1
|
Suraci CM, Morrison ML, Roth MB. Oxygen is toxic in the cold in C. elegans. Front Physiol 2024; 15:1471249. [PMID: 39777359 PMCID: PMC11703811 DOI: 10.3389/fphys.2024.1471249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans. Methods The survival of C. elegans populations in combinations of oxygen concentrations and was assayed. Additionally, the effect of cold acclimatization, mutations in the cold acclimatization pathway, compounds, and antioxidant proteins on survival in low temperatures and high oxygen were investigated. Results We demonstrate that C. elegans have increased survival in 2°C when deprived of oxygen, and an increase to just 0.25 kPa of oxygen decreased survival. Additionally, we show that oxygen toxicity produced by a 35-fold increase above atmospheric oxygen levels was fatal for nematodes in 8 h at room temperature and 2 h at 2°C. We found that cold acclimatization and mutations in the cold acclimatization pathway improve survival in room temperature oxygen toxicity. Furthermore, we found that the compounds glucose, manganese (II), and ascorbate improve both cold shock and high oxygen survival, while the antioxidant proteins catalase and peroxiredoxin are essential to wild type survival in these conditions. Discussion Our results suggest that oxygen toxicity contributes to the death of C. elegans during cold shock. The changes in survival induced by cold acclimatization and mutations in the cold acclimatization pathway suggest that oxygen toxicity in the cold exerts evolutionary pressure, leading to the development of protections against it. Additionally, the resistance provided by diverse compounds and antioxidant proteins in both low temperature and high oxygen suggests these conditions have similar chemical environments. We discuss evidence that similar phenomena may function in humans.
Collapse
Affiliation(s)
| | | | - Mark B. Roth
- Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
2
|
Wu H, Prithiviraj B, Tan Z. Physiological Effects of Oxidative Stress Caused by Saxitoxin in the Nematode Caenorhabditis elegans. Mar Drugs 2023; 21:544. [PMID: 37888479 PMCID: PMC10608204 DOI: 10.3390/md21100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Saxitoxin (STX) causes high toxicity by blocking voltage-gated sodium channels, and it poses a major threat to marine ecosystems and human health worldwide. Our work evaluated the neurotoxicity and chronic toxicology of STX to Caenorhabditis elegans by an analysis of lifespan, brood size, growth ability, reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels, and the overexpression of green fluorescent protein (GFP). After exposure to a series of concentrations of STX for 24 h, worms showed paralysis symptoms and fully recovered within 6 h; less than 5% of worms died at the highest concentration of 1000 ng/mL for first larval stage (L1) worms and 10,000 ng/mL for fourth larval stage (L4) worms. Declines in lifespan, productivity, and body size of C. elegans were observed under the stress of 1, 10, and 100 ng/mL STX, and the lifespan was shorter than that in controls. With STX exposure, the productivity declined by 32-49%; the body size, including body length and body area, declined by 13-18% and 25-27%, respectively. The levels of ROS exhibited a gradual increase over time, accompanied by a positive concentration effect of STX resulting in 1.14-1.86 times higher levels compared to the control group in L4 worms. Conversely, no statistically significant differences were observed between L1 worms. Finally, after exposure to STX for 48 h, ATP levels and GFP expression in C. elegans showed a significant dose-dependent increase. Our study reports the first evidence that STX is not lethal but imposes substantial oxidative stress on C. elegans, with a dose-responsive relationship. Our results indicated that C. elegans is an ideal model to further study the mechanisms underlying the fitness of organisms under the stress caused by paralytic shellfish toxins including STX.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada;
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, NS B2N5E3, Canada;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Woodhouse RM, Frolows N, Wang G, Hawdon A, Wong EHK, Dansereau LC, Su Y, Adair LD, New EJ, Philp AM, Tan WK, Philp A, Ashe A. Mitochondrial succinate dehydrogenase function is essential for sperm motility and male fertility. iScience 2022; 25:105573. [PMID: 36465130 PMCID: PMC9709242 DOI: 10.1016/j.isci.2022.105573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial health is crucial to sperm quality and male fertility, but the precise role of mitochondria in sperm function remains unclear. SDHA is a component of the succinate dehydrogenase (SDH) complex and plays a critical role in mitochondria. In humans, SDH activity is positively correlated with sperm quality, and mutations in SDHA are associated with Leigh Syndrome. Here we report that the C. elegans SDHA orthologue SDHA-2 is essential for male fertility: sdha-2 mutants produce dramatically fewer offspring due to defective sperm activation and motility, have hyperfused sperm mitochondria, and disrupted redox balance. Similar sperm motility defects in sdha-1 and icl-1 mutant animals suggest an imbalance in metabolites may underlie the fertility defect. Our results demonstrate a role for SDHA-2 in sperm motility and male reproductive health and establish an animal model of SDH deficiency-associated infertility.
Collapse
Affiliation(s)
- Rachel M. Woodhouse
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Natalya Frolows
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- CSIRO Health and Biosecurity, Sydney, NSW 2113, Australia
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Azelle Hawdon
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Edmund Heng Kin Wong
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Linda C. Dansereau
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, UNSW Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D. Adair
- The University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- The University of Sydney, School of Chemistry, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh M. Philp
- St Vincent’s Clinical School, UNSW Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Wei Kang Tan
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Alyson Ashe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Hermeling JCW, Herholz M, Baumann L, Cores EC, Zečić A, Hoppe T, Riemer J, Trifunovic A. Mitochondria-originated redox signalling regulates KLF-1 to promote longevity in Caenorhabditis elegans. Redox Biol 2022; 58:102533. [PMID: 36442394 PMCID: PMC9709155 DOI: 10.1016/j.redox.2022.102533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Alternations of redox metabolism have been associated with the extension of lifespan in roundworm Caenorhabditis elegans, caused by moderate mitochondrial dysfunction, although the underlying signalling cascades are largely unknown. Previously, we identified transcriptional factor Krüppel-like factor-1 (KLF-1) as the main regulator of cytoprotective longevity-assurance pathways in the C. elegans long-lived mitochondrial mutants. Here, we show that KLF-1 translocation to the nucleus and the activation of the signalling cascade is dependent on the mitochondria-derived hydrogen peroxide (H2O2) produced during late developmental phases where aerobic respiration and somatic mitochondrial biogenesis peak. We further show that mitochondrial-inducible superoxide dismutase-3 (SOD-3), together with voltage-dependent anion channel-1 (VDAC-1), is required for the life-promoting H2O2 signalling that is further regulated by peroxiredoxin-3 (PRDX-3). Increased H2O2 release in the cytoplasm activates the p38 MAPK signalling cascade that induces KLF-1 translocation to the nucleus and the activation of transcription of C. elegans longevity-promoting genes, including cytoprotective cytochrome P450 oxidases. Taken together, our results underline the importance of redox-regulated signalling as the key regulator of longevity-inducing pathways in C. elegans, and position precisely timed mitochondria-derived H2O2 in the middle of it.
Collapse
Affiliation(s)
- Johannes CW Hermeling
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Marija Herholz
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Linda Baumann
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Estela Cepeda Cores
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Aleksandra Zečić
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Center for Molecular Medicine Cologne (CMMC), Cologne, D-50931, Germany,Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Biochemistry, University of Cologne, Cologne, D-50931, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany,Center for Molecular Medicine Cologne (CMMC), Cologne, D-50931, Germany,Corresponding author. CECAD Research CenterUniversity of Cologne, Joseph-Stelzmann-Str. 26, Cologne, D-50931, Germany.
| |
Collapse
|
5
|
Harris-Gauthier N, Traa A, AlOkda A, Moldakozhayev A, Anglas U, Soo SK, Van Raamsdonk JM. Mitochondrial thioredoxin system is required for enhanced stress resistance and extended longevity in long-lived mitochondrial mutants. Redox Biol 2022; 53:102335. [PMID: 35598379 PMCID: PMC9126954 DOI: 10.1016/j.redox.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023] Open
Abstract
Mild impairment of mitochondrial function has been shown to increase lifespan in genetic model organisms including worms, flies and mice. To better understand the mechanisms involved, we analyzed RNA sequencing data and found that genes involved in the mitochondrial thioredoxin system, trx-2 and trxr-2, are specifically upregulated in long-lived mitochondrial mutants but not other non-mitochondrial, long-lived mutants. Upregulation of trx-2 and trxr-2 is mediated by activation of the mitochondrial unfolded protein response (mitoUPR). While we decided to focus on the genes of the mitochondrial thioredoxin system for this paper, we identified multiple other antioxidant genes that are upregulated by the mitoUPR in the long-lived mitochondrial mutants including sod-3, prdx-3, gpx-6, gpx-7, gpx-8 and glrx-5. In exploring the role of the mitochondrial thioredoxin system in the long-lived mitochondrial mutants, nuo-6 and isp-1, we found that disruption of either trx-2 or trxr-2 significantly decreases their long lifespan, but has no effect on wild-type lifespan, indicating that the mitochondrial thioredoxin system is specifically required for their longevity. In contrast, disruption of the cytoplasmic thioredoxin gene trx-1 decreases lifespan in nuo-6, isp-1 and wild-type worms, indicating a non-specific detrimental effect on longevity. Disruption of trx-2 or trxr-2 also decreases the enhanced resistance to stress in nuo-6 and isp-1 worms, indicating a role for the mitochondrial thioredoxin system in protecting against exogenous stressors. Overall, this work demonstrates an important role for the mitochondrial thioredoxin system in both stress resistance and lifespan resulting from mild impairment of mitochondrial function.
Collapse
Affiliation(s)
- Namastheé Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alibek Moldakozhayev
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ulrich Anglas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bogacz M, Dirdjaja N, Wimmer B, Habich C, Krauth-Siegel RL. The mitochondrial peroxiredoxin displays distinct roles in different developmental stages of African trypanosomes. Redox Biol 2020; 34:101547. [PMID: 32388269 PMCID: PMC7218024 DOI: 10.1016/j.redox.2020.101547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Hydroperoxide reduction in African trypanosomes relies on 2-Cys-peroxiredoxins (Prxs) and glutathione peroxidase-type enzymes (Pxs) which both obtain their reducing equivalents from the trypanothione/tryparedoxin couple and thus act as tryparedoxin peroxidases. While the cytosolic forms of the peroxidases are essential, the mitochondrial mPrx and Px III appear dispensable in bloodstream Trypanosoma brucei. This led to the suggestion that in this developmental stage which is characterized by a mitochondrion that lacks an active respiratory chain, only one of the two peroxidases might be required. Here we show that bloodstream cells in which the Px III gene is deleted and mPrx is down-regulated by RNA interference, proliferate as the parental cells indicating that both mitochondrial peroxidases are dispensable. However, when we raised the culture temperature to 39 °C, mPrx-depleted cells died indicating that under conditions mimicking a fever situation in the mammalian host, the protein becomes essential. In contrast, depletion of mPrx in insect stage procyclic T. brucei causes a proliferation defect under standard conditions at 27 °C, in the absence of any stress. In the absence of mPrx, a tryparedoxin-coupled roGFP2 biosensor expressed in the mitochondrial matrix is unable to respond to antimycin A treatment. Thus mPrx reduces mitochondrial H2O2 with the generation of trypanothione disulfide and acts as peroxidase. However, mPrx-depleted procyclic cells neither display any alteration in the cytosolic or mitochondrial trypanothione redox state nor increased sensitivity towards exogenous oxidative stressors suggesting that the peroxidase activity is not the crucial physiological function. After prolonged mPrx-depletion, the cells almost stop proliferation and display a highly elongated shape and diminished MitoTracker Red staining. In contrast to the situation in the mammalian bloodstream T. brucei and Leishmania, mPrx appears to play a constitutive role for the morphology, mitochondrial function and proliferation of the insect stage of African trypanosomes. In bloodstream T. brucei, both mitochondrial tryparedoxin peroxidases are dispensable. Heat-stressed bloodstream cells require the mitochondrial peroxiredoxin (mPrx). In procyclic (PC) T. brucei, mPrx plays a constitutive role for proliferation. Lack of mPrx affects the structure and mitochondrial membrane potential of PC cells.
Collapse
Affiliation(s)
- Marta Bogacz
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Natalie Dirdjaja
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Benedikt Wimmer
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Carina Habich
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Trewin AJ, Bahr LL, Almast A, Berry BJ, Wei AY, Foster TH, Wojtovich AP. Mitochondrial Reactive Oxygen Species Generated at the Complex-II Matrix or Intermembrane Space Microdomain Have Distinct Effects on Redox Signaling and Stress Sensitivity in Caenorhabditis elegans. Antioxid Redox Signal 2019; 31:594-607. [PMID: 30887829 PMCID: PMC6657295 DOI: 10.1089/ars.2018.7681] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aims: How mitochondrial reactive oxygen species (ROS) impact physiological function may depend on the quantity of ROS generated or removed, and the subcellular microdomain in which this occurs. However, pharmacological tools currently available to alter ROS production in vivo lack precise spatial and temporal control. Results: We used CRISPR/Cas9 to fuse the light-sensitive ROS-generating protein, SuperNova to the C-terminus of mitochondrial complex II succinate dehydrogenase subunits B (SDHB-1::SuperNova) and C (SDHC-1::SuperNova) in Caenorhabditis elegans to localize SuperNova to the matrix-side of the inner mitochondrial membrane, and to the intermembrane space (IMS), respectively. The presence of the SuperNova protein did not impact complex II activity, mitochondrial respiration, or C. elegans development rate under dark conditions. ROS production by SuperNova protein in vitro in the form of superoxide (O2˙-) was both specific and proportional to total light irradiance in the 540-590 nm spectra, and was unaffected by varying the buffer pH to resemble the mitochondrial matrix or IMS environments. We then determined using SuperNova whether stoichiometric ROS generation in the mitochondrial matrix or IMS had distinct effects on redox signaling in vivo. Phosphorylation of PMK-1 (a p38 MAPK homolog) and transcriptional activity of SKN-1 (an Nrf2 homolog) were each dependent on both the site and duration of ROS production, with matrix-generated ROS having more prominent effects. Furthermore, matrix- but not IMS-generated ROS attenuated susceptibility to simulated ischemia reperfusion injury in C. elegans. Innovation and Conclusion: Overall, these data demonstrate that the physiological output of ROS depends on the microdomain in which it is produced. Antioxid. Redox Signal. 31, 594-607.
Collapse
Affiliation(s)
- Adam J Trewin
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura L Bahr
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Anmol Almast
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Brandon J Berry
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York.,2Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Alicia Y Wei
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York
| | - Thomas H Foster
- 3Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York
| | - Andrew P Wojtovich
- 1Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York.,2Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
9
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
12
|
Jin Y, Yang Q, Liang L, Ding L, Liang Y, Zhang D, Wu B, Yang T, Liu H, Huang T, Shen H, Tu H, Pan Y, Wei Y, Yang Y, Zhou F. Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. J Exp Clin Cancer Res 2018; 37:277. [PMID: 30454068 PMCID: PMC6245615 DOI: 10.1186/s13046-018-0948-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increase in the levels of reactive oxygen species (ROS) in acute myeloid leukemia (AML) patients has been previously described; thus, it is important to regulate ROS levels in AML. METHODS Flow cytometry were used to assess the in vitro effect of compound kushen injection (CKI). Quantitative proteomics were used to analyse the mechanism. The AML patient-derived xenograft (PDX) model were used to evaluate the in vivo effect of CKI. RESULTS We found that intracellular ROS levels in AML cells were decreased, the antioxidant capacity were increased when treated with CKI. CKI inhibited the proliferation of AML cells and enhanced the cytotoxicity of AML cells, which has few toxic effects on haematopoietic stem cells (HSCs) and T cells. At the single-cell level, individual AML cells died gradually by CKI treatment on optofluidic chips. CKI promoted apoptosis and arrested cell cycle at G1/G0 phase in U937 cells. Furthermore, higher peroxiredoxin-3 (Prdx3) expression levels were identified in CKI-treated U937 cells through quantitative proteomics detection. Mechanically, the expression of Prdx3 and peroxiredoxin-2 (Prdx2) was up-regulated in CKI-treated AML cells, while thioredoxin 1 (Trx1) was reduced. Laser confocal microscopy showed that the proteins Prdx2 could be Interacted with Trx1 by CKI treatment. In vivo, the survival was longer and the disease was partially alleviated by decreased CD45+ immunophenotyping in peripheral blood in the CKI-treated group in the AML PDX model. CONCLUSIONS Antioxidant CKI possess better clinical application against AML through the Prdxs/ROS/Trx1 signalling pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Female
- HL-60 Cells
- Heterografts
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Microscopy, Confocal
- Peroxiredoxins/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Thioredoxins/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Yanxia Jin
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Qian Yang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Li Liang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 Hubei China
| | - Lu Ding
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Yuxing Liang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Dongdong Zhang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Balu Wu
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Tian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Hailing Liu
- Department of Clinical Haematology, Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an, 710004 Shaanxi China
| | - Tingting Huang
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Hui Shen
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Honglei Tu
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071 Hubei China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072 Hubei China
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071 Hubei Province China
| |
Collapse
|
13
|
Machado ML, Arantes LP, Gubert P, Zamberlan DC, da Silva TC, da Silveira TL, Boligon A, Soares FAA. Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans through purinergic system (ADOR-1) and nuclear hormone receptor (NHR-49) pathways. PLoS One 2018; 13:e0204023. [PMID: 30252861 PMCID: PMC6155532 DOI: 10.1371/journal.pone.0204023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/01/2018] [Indexed: 11/30/2022] Open
Abstract
Ilex paraguariensis is a well-known plant that is widely consumed in South America, primarily as a drink called mate. Mate is described to have stimulant and medicinal properties. Considering the potential anti-lipid effects of I. paraguariensis infusion, we used an extract of this plant as a possible modulator of fat storage to control lipid metabolism in worms. Herein, the I. paraguariensis-dependent modulation of fat metabolism in Caenorhabditis elegans was investigated. C. elegans were treated with I. paraguariensis aqueous extract (1 mg/ml) from L1 larvae stage until adulthood, to simulate the primary form of consumption. Expression of adipocyte triglyceride lipase 1 (ATGL-1) and heat shock protein 16.2, lipid accumulation through C1-BODIPY-C12 (BODIPY) lipid staining, behavioral parameters, body length, total body energy expenditure and overall survival were analyzed. Total body energy expenditure was determined by the oxygen consumption rate in N2, nuclear hormone receptor knockout, nhr-49(nr2041), and adenosine receptor knockout, ador-1(ox489) strains. Ilex paraguariensis extract increased ATGL-1 expression 20.06% and decreased intestinal BODIPY fat staining 63.36%, compared with the respective control group, without affecting bacterial growth and energetic balance, while nhr-49(nr2041) and ador-1(ox489) strains blocked the worm fat loss. In addition, I. paraguariensis increased the oxygen consumption in N2 worms, but not in mutant strains, increased N2 worm survival following juglone exposure, and did not alter hsp-16.2 expression. We demonstrate for the first time that I. paraguariensis can decrease fat storage and increase body energy expenditure in worms. These effects depend on the purinergic system (ADOR-1) and NHR-49 pathways. Ilex paraguariensis upregulated the expression of ATGL-1 to modulate fat metabolism. Furthermore, our data corroborates with other studies that demonstrate that C. elegans is a useful tool for studies of fat metabolism and energy consumption.
Collapse
Affiliation(s)
- Marina Lopes Machado
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Leticia Priscilla Arantes
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila Gubert
- Centro de Ciências Biológicas e da Saúde, Campus Reitor Edgard Santos, Universidade Federal do Oeste da Bahia, Barreiras, Bahia, Brazil
| | - Daniele Coradini Zamberlan
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thayanara Cruz da Silva
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Boligon
- Departamento da Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
15
|
Tidwell TR, Søreide K, Hagland HR. Aging, Metabolism, and Cancer Development: from Peto's Paradox to the Warburg Effect. Aging Dis 2017; 8:662-676. [PMID: 28966808 PMCID: PMC5614328 DOI: 10.14336/ad.2017.0713] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Medical advances made over the last century have increased our lifespan, but age-related diseases are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. How these epigenetic markers accumulate over time is now being investigated as the possible link between aging and many diseases, such as cancer. The relationship between metabolism and cancer was described as early as the late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. However, when the stepwise gene mutation theory of cancer was presented, Warburg's theories garnered little attention. Only in the last decade, with epigenetic discoveries, have Warburg's data on the metabolic shift in cancers been brought back to life. The stepwise gene mutation theory fails to explain why large animals with more cells, do not have a greater cancer incidence than humans, known as Peto's paradox. The resurgence of research into the Warburg effect has given us insight to what may explain Peto's paradox. In this review, we discuss these connections and how age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control.
Collapse
Affiliation(s)
- Tia R. Tidwell
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hanne R. Hagland
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
16
|
|
17
|
Miranda-Vizuete A, Veal EA. Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biol 2016; 11:708-714. [PMID: 28193593 PMCID: PMC5304259 DOI: 10.1016/j.redox.2016.12.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
ROS (reactive oxygen species) are potentially damaging by-products of aerobic metabolism which, unchecked, can have detrimental effects on cell function. However, it is now widely accepted that, at physiological levels, certain ROS play important roles in cell signaling, acting as second messengers to regulate cell choices that contribute to the development, adaptation and survival of plants and animals. Despite important recent advances in the biochemical tools available to study redox-signaling, the molecular mechanisms underlying most of these responses remain poorly understood, particularly in multicellular organisms. As we will review here, C. elegans has emerged as a powerful animal model to elucidate these and other aspects of redox biology.
Collapse
Affiliation(s)
- Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
18
|
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA, Taylor DW, Blaxter ML, Wastling JM, Tanya VN, Makepeace BL. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics 2016; 15:2554-75. [PMID: 27226403 PMCID: PMC4974336 DOI: 10.1074/mcp.m115.055640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Dong Xia
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Germanus S Bah
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Ritesh Krishna
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henrietta F Ngangyung
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - E James LaCourse
- ‖Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Henry J McSorley
- **The Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4JT
| | - Jonas A Kengne-Ouafo
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | | | - Samuel Wanji
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | - Peter A Enyong
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon; §§Tropical Medicine Research Station, Kumba, Cameroon
| | - David W Taylor
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ¶¶Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- ‖‖Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ‡‡‡The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Benjamin L Makepeace
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
19
|
C. elegans miro-1 Mutation Reduces the Amount of Mitochondria and Extends Life Span. PLoS One 2016; 11:e0153233. [PMID: 27064409 PMCID: PMC4827821 DOI: 10.1371/journal.pone.0153233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play a critical role in aging, however, the underlying mechanism is not well understood. We found that a mutation disrupting the C. elegans homolog of Miro GTPase (miro-1) extends life span. This phenotype requires simultaneous loss of miro-1 from multiple tissues including muscles and neurons, and is dependent on daf-16/FOXO. Notably, the amount of mitochondria in the miro-1 mutant is reduced to approximately 50% of the wild-type. Despite this reduction, oxygen consumption is only weakly reduced, suggesting that mitochondria of miro-1 mutants are more active than wild-type mitochondria. The ROS damage is slightly reduced and the mitochondrial unfolded protein response pathway is weakly activated in miro-1 mutants. Unlike previously described long-lived mitochondrial electron transport chain mutants, miro-1 mutants have normal growth rate. These results suggest that the reduction in the amount of mitochondria can affect the life span of an organism through activation of stress pathways.
Collapse
|
20
|
Bioactive Peptides from Angelica sinensis Protein Hydrolyzate Delay Senescence in Caenorhabditis elegans through Antioxidant Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8956981. [PMID: 26941890 PMCID: PMC4752986 DOI: 10.1155/2016/8956981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/30/2015] [Indexed: 02/02/2023]
Abstract
Since excessive reactive oxygen species (ROS) is known to be associated with aging and age-related diseases, strategies modulating ROS level and antioxidant defense systems may contribute to the delay of senescence. Here we show that the protein hydrolyzate from Angelica sinensis was capable of increasing oxidative survival of the model animal Caenorhabditis elegans intoxicated by paraquat. The hydrolyzate was then fractionated by ultrafiltration, and the antioxidant fraction (<3 kDa) was purified by gel filtration to obtain the antioxidant A. sinensis peptides (AsiPeps), which were mostly composed of peptides with <20 amino acid residues. Further studies demonstrate that AsiPeps were able to reduce the endogenous ROS level, increase the activities of the antioxidant enzymes superoxide dismutase and catalase, and decrease the content of the lipid peroxidation product malondialdehyde in nematodes treated with paraquat or undergoing senescence. AsiPeps were also shown to reduce age pigments accumulation and extend lifespan but did not affect the food-intake behavior of the nematodes. Taken together, our results demonstrate that A. sinensis peptides (AsiPeps) are able to delay aging process in C. elegans through antioxidant activities independent of dietary restriction.
Collapse
|
21
|
Gruber J, Chen CB, Fong S, Ng LF, Teo E, Halliwell B. Caenorhabditis elegans: What We Can and Cannot Learn from Aging Worms. Antioxid Redox Signal 2015; 23:256-79. [PMID: 25544992 DOI: 10.1089/ars.2014.6210] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The nematode Caenorhabditis elegans is a widely used model organism for research into aging. However, nematodes diverged from other animals between 600 and 1300 million years ago. Beyond the intuitive impression that some aspects of aging appear to be universal, is there evidence that insights into the aging process of nematodes may be applicable to humans? RECENT ADVANCES There have been a number of results in nematodes that appear to contradict long-held beliefs about mechanisms and causes of aging. For example, ablation of several key antioxidant systems has often failed to result in lifespan shortening in C. elegans. CRITICAL ISSUES While it is clear that some central signaling pathways controlling lifespan are broadly conserved across large evolutionary distances, it is less clear to what extent downstream molecular mechanisms of aging are conserved. In this review we discuss the biology of C. elegans and mammals in the context of aging and age-dependent diseases. We consider evidence from studies that attempt to investigate basic, possibly conserved mechanisms of aging especially in the context of the free radical theory of aging. Practical points, such as the need for blinding of lifespan studies and for appropriate biomarkers, are also considered. FUTURE DIRECTIONS As data on the aging process(es) in different organisms increase, it is becoming increasingly clear that there are both conserved (public) and private aspects to aging. It is important to explore the dividing lines between these two aspects and to be aware of the large gray areas in-between.
Collapse
Affiliation(s)
- Jan Gruber
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore .,2 Yale-NUS College , Singapore, Singapore
| | - Ce-Belle Chen
- 3 Department of Physics, National University of Singapore , Singapore, Singapore
| | - Sheng Fong
- 4 Duke-NUS Graduate Medical School , Singapore, Singapore
| | - Li Fang Ng
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore
| | - Emelyne Teo
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore
| | - Barry Halliwell
- 1 Department of Biochemistry, National University of Singapore , Singapore, Singapore
| |
Collapse
|
22
|
Perkins A, Poole L, Karplus PA. Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry 2014; 53:7693-705. [PMID: 25403613 PMCID: PMC4270387 DOI: 10.1021/bi5013222] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/12/2014] [Indexed: 12/15/2022]
Abstract
Peroxiredoxins (Prxs) make up an ancient family of enzymes that are the predominant peroxidases for nearly all organisms and play essential roles in reducing hydrogen peroxide, organic hydroperoxides, and peroxynitrite. Even between distantly related organisms, the core protein fold and key catalytic residues related to its cysteine-based catalytic mechanism have been retained. Given that these enzymes appeared early in biology, Prxs have experienced more than 1 billion years of optimization for specific ecological niches. Although their basic enzymatic function remains the same, Prxs have diversified and are involved in roles such as protecting DNA against mutation, defending pathogens against host immune responses, suppressing tumor formation, and--for eukaryotes--helping regulate peroxide signaling via hyperoxidation of their catalytic Cys residues. Here, we review the current understanding of the physiological roles of Prxs by analyzing knockout and knockdown studies from ∼25 different species. We also review what is known about the structural basis for the sensitivity of some eukaryotic Prxs to inactivation by hyperoxidation. In considering the physiological relevance of hyperoxidation, we explore the distribution across species of sulfiredoxin (Srx), the enzyme responsible for rescuing hyperoxidized Prxs. We unexpectedly find that among eukaryotes appearing to have a "sensitive" Prx isoform, some do not contain Srx. Also, as Prxs are suggested to be promising targets for drug design, we discuss the rationale behind recently proposed strategies for their selective inhibition.
Collapse
Affiliation(s)
- Arden Perkins
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United
States
| | - Leslie
B. Poole
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United
States
| |
Collapse
|
23
|
Shokolenko IN, Wilson GL, Alexeyev MF. Aging: A mitochondrial DNA perspective, critical analysis and an update. World J Exp Med 2014; 4:46-57. [PMID: 25414817 PMCID: PMC4237642 DOI: 10.5493/wjem.v4.i4.46] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/15/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial theory of aging, a mainstream theory of aging which once included accumulation of mitochondrial DNA (mtDNA) damage by reactive oxygen species (ROS) as its cornerstone, has been increasingly losing ground and is undergoing extensive revision due to its inability to explain a growing body of emerging data. Concurrently, the notion of the central role for mtDNA in the aging process is being met with increased skepticism. Our progress in understanding the processes of mtDNA maintenance, repair, damage, and degradation in response to damage has largely refuted the view of mtDNA as being particularly susceptible to ROS-mediated mutagenesis due to its lack of “protective” histones and reduced complement of available DNA repair pathways. Recent research on mitochondrial ROS production has led to the appreciation that mitochondria, even in vitro, produce much less ROS than previously thought, automatically leading to a decreased expectation of physiologically achievable levels of mtDNA damage. New evidence suggests that both experimentally induced oxidative stress and radiation therapy result in very low levels of mtDNA mutagenesis. Recent advances provide evidence against the existence of the “vicious” cycle of mtDNA damage and ROS production. Meta-studies reveal no longevity benefit of increased antioxidant defenses. Simultaneously, exciting new observations from both comparative biology and experimental systems indicate that increased ROS production and oxidative damage to cellular macromolecules, including mtDNA, can be associated with extended longevity. A novel paradigm suggests that increased ROS production in aging may be the result of adaptive signaling rather than a detrimental byproduct of normal respiration that drives aging. Here, we review issues pertaining to the role of mtDNA in aging.
Collapse
|
24
|
Caenorhabditis elegans: A useful model for studying metabolic disorders in which oxidative stress is a contributing factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:705253. [PMID: 24955209 PMCID: PMC4052186 DOI: 10.1155/2014/705253] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022]
Abstract
Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.
Collapse
|