1
|
Joy MN, Kovalev IS, Shabunina OV, Santra S, Zyryanov GV. Facile One-Pot Conversion of (poly)phenols to Diverse (hetero)aryl Compounds by Suzuki Coupling Reaction: A Modified Approach for the Synthesis of Coumarin- and Equol-Based Compounds as Potential Antioxidants. Antioxidants (Basel) 2024; 13:1198. [PMID: 39456452 PMCID: PMC11504026 DOI: 10.3390/antiox13101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
A series of 16 (hetero)aryl compounds based on coumarin and equol has been efficiently synthesized by exploring the palladium-catalyzed Suzuki cross-coupling reactions. Polyphenol based on coumarin (4-methyl-7-hydroxy coumarin) was initially converted to corresponding coumarin imidazylate and then subjected to Suzuki coupling reaction with 4-methoxyphenylboronic acid to obtain the coupled product. This modified approach was later developed into a one-pot methodology by directly reacting the polyphenol with 1,1-sulfonyldiimidazole (SDI) and boronic acid in situ to obtain the Suzuki coupled product in one step. Moreover, an array of (poly)phenols based on coumarin and equol were later converted to diverse (hetero)aryl compounds by this optimized step-economic protocol. The synthesized compounds were then subjected to the screening of their potential antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In our investigation, the compounds 4ah, 4eh, 4gh and 4hh exhibited promising antioxidant potential when compared to the reference standard, butylated hydroxytoluene (BHT). Structure activity relationship (SAR) studies revealed the importance of the presence of electron-donating substituents in enhancing the antioxidant activity of the synthesized compounds.
Collapse
Affiliation(s)
- Muthipeedika Nibin Joy
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Igor S. Kovalev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Olga V. Shabunina
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Sougata Santra
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
| | - Grigory V. Zyryanov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, Yekaterinburg 620002, Russia; (I.S.K.); (O.V.S.); (S.S.); (G.V.Z.)
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg 620219, Russia
| |
Collapse
|
2
|
Somacal S, Schüler da Silva LC, de Oliveira J, Emanuelli T, Fabro de Bem A. Bixin, a New Atheroprotective Carotenoid Candidate, Prevents oxLDL-Induced Cytotoxicity and Mitochondrial Dysfunction in Macrophages: Involvement of the Nrf2 and NF-κB Pathways. Foods 2024; 13:2002. [PMID: 38998509 PMCID: PMC11241531 DOI: 10.3390/foods13132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) and its toxicity in the arterial wall have been implicated in atherosclerosis. This study aimed to investigate the mechanisms underlying the atheroprotective effect of bixin, a carotenoid obtained from the seeds of the tropical plant Bixa orellana, on Cu2+-induced LDL oxidation and oxLDL-mediated effects in J774A.1 macrophage cells. Bixin's effects were compared to those of lycopene, a carotenoid widely studied for its cardiovascular protective effects. LDL was isolated from human plasma, incubated with bixin or lycopene (positive control), and subjected to oxidation with CuSO4. Afterward, bixin or lycopene was incubated with J774A.1 macrophage cells and exposed to oxLDL. The levels of ROS, RNS, GSH, nitrite, mitochondrial function, and foam cell formation, as well as the expression of proteins related to the antioxidant and inflammatory status, were evaluated. The effect of bixin in inhibiting in vitro human-isolated LDL oxidation was more potent (5-6-fold) than that of lycopene. Bixin pretreatment reduced the atherogenic signaling triggered by oxLDL in the macrophages, namely the generation of reactive species, disturbance of nitric oxide homeostasis, mitochondrial dysfunction, and foam cell formation. The cytoprotective effects of bixin were accompanied by the upregulation of Nrf2 and the downregulation of the NF-kB pathways. Lycopene showed the same protective effect as bixin, except that it did not prevent mitochondrial dysfunction. The efficient performance of bixin makes it an ideal candidate for further trials as a new nutraceutical compound for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Sabrina Somacal
- Graduate Program on Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | | | - Jade de Oliveira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-000, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetic and Metabolism, Institute of Biological Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
3
|
Parwani K, Patel F, Bhagwat P, Dilip H, Patel D, Thiruvenkatam V, Mandal P. Swertiamarin mitigates nephropathy in high-fat diet/streptozotocin-induced diabetic rats by inhibiting the formation of advanced glycation end products. Arch Physiol Biochem 2024; 130:136-154. [PMID: 34657540 DOI: 10.1080/13813455.2021.1987478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT The molecular mechanism by which Swertiamarin (SM) prevents advanced glycation end products (AGEs) induced diabetic nephropathy (DN) has never been explored. OBJECTIVE To evaluate the effect of SM in preventing the progression of DN in high fat diet-streptozotocin-induced diabetic rats. MATERIALS AND METHODS After 1 week of acclimatisation, the rats were divided randomly into five groups as follows: (1) Control group, which received normal chow diet; (2) High-fat diet (HFD) group which was fed diet comprising of 58.7% fat, 27.5% carbohydrate and 14.4% protein); (3) Aminoguanidine (AG) group which received HFD + 100 mg/k.b.w.AG (intraperitoneal); (4) Metformin (Met) group which received HFD + 70 mg/k.b.w. the oral dose of Met and (5) SM group which was supplemented orally with 50 mg/k.b.w.SM along with HFD. After 12 weeks all HFD fed animals were given a single 35 mg/k.b.w. dose of streptozotocin with continuous HFD feeding for additional 18 weeks. Later, various biochemical assays, urine analyses, histopathological analysis of kidneys, levels of AGEs, expression of various makers, and in-silico analysis were performed. RESULTS The diabetic group demonstrated oxidative stress, increased levels of AGEs, decreased renal function, fibrosis in the renal tissue, higher expression of the receptor for advanced glycation end products (RAGE), which were ameliorated in the SM treated group. In-silico analysis suggests that SM can prevent the binding of AGEs with RAGE. CONCLUSIONS SM ameliorated DN by inhibiting the oxidative stress induced by AGEs.HighlightsSM reduces the levels of hyperglycaemia-induced advanced glycation end products in serum and renal tissue.SM prevents renal fibrosis by inhibiting the EMT in the kidney tissue.The in-silico analysis proves that SM can inhibit the binding of various AGEs with RAGE, thereby inhibiting the AGE-RAGE axis.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Anand, India
| | - Farhin Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Anand, India
| | - Pranav Bhagwat
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, India
| | - Haritha Dilip
- Discipline of Chemistry, Indian Institute of Technology, Gandhinagar, India
| | - Dhara Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Anand, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology, Gandhinagar, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Anand, India
| |
Collapse
|
4
|
Halliwell B, Watt F, Minqin R. Iron and atherosclerosis: Lessons learned from rabbits relevant to human disease. Free Radic Biol Med 2023; 209:165-170. [PMID: 37852545 DOI: 10.1016/j.freeradbiomed.2023.10.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The role of iron in promoting atherosclerosis, and hence the cardiovascular, neurodegenerative and other diseases that result from atherosclerosis, has been fiercely controversial. Many studies have been carried out on various rodent models of atherosclerosis, especially on apoE-knockout (apoE-/-) mice, which develop atherosclerosis more readily than normal mice. These apoE-/- mouse studies generally support a role for iron in atherosclerosis development, although there are conflicting results. The purpose of the current article is to describe studies on another animal model that is not genetically manipulated; New Zealand White (NZW) rabbits fed a high-cholesterol diet. This may be a better model than the apoE-/- mice for human atherosclerosis, although it has been given much less attention. Studies on NZW rabbits support the view that iron promotes atherosclerosis, although some uncertainties remain, which need to be resolved by further experimentation.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Research Programme, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Frank Watt
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| | - Ren Minqin
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| |
Collapse
|
5
|
The Protective Effect of Trichosanthes kirilowii Peel Polysaccharide on the Oxidative Damaged HepG2 and HUASMC Cells. Genet Res (Camb) 2022; 2022:1792977. [PMID: 35919037 PMCID: PMC9314172 DOI: 10.1155/2022/1792977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Oxidative stress is an important cause of liver disease and atherosclerosis. Natural substances with antioxidant activity are good drugs for treating liver disease and atherosclerosis. Trichosanthes kirilowii Peel Polysaccharide (TKPP) can remove DPPH (2,2-Diphenyl-1-picrylhydrazyl) free radicals and hydroxyl free radicals in vitro, which shows antioxidant activity. Therefore, it is speculated that it can protect human hepatoma cell line (HepG2) and umbilical artery smooth muscle cell (HUASMC) against oxidative damage by hydrogen peroxide (H2O2). Methods Oxidative damage cell models of HepG2 and HUASMC were induced by H2O2. HepG2 and HUASMC were divided into blank group, H2O2 injury group, TKPP treatment group, and glutathione (GSH) positive control group. Cell Counting Kit-8 (CCK-8) was used to detect cell viability. The level of total GSH and the amount of Nitric oxide (NO) secreted by cells were detected by specific kits. The gene and protein expressions of catalase (CAT) and superoxide dismutase (SOD) were detected by fluorescence quantitative PCR and Western Blot. Results In these two kinds of cells, compared with the control group, the survival rate, total GSH level, and NO secretion, CAT and SOD gene and protein expressions were significantly decreased in the H2O2 damaged group. In the TKPP treatment group, the cell survival rate was significantly elevated with the increase of the polysaccharide concentration, and the total GSH level, NO secretion, CAT and SOD gene expression, and protein expression levels were also significantly increased. Conclusion TKPP can improve the activities of HepG2 and HUASMC cells damaged by H2O2 and protect the cellular antioxidant system.
Collapse
|
6
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
7
|
Mohseni S, Tabatabaei-Malazy O, Shadman Z, Khashayar P, Mohajeri-Tehrani M, Larijani B. Targeting dyslipidemia with antioxidative vitamins C, D, and E; a systematic review of meta-analysis studies: Dyslipidemia and antioxidative vitamins. J Diabetes Metab Disord 2021; 20:2037-2047. [PMID: 34900839 PMCID: PMC8630136 DOI: 10.1007/s40200-021-00919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND There is controversial evidence for the beneficial effects of antioxidative vitamins (vits) on dyslipidemia. In this regard, we aimed to systematically review all meta-analyses of trials on this topic. METHODS We comprehensively searched PubMed, Web of Science, Scopus, and Cochrane Library databases until January 2021 to explore the published English meta-analyses of trials conducted to assess the effects of single or combined vits C, D and E consumption on lipid profile. The meta-analyses of observational, in vivo/in vitro, or case-report studies were excluded. Search results were reported based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart. RESULTS Overall, 25 meta-analyses including 32,177 individuals with different underlying disorders met our inclusion criteria. Numerous studies had assessed supplementation with Vit-D or its combination with other agents on lipid profile. Consumption of 400 IU/day (d) to 50,000 IU/week (w) Vit-D for at least eight weeks improved the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) in type 2 diabetes mellitus or polycystic ovary syndrome (PCOS) patients. This treatment reduced the levels of TC and TG in patients with chronic kidney disease. A significant increase in high-density lipoprotein cholesterol (HDL-C) levels was only observed in coronary artery disease patients. Sole intake of 500-2000 mg/d Vit-C for at least 3 weeks improved LDL-C and TG values in hypercholesterolemic patients. Nevertheless, sole intake of Vit-E had controversial effects on lipid profile. The combination of 400-1800 IU/d omega-3 free fatty acid (FFA) and 400 IU/d Vit-E significantly reduced the levels of LDL-C and TG in overweight individuals, without any significant effect on other components. A significant improvement of TG values was observed after consumption of 1000-2000 mg/d omega-3 FFA plus 400 IU/d Vit-E along with 50,000 IU/each 2w Vit-D for at least 6 weeks in diabetic patients. CONCLUSION The beneficial effects of antioxidative vitamins (C, D, E) or their combination with other agents on lipid profile varied based on their dosage, intake duration, and the health status of the individuals. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-021-00919-8.
Collapse
Affiliation(s)
- Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Khashayar
- Medical Doctor, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - MohammadReza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.
Collapse
|
9
|
Zhao Q, Hou D, Laraib Y, Xue Y, Shen Q. Comparison of the effects of raw and cooked adzuki bean on glucose/lipid metabolism and liver function in diabetic mice. Cereal Chem 2021. [DOI: 10.1002/cche.10456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Yousaf Laraib
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Yong Xue
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| | - Qun Shen
- College of Food Science and Nutritional Engineering China Agricultural University Beijing China
- National Engineering Research Center for Fruit and Vegetable Processing Beijing China
- Key Laboratory of Plant Protein and Grain Processing Beijing China
| |
Collapse
|
10
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
11
|
Dos Santos MM, de Souza Prestes A, de Macedo GT, Ferreira SA, Souza Vargas JL, Schüler LC, de Bem AF, de Vargas Barbosa N. Syzygium cumini leaf extract protects macrophages against the oxidized LDL-induced toxicity: A promising atheroprotective effect. Biomed Pharmacother 2021; 142:111196. [PMID: 34210581 DOI: 10.1016/j.biopha.2020.111196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 10/21/2022] Open
Abstract
Oxidized LDL (oxLDL) plays a pivotal role on atherosclerosis development, mainly in the formation of lipid-laden macrophage "foam cells". As a consequence, substances that can modulate LDL oxidation have a pharmacological and therapeutic relevance. Based in previous findings showing the ability of Syzigium cumini leaf extract (ScExt) in preventing LDL oxidation in vitro, this study was aimed to assess the effects of ScExt on oxLDL-mediated toxicity in murine J774 macrophages-like cells. For biochemical analyses, LDL isolated from fresh human plasma and oxidized with CuSO4 was incubated with ScExt pre-treated macrophages. Our results demonstrated that ScExt was efficient in preventing the overproduction of reactive oxygen/nitrogen species (ROS/RNS), the loss of macrophage's viability and the foam cells formation induced by oxLDL. These protective effects of ScExt make it a promising antioxidant for future trials toward atherogenesis.
Collapse
Affiliation(s)
- Matheus Mülling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - João Luís Souza Vargas
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Luana Caroline Schüler
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900 Florianópolis, SC, Brazil
| | - Andreza Fabro de Bem
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Nilda de Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Serum Gamma Glutamyltransferase Is Associated with 25-Hydroxyvitamin D Status in Elderly Patients with Stable Coronary Artery Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238980. [PMID: 33276664 PMCID: PMC7729888 DOI: 10.3390/ijerph17238980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022]
Abstract
Background: No previous study has investigated the association between gamma glutamyltransferase (GGT) and vitamin D in patients with stable coronary artery disease (CAD). We investigated the cross-sectional associations between vitamin D status as assessed by serum 25(OH)D and GGT. Methods: 169 patients were enrolled. Study population was divided into three groups: 1: 25(OH)D < 10 ng/mL (n = 59); 2: 25(OH)D 10–20 ng/mL (n = 82), and 3: 25(OH)D > 20 ng/mL (n = 28). Based on a cut-off GGT value identified in ROC analysis, we also divided the study population to compare the following groups: GGT ≤19 (n = 66) and GGT >19 (n = 103). Results: GGT activity was the highest in vitamin D severely deficient patients and the lowest in vitamin D insufficient patients. GGT was inversely correlated with 25(OH)D concentrations (R = −0.23; p = 0.002). The receiver operating characteristics curve identified the discrimination threshold of GGT of >19 U/L in predicting vitamin D deficiency. Higher leukocyte and neutrophil counts and lower 25(OH)D concentration were found in patients with GGT > 19 U/L. Conclusions: We identified an interaction between declining 25(OH)D levels and rising GGT levels with increasing age, which resulted in an unfavorable 25(OH)D-to-GGT ratio in stable CAD patients. These results suggest that these changes might further contribute to a high cardiovascular risk in the elderly.
Collapse
|
13
|
El-Fattah AA, Azzam M, Elkashef H, Elhadydy A. Antioxidant Properties of Milk: Effect of Milk Species, Milk Fractions and Heat Treatments. INTERNATIONAL JOURNAL OF DAIRY SCIENCE 2019; 15:1-9. [DOI: 10.3923/ijds.2020.1.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Ulivi L, Maccarrone M, Giannini N, Ferrari E, Caselli MC, Montano V, Chico L, Casani A, Navari E, Cerchiai N, Siciliano G, Bonuccelli U, Mancuso M. Oxidative Stress in Cerebral Small Vessel Disease Dizziness Patients, Basally and After Polyphenol Compound Supplementation. Curr Mol Med 2019; 18:160-165. [PMID: 30033867 PMCID: PMC6225324 DOI: 10.2174/1566524018666180720165055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/15/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Background: Leukoaraiosis (LA) is a common radiological finding in elderly, frequently associated with several clinical disorders, including unexplained dizziness. The pathogenesis of LA is multifactorial, with a dysfunction of cerebral microcirculation resulting in chronic hypoperfusion and tissue loss, with oxidative stress involved in this cascade. Objective: The aim of this study was to analyse some oxidative stress biomarkers in a cohort of LA patients. Method: Fifty-five consecutive patients (33 males, median age 75 years) with LA were recruited. In a subgroup of 33 patients with LA and unexplained dizziness, we have then performed an open study to evaluate if 60-day supplementation with a polyphenol compound may modify these biomarkers and influence quality of life, analysed with the Dizziness Handicap Inventory (DHI) scale. Results: At baseline, blood oxidative stress parameters values were outside normal ranges and compared to matched healthy controls. After the two months supplementation, we observed a significant decrement of advanced oxidation protein products values and a significant improvement of DHI. Conclusion: Oxidative stress biomarkers may be useful to detect redox imbalance in LA and to provide non-invasive tools to monitor disease status and response to therapy.
Collapse
Affiliation(s)
- L Ulivi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - M Maccarrone
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - N Giannini
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - E Ferrari
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - M C Caselli
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - V Montano
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - L Chico
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - A Casani
- Department of Medical and Surgical Pathology, Otorhinolaryngology Section, Pisa University, Pisa, Italy
| | - E Navari
- Department of Medical and Surgical Pathology, Otorhinolaryngology Section, Pisa University, Pisa, Italy
| | - N Cerchiai
- Department of Medical and Surgical Pathology, Otorhinolaryngology Section, Pisa University, Pisa, Italy
| | - G Siciliano
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - U Bonuccelli
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| | - M Mancuso
- Department of Experimental and Clinical Medicine, Neurological Clinic, Pisa University, Pisa, Italy
| |
Collapse
|
15
|
Rozo G, Rozo C, Puyana M, Ramos FA, Almonacid C, Castro H. Two compounds of the Colombian algae Hypnea musciformis prevent oxidative damage in human low density lipoproteins LDLs. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Son YK, Yoon SR, Bang WY, Bae CH, Yeo JH, Yeo R, An J, Song J, Kim OY. Carpinus turczaninowii extract modulates arterial inflammatory response: a potential therapeutic use for atherosclerosis. Nutr Res Pract 2019; 13:302-309. [PMID: 31388406 PMCID: PMC6669074 DOI: 10.4162/nrp.2019.13.4.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/09/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Vascular inflammation is an important feature in the atherosclerotic process. Recent studies report that leaves and branches of Carpinus turczaninowii (C. turczaninowii) have antioxidant capacity and exert anti-inflammatory effects. However, no study has reported the regulatory effect of C. turczaninowii extract on the arterial inflammatory response. This study therefore investigated modulation of the arterial inflammatory response after exposure to C. turczaninowii extract, using human aortic vascular smooth muscle cells (HAoSMCs). MATERIALS/METHODS Scavenging activity of free radicals, total phenolic content (TPC), cell viability, mRNA expressions, and secreted levels of cytokines were measured in LPS-stimulated (10 ng/mL) HAoSMCs treated with the C. turczaninowii extract. RESULTS C. turczaninowii extract contains high amounts of TPC (225.6 ± 21.0 mg of gallic acid equivalents/g of the extract), as well as exerts time-and dose-dependent increases in strongly scavenged free radicals (average 14.8 ± 1.97 µg/mL IC50 at 40 min). Cell viabilities after exposure to the extracts (1 and 10 µg/mL) were similar to the viability of non-treated cells. Cytokine mRNA expressions were significantly suppressed by the extracts (1 and 10 µg/mL) at 6 hours (h) after exposure. Interleukin-6 secretion was dose-dependently suppressed 2 h after incubation with the extract, at 1–10 µg/mL in non-stimulated cells, and at 5 and 10 µg/mL in LPS-stimulated cells. Similar patterns were also observed at 24 h after incubation with the extract (at 1–10 µg/mL in non-stimulated cells, and at 10 µg/mL in the LPS-stimulated cells). Soluble intracellular vascular adhesion molecules (sICAM-1) secreted from non-stimulated cells and LPS-stimulated cells were similarly suppressed in a dose-dependent manner after 24 h exposure to the extracts, but not after 2 h. In addition, sICAM-1 concentration after 24 h treatment was positively related to IL-6 levels after 2 h and 24 h exposure (r = 0.418, P = 0.003, and r = 0.524, P < 0.001, respectively). CONCLUSIONS This study demonstrates that C. turczaninowii modulates the arterial inflammatory response, and indicates the potential to be applied as a therapeutic use for atherosclerosis.
Collapse
Affiliation(s)
- Youn Kyoung Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - So Ra Yoon
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea.,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, 37 Nakdongdae-ro, 550beon-gil Saha-gu, Busan, 49315, Republic of Korea.,Institute of Health Insurance and Clinical Research, National Health Insurance Service Ilsan Hospital, Gyeonggi, 10444, Republic of Korea
| | - Woo Young Bang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Chang-Hwan Bae
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Rimkyo Yeo
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun An
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun Song
- Departments of Anatomy, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea.,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, 37 Nakdongdae-ro, 550beon-gil Saha-gu, Busan, 49315, Republic of Korea
| |
Collapse
|
17
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
18
|
Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8267234. [PMID: 31191805 PMCID: PMC6525823 DOI: 10.1155/2019/8267234] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MS) represents worldwide public health issue characterized by a set of cardiovascular risk factors including obesity, diabetes, dyslipidemia, hypertension, and impaired glucose tolerance. The link between the MS and the associated diseases is represented by oxidative stress (OS) and by the intracellular redox imbalance, both caused by the persistence of chronic inflammatory conditions that characterize MS. The increase in oxidizing species formation in MS has been accepted as a major underlying mechanism for mitochondrial dysfunction, accumulation of protein and lipid oxidation products, and impairment of the antioxidant systems. These oxidative modifications are recognized as relevant OS biomarkers potentially able to (i) clarify the role of reactive oxygen and nitrogen species in the etiology of the MS, (ii) contribute to the diagnosis/evaluation of the disease's severity, and (iii) evaluate the utility of possible therapeutic strategies based on natural antioxidants. The antioxidant therapies indeed could be able to (i) counteract systemic as well as mitochondrial-derived OS, (ii) enhance the endogenous antioxidant defenses, (iii) alleviate MS symptoms, and (iv) prevent the complications linked to MS-derived cardiovascular diseases. The focus of this review is to summarize the current knowledge about the role of OS in the development of metabolic alterations characterizing MS, with particular regard to the occurrence of OS-correlated biomarkers, as well as to the use of therapeutic strategies based on natural antioxidants.
Collapse
|
19
|
Maleki V, Jafari-Vayghan H, Saleh-Ghadimi S, Adibian M, Kheirouri S, Alizadeh M. Effects of Royal jelly on metabolic variables in diabetes mellitus: A systematic review. Complement Ther Med 2019; 43:20-27. [PMID: 30935531 DOI: 10.1016/j.ctim.2018.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the most common endocrine disorders in the world. This systematic review was conducted with focus on the current knowledge on the effect of royal jelly on metabolic variables in diabetes mellitus. PubMed, Scopus, Embase, ProQuest and Google Scholar databases were searched from inception until June 2018. All clinical trials and animal studies that evaluated the effects of royal jelly on diabetes mellitus, and were published in English-language journals were eligible. Studies that provided insufficient outcomes were excluded. Out of 522 articles found in the search, only twelve articles were eligible for analysis. Seven studies showed a significant reduction in FBS, and one reported HbA1c decrease following royal jelly supplementation. Although royal jelly supplementation resulted in significant reductions in HOM A-I R in three studies, the findings on insulin levels were controversial. In addition, royal jelly substantially improved serum levels of triglycerides, cholesterol, HDL, LDL, VLDL and Apo-A1 in diabetes mellitus. In addition, royal jelly resulted in a decrease oxidative stress indicators and increase antioxidant enzymes levels. In conclusion, royal jelly could improve glycemic status, lipid profiles and oxidative stress in diabetes mellitus. However, exploring the underlying mechanisms warrants further studies.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sevda Saleh-Ghadimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Adibian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Acetophenone benzoylhydrazones as antioxidant agents: Synthesis, in vitro evaluation and structure-activity relationship studies. Food Chem 2018; 268:292-299. [DOI: 10.1016/j.foodchem.2018.06.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
|
21
|
Swertfeger DK, Rebholz S, Li H, Shah AS, Davidson WS, Lu LJ. Feasibility of a plasma bioassay to assess oxidative protection of low-density lipoproteins by high-density lipoproteins. J Clin Lipidol 2018; 12:1539-1548. [PMID: 30244943 PMCID: PMC6437770 DOI: 10.1016/j.jacl.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Traditionally, the impact of lipoproteins on vascular disease has been evaluated in light of their quantity, that is, cholesterol content, in plasma. However, recent studies of high-density lipoproteins (HDLs) have focused on functionality with regard to atheroprotection. For example, bioassays have emerged to assess the ability of HDL, in its near native plasma environment, to promote cholesterol removal (efflux) from cells. As a result, attention has focused on developing plasma-based assays for other putative HDL protective functions including protecting low-density lipoproteins (LDLs) from oxidative damage. OBJECTIVE To determine the feasibility of such an assay in a complex sample such as plasma, we evaluated the contribution of HDL vs other plasma factors in preventing LDL oxidation. METHODS We separated normolipidemic human plasma by gel filtration chromatography and assessed each fraction for its ability to prevent LDL modification by water soluble radical and copper-initiated oxidation mechanisms. RESULTS Using proteomics and selective precipitation methods, we identified major antioxidative contributions for fibrinogen, immunoglobulin G, albumin, and small soluble molecules like uric acid and ascorbate, with albumin being especially dominant in copper-initiated mechanisms. HDL particles were minor contributors (∼1%-2%) to the antioxidant capacity of plasma, irrespective of oxidation mechanism. CONCLUSIONS Given the overwhelming background of antioxidant capacity inherent to highly abundant plasma proteins, specific bioassays of HDL antioxidative function will likely require its complete separation from plasma.
Collapse
Affiliation(s)
- Debi K Swertfeger
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Sandra Rebholz
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA; Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH, USA
| | - Hailong Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Amy S Shah
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - William Sean Davidson
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH, USA.
| | - Long J Lu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
22
|
Sato T, Shimosato T, Klinman DM. Silicosis and lung cancer: current perspectives. LUNG CANCER-TARGETS AND THERAPY 2018; 9:91-101. [PMID: 30498384 PMCID: PMC6207090 DOI: 10.2147/lctt.s156376] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
"Silica" refers to crystalline particles formed by the combination of silicon with oxygen. Inhalation of silica particles promotes the development of pulmonary fibrosis that over prolonged periods increases the risk of lung cancer. The International Agency for Research on Cancer (IARC) classified crystalline silica as a human carcinogen in 1997. This categorization was questioned due to 1) the absence of dose-response findings, 2) the presence of confounding variables that complicated interpretation of the data and 3) potential selection bias for compensated silicosis. Yet, recent epidemiologic studies strongly support the conclusion that silica exposure increases the risk of lung cancer in humans independent of confounding factors including cigarette smoke. Based on this evidence, the US Occupational Safety and Health Administration (OSHA) lowered the occupational exposure limit for crystalline silica from 0.1 to 0.05 mg/m3 in 2013. Further supporting the human epidemiologic data, murine models show that chronic silicosis is associated with an increased risk of lung cancer. In animals, the initial inflammation induced by silica exposure is followed by the development of an immunosuppressive microenvironment that supports the growth of lung tumors. This work will review our current knowledge of silica-associated lung cancers, highlighting how recent mechanistic insights support the use of cutting-edge approaches to diagnose and treat silica-related lung cancer.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takeshi Shimosato
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University, Nagano 399-4598, Japan
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA,
| |
Collapse
|
23
|
CTRP5 promotes transcytosis and oxidative modification of low-density lipoprotein and the development of atherosclerosis. Atherosclerosis 2018; 278:197-209. [PMID: 30300788 DOI: 10.1016/j.atherosclerosis.2018.09.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Increased transcytosis of low-density lipoprotein (LDL) across the endothelium and oxidation of LDL deposited within the subendothelial space are crucial early events in atherogenesis. C1q/TNF-related protein (CTRP) 5 is a novel secreted glycoprotein and its biological functions are largely undefined. METHODS Expression of CTRP5 was analyzed in sera and atherosclerotic plaques of patients with coronary artery disease (CAD). The role of CTRP5 in atherogenesis was investigated in vitro and in vivo. RESULTS We found CTRP5 serum levels were higher in patients with than without CAD (247.26 ± 61.71 vs. 167.81 ± 68.08 ng/mL, p < 0.001), and were positively correlated with the number of diseased vessels (Spearman's r = 0.611, p < 0.001). Increased expression of CTRP5 was detected in human coronary endarterectomy specimens as compared to non-atherosclerotic arteries. Immunofluorescence further showed that CTRP5 was predominantly localized in the endothelium, infiltrated macrophages and smooth muscle cells in the neointima. In vivo and in vitro experiments demonstrated that CTRP5 promoted transcytosis of LDL across endothelial monolayers, as well as the oxidative modification of LDL in endothelial cells. Mechanistically, we found that CTRP5 up-regulated 12/15-lipoxygenase (LOX), a key enzyme in mediating LDL trafficking and oxidation, through STAT6 signaling. Genetic or pharmacological inhibition of 12/15-LOX dramatically attenuated the deposition of oxidized LDL in the subendothelial space and the development of atherosclerosis. CONCLUSIONS These data indicate that CTRP5 is a novel pro-atherogenic cytokine and promotes transcytosis and oxidation of LDL in endothelial cells via up-regulation of 12/15-LOX.
Collapse
|
24
|
Dorighello GG, Paim BA, Leite ACR, Vercesi AE, Oliveira HC. Spontaneous experimental atherosclerosis in hypercholesterolemic mice advances with ageing and correlates with mitochondrial reactive oxygen species. Exp Gerontol 2018; 109:47-50. [DOI: 10.1016/j.exger.2017.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/21/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
25
|
Muhammad RS, Abu-Saleh N, Kinaneh S, Agbaria M, Sabo E, Grajeda-Iglesias C, Volkova N, Hamoud S. Heparanase inhibition attenuates atherosclerosis progression and liver steatosis in E 0 mice. Atherosclerosis 2018; 276:155-162. [PMID: 30075439 DOI: 10.1016/j.atherosclerosis.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Increased oxidative stress is associated with accelerated atherosclerosis. Emerging evidence highlights the role of heparanase in atherogenesis, where heparanase inhibitor PG545 reduces oxidative stress in apolipoprotein E deficient mice (E0 mice). Herein, we studied the effects of PG545 on atherosclerosis progression in E0 mice. METHODS Male E0 mice fed a high-fat diet (n = 20) were divided into 3 groups treated with weekly intraperitoneal injections of either low (0.2 mg/mouse) or high dose (0.4 mg/mouse)PG545 or normal saline (controls) for twelve weeks. Body weight and food intake were measured weekly. At the end of the treatment period, blood pressure was measured, animals were sacrificed and serum samples were collected and assessed for biochemical parameters and oxidative stress. Aortic vessels and livers were collected for atherosclerotic plaques and histopathological analysis, respectively. RESULTS Blood pressure decreased in mice treated with low, but not high dose of PG545. In addition, heparanase inhibition caused a dose-dependent reduction in serum oxidative stress, total cholesterol, low-density lipoproteins, triglycerides, high-density lipoproteins, and aryl esterase activity. Although food intake was not reduced by PG545, body weight gain was significantly attenuated in PG545 treated groups. Both doses of PG545 caused a marked reduction in aortic wall thickness and atherosclerosis development, and liver steatosis. Liver enzymes and serum creatinine were not affected by PG545. CONCLUSIONS Heparanase inhibition by PG545 caused a significant reduction in lipid profile and serum oxidative stress along with attenuation of atherosclerosis, aortic wall thickness, and liver steatosis. Moreover, PG545 attenuated weight gain without reducing food intake. Collectively, these findings suggest that heparanase blockade is highly effective in slowing atherosclerosis formation and progression, and decreasing liver steatosis.
Collapse
Affiliation(s)
- Rabia Shekh Muhammad
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine Haifa, Israel
| | - Niroz Abu-Saleh
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mohammad Agbaria
- Department of Internal Medicine A, Rambam Health Care Campus, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Nina Volkova
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus and Rappaport Faculty of Medicine Haifa, Israel; Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
26
|
M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization. Inflammation 2018; 41:1477-1487. [DOI: 10.1007/s10753-018-0793-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Adefegha SA, Oboh G. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Stephen A. Adefegha
- Department of Biochemistry, Functional Foods, Nutraceuticals and Phytomedicine Unit, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, 340001, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Functional Foods, Nutraceuticals and Phytomedicine Unit, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo State, 340001, Nigeria
| |
Collapse
|
28
|
Chansriniyom C, Bunwatcharaphansakun P, Eaknai W, Nalinratana N, Ratanawong A, Khongkow M, Luechapudiporn R. A synergistic combination of Phyllanthus emblica and Alpinia galanga against H 2 O 2 -induced oxidative stress and lipid peroxidation in human ECV304 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
29
|
Corrochano AR, Buckin V, Kelly PM, Giblin L. Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. J Dairy Sci 2018; 101:4747-4761. [PMID: 29605324 DOI: 10.3168/jds.2017-13618] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Abstract
Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers.
Collapse
Affiliation(s)
- Alberto R Corrochano
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996; School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, D04 V1W8
| | - Vitaly Buckin
- School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, D04 V1W8
| | - Phil M Kelly
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.
| |
Collapse
|
30
|
Chattopadhyay R, Mani AM, Singh NK, Rao GN. Resolvin D1 blocks H 2O 2-mediated inhibitory crosstalk between SHP2 and PP2A and suppresses endothelial-monocyte interactions. Free Radic Biol Med 2018; 117:119-131. [PMID: 29408202 PMCID: PMC5845835 DOI: 10.1016/j.freeradbiomed.2018.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/30/2022]
Abstract
In recent years, various studies have demonstrated a role for endogenously derived specialized proresolving mediators such as resolvins in the resolution of inflammation. In exploring the signaling mechanisms, in the present study we show that Resolvin D1 (RvD1) reduces LPS-induced endothelial cell (EC)-monocyte interactions via blocking H2O2-mediated PP2A inactivation, NFκB activation and ICAM1 and VCAM1 expression. In addition, we found that H2O2-mediated SHP2 inhibition leads to tyrosine phosphorylation and inactivation of PP2A by LPS, which in turn, accounts for increased NFκB activation and ICAM1 and VCAM1 expression facilitating EC-monocyte interactions and all these LPS-mediated responses were reduced by RvD1. Furthermore, the suppression of NFκB activation, ICAM1 and VCAM1 expression and EC and monocyte interactions by RvD1 involved its receptors ALX/FPR2 and GPR32 as inhibition or neutralization of these receptors negated its effects. Besides, pertussis toxin completely prevented the effects of RvD1 on inhibition of LPS-induced H2O2 production, SHP2 and PP2A inactivation, NFκB activation, ICAM1 and VCAM1 expression and EC and monocyte interactions. Together, these observations suggest that RvD1 via activation of Gi-coupled ALX/FPR2 and GPR32 receptors blocks LPS-induced H2O2-mediated SHP2 and PP2A inactivation, NFκB activation, ICAM1 and VCAM1 expression and EC-monocyte interactions, which could be one of the several possible mechanisms underlying the anti-inflammatory actions of this specialized proresolving mediator.
Collapse
Affiliation(s)
- Rima Chattopadhyay
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN 38163, USA.
| |
Collapse
|
31
|
Kusuhara S, Ito M, Sato T, Yokoi W, Yamamoto Y, Harada K, Ikemura H, Miyazaki K. Intracellular GSH of Streptococcus thermophilus shows anti-oxidative activity against low-density lipoprotein oxidation in vitro and in a hyperlipidaemic hamster model. Benef Microbes 2018; 9:143-152. [DOI: 10.3920/bm2017.0065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus thermophilus YIT 2001 (ST-1), a lactic acid bacterial strain, was shown to have inhibitory effects on the oxidation of low-density lipoprotein (LDL) and the development of aortic fatty lesions in an animal model, and lower the serum levels of malondialdehyde-modified LDL, an oxidative modification product of LDL, in a clinical trial. This study aimed to identify the intracellular active component of ST-1 associated with anti-oxidative activity against LDL oxidation. High-performance liquid chromatography-electrospray ionisation mass spectrometry analysis after fractionation of the cellular extract by reversed-phase chromatography demonstrated that the active fraction contained reduced glutathione (GSH). GSH showed anti-oxidative activity in a dose-dependent manner, while this activity disappeared following thiol derivatisation. ST-1 had the strongest anti-oxidative activity against LDL oxidation and the highest level of intracellular GSH among five strains of S. thermophilus. In addition, the anti-oxidative activity of ST-1 after thiol derivatisation decreased by about half, which was similar to that of three other strains containing poor or no intracellular GSH or thiol components. Moreover, anti-oxidative activity against LDL oxidation was observed in hyperlipidaemic hamsters fed with high GSH ST-1 cells but not in those given low GSH cells. These findings suggest that intracellular GSH in ST-1 may provide beneficial effects via anti-oxidative activity against LDL oxidation and excess oxidative stress in the blood.
Collapse
Affiliation(s)
- S. Kusuhara
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - M. Ito
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - T. Sato
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - W. Yokoi
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Y. Yamamoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - K. Harada
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - H. Ikemura
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - K. Miyazaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
32
|
Kaur N, Kishore L, Singh R. Attenuation of STZ-induced diabetic nephropathy by Cucurbita pepo
L. seed extract characterized by GCMS. J Food Biochem 2017. [DOI: 10.1111/jfbc.12420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Navpreet Kaur
- M.M. College of Pharmacy, M.M. University; Mullana-Ambala Haryana 133207 India
| | - Lalit Kishore
- M.M. College of Pharmacy, M.M. University; Mullana-Ambala Haryana 133207 India
| | - Randhir Singh
- M.M. College of Pharmacy, M.M. University; Mullana-Ambala Haryana 133207 India
| |
Collapse
|
33
|
Alshiek JA, Dayan L, Asleh R, Blum S, Levy AP, Jacob G. Anti-oxidative treatment with vitamin E improves peripheral vascular function in patients with diabetes mellitus and Haptoglobin 2-2 genotype: A double-blinded cross-over study. Diabetes Res Clin Pract 2017; 131:200-207. [PMID: 28759833 DOI: 10.1016/j.diabres.2017.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/15/2016] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Vascular dysfunction in both conduit arteries and small vessels is a major contributor to the development of cardiovascular disease (CVD) in diabetes mellitus (DM). In diabetes there is a process of systemic chronic inflammation accompanied by high oxidative stress causing a subsequent decrease in vascular reactivity and negatively affect the metabolic processes responsible for functioning of the microvasculature. Vitamin E is classified as an antioxidant due to its ability to scavenge lipid radicals and terminate oxidative chain reactions. We conducted a double-blinded cross-over study with vitamin E versus placebo in individuals with type 2DM and the Hp2-2 genotype and assessed different aspects of peripheral vascular function in these patients. Twenty patients completed the study with 10 individuals in each study cohort. We were able to show significant improvement of indirect indices of vascular function following 8weeks of treatment with vitamin E. This improvement was consistent for weeks even after stopping the vitamin E treatment. We concluded that a pharmacogenomic rationale utilizing the Hp genotype might potentially provide cardiovascular benefit with vitamin E.
Collapse
Affiliation(s)
- Jonia Amer Alshiek
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel; Department of Obstetrics and Gynecology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lior Dayan
- Institute of Pain Medicine, Department of Anesthesia and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Jacob Recanati Autonomic Dysfunction Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rabea Asleh
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel; Department of Cardiology, Rambam Medical Center, Haifa, Israel
| | - Shany Blum
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel
| | - Andrew P Levy
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel
| | - Giris Jacob
- Department of Internal Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel; Jacob Recanati Autonomic Dysfunction Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Daiber A, Oelze M, Steven S, Kröller-Schön S, Münzel T. Taking up the cudgels for the traditional reactive oxygen and nitrogen species detection assays and their use in the cardiovascular system. Redox Biol 2017; 12:35-49. [PMID: 28212522 PMCID: PMC5312509 DOI: 10.1016/j.redox.2017.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS such as H2O2, nitric oxide) confer redox regulation of essential cellular functions (e.g. differentiation, proliferation, migration, apoptosis), initiate and catalyze adaptive stress responses. In contrast, excessive formation of RONS caused by impaired break-down by cellular antioxidant systems and/or insufficient repair of the resulting oxidative damage of biomolecules may lead to appreciable impairment of cellular function and in the worst case to cell death, organ dysfunction and severe disease phenotypes of the entire organism. Therefore, the knowledge of the severity of oxidative stress and tissue specific localization is of great biological and clinical importance. However, at this level of investigation quantitative information may be enough. For the development of specific drugs, the cellular and subcellular localization of the sources of RONS or even the nature of the reactive species may be of great importance, and accordingly, more qualitative information is required. These two different philosophies currently compete with each other and their different needs (also reflected by different detection assays) often lead to controversial discussions within the redox research community. With the present review we want to shed some light on these different philosophies and needs (based on our personal views), but also to defend some of the traditional assays for the detection of RONS that work very well in our hands and to provide some guidelines how to use and interpret the results of these assays. We will also provide an overview on the "new assays" with a brief discussion on their strengths but also weaknesses and limitations.
Collapse
Affiliation(s)
- Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Swenja Kröller-Schön
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
35
|
Steven S, Daiber A, Dopheide JF, Münzel T, Espinola-Klein C. Peripheral artery disease, redox signaling, oxidative stress - Basic and clinical aspects. Redox Biol 2017; 12:787-797. [PMID: 28437655 PMCID: PMC5403804 DOI: 10.1016/j.redox.2017.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition) and non-pharmacological (e.g. exercise) interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension) as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Sebastian Steven
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Andreas Daiber
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Jörn F Dopheide
- Angiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany; Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Münzel
- Laboratory of Molecular Cardiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christine Espinola-Klein
- Angiology, Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
36
|
Berbée JFP, Mol IM, Milne GL, Pollock E, Hoeke G, Lütjohann D, Monaco C, Rensen PCN, van der Ploeg LHT, Shchepinov MS. Deuterium-reinforced polyunsaturated fatty acids protect against atherosclerosis by lowering lipid peroxidation and hypercholesterolemia. Atherosclerosis 2017; 264:100-107. [PMID: 28655430 DOI: 10.1016/j.atherosclerosis.2017.06.916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Oxidative modification of lipoproteins is a crucial step in atherosclerosis development. Isotopic-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to reactive oxygen species-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-)PUFAs. We aimed at investigating the effect of D-PUFA treatment on lipid peroxidation, hypercholesterolemia and atherosclerosis development. METHODS Transgenic APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism, were pre-treated with D-PUFAs or control H-PUFAs-containing diet (1.2%, w/w) for 4 weeks. Thereafter, mice were fed a Western-type diet (containing 0.15% cholesterol, w/w) for another 12 weeks, while continuing the D-/H-PUFA treatment. RESULTS D-PUFA treatment markedly decreased hepatic and plasma F2-isoprostanes (approx. -80%) and prostaglandin F2α (approx. -40%) as compared to H-PUFA treatment. Moreover, D-PUFAs reduced body weight gain during the study (-54%) by decreasing body fat mass gain (-87%) without altering lean mass. D-PUFAs consistently reduced plasma total cholesterol levels (approx. -25%), as reflected in reduced plasma non-HDL-cholesterol (-28%). Additional analyses of hepatic cholesterol metabolism indicated that D-PUFAs reduced the hepatic cholesterol content (-21%). Sterol markers of intestinal cholesterol absorption and cholesterol breakdown were decreased. Markers of cholesterol synthesis were increased. Finally, D-PUFAs reduced atherosclerotic lesion area formation throughout the aortic root of the heart (-26%). CONCLUSIONS D-PUFAs reduce body weight gain, improve cholesterol handling and reduce atherosclerosis development by reducing lipid peroxidation and plasma cholesterol levels. D-PUFAs, therefore, represent a promising new strategy to broadly reduce rates of lipid peroxidation, and combat hypercholesterolemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Jimmy F P Berbée
- Dept. of Medicine, Div. of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Metabolic Research Services, Leiden University Medical Center, Leiden, The Netherlands
| | - Isabel M Mol
- Dept. of Medicine, Div. of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Metabolic Research Services, Leiden University Medical Center, Leiden, The Netherlands
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA
| | - Erik Pollock
- University of Arkansas, Stable Isotope Laboratory, 850 W Dickson Street, Fayetteville, AR 72701, USA
| | - Geerte Hoeke
- Dept. of Medicine, Div. of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Metabolic Research Services, Leiden University Medical Center, Leiden, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Dept. of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patrick C N Rensen
- Dept. of Medicine, Div. of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Leiden Metabolic Research Services, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
37
|
Kaur N, Kishore L, Singh R. Dillenia indica L. attenuates diabetic nephropathy via inhibition of advanced glycation end products accumulation in STZ-nicotinamide induced diabetic rats. J Tradit Complement Med 2017; 8:226-238. [PMID: 29322013 PMCID: PMC5756019 DOI: 10.1016/j.jtcme.2017.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/26/2017] [Accepted: 06/14/2017] [Indexed: 01/06/2023] Open
Abstract
The present study was aimed to evaluate advanced glycation end products (AGEs) inhibitory activity of alcohol and hydro-alcohol extract (DAE and DHE) of Dillenia indica L. (Family: Dilleniaceae) and its potential in treatment of diabetic nephropathy by targeting markers of oxidative stress. D. indica was evaluated for its in vitro inhibitory activity against formation of AGEs by using bovine serum albumin. Diabetes was induced in male Wistar rats by streptozotocin (65 mg/kg i.p.) 15 min after nicotinamide (230 mg/kg, i.p.) administration. Diabetic rats were treated with different doses of extracts (100, 200 and 400 mg/kg) to analyze their nephroprotective effect. Tissue antioxidant enzymes level was measured along with the formation of AGEs in kidney to assess the effect of D. indica in ameliorating oxidative stress. D. indica showed significant inhibition of AGEs formation in vitro. D. indica produced significant attenuation in the glycemic status, renal parameter, lipid profile and level of antioxidant enzymes proving efficacy in diabetic nephropathy. Moreover, D. indica produced significant reduction in the formation of AGEs in kidneys. The present study concludes that D. indica as a possible therapeutic agent against diabetic nephropathy.
Collapse
|
38
|
Shen L, Zhang P, Zhang S, Xie L, Yao L, Lang W, Lian J, Qin W, Zhang M, Ji L. C-X-C motif chemokine ligand 8 promotes endothelial cell homing via the Akt-signal transducer and activator of transcription pathway to accelerate healing of ischemic and hypoxic skin ulcers. Exp Ther Med 2017; 13:3021-3031. [PMID: 28587375 DOI: 10.3892/etm.2017.4305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
C-X-C motif chemokine ligand 8 (CXCL-8) promotes cell homing and angiogenesis. However, under hypoxic conditions, the role of CXCL-8 in the homing of human umbilical vein endothelial cells (HUVECs), and its effect on the healing of skin ulcers caused by ischemia and hypoxia remain unknown. In the current study, assays measuring cell proliferation, in vitro angiogenesis and cell migration were performed to evaluate alterations in the proliferation, angiogenic capacity and chemotaxis of HUVECs treated with CXCL-8 protein and/or an Akt inhibitor (AZD5363 group) under hypoxic conditions. Changes in the levels of Akt, signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor (VEGF), malondialdehyde (MDA) and total-superoxide dismutase (total-SOD) were also detected by western blotting and ELISA. In addition, in vivo experiments were performed using a skin ulcer model in mice. Ischemic and hypoxic skin ulcers were created on the thighs of C57BL/6J mice, and the effects of CXCL-8 and HUVEC transplantation on the healing capacity of skin ulcers was determined by injecting mice with HUVECs and/or CXCL-8 recombinant protein (CXCL-8, HUVEC and HUVEC + CXCL-8 groups). Vascular endothelial cell homing, changes in vascular density and the expression of VEGF, SOD, EGF and MDA within the ulcer tissue were subsequently measured. In vitro experiments demonstrated that HUVEC proliferation, migration and tube forming capacity were significantly increased by CXCL-8 under hypoxic conditions. Additionally, levels of VEGF, MDA and SOD were significantly higher in the CXCL-8 group, though were significantly decreased by the Akt and STAT3 inhibitors. In vivo experiments demonstrated that the expression of VEGF, total-SOD and EGF proteins were higher in the skin ulcer tissue of mice treated with CXCL-8 + HUVEC, relative to mice treated with HUVECs alone. Furthermore, vascular endothelial cell homing and vascular density were significantly increased in the CXCL-8 + HUVEC group, indicating that combined use of HUVECs and CXCL-8 may promote the healing of ischemic skin ulcers. The present results demonstrate that CXCL-8 may stimulate vascular endothelial cells to secrete VEGF, SOD and other cytokines via the Akt-STAT3 pathway, which in turn serves a key regulatory role in the recruitment of vascular endothelial cells, reduction of hypoxia-related injury and promotion of tissue repair following hypoxic/ischemic injury.
Collapse
Affiliation(s)
- Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Peng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shanqiang Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liping Xie
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lijie Yao
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiya Lang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jie Lian
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Qin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Meng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liang Ji
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
39
|
Cilla A, Alegría A, Attanzio A, Garcia-Llatas G, Tesoriere L, Livrea MA. Dietary phytochemicals in the protection against oxysterol-induced damage. Chem Phys Lipids 2017; 207:192-205. [PMID: 28267434 DOI: 10.1016/j.chemphyslip.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
The intake of fruits and vegetables is associated with reduced incidence of many chronic diseases. These foods contain phytochemicals that often possess antioxidant and free radical scavenging capacity and show anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative disorders. Many factors can be included in the etiopathogenesis of all of these multifactorial diseases that involve oxidative stress, inflammation and/or cell death processes, oxysterols, i.e. cholesterol oxidation products (COPs) as well as phytosterol oxidation products (POPs), among others. These oxidized lipids result from either spontaneous and/or enzymatic oxidation of cholesterol/phytosterols on the steroid nucleus or on the side chain and their critical roles in the pathophysiology of the abovementioned diseases has become increasingly evident. In this context, many studies investigated the potential of dietary phytochemicals (polyphenols, carotenoids and vitamins C and E, among others) to protect against oxysterol toxicity in various cell models mimicking pathophysiological conditions. This review, summarizing the mechanisms involved in the chemopreventive effect of phytochemicals against the injury by oxysterols may constitute a step forward to consider the importance of preventive strategies on a nutritional point of view to decrease the burden of many age-related chronic diseases.
Collapse
Affiliation(s)
- Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Alessandro Attanzio
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Luisa Tesoriere
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Maria A Livrea
- Dipartimento Scienze e Technologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy.
| |
Collapse
|
40
|
Stocker R. Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys 2016; 595:136-9. [PMID: 27095230 DOI: 10.1016/j.abb.2015.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
I had the fortune to be introduced to Helmut Sies during the mid 1980s, while working as a post-doctoral scientist at the University of California, Berkeley. At that time, Helmut was a frequent visitor of the Bruce Ames' laboratory and a leading authority in antioxidants and oxidative stress. His concepts, ideas and willingness to listen and make constructive suggestions have been far-reaching and visionary. Moreover, they have also been highly infectious, so much so that much of my research to this day has been on the same topic. The following is a personal recount on how the field of antioxidants has evolved since those exciting days in Berkeley.
Collapse
Affiliation(s)
- Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
41
|
Kaur N, Kishore L, Singh R. Antidiabetic effect of new chromane isolated from Dillenia indica L. leaves in streptozotocin induced diabetic rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
42
|
Kim HJ, Son J, Jin E, Lee J, Park S. Effects of exercise and L-arginine intake on inflammation in aorta of high-fat diet induced obese rats. J Exerc Nutrition Biochem 2016; 20:36-40. [PMID: 27298811 PMCID: PMC4899898 DOI: 10.20463/jenb.2016.03.20.1.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
PURPOSE In the present study, we investigated the effect of exercise and arginine on the inflammatory makers and Cu-Mn superoxide dismutase (SOD) expression in the aortas of high-fat-induced obese rats. METHODS Fifty 6-month-old male Sprague-Dawley rats were randomly assigned as follows: HF-Con: high-fat diet, HF-Ex: high-fat diet and exercise, HF-Ex+A: high-fat diet and combined exercise and arginine, HF-A: high-fat diet and arginine. The high-fat diet was fed for 12 weeks following 1 week of environmental adaptation with mixed solid chow. The rats performed treadmill exercise 6 times per week for 12 weeks at20 m/min for 60 min. L-argininewas mixed with saline and orally administered at 150 mg/kg once a day. Expressions of inflammatory markers (including NF- κB, TNF-α, COX-2) and SOD were evaluated using western blotting. RESULTS NF-κB expression decreased significantly (p<0.05) in the HF-Ex group compared with HF-Con group, and we found additional effects(p<0.01) on NF-κB expression in HF-EX+A compared withHF-Ex. TNF-α expression decreased significantly (p<0.01) in HF-Ex, FH-Ex+A, and FH-A compared with HF-Con. In a similar trend with NF-κB expression, COX-2 expression decreased significantly in HF-Ex compared withHF-Con. In Cu-Mn SOD expression, there was no difference between HF and HF-Ex, but significant increases (p<0.01) inCu-Mn SOD werefound in HF-Ex+A and HF-A. CONCLUSION Based on our results, treatment that combines exercise and arginine might be effective for modulatingvascular inflammation and oxidative stress in obesity.
Collapse
Affiliation(s)
- Hee-jae Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, SeoulRepublic of Korea
| | - Junseok Son
- Health and Exercise Science, Institute of Sport Science, Seoul National University, SeoulRepublic of Korea
| | - Eunhee Jin
- Department of Sports Science, Sungkyunkwan University, SuwonRepublic of Korea
| | - Jin Lee
- Department of Anatomy and Cell Biology, College of Medicine, Han Yang University, SeoulRepublic of Korea
| | - Sok Park
- Department of Sports Leadership, Kwangwoon University, SeoulRepublic of Korea
| |
Collapse
|
43
|
Li H, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhao J, Duan X, Zhou X, Feng L. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes. Free Radic Biol Med 2016; 92:126-140. [PMID: 26795598 DOI: 10.1016/j.freeradbiomed.2016.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes and nucleated cells against oxidative stress and apoptosis. The studies supported the use of Gln, Ala, Cit and Pro as oxidative stress and apoptosis inhibitors in mammal cells and the hypothesis that the inhibited effects of Gln on oxidative stress and apoptosis are at least partly dependent on that of its metabolites in mammalian.
Collapse
Affiliation(s)
- Huatao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, Neijiang 641000, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xudong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
44
|
Salvayre R, Negre-Salvayre A, Camaré C. Oxidative theory of atherosclerosis and antioxidants. Biochimie 2015; 125:281-96. [PMID: 26717905 DOI: 10.1016/j.biochi.2015.12.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is a multifactorial process that begins early in infancy and affects all the humans. Early steps of atherogenesis and the evolution towards complex atherosclerotic plaques are briefly described. After a brief history of the 'Lipid theory of atherosclerosis', we report the most prominent discoveries on lipoproteins, their receptors and metabolism, and their role in atherogenesis. The main focus is the 'oxidative theory of atherosclerosis', with emphasis on free radicals and reactive oxygen species, lipid peroxidation and LDL oxidation, biological properties of oxidized LDL and their potential role in atherogenesis. Then, we report the properties of antioxidants and antioxidant systems and their effects in vitro, on cultured cells, in animal models and in humans. The surprising discrepancy between the efficacy of antioxidants in vitro and in animal models of atherosclerosis and the lack of protective effect against cardiovascular events and death in epidemiological study and clinical trials are discussed. In contrast, epidemiological studies seem to indicate that the Mediterranean diet may protect (in part) against atherosclerosis complications (myocardial infarction and cardiovascular death).
Collapse
Affiliation(s)
- R Salvayre
- Inserm UMR-1048, BP84225, 31432 Toulouse Cedex 4, France; Biochemistry, Faculty of Medicine Toulouse-Rangueil, University of Toulouse, France; CHU Rangueil, Avenue Jean Poulhès, Toulouse, France.
| | | | - C Camaré
- Inserm UMR-1048, BP84225, 31432 Toulouse Cedex 4, France; Biochemistry, Faculty of Medicine Toulouse-Rangueil, University of Toulouse, France; CHU Rangueil, Avenue Jean Poulhès, Toulouse, France
| |
Collapse
|
45
|
Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. Antioxidants in Translational Medicine. Antioxid Redox Signal 2015; 23:1130-43. [PMID: 26154592 PMCID: PMC4657516 DOI: 10.1089/ars.2015.6393] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE It is generally accepted that reactive oxygen species (ROS) scavenging molecules or antioxidants exert health-promoting effects and thus their consumption as food additives and nutraceuticals has been greatly encouraged. Antioxidants may be beneficial in situations of subclinical deficiency and increased demand or acutely upon high-dose infusion. However, to date, there is little clinical evidence for the long-term benefit of most antioxidants. Alarmingly, recent evidence points even to health risks, in particular for supplements of lipophilic antioxidants. RECENT ADVANCES The biological impact of ROS depends not only on their quantities but also on their chemical nature, (sub)cellular and tissue location, and the rates of their formation and degradation. Moreover, ROS serve important physiological functions; thus, inappropriate removal of ROS may cause paradoxical reductive stress and thereby induce or promote disease. CRITICAL ISSUES Any recommendation on antioxidants must be based on solid clinical evidence and patient-relevant outcomes rather than surrogate parameters. FUTURE DIRECTIONS Such evidence-based use may include site-directed application, time-limited high dosing, (functional) pharmacological repair of oxidized biomolecules, and triggers of endogenous antioxidant response systems. Ideally, these approaches need guidance by patient stratification through predictive biomarkers and possibly imaging modalities.
Collapse
Affiliation(s)
- Harald H H W Schmidt
- 1 Department of Pharmacology, CARIM, FHML, MIAS, Maastricht University , Maastricht, The Netherlands
| | - Roland Stocker
- 2 Victor Chang Cardiac Research Institute , Sydney, Australia .,3 University of New South Wales , Sydney, Australia
| | - Claudia Vollbracht
- 4 Hochschule Fresenius, University of Applied Sciences , Idstein, Germany
| | | | - Dennis Riley
- 6 Galera Therapeutics Inc., Malvern, Pennsylvania
| | - Andreas Daiber
- 7 Labor für Molekulare Kardiologie, II. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität , Mainz, Germany
| | - Antonio Cuadrado
- 8 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,9 Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,10 Instituto de Investigación Sanitaria La Paz (IdiPaz) , Madrid, Spain .,11 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| |
Collapse
|
46
|
Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int Immunopharmacol 2015; 28:1018-25. [DOI: 10.1016/j.intimp.2015.07.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
|
47
|
Sultan MT, Butt MS, Karim R, Ahmed W, Kaka U, Ahmad S, Dewanjee S, Jaafar HZE, Zia-Ul-Haq M. Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:330. [PMID: 26385559 PMCID: PMC4575498 DOI: 10.1186/s12906-015-0853-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase. METHODS Animals; 30 rats (Sprague Dawley) were divided in three groups and oxidative stress was induced using mild dose of potassium bromate. The groups were on their respective diets (iso-caloric diets for a period of 56 days) i.e. control and two experimental diets containing N. sativa fixed (4%) and essential (0.3%) oils. The activities of enzymes involved in glutathione redox system and myeloperoxidase (MPO) were analyzed. RESULTS The experimental diets modulated the activities of enzymes i.e. glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (P<0.01). MPO activities were in negative correlation with GST (P<0.01) but positive correlation with some other parameters. CONCLUSIONS Our results indicated that both Nigella sativa fixed and essential oil are effective in improving the antioxidant indices against potassium bromate induced oxidative stress.
Collapse
Affiliation(s)
| | - Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Roselina Karim
- Faculty of Food Science & Technology, University of Putra Malaysia, Serdang, Selangor, MY, Malaysia
| | - Waqas Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ubedullah Kaka
- Faculty of Veterinary Medicines, University of Putra Malaysia, Serdang, Selangor, Malaysia
| | - Shakeel Ahmad
- Department of Agronomy, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Hawa Z E Jaafar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia.
| | | |
Collapse
|
48
|
Schürmann C, Rezende F, Kruse C, Yasar Y, Löwe O, Fork C, van de Sluis B, Bremer R, Weissmann N, Shah AM, Jo H, Brandes RP, Schröder K. The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J 2015; 36:3447-56. [PMID: 26385958 DOI: 10.1093/eurheartj/ehv460] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/18/2015] [Indexed: 12/23/2022] Open
Abstract
AIMS Oxidative stress is thought to be a risk for cardiovascular disease and NADPH oxidases of the Nox family are important producers of reactive oxygen species. Within the Nox family, the NADPH oxidase Nox4 has a unique position as it is constitutively active and produces H2O2 rather than [Formula: see text] . Nox4 is therefore incapable of scavenging NO and its low constitutive H2O2 production might even be beneficial. We hypothesized that Nox4 acts as an endogenous anti-atherosclerotic enzyme. METHODS AND RESULTS Tamoxifen-induced Nox4-knockout mice were crossed with ApoE⁻/⁻ mice and spontaneous atherosclerosis under regular chow as well as accelerated atherosclerosis in response to partial carotid artery ligation under high-fat diet were determined. Deletion of Nox4 resulted in increased atherosclerosis formation in both models. Mechanistically, pro-atherosclerotic and pro-inflammatory changes in gene expression were observed prior to plaque development. Moreover, inhibition of Nox4 or deletion of the enzyme in the endothelium but not in macrophages resulted in increased adhesion of macrophages to the endothelial surface. CONCLUSIONS The H2O2-producing NADPH oxidase Nox4 is an endogenous anti-atherosclerotic enzyme. Nox4 inhibitors, currently under clinical evaluation, should be carefully monitored for cardiovascular side-effects.
Collapse
Affiliation(s)
- Christoph Schürmann
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Flavia Rezende
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Christoph Kruse
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Yakub Yasar
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Oliver Löwe
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Christian Fork
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rolf Bremer
- HBB Datenkommunikation & Abrechnungssysteme, Hannover, Germany
| | - Norbert Weissmann
- Member of the German Center for Lung Research (DZL), Excellencecluster Cardiopulmonary System, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre, London, UK
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
49
|
Steven S, Münzel T, Daiber A. Exploiting the Pleiotropic Antioxidant Effects of Established Drugs in Cardiovascular Disease. Int J Mol Sci 2015; 16:18185-223. [PMID: 26251902 PMCID: PMC4581241 DOI: 10.3390/ijms160818185] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life worldwide. Arterial vessels are a primary target for endothelial dysfunction and atherosclerosis, which is accompanied or even driven by increased oxidative stress. Recent research in this field identified different sources of reactive oxygen and nitrogen species contributing to the pathogenesis of endothelial dysfunction. According to lessons from the past, improvement of endothelial function and prevention of cardiovascular disease by systemic, unspecific, oral antioxidant therapy are obviously too simplistic an approach. Source- and cell organelle-specific antioxidants as well as activators of intrinsic antioxidant defense systems might be more promising. Since basic research demonstrated the contribution of different inflammatory cells to vascular oxidative stress and clinical trials identified chronic inflammatory disorders as risk factors for cardiovascular events, atherosclerosis and cardiovascular disease are closely associated with inflammation. Therefore, modulation of the inflammatory response is a new and promising approach in the therapy of cardiovascular disease. Classical anti-inflammatory therapeutic compounds, but also established drugs with pleiotropic immunomodulatory abilities, demonstrated protective effects in various models of cardiovascular disease. However, results from ongoing clinical trials are needed to further evaluate the value of immunomodulation for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sebastian Steven
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Thomas Münzel
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | - Andreas Daiber
- Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| |
Collapse
|
50
|
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5:275-289. [PMID: 26079210 PMCID: PMC4475862 DOI: 10.1016/j.redox.2015.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.
Collapse
Affiliation(s)
- Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnes Görlach
- German Heart Center Munich at the Technical University Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|