitoring of degradation products was performed using ultra-performance liquid chromatography combined with electrospray ionization quadrupole tandem mass spectrometric detection (UPLC-ESI-TSQ-MS/MS). The results revealed that ca. 65.2 % loss of EC was detected in the first 10 min, and over 99.5 % of EC was degraded within 30 min. A total of 22 degradation products were identified based on retention time, full and tandem MS data were the first to be comprehensively reported. Isomerization, oxidation, hydroxylation, dimerization, and ring cleavage were the main chemical reactions that occurred for EC in boiling aqueous solution.
Collapse
Affiliation(s)
- Wenqi Huang
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Shiye Lin
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Hui Cao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain.
| |
Collapse
|
2
|
Fraga CG, Cremonini E, Galleano M, Oteiza PI. Natural Products and Diabetes: (-)-Epicatechin and Mechanisms Involved in the Regulation of Insulin Sensitivity. Handb Exp Pharmacol 2025; 287:159-173. [PMID: 38421444 DOI: 10.1007/164_2024_707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Type 2 diabetes (T2D) is a disease that occurs when cells do not respond normally to insulin, a condition called insulin resistance, which leads to high blood glucose levels. Although it can be treated pharmacologically, dietary habits beyond carbohydrate restriction can be highly relevant in the management of T2D. Emerging evidence supports the possibility that natural products (NPs) could contribute to managing blood glucose or counteract the undesirable effects of hyperglycemia and insulin resistance. This chapter summarizes the relevant preclinical evidence involving the flavonoid (-)-epicatechin (EC) in the optimization of glucose homeostasis, reducing insulin resistance and/or diabetes-associated disorders. Major effects of EC are observed on (i) intestinal functions, including digestive enzymes, glucose transporters, microbiota, and intestinal permeability, and (ii) redox homeostasis, including oxidative stress and inflammation. There is still a need for further clinical studies to confirm the in vitro and rodent data, allowing recommendations for EC, particularly in prediabetic and T2D patients. The collection of similar data and the lack of clinical evidence for EC is also applicable to other NPs.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
- Department of Nutrition, University of California, Davis, CA, USA.
| | | | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Salaish Kumar S, Mhd Jalil AM, Hussin N, Mat Daud Z'A, Ismail A. Effects of flavanols and procyanidins-rich cocoa consumption on metabolic syndrome: an update review (2013-2023). Biosci Biotechnol Biochem 2024; 88:352-360. [PMID: 38285609 DOI: 10.1093/bbb/zbae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Studies indicated that cocoa-based products effectively mitigate the risks associated with metabolic syndrome (MetS), however, the effect varies based on cocoa types, dosages, and study durations. This review aimed to determine the flavanol-rich cocoa consumption on MetS outcomes within the last decade (2013-2023), adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven randomized-controlled trials (RCTs) used cocoa-based products containing 0.3-1680 mg flavanol monomers and 3.5-1270 mg procyanidins. Cocoa-based products beneficially reduced glycemic response, blood pressure and lipid profiles. However, this review highlights little evidence pinpointing the best cocoa products type and required dosage for the observed effects. Further intervention aiming to improve MetS should justify the selection and concentration of flavanols (monomers and procyanidins). A robust study design should consider registering the trials before study commencement, consider multicenter RCT trials, and adjust for potential covariates that might "masked" the outcomes.
Collapse
Affiliation(s)
- Sharvintha Salaish Kumar
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
| | - Abbe Maleyki Mhd Jalil
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
| | - Napisah Hussin
- School of Nutrition and Dietetics, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
| | - Zulfitri 'Azuan Mat Daud
- Department of Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Ottaviani JI, Ensunsa JL, Fong RY, Kimball J, Medici V, Kuhnle GGC, Crozier A, Schroeter H, Kwik-Uribe C. Impact of polyphenol oxidase on the bioavailability of flavan-3-ols in fruit smoothies: a controlled, single blinded, cross-over study. Food Funct 2023; 14:8217-8228. [PMID: 37615673 DOI: 10.1039/d3fo01599h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Flavan-3-ols are bioactive compounds found in a variety of fruits and vegetables (F&V) that have been linked to positive health benefits. Increasing habitual flavan-3-ol intake is challenged by the generally low consumption of F&V. While smoothies are a commonly endorsed, consumer-accepted means to increase the daily intake of these important foods, fruits used for smoothie preparation can have a high polyphenol oxidase (PPO) activity and thus potentially affect the content and bioavailability of flavan-3-ols. To assess whether or not consuming freshly prepared smoothies made with different PPO-containing fruit impacts the bioavailability of the flavan-3-ols, a controlled, single blinded and cross-over study was conducted in healthy men (n = 8) who consumed a flavan-3-ol-containing banana-based smoothie (high-PPO drink), a flavan-3-ol-containing mixed berry smoothie (low-PPO drink) and flavan-3-ols in a capsule format (control). The peak plasma concentration (Cmax) of flavan-3-ol metabolites after capsule intake was 680 ± 78 nmol L-1, which was similar to the levels detected after the intake of the low PPO drink. In contrast, the intake of the high PPO drink resulted in a Cmax of 96 ± 47 nmol L-1, 84% lower than that obtained after capsule intake. In a subsequent study (n = 11), flavan-3-ols were co-ingested with a high-PPO banana drink but contact prior to intake was prevented. In this context, plasma flavan-3-ol levels were still reduced, suggesting an effect possibly related to post-ingestion PPO activity degrading flavan-3-ols in the stomach. There was a substantial range in the PPO activity detected in 18 different fruits, vegetables and plant-derived dietary products. In conclusion, bioavailability of flavan-3-ols, and most likely other dietary polyphenol bioactives, can be reduced substantially by the co-ingestion of high PPO-containing products, the implications of which are of importance for dietary advice and food preparation both at home and in industrial settings.
Collapse
Affiliation(s)
| | - Jodi L Ensunsa
- Department of Nutrition, Meyer Hall, University of California, Davis, CA 95616, USA
| | - Reedmond Y Fong
- Department of Nutrition, Meyer Hall, University of California, Davis, CA 95616, USA
| | - Jennifer Kimball
- Department of Nutrition, Meyer Hall, University of California, Davis, CA 95616, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 05817, USA
| | - Gunter G C Kuhnle
- Department of Food & Nutritional Sciences, University of Reading, Reading RG56 6DX, UK
| | - Alan Crozier
- Department of Nutrition, Meyer Hall, University of California, Davis, CA 95616, USA
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
5
|
Ottaviani JI, Schroeter H, Kuhnle GGC. Measuring the intake of dietary bioactives: Pitfalls and how to avoid them. Mol Aspects Med 2023; 89:101139. [PMID: 36031430 DOI: 10.1016/j.mam.2022.101139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
Bioactives are food constituents that, while not essential to human life, can affect health. Thus, there is increased interest in developing dietary recommendations for bioactives. Such recommendations require detailed information about the long-term association between habitual intake and health at population scale, and these can only be provided by large-scale observational studies. Nutritional epidemiology relies on the accurate estimation of intake, but currently used methods, commonly based on a 2-step process involving self-reports and food composition tables, are fraught with significant challenges and are unable to estimate the systemic presence of bioactives. Intake assessments based on nutritional biomarkers can provide an advanced alternative, but there are a number of pitfalls that need to be addressed in order to obtain reliable data on intake. Using flavan-3-ols as a case study, we highlight here key challenges and how they may be avoided. Taken together, we believe that the approaches outlined in this review can be applied to a wide range of food constituents, and doing so will improve assessments of the dietary intake of bioactives.
Collapse
Affiliation(s)
| | | | - Gunter G C Kuhnle
- Department of Food & Nutritional Sciences, University of Reading, Reading RG56 6DX, UK.
| |
Collapse
|
6
|
Revisiting the bioavailability of flavan-3-ols in humans: A systematic review and comprehensive data analysis. Mol Aspects Med 2023; 89:101146. [PMID: 36207170 DOI: 10.1016/j.mam.2022.101146] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022]
Abstract
This systematic review summarizes findings from human studies investigating the different routes of absorption, metabolism, distribution and excretion (ADME) of dietary flavan-3-ols and their circulating metabolites in healthy subjects. Literature searches were performed in PubMed, Scopus and the Web of Science. Human intervention studies using single and/or multiple intake of flavan-3-ols from food, extracts, and pure compounds were included. Forty-nine human intervention studies met inclusion criteria. Up to 180 metabolites were quantified from blood and urine samples following intake of flavan-3-ols, mainly as phase 2 conjugates of microbial catabolites (n = 97), with phenyl-γ-valerolactones being the most representative ones (n = 34). Phase 2 conjugates of monomers and phenyl-γ-valerolactones, the main compounds in both plasma and urine, reached two peak plasma concentrations (Cmax) of 260 and 88 nmol/L at 1.8 and 5.3 h (Tmax) after flavan-3-ol intake. They contributed to the bioavailability of flavan-3-ols for over 20%. Mean bioavailability for flavan-3-ols was moderate (31 ± 23%, n bioavailability values = 20), and it seems to be scarcely affected by the amount of ingested compounds. While intra- and inter-source differences in flavan-3-ol bioavailability emerged, mean flavan-3-ol bioavailability was 82% (n = 1) and 63% (n = 2) after (-)-epicatechin and nut (hazelnuts, almonds) intake, respectively, followed by 25% after consumption of tea (n = 7), cocoa (n = 5), apples (n = 3) and grape (n = 2). This highlights the need to better clarify the metabolic yield with which monomer flavan-3-ols and proanthocyanidins are metabolized in humans. This work clarified in a comprehensive way for the first time the ADME of a (poly)phenol family, highlighting the pool of circulating compounds that might be determinants of the putative beneficial effects linked to flavan-3-ol intake. Lastly, methodological inputs for implementing well-designed human and experimental model studies were provided.
Collapse
|
7
|
Type 2 Diabetes mellitus alters the cargo of (poly)phenol metabolome and the oxidative status in circulating lipoproteins. Redox Biol 2022; 59:102572. [PMID: 36516720 PMCID: PMC9762197 DOI: 10.1016/j.redox.2022.102572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of diabetes on the worldwide population has tripled in the past 5 decades. While drug-based therapies are valuable strategies to treat and ease the socio-economic burden of diabetes, nutritional strategies offer valuable alternatives to prevent and manage diabetes onset and contribute to the sustainability of health budgets. Whilst, intervention studies have shown that (poly)phenol-rich diets improve fasting glucose levels and other blood parameters, very little is known about the distribution of ingested polyphenols in circulation and the impact of diabetes on its cargo. In this study we investigate the impact of type 2 diabetes on the cargo of plasma (poly)phenols. Our results show that phenolic compounds are heterogeneously distributed in circulation though mainly transported by lipoprotein populations. We also found that diabetes has a marked effect on the phenolic content transported by VLDL resulting in the decrease in the content of flavonoids and consequently a decrease in the antioxidant capacity. In addition to the reduced bioavailability of (poly)phenol metabolites and increase of oxidative status in LDL and HDL populations in diabetes, cell-based assays show that sub-micromolar amounts of microbial (poly)phenol metabolites are able to counteract the pro-inflammatory status in glucose-challenged endothelial cells. Our findings highlight the relevance of triglyceride-rich lipoproteins in the transport and delivery of bioactive plant-based compounds to the endothelium in T2DM supporting the adoption of nutritional guidelines as an alternative strategy to drug-based therapeutic approaches.
Collapse
|
8
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
9
|
Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Clifford MN, Kuhnert N. LC-MS Characterization and Quantification of Known and Unknown (Poly)phenol Metabolites-Possible Pitfalls and Their Avoidance. Mol Nutr Food Res 2022; 66:e2101013. [PMID: 35489085 DOI: 10.1002/mnfr.202101013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Indexed: 11/06/2022]
Abstract
This review focuses on the LC-MS characterization and quantification of dietary (poly)phenols and their metabolites. It draws attention to errors, omissions, and misunderstandings that appear frequently in published papers, and suggests strategies for their avoidance. Aspects covered include the use of authentic standards and surrogate reference materials, the importance of collecting and archiving Total Ion Current MS data, the limitations of using on-line compilations of accurate mass MS data to assign unknown components when multiple isomers are possible, and the often understated magnitude of person-to-person variation that may significantly impact at population level any potential health benefit.
Collapse
Affiliation(s)
- Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, VIC 3168, Australia
| | - Nikolai Kuhnert
- Department of Life Sciences and Health, Jacobs University, Bremen, Germany
| |
Collapse
|
11
|
Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2077-2091. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary intake of plant polyphenols is significant, and many of them enter a human body as a highly diverse pool of ring-fission phenolic metabolites arising from digestion and microbial catabolism of the parental structures. Difficulty in designing the uniform intervention studies and limited tools calibrated to detect and quantify the inherent complexity of phenolic metabolites hindered efforts to establish and validate protective health effects of these molecules. Here, we highlight the recent findings that describe novel complex downstream metabolite profiles with a particular focus on dihydrophenolic (phenylpropanoic) acids of microbial origin, ingested and phase II-transformed methylated phenolic metabolites (methylated sinks), and small phenolic metabolites derived from the breakdown of different classes of flavonoids, stilbenoids, and tannins. There is a critical need for precise identification of the individual phenolic metabolite signatures originating from different polyphenol groups to enable future translation of these findings into break-through nutritional interventions and dietary guidelines.
Collapse
Affiliation(s)
- Chi In Vong
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Lessard-Lord J, Plante PL, Desjardins Y. Purified recombinant enzymes efficiently hydrolyze conjugated urinary (poly)phenol metabolites. Food Funct 2022; 13:10895-10911. [PMID: 36239175 DOI: 10.1039/d2fo02229j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purified recombinant enzymes are efficient at hydrolyzing microbial (poly)phenol metabolite phase II conjugates, and hence, can be used to accurately quantify them using unconjugated analytical standards.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pier-Luc Plante
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
13
|
Circulating Structurally Related (-)-Epicatechin Metabolite Species and Levels after Sustained Intake of a Cocoa Powder High in Polyphenols Are Comparable to Those Achieved after a Single Dose. Nutrients 2021; 13:nu13113829. [PMID: 34836088 PMCID: PMC8625154 DOI: 10.3390/nu13113829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND While the bioavailability of cocoa polyphenols, particularly of the monomer (-)-epicatechin, has been investigated after a single-dose intake, the effect of sustained cocoa consumption on the metabolic profile of the structurally related (-)-epicatechin metabolites (SREMs) has not been investigated. METHODS A randomized, controlled crossover clinical trial in healthy young adults (18-40 year) was conducted to evaluate SREMs after consumption of a single-dose and after daily consumption of 1.3 g of polyphenol-rich cocoa powder for 28 days. The circulating SREMs were measured by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). RESULTS Twenty subjects (eleven males and nine females) were enrolled. The SREMs concentrations increased to 1741 ± 337 nM after a single-dose and to 1445 ± 270 nM after sustained supplementation. Sulfate conjugates showed higher levels in females (p < 0.05). The epicatechin-3'-glucuronide (E3'G) and epicatechin-3'-sulfate (E3'S) were the most abundant metabolites in all subjects. A high intra-individual correlation (r = 0.72, p < 0.001) between SREMs concentrations after single-dose and sustained supplementation was observed. The antioxidant capacity of plasma did not change in response to the intervention and was not correlated with any of the SREMs. CONCLUSION The individual SREMs profile and concentrations after a 28-day supplementation are comparable to those after a single dose.
Collapse
|
14
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
15
|
Hakeem Said I, Heidorn C, Petrov DD, Retta MB, Truex JD, Haka S, Ullrich MS, Kuhnert N. LC-MS based metabolomic approach for the efficient identification and relative quantification of bioavailable cocoa phenolics in human urine. Food Chem 2021; 364:130198. [PMID: 34256277 DOI: 10.1016/j.foodchem.2021.130198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
This study was designed to investigate the rate and extent of urinary excretion of cocoa phenolic metabolites after human intake using metabolomics approach. In this context, a feeding trial was conducted where urine samples were collected at different time points over 48-h period. Several biomarkers were highlighted in LC-MS based chemometrics using principal component (PCA) and partial least squares discriminant analysis (PLS-DA), which revealed the presence of both epicatechin and gut microbial phenyl-γ-valerolactones (PVLs) conjugated analogues. The presences of these metabolites segregated and grouped the samples based on cocoa and non-cocoa ingestion. Furthermore, semi quantification of major bioavailable metabolites was performed to determine the interindividual differences and assess the relative bioavailability of cocoa compounds in the human body. Our approach presented here is unique in displaying a combination of LC-MS based chemometrics visualization strategies, which revealed and identified significant biomarkers that could reduce the problems associated with data screening complexity.
Collapse
Affiliation(s)
| | | | | | - Mihella B Retta
- Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Sara Haka
- Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany
| | | | - Nikolai Kuhnert
- Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany.
| |
Collapse
|
16
|
Rocha S, Oskolkova O, de Freitas V, Reis A. (Poly)phenol-Rich Diets in the Management of Endothelial Dysfunction in Diabetes Mellitus: Biological Properties in Cultured Endothelial Cells. Mol Nutr Food Res 2021; 65:e2001130. [PMID: 34050718 DOI: 10.1002/mnfr.202001130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Processed and ready-to-eat foods become routinely consumed resulting in a sharp rise of sugar intake in people's daily diets. The inclusion of fresh fruits and vegetables rich in (poly)phenols has been encouraged by the World Health Organization (WHO) as part of the daily choices to ameliorate endothelial dysfunction and ease the socio-economic burden of diabetes. Research in Food, Nutrition, and Cell Metabolism areas is revealing that the health benefits of (poly)phenol-rich foods go beyond their antioxidant properties and are in fact key modulators of redox and glycaemia status, and inflammatory response contributing to improved endothelial function and vascular health in diabetes. Other beneficial aspects include appetite modulation, regulation of hydrolytic enzymes involved in sugar and lipid metabolism, and mediation of cell-cell aggregation events. This work overviews the current knowledge on the biological properties of ingested (poly)phenols in cultured endothelial cells with emphasis on the circulating (poly)phenols, providing support to (poly)phenol-rich diets as alternatives to drug-based therapies in the prevention, treatment, and management of diabetes. A critical evaluation on the caveats and challenges involve in current experimental cell-based designs and approaches adopted is also discussed.
Collapse
Affiliation(s)
- Sara Rocha
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Olga Oskolkova
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Humboldtstrasse 46/III, Graz, 8010, Austria
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, 4169-007, Portugal
| |
Collapse
|
17
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
18
|
López-Yerena A, Domínguez-López I, Vallverdú-Queralt A, Pérez M, Jáuregui O, Escribano-Ferrer E, Lamuela-Raventós RM. Metabolomics Technologies for the Identification and Quantification of Dietary Phenolic Compound Metabolites: An Overview. Antioxidants (Basel) 2021; 10:846. [PMID: 34070614 PMCID: PMC8229076 DOI: 10.3390/antiox10060846] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the search for natural products with properties that may protect against or slow down chronic and degenerative diseases (e.g., cancer, and cardiovascular and neurodegenerative conditions), phenolic compounds (PC) with benefits for human health have been identified. The biological effects of PC in vivo depend on their bioavailability, intestinal absorption, metabolism, and interaction with target tissues. The identification of phenolic compounds metabolites (PCM), in biological samples, after food ingestion rich in PC is a first step to understand the overall effect on human health. However, their wide range of physicochemical properties, levels of abundance, and lack of reference standards, renders its identification and quantification a challenging task for existing analytical platforms. The most frequent approaches to metabolomics analysis combine mass spectrometry and NMR, parallel technologies that provide an overview of the metabolome and high-power compound elucidation. In this scenario, the aim of this review is to summarize the pre-analytical separation processes for plasma and urine samples and the technologies applied in quantitative and qualitative analysis of PCM. Additionally, a comparison of targeted and non-targeted approaches is presented, not available in previous reviews, which may be useful for future metabolomics studies of PCM.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Center (CCiTUB), University of Barcelona, 08028 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Abstract
Mitochondrial dysfunction is observed in a broad range of human diseases, including rare genetic disorders and complex acquired pathologies. For this reason, there is increasing interest in identifying safe and effective strategies to mitigate mitochondrial impairments. Natural compounds are widely used for multiple indications, and their broad healing properties suggest that several may improve mitochondrial function. This review focuses on (-)-epicatechin, a monomeric flavanol, and its effects on mitochondria. The review summarizes the available data on the effects of acute and chronic (-)-epicatechin supplementation on mitochondrial function, outlines the potential mechanisms involved in mitochondrial biogenesis induced by (-)-epicatechin supplementation and discusses some future therapeutic applications.
Collapse
Affiliation(s)
- Frédéric N Daussin
- Université de Lille, Université d'Artois, Université de Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Elsa Heyman
- Université de Lille, Université d'Artois, Université de Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ontario; and Department of Molecular and Cellular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Sallam IE, Abdelwareth A, Attia H, Aziz RK, Homsi MN, von Bergen M, Farag MA. Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications. Microorganisms 2021; 9:965. [PMID: 33947064 PMCID: PMC8145700 DOI: 10.3390/microorganisms9050965] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Tannins represent a heterogeneous group of high-molecular-weight polyphenols that are ubiquitous among plant families, especially in cereals, as well as in many fruits and vegetables. Hydrolysable and condensed tannins, in addition to phlorotannins from marine algae, are the main classes of these bioactive compounds. Despite their low bioavailability, tannins have many beneficial pharmacological effects, such as anti-inflammatory, antioxidant, antidiabetic, anticancer, and cardioprotective effects. Microbiota-mediated hydrolysis of tannins produces highly bioaccessible metabolites, which have been extensively studied and account for most of the health effects attributed to tannins. This review article summarises the effect of the human microbiota on the metabolism of different tannin groups and the expected health benefits that may be induced by such mutual interactions. Microbial metabolism of tannins yields highly bioaccessible microbial metabolites that account for most of the systemic effects of tannins. This article also uses explainable artificial intelligence to define the molecular signatures of gut-biotransformed tannin metabolites that are correlated with chemical and biological activity. An understanding of microbiota-tannin interactions, tannin metabolism-related phenotypes (metabotypes) and chemical tannin-metabolites motifs is of great importance for harnessing the biological effects of tannins for drug discovery and other health benefits.
Collapse
Affiliation(s)
- Ibrahim E. Sallam
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City 12566, Egypt;
| | - Amr Abdelwareth
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.A.); (R.K.A.)
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.A.); (R.K.A.)
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo 11617, Egypt
| | - Masun Nabhan Homsi
- Helmholtz-Centre for Environmental Research-UFZ GmbH, Department of Molecular Systems Biology, 04318 Leipzig, Germany;
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research-UFZ GmbH, Department of Molecular Systems Biology, 04318 Leipzig, Germany;
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
21
|
Oesterle I, Braun D, Berry D, Wisgrill L, Rompel A, Warth B. Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective. Annu Rev Food Sci Technol 2021; 12:461-484. [PMID: 33351643 DOI: 10.1146/annurev-food-062220-090807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyphenols are generally known for their health benefits and estimating actual exposure levels in health-related studies can be improved by human biomonitoring. Here, the application of newly available exposomic and metabolomic technology, notably high-resolution mass spectrometry, in the context of polyphenols and their biotransformation products, is reviewed. Comprehensive workflows for investigating these important bioactives in biological fluids or microbiome-related experiments are scarce. Consequently, this new era of nontargeted analysis and omic-scale exposure assessment offers a unique chance for better assessing exposure to, as well as metabolism of, polyphenols. In clinical and nutritional trials, polyphenols can be investigated simultaneously with the plethora of other chemicals to which we are exposed, i.e., the exposome, which may interact abundantly and modulate bioactivity. This research direction aims at ultimately eluting into atrue systems biology/toxicology evaluation of health effects associated with polyphenol exposure, especially during early life, to unravel their potential for preventing chronic diseases.
Collapse
Affiliation(s)
- Ian Oesterle
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , , .,Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , ,
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; .,The Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090 Vienna, Austria
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Annette Rompel
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; , ,
| |
Collapse
|
22
|
Oteiza PI, Fraga CG, Galleano M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol 2021; 42:101914. [PMID: 33750648 PMCID: PMC8113027 DOI: 10.1016/j.redox.2021.101914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of the links among flavonoid consumption, mitigation of oxidative stress and improvement of disease in humans has significantly advanced in the last decades. This review used (−)-epicatechin (EC) as an example of dietary flavonoids, and inflammation, endothelial dysfunction/hypertension and insulin resistance/diabetes as paradigms of human disease. In these pathologies, oxidative stress is part of their development and/or their perpetuation. Evidence from both, rodent studies and characterization of mechanisms in cell cultures are encouraging and mostly support indirect antioxidant actions of EC and EC metabolites in endothelial dysfunction and insulin resistance. Human studies also show beneficial effects of EC on these pathologies based on biomarkers of disease. However, there is limited available information on oxidative stress biomarkers and flavonoid consumption to allow establishing conclusive associations. The evolving discovery of metabolites that could serve as reliable markers of intake of specific flavonoids constitutes a powerful tool to link flavonoid consumption to disease and prevention of oxidative stress in human populations. Flavonoid’s metabolism and concentration determine their antioxidant mechanisms. Except for the GI tract, flavonoids are relevant indirect antioxidants in organs and tissues. Flavonoid's health effects are not always linked to biomarkers of oxidative stress. (‒)-Epicatechin mitigates the redox deregulation involved in hypertension/T2D pathogenesis. More human studies will strength links among flavonoids, oxidative stress, and disease.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Álvarez-Cilleros D, López-Oliva ME, Ramos S, Martín MÁ. Preventive effect of cocoa flavanols against glucotoxicity-induced vascular inflammation in the arteria of diabetic rats and on the inflammatory process in TNF-α-stimulated endothelial cells. Food Chem Toxicol 2020; 146:111824. [PMID: 33096196 DOI: 10.1016/j.fct.2020.111824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
Hyperglycaemia induces a vascular inflammatory process that is a critical event in cardiovascular disease in type 2 diabetes. Cocoa and its flavanols have been widely investigated for its antioxidant and anti-inflammatory properties, and several clinical and pre-clinical studies support their vascular benefits. However, the effects of cocoa flavanols on vascular inflammation in diabetes remains to be elucidated. Herein, we evaluated the anti-inflammatory effect of a cocoa-rich diet on the aortas of Zucker diabetic fatty (ZDF) rats. Moreover, the potential role of flavanol-derived colonic metabolites to modulate the adhesion and inflammatory processes were also evaluated using TNF-α-stimulated endothelial cells. Results demonstrate that cocoa attenuates the levels of phospho-p65-nuclear factor-kappaB (NF-κB) and the expression of inflammatory factors including intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase in the aortas of ZDF rats. Experiments with endothelial cells further confirm that a mix of flavanol-derived colonic metabolites effectively down-regulate the levels of p-p65-NF-κB and the cell adhesion molecules ICAM-1 and VCAM-1, preventing thus the increase of monocyte-endothelial adhesion induced by TNF-α. These novel data provide the first evidence of the relevant role of cocoa and their flavanol-derived metabolites to avoid the development of endothelial inflammation and diabetic complications.
Collapse
Affiliation(s)
- David Álvarez-Cilleros
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Elvira López-Oliva
- Departamento de Fisiología. Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sonia Ramos
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Ángeles Martín
- Departamento de Metabolismo y Nutrición, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
24
|
Williamson G, Sheedy K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020; 12:E3135. [PMID: 33066504 PMCID: PMC7602234 DOI: 10.3390/nu12103135] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR) is apparent when tissues responsible for clearing glucose from the blood, such as adipose and muscle, do not respond properly to appropriate signals. IR is estimated based on fasting blood glucose and insulin, but some measures also incorporate an oral glucose challenge. Certain (poly)phenols, as supplements or in foods, can improve insulin resistance by several mechanisms including lowering postprandial glucose, modulating glucose transport, affecting insulin signalling pathways, and by protecting against damage to insulin-secreting pancreatic β-cells. As shown by intervention studies on volunteers, the most promising candidates for improving insulin resistance are (-)-epicatechin, (-)-epicatechin-containing foods and anthocyanins. It is possible that quercetin and phenolic acids may also be active, but data from intervention studies are mixed. Longer term and especially dose-response studies on mildly insulin resistant participants are required to establish the extent to which (poly)phenols and (poly)phenol-rich foods may improve insulin resistance in compromised groups.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | |
Collapse
|
25
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
26
|
AlSheikh HMA, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, Haq QMR. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel) 2020; 9:E480. [PMID: 32759771 PMCID: PMC7460449 DOI: 10.3390/antibiotics9080480] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022] Open
Abstract
The unprecedented use of antibiotics that led to development of resistance affect human health worldwide. Prescription of antibiotics imprudently and irrationally in different diseases progressed with the acquisition and as such development of antibiotic resistant microbes that led to the resurgence of pathogenic strains harboring enhanced armors against existing therapeutics. Compromised the treatment regime of a broad range of antibiotics, rise in resistance has threatened human health and increased the treatment cost of diseases. Diverse on metabolic, genetic and physiological fronts, rapid progression of resistant microbes and the lack of a strategic management plan have led researchers to consider plant-derived substances (PDS) as alternative or in complementing antibiotics against the diseases. Considering the quantitative characteristics of plant constituents that attribute health beneficial effects, analytical procedures for their isolation, characterization and phytochemical testing for elucidating ethnopharmacological effects has being worked out for employment in the treatment of different diseases. With an immense potential to combat bacterial infections, PDSs such as polyphenols, alkaloids and tannins, present a great potential for use, either as antimicrobials or as antibiotic resistance modifiers. The present study focuses on the mechanisms by which PDSs help overcome the surge in resistance, approaches for screening different phytochemicals, methods employed in the identification of bioactive components and their testing and strategies that could be adopted for counteracting the lethal consequences of multidrug resistance.
Collapse
Affiliation(s)
- Hana Mohammed Al AlSheikh
- Department of Prosthetic Dental Sciences, College of Dentistry, Kind Saud University, Riyadh P.O. BOX 145111, Saudi Arabia;
| | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah P.O. BOX 80200, Saudi Arabia;
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | | |
Collapse
|
27
|
Cremonini E, Iglesias DE, Kang J, Lombardo GE, Mostofinejad Z, Wang Z, Zhu W, Oteiza PI. (-)-Epicatechin and the comorbidities of obesity. Arch Biochem Biophys 2020; 690:108505. [PMID: 32679195 DOI: 10.1016/j.abb.2020.108505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Obesity has major adverse consequences on human health contributing to the development of, among others, insulin resistance and type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, altered behavior and cognition, and cancer. Changes in dietary habits and lifestyle could contribute to mitigate the development and/or progression of these pathologies. This review will discuss current evidence on the beneficial actions of the flavan-3-ol (-)-epicatechin (EC) on obesity-associated comorbidities. These benefits can be in part explained through EC's capacity to mitigate several common events underlying the development of these pathologies, including: i) high circulating levels of glucose, lipids and endotoxins; ii) chronic systemic inflammation; iii) tissue endoplasmic reticulum and oxidative stress; iv) insulin resistance; v) mitochondria dysfunction and vi) dysbiosis. The currently known underlying mechanisms and cellular targets of EC's beneficial effects are discussed. While, there is limited evidence from human studies supplementing with pure EC, other studies involving cocoa supplementation in humans, pure EC in rodents and in vitro studies, support a potential beneficial action of EC on obesity-associated comorbidities. This evidence also stresses the need of further research in the field, which would contribute to the development of human dietary strategies to mitigate the adverse consequences of obesity.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Jiye Kang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Giovanni E Lombardo
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zahra Mostofinejad
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Ziwei Wang
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Wei Zhu
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
28
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
29
|
Bo S, Fadda M, Fedele D, Pellegrini M, Ghigo E, Pellegrini N. A Critical Review on the Role of Food and Nutrition in the Energy Balance. Nutrients 2020; 12:E1161. [PMID: 32331288 PMCID: PMC7231187 DOI: 10.3390/nu12041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The mass media has increasingly frequently suggested to the general population that specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure, thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative Index to Nursing and Allied Health Literature database, and a search strategy was performed by using database-specific subject headings and keywords. We found that available scientific evidence on these topics is scarce, and that the limited number of available studies often have poor methodological quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake, use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present, it is not possible to identify a food or a diet with a significant impact on human energy expenditure.
Collapse
Affiliation(s)
- Simona Bo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Maurizio Fadda
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Debora Fedele
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
30
|
Barrera-Reyes PK, de Lara JCF, González-Soto M, Tejero ME. Effects of Cocoa-Derived Polyphenols on Cognitive Function in Humans. Systematic Review and Analysis of Methodological Aspects. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:1-11. [PMID: 31933112 DOI: 10.1007/s11130-019-00779-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of cocoa-derived polyphenols on cognitive functions have been analyzed through numerous studies using different interventions (doses, vehicles, time frame, cognition tests, and characteristics of participants) which may hamper the interpretation and comparison of findings across investigations. Thus, a systematic review was conducted to analyze the effects of cocoa-derived polyphenols intake on human cognition and discuss the methodological aspects that may contribute to the heterogeneity of findings. Randomized clinical trials evaluating the effect of cocoa polyphenols on cognitive function in healthy subjects were selected according to selection criteria. Twelve studies were selected. Quality was assessed according to the Cochrane risk for bias tool. The most common risk for bias was the lack of information about the sequence generation process. Effects on cognitive function were observed after consumption of 50 mg/day of (-)-epicatechin and in studies using a component-matched placebo and cocoa as the polyphenol vehicle given to healthy adults (18-50 years). Memory (n = 5) and executive function (n = 4) showed the most significant effects with medium and large effect sizes after intake of intermediate doses of cocoa flavanols (500-750 mg/day). Overall, this set of studies suggest a positive effect of cocoa polyphenols on memory and executive function. However, the available evidence is very diverse and future studies may address the identified sources of variation to strengthen current evidence on this promising field.
Collapse
Affiliation(s)
- Paloma K Barrera-Reyes
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico
| | - Josué Cortés-Fernández de Lara
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico
| | - Melissa González-Soto
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico
| | - M Elizabeth Tejero
- Laboratory of Nutrigenomics and Nutrigenetics, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Col Arenal Tepepan, CP 016000, Ciudad de México, DF, Mexico.
| |
Collapse
|
31
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
32
|
LC-MS/MS based molecular networking approach for the identification of cocoa phenolic metabolites in human urine. Food Res Int 2020; 132:109119. [PMID: 32331646 DOI: 10.1016/j.foodres.2020.109119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modify their structures, producing novel gut flora metabolites associated with numerous health benefits. Traditional mass spectrometry (MS) based approaches for assessing dietary exposure of cocotea (cocoa, coffee and tea) products provided very little information about the modification and fate of dietary phenolics after ingestion, mainly due to limitation of complex sample nature and their data analyses. Mass spectrometry techniques are well-suited to a high-throughput characterization of natural products, however, analyzing MS based data of complex biological matrix is still considered a challenge. In order to overcome such limitations and simplify the analysis of complex MS data, a cocotea based human trial was conducted where MS based molecular networking approach was implemented. To demonstrate the utility of this approach in one of the specific cocotea diets, we have applied it to a diverse collection of human (n = 15) urine samples, who consumed cocoa rich in polyphenols over a 48-h period. This approach illustrated the power of the new strategy, allowing the rapid identification of new analogues of cocoa metabolites after human consumption. Analysis of human urine samples after cocoa consumption revealed (by assignment of unknown metabolites based on the network similarities) that monomeric flavanols are mainly absorbed and transformed directly into their glucuronide and sulfated moieties. Subsequently, the hydroxy and methoxy phenyl-g-velerolactone as well as their smaller metabolites (such as hydroxyphenyl valeric acids, hydroxy and methoxy phenyl propionic acids and their derivates) are indicative of bacterial metabolism of cocoa major flavanols. For the first time, our study exemplifies and highlight the implementation of MS based molecular networking approach in illustrating the tracking of various structural motifs of ingested cocoa phenolics in human based study.
Collapse
|
33
|
Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol Res 2020; 152:104625. [DOI: 10.1016/j.phrs.2019.104625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
34
|
Pleiotropic Biological Effects of Dietary Phenolic Compounds and their Metabolites on Energy Metabolism, Inflammation and Aging. Molecules 2020; 25:molecules25030596. [PMID: 32013273 PMCID: PMC7037231 DOI: 10.3390/molecules25030596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.
Collapse
|
35
|
Low Plasma Appearance of (+)-Catechin and (-)-Catechin Compared with Epicatechin after Consumption of Beverages Prepared from Nonalkalized or Alkalized Cocoa-A Randomized, Double-Blind Trial. Nutrients 2020; 12:nu12010231. [PMID: 31963163 PMCID: PMC7020035 DOI: 10.3390/nu12010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Flavan-3-ols are claimed to be responsible for the cardioprotective effects of cocoa. Alkalized cocoa powder (ALC), commonly used for many non-confectionary products, including beverages, provides less (+)-catechin, (−)-epicatechin, and procyanidins and more (−)-catechin than nonalkalized cocoa powder (NALC). This may affect the plasma appearance of monomeric flavan-3-ol stereoisomers after consumption of NALC vs. ALC. Within a randomized, crossover trial, 12 healthy nonsmokers ingested a milk-based cocoa beverage providing either NALC or ALC. Blood was collected before and within 6 h postconsumption. (+)-Catechin, (−)-catechin, and epicatechin were analyzed in plasma by HPLC as sum of free and glucuronidated metabolites. Pharmacokinetic parameters were obtained by a one-compartment model with nonlinear regression methods. For epicatechin in plasma, total area under the curve within 6 h postconsumption (AUC0–6h) and incremental AUC0–6h were additionally calculated by using the linear trapezoidal method. After consumption of NALC and ALC, (+)-catechin and (−)-catechin were mostly not detectable in plasma, in contrast to epicatechin. For epicatechin, total AUC0–6h was different between both treatments, but not incremental AUC0–6h. Most kinetic parameters were similar for both treatments, but they varied strongly between individuals. Thus, epicatechin is the main monomeric flavan-3-ol in plasma after cocoa consumption. Whether NALC should be preferred against ALC due to its higher (−)-epicatechin content remains unclear with regard to the results on incremental AUC0–6h. Future studies should investigate epicatechin metabolites in plasma for a period up to 24 h in a larger sample size, taking into account genetic polymorphisms in epicatechin metabolism and should consider all metabolites to understand inter-individual differences after cocoa intake.
Collapse
|
36
|
Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36:714-752. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.
Collapse
Affiliation(s)
- Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: A systematic review and meta-analysis of interventional studies. Complement Ther Med 2019; 48:102240. [PMID: 31987247 DOI: 10.1016/j.ctim.2019.102240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
A number of studies have examined the beneficial effects of cocoa consumption on markers of oxidative stress in different population, however, the findings have been inconclusive. Herein, we systematically reviewed available interventional studies to elucidate the overall impact of cocoa consumption on markers of oxidative stress among adult population. PubMed, Cochrane's library, Science Direct, Scopus, Google scholar and ISI web of science databases were searched for all available literature until March 2019 for relevant studies. The Jadad scale was used to assess the quality of each study. A total of 48 studies out of 1402 met the inclusion criteria and were included in our systematic review and 16 of them were entered in meta-analysis. The pooled estimate from the random-effect model showed cocoa consumption significantly reduced malondialdehyde (SMD: -0.71; 95 % CI, -1.41 to -0.01; P = 0.048) and 8-iso-prostaglandin F2α (WMD: -43.76; 95 % CI, -76.25 to -11.28; P = 0.008) but not the other markers of oxidative stress. Our findings support the concept that cocoa consumption plays an important role in the human metabolic pathway through reducing the oxidative stress. In order to draw a firm link between cocoa and oxidative stress, more clinical trials with adequate sample size and sufficient follow-up periods are warranted.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
38
|
(-)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol 2019; 173:113699. [PMID: 31756325 DOI: 10.1016/j.bcp.2019.113699] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Ingestion of (-)-epicatechin flavanols reverses endothelial dysfunction by increasing flow mediated dilation and by reducing vascular inflammation and oxidative stress, monocyte-endothelial cell adhesion and transendothelial monocyte migration in vitro and in vivo. This involves multiple changes in gene expression and epigenetic DNA methylation by poorly understood mechanisms. By in silico docking and molecular modeling we demonstrate favorable binding of different glucuronidated, sulfated or methylated (-)-epicatechin metabolites to different DNA methyltransferases (DNMT1/DNMT3A). In favor of this model, genome-wide DNA methylation profiling of endothelial cells treated with TNF and different (-)-epicatechin metabolites revealed specific DNA methylation changes in gene networks controlling cell adhesion-extravasation endothelial hyperpermeability as well as gamma-aminobutyric acid, renin-angiotensin and nitric oxide hypertension pathways. Remarkably, blood epigenetic profiles of an 8 weeks intervention with monomeric and oligomeric flavanols (MOF) including (-)-epicatechin in male smokers revealed individual epigenetic gene changes targeting similar pathways as the in vitro exposure experiments in endothelial cells. Furthermore, epigenetic changes following MOF diet intervention oppose atherosclerosis associated epigenetic changes. In line with biological data, the individual epigenetic response to a MOF diet is associated with different vascular health parameters (glutathione peroxidase 1 and endothelin-1 expression, acetylcholine-mediated microvascular response), in part involving systemic shifts in blood immune cell types which reduce the neutrophil-lymphocyte ratio (NLR). Altogether, our study suggests that different (-)-epicatechin metabolites promote vascular health in part via epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation.
Collapse
|
39
|
Flavanol Bioavailability in Two Cocoa Products with Different Phenolic Content. A Comparative Study in Humans. Nutrients 2019; 11:nu11071441. [PMID: 31247980 PMCID: PMC6683251 DOI: 10.3390/nu11071441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Cocoa has beneficial health effects partly due to its high flavanol content. This study was aimed at assessing the absorption and metabolism of polyphenols in two soluble cocoa products: a conventional (CC) and a flavanol-rich product (CC-PP). A crossover, randomized, blind study was performed in 13 healthy men and women. On two different days, after an overnight fast, volunteers consumed one serving of CC (15 g) or CC-PP (25 g) in 200 mL of semi-skimmed milk containing 19.80 mg and 68.25 mg of flavanols, respectively. Blood and urine samples were taken, before and after CC and CC-PP consumption, and analyzed by high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QToF-MS). Up to 10 and 30 metabolites were identified in plasma and urine, respectively. Phase II derivatives of epicatechin were identified with kinetics compatible with small intestine absorption, although the most abundant groups of metabolites were phase II derivatives of phenyl-γ-valerolactone and phenylvaleric acid, formed at colonic level. 5-(4′-Hydroxyphenyl)-γ-valerolactone-sulfate could be a sensitive biomarker of cocoa flavanol intake. CC and CC-PP flavanols showed a dose-dependent absorption with a recovery of 35%. In conclusion, cocoa flavanols are moderately bioavailable and extensively metabolized, mainly by the colonic microbiota.
Collapse
|
40
|
Mayorga-Gross AL, Esquivel P. Impact of Cocoa Products Intake on Plasma and Urine Metabolites: A Review of Targeted and Non-Targeted Studies in Humans. Nutrients 2019; 11:E1163. [PMID: 31137636 PMCID: PMC6566337 DOI: 10.3390/nu11051163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
Cocoa is continuously drawing attention due to growing scientific evidence suggesting its effects on health. Flavanols and methylxanthines are some of the most important bioactive compounds present in cocoa. Other important bioactives, such as phenolic acids and lactones, are derived from microbial metabolism. The identification of the metabolites produced after cocoa intake is a first step to understand the overall effect on human health. In general, after cocoa intake, methylxanthines show high absorption and elimination efficiencies. Catechins are transformed mainly into sulfate and glucuronide conjugates. Metabolism of procyanidins is highly influenced by the polymerization degree, which hinders their absorption. The polymerization degree over three units leads to biotransformation by the colonic microbiota, resulting in valerolactones and phenolic acids, with higher excretion times. Long term intervention studies, as well as untargeted metabolomic approaches, are scarce. Contradictory results have been reported concerning matrix effects and health impact, and there are still scientific gaps that have to be addresed to understand the influence of cocoa intake on health. This review addresses different cocoa clinical studies, summarizes the different methodologies employed as well as the metabolites that have been identified in plasma and urine after cocoa intake.
Collapse
Affiliation(s)
- Ana Lucía Mayorga-Gross
- Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica.
| | - Patricia Esquivel
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica.
| |
Collapse
|
41
|
Oracz J, Nebesny E, Zyzelewicz D, Budryn G, Luzak B. Bioavailability and metabolism of selected cocoa bioactive compounds: A comprehensive review. Crit Rev Food Sci Nutr 2019; 60:1947-1985. [PMID: 31124371 DOI: 10.1080/10408398.2019.1619160] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cocoa beans and their co-products are a rich source of beneficial compounds for health promotion, including polyphenols and methylxanthines. Knowledge of bioavailability and in vivo bioactivity of these phytochemicals is crucial to understand their role and function in human health. Therefore, many studies concerning bioavailability and bioactivity of cocoa bioactive compound have been done in both in vivo animal models and in humans. This critical review comprehensively summarizes the existing knowledge about the bioavailability and the major metabolic pathways of selected cocoa bioactive compounds (i.e. monomeric flavan-3-ols, procyanidins, anthocyanins, flavonols, phenolic acids, N-phenylpropenoyl-L-amino acids, stilbenes, and methylxanthines). The compiled results indicated that many of these compounds undergo extensive metabolism prior to absorption. Different factors have been suggested to influence the bioavailability of polyphenols and methylxanthines among them the role of gut microbiota, structure of these compounds, food matrix and occurrence of other substances were the most often considered. Aforementioned factors decided about the site where these bioactive compounds are digested and absorbed from the alimentary tract, as well as the pathway by which they are metabolized. These factors also determine of the type of transport through the intestine barrier (passive, involving specific enzymes or mediated by specific transporters) and their metabolic path and profile.
Collapse
Affiliation(s)
- Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Dorota Zyzelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Grazyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Boguslawa Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
42
|
Alañón ME, Castle SM, Serra G, Lévèques A, Poquet L, Actis-Goretta L, Spencer JPE. Acute study of dose-dependent effects of (-)-epicatechin on vascular function in healthy male volunteers: A randomized controlled trial. Clin Nutr 2019; 39:746-754. [PMID: 31014775 DOI: 10.1016/j.clnu.2019.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS There is convincing clinical evidence to suggest that flavanol-containing foods/beverages are capable of inducing improvements in human vascular function. However, whilst (-)-epicatechin has been tested for efficacy, a full dose-dependency has yet to be established, particularly at doses below 1 mg/kg BW. The current study examined the dose-dependent effects of (-)-epicatechin on human vascular function with concurrent measurement of plasma (-)-epicatechin metabolites and levels of circulating nitrite and nitrate species, NOx. METHODS An acute, double-blind, placebo-controlled, crossover intervention trial was conducted in 20 healthy males with 4 treatment arms: water-based (-)-epicatechin (0.1, 0.5 and 1.0 mg/kg BW) and a water only as control. Vascular function was assessed by flow-mediated dilatation (FMD) measured at the brachial artery, laser Doppler imaging with iontophoresis (LDI) at the subcutaneous capillaries of the forearm (response to Ach and SNP) and peripheral blood pressure (BP) at baseline, 1, 2, 4 and 6 h post-intervention. Plasma analysis of epicatechin metabolites was conducted by LC-MS and circulating plasma of nitrite and nitrate species were performed using an HPLC-based system (ENO-30). RESULTS Significant increases in % FMD were found to occur at 1 and 2 h following intake of 1 mg/kg BW, and at 2 h for the 0.5 mg/kg BW intake. There were no significant changes in LDI or BP at any time-points or intake levels. Increases in FMD over the 6 h timeframe were closely paralleled by the appearance of total plasma (-)-epicatechin metabolites. Non-significant changes in circulating NOx was observed. CONCLUSIONS Our data add further evidence that (-)-epicatechin is a causal vasoactive molecule within flavanol-containing foods/beverages. In addition, we show for the first time that intake levels as low as 0.5 mg/kg BW are capable of inducing acute improvements in vascular function (FMD) in healthy volunteers.
Collapse
Affiliation(s)
- M E Alañón
- Regional Institute for Applied Scientific Research (IRICA), Area of Food Science and Technology, University of Castilla-La Mancha, Avd. Camilo José Cela 10, 13071, Ciudad Real, Spain; Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, PO Box 226, RG2 6AP, Reading, United Kingdom.
| | - S M Castle
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, PO Box 226, RG2 6AP, Reading, United Kingdom
| | - G Serra
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, PO Box 226, RG2 6AP, Reading, United Kingdom
| | - A Lévèques
- Nestlé Research, 1026 Lausanne, Switzerland
| | - L Poquet
- Nestlé Research, 1026 Lausanne, Switzerland
| | | | - J P E Spencer
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, PO Box 226, RG2 6AP, Reading, United Kingdom
| |
Collapse
|
43
|
Jaramillo Flores ME. Cocoa Flavanols: Natural Agents with Attenuating Effects on Metabolic Syndrome Risk Factors. Nutrients 2019; 11:nu11040751. [PMID: 30935075 PMCID: PMC6520706 DOI: 10.3390/nu11040751] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/30/2022] Open
Abstract
The interest in cacao flavanols is still growing, as bioactive compounds with potential benefits in the prevention of chronic diseases associated with inflammation, oxidative stress and metabolic disorders. Several analytical methodologies support that the flavanols in cacao-derived products can be absorbed, have bioactive properties, and thus can be responsible for their beneficial effects on human health. However, it must be considered that their biological actions and underlying molecular mechanisms will depend on the concentrations achieved in their target tissues. Based on the antioxidant properties of cacao flavanols, this review focuses on recent advances in research regarding their potential to improve metabolic syndrome risk factors. Additionally, it has included other secondary plant metabolites that have been investigated for their protective effects against metabolic syndrome. Studies using laboratory animals or human subjects represent strong available evidence for biological effects of cacao flavanols. Nevertheless, in vitro studies are also included to provide an overview of these phytochemical mechanisms of action. Further studies are needed to determine if the main cacao flavanols or their metabolites are responsible for the observed health benefits and which are their precise molecular mechanisms.
Collapse
Affiliation(s)
- Maria Eugenia Jaramillo Flores
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas-Instituto Politecnico Nacional, Wilfrido Massieu s/n esq, Manuel Stampa, Unidad Profesional Adolfo López Mateos, Alcaldía G. A. Madero, Ciudad de México CP 07738, Mexico.
| |
Collapse
|
44
|
Zhao D, Simon JE, Wu Q. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Crit Rev Food Sci Nutr 2019; 60:597-625. [PMID: 30614258 DOI: 10.1080/10408398.2018.1546668] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aging of populations worldwide is driving greater demands for dietary polyphenols which have been recognized as promising prophylactic and/or therapeutic agents in the context of neurodegeneration, and are ubiquitously present in plant-based diets. In particular, grape-derived products encompass a wide array of phenolic compounds purported with multiple health benefits including neuroprotective efficacy. Despite the increasing preclinical and clinical evidence demonstrating high potential of grape polyphenol (GPP)-rich botanicals in preventing and attenuating diverse neurodegenerative disorders, the limited bioavailability of GPPs, especially in the brain, generates questions as to their applications and effectiveness in neuroprotection. To address this issue, significant research efforts have been made to enhance oral bioavailability of GPPs via application of novel strategies. This review highlights some critical issues related to the bioavailability and neuroprotective efficacy of GPPs and GPP-rich botanicals. The representative bioavailability-enhancing strategies are critically reviewed to provide practical solutions for augmenting the bioefficacy of GPP-rich botanicals. Synergistic applications of encapsulation techniques (for physiochemical protection and bypassing xenobiotic metabolism) and dietary intervention strategies involving modulation of gut microbiota (for generating more bioavailable phenolic metabolites) appear promising, and may substantially enhance the bioefficacy, especially the neuroprotective efficacy, of orally consumed GPPs.
Collapse
Affiliation(s)
- Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
45
|
Abstract
Based on many cell culture, animal and human studies, it is well known that the most challenge issue for developing polyphenolics as chemoprevention or anti-diabtetic agents is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large inter-individual variations in clinical trials. This review intends to highlight the unscientific evaluation on the basis of the published data regarding in vitro bioactivity of polyphenols, which may sometimes mislead the researchers and to conclude that: first, bio-accessibilities values obtained in the studies for polyphenols should be highly reconsidered in accordance with the abundant newly identified circulating and excreted metabolites, with a particular attention to colonic metabolic products which are obviously contributing much more than expected to their absorptions; second, it is phenolic metabolites, which are formed in the small intestine and hepatic cells,low molecular weight catabolic products of the colonic microflora to travel around the human body in the circulatory system or reach body tissues to elicit bioactive effects. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
Collapse
Affiliation(s)
- Hui Teng
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Lei Chen
- a College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| |
Collapse
|
46
|
Wang Y, Feltham BA, Suh M, Jones PJ. Cocoa flavanols and blood pressure reduction: Is there enough evidence to support a health claim in the United States? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Cremonini E, Fraga CG, Oteiza PI. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic Biol Med 2019; 130:478-488. [PMID: 30447350 DOI: 10.1016/j.freeradbiomed.2018.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 01/07/2023]
Abstract
Emerging evidence supports a beneficial action of the flavan-3-ol (-)-epicatechin (EC) on insulin sensitivity and potential impact on the development/progression of type 2 diabetes (T2D). In humans, supplementation with EC-rich foods, extracts, and pure EC improves insulin sensitivity and glucose tolerance in normal weight, overweight, obese and T2D individuals. These effects of EC are also observed in rodent models of diet-induced obesity and T2D. The events involved in the development of insulin resistance and T2D are multiple and interrelated. EC has been shown to inhibit inflammation, oxidative and endoplasmic reticulum stress, to modulate mitochondrial biogenesis and function, and to regulate events in the gastrointestinal tract and the pancreas that impact glucose homeostasis. A downregulation of oxidant production, particularly through direct inhibition or suppression of NADPH oxidase expression, and of redox sensitive signals (NF-κB, JNK1/2) that inhibit the insulin pathway, appear to be central to the beneficial actions of EC on insulin sensitivity. Overall, EC seems to have a positive role in the regulation of glucose homeostasis, however definitive answers on its importance for the management of T2D will depend on further clinical and mechanistic studies.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
48
|
Wang L, Sun R, Zhang Q, Luo Q, Zeng S, Li X, Gong X, Li Y, Lu L, Hu M, Liu Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol 2018; 15:151-165. [PMID: 30583703 DOI: 10.1080/17425255.2019.1559815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Polyphenols, which are widely distributed in plants and the human diets, are known to have numerous biological activities. However, the low bioavailability of polyphenols is mediated by coupled metabolic pathways. Areas covered: The key role of the interplay between drug metabolic enzymes (DMEs) and efflux transporters (ETs), nuclear receptors (NRs), and intestinal microflora in the disposition of polyphenols is summarized. Expert opinion: ETs are shown to act as a 'revolving door', facilitating and/or controlling cellular polyphenol glucuronide/sulfate excretion. Elucidating the mechanisms underlying the glucuronidation/sulfation-transport interplay and structure-activity relationships (SAR) of glucuronide/sulfate efflux by an ET is important. Some new physiologically based pharmacokinetic (PBPK) models could be developed to predict the interplay between glucuronides/sulfates and ETs. Additionally, the combined actions of uridine-5'-diphosphate glucuronosyltransferases, ETs, and intestinal microflora/enterocyte-derived β-glucuronidase enable triple recycling (local, enteric, and enterohepatic recycling), thereby increasing the residence time of polyphenols and their glucuronides in the local intestine and liver. Further studies are necessary to explore these recycling mechanisms and interactions between polyphenols and the intestinal microbiota. Since NRs govern the inducible expression of target genes that encode DMEs and ETs. Determination of the regulation mechanism mediated by NRs using transgenic and knockout animals is still needed.
Collapse
Affiliation(s)
- Liping Wang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Rongjin Sun
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qisong Zhang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qing Luo
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Sijing Zeng
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xiaoyan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xia Gong
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Yuhuan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Linlin Lu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Ming Hu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Zhongqiu Liu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,b State Key Laboratory of Quality Research in Chinese Medicine , Macau University of Science and Technology , Macau , SAR , China
| |
Collapse
|
49
|
Schwarz NA, Blahnik ZJ, Prahadeeswaran S, McKinley-Barnard SK, Holden SL, Waldhelm A. (-)-Epicatechin Supplementation Inhibits Aerobic Adaptations to Cycling Exercise in Humans. Front Nutr 2018; 5:132. [PMID: 30622947 PMCID: PMC6308990 DOI: 10.3389/fnut.2018.00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023] Open
Abstract
The purpose of the study was to determine if cycling exercise combined with (–)-epicatechin supplementation was more effective at increasing training adaptations than cycling combined with a placebo. Blood and muscle samples were obtained at rest before and after training to determine the effects of (–)-epicatechin supplementation on total serum antioxidant capacity, skeletal muscle mitochondrial protein content, and skeletal muscle myostatin gene expression. Participants (n = 20) completed two testing sessions separated by 4 weeks of cycle training, with supplementation of 100 mg (200 mg total daily) of (–)-epicatechin or a placebo, twice daily. Data were analyzed using a two-way mixed model ANOVA for each variable and the alpha level was set at p ≤ 0.05. A significant increase was observed for time for relative peak anaerobic power (p < 0.01), relative anaerobic capacity (p < 0.01), and fatigue index (p < 0.01). A significant increase was observed for time for absolute peak VO2 (p < 0.01) and peak power output obtained during the peak VO2 test (p < 0.01). A significant interaction between group and time for relative peak VO2 was observed (p = 0.04). Relative peak VO2 significantly increased over time in the placebo group (p < 0.01), but not in the (–)-epicatechin group (p = 0.21). A significant increase was observed for time for total serum antioxidant capacity (p = 0.01). No interaction or main effect of time was observed for myostatin (p > 0.05). Likewise, no interaction or main effect of time was observed for cytochrome C or citrate synthase (p > 0.05). A significant interaction effect was observed for succinate dehydrogenase (SDH; p = 0.02). SDH content increased significantly for the placebo group (p = 0.03, partial η2 = 0.59), but not for the (–)-epicatechin group (p = 0.81). Further, whereas no difference existed between the groups for SDH at baseline (p = 0.23), SDH content was significantly greater in the placebo group at the post time point (p = 0.01). Results indicate that (–)-epicatechin supplementation does not affect myostatin gene expression or anaerobic training adaptations but inhibits aerobic and mitochondrial SDH adaptations to cycle exercise training.
Collapse
Affiliation(s)
- Neil A Schwarz
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Zachary J Blahnik
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Srihari Prahadeeswaran
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Sarah K McKinley-Barnard
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Shelley L Holden
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Andy Waldhelm
- Department of Physical Therapy, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
50
|
Kerimi A, Williamson G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid Redox Signal 2018; 29:1633-1659. [PMID: 28826224 PMCID: PMC6207159 DOI: 10.1089/ars.2017.7086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for mechanistic studies, with the results extrapolated to tissues in vivo. Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols (epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could retard cancer progression in vivo in animal models as well as in tumor cell models. CRITICAL ISSUES Extrapolation from in vitro and animal models to humans is not straightforward given both the extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well as the heterogeneous metabolism of different tumors. FUTURE DIRECTIONS Comparison of data from studies on primary cells or in vivo are essential not only to validate results obtained from cultured cell models, but also to highlight whether any differences may be further exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool to study the effects of flavonoids, provided that the limitations of each model are understood and taken into account in interpretation of the data.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| |
Collapse
|