1
|
Singh M, Saini VP, Meena LL. Heat stress induces oxidative stress and weakens the immune system in catfish Clarias magur: Evidence from physiological, histological, and transcriptomic analyses. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110294. [PMID: 40154646 DOI: 10.1016/j.fsi.2025.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Climate change is unequivocal, causing a rise in the Earth's temperature, which ultimately impacts all ecosystems. However, aquatic ecosystems are most severely affected by rising temperatures resulting in huge losses to aquaculture industry. The present study investigated the oxidative stress, histopathological changes, and transcriptomic responses in a freshwater catfish Clarias magur subjected to acute heat stress. Fish were exposed to four different temperatures, i.e., 28, 30, 32, and 34 °C, for 96 h to assess their heat tolerance and adaptation behavior. Fish kept at 26 °C were considered the control group. Elevated levels of key antioxidative enzymes such as catalase, glutathione reductase, and superoxide dismutase, were recorded in vital organs (gills, kidney, liver, and rosette). High rates of lipid peroxidation were also observed in the gills, kidney, liver, and rosette. An analysis of the top 25 differentially expressed genes of the gill transcriptome revealed that 72 percent of the transcripts were represented by innate and adaptive immune response genes. Downregulation of BOLA class I and MHC class I molecules indicated impaired immunity whereas, upregulation of MHC class II beta chain and GTPase IMAP8 suggested a compensatory immune response. These findings were also supported by the observed histoarchitectural alterations, such as disintegration of the skin barrier, hepatic and nephrotic apoptosis, tissue hyperplasia, macrophage infiltration, and development of splenic granulomas. This study provides important insights into physiological and molecular mechanisms underlying acute heat stress responses. Understanding these mechanisms is important for developing mitigation strategies to improve the sustainability and resilience of commercially important catfish under continuously changing climatic conditions.
Collapse
Affiliation(s)
- Mamta Singh
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India.
| | - Ved Prakash Saini
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| | - Lakan Lal Meena
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| |
Collapse
|
2
|
Neves APP, Kaziuk FD, Corrêa-Ferreira ML, Martinez GR, Mazepa E, Sousa-Pereira D, Echevarria A, Brochado Winnischofer SM, Andrade Pires ADR, Cadena SMSC. Oxidative imbalance linked to impaired mitochondrial bioenergetics mediates the toxicity of mesoionic compounds MI-D and MI-J in hepatocarcinoma cells (HepG2). Free Radic Res 2025:1-13. [PMID: 40131355 DOI: 10.1080/10715762.2025.2485219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly form of liver cancer with limited treatment options for advanced stages. Mesoionic compounds MI-D and MI-J have shown potential for treating HCC due to their significant toxicity to these cells. This study investigated whether this toxicity is linked to their effects on oxidative balance in HepG2 cells cultured in high glucose (HG-glycolysis-dependent) and galactose plus glutamine supplemented (GAL-oxidative phosphorylation-dependent) DMEM medium. ROS levels were increased in cells cultured in both media when exposed to MI-D and MI-J (50 μM). However, MI-D at an intermediate concentration (25 μM) decreased ROS levels in the GAL medium. Superoxide dismutase (SOD) activity increased under all tested conditions by compounds (25 μM). Conversely, MI-D and MI-J decreased total peroxidase activity in both media at 25 and 50 μM, respectively. MI-D in the HG medium decreased glutathione peroxidase (GPX) activity, whereas MI-J reduced the enzyme activity at a concentration of 25 μM and increased it at 50 μM. In the GAL medium, MI-J (50 μM) increased GPx activity, while glutathione reductase (GR) activity was decreased by the compounds (50 μM) in both media. Furthermore, the P-AMPK/tAMPk ratio was increased by MI-J at 25 μM in the GAL medium. Our results show that MI-D and MI-J caused oxidative imbalance, particularly affecting cells cultured in the GAL medium. The data also support that the mesoionic effects depended on their concentration and substituent in the mesoionic ring.
Collapse
Affiliation(s)
- Ana Paula Perbiche Neves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Fernando Diego Kaziuk
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | | | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Ester Mazepa
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Danilo Sousa-Pereira
- Chemistry Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aurea Echevarria
- Chemistry Institute, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
3
|
Widhalm R, Granitzer S, Natha B, Zoboli O, Derx J, Zeisler H, Salzer H, Weiss S, Schmitner N, Kimmel RA, Österreicher T, Oberle R, Hengstschläger M, Distel M, Gundacker C. Perfluorodecanoic acid (PFDA) increases oxidative stress through inhibition of mitochondrial β-oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125595. [PMID: 39734044 DOI: 10.1016/j.envpol.2024.125595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation. Reduced β-oxidation leads to less TCA cycle activity, resulting in less NADH and consequently NADPH production. Thereby NADPH-dependent glutathione recycling is impaired, increasing cellular oxidative stress that can only be partially compensated by NRF2 activation.
Collapse
Affiliation(s)
- Raimund Widhalm
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
| | - Sebastian Granitzer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Benjamin Natha
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Ottavia Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria; Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University Vienna, Austria
| | - Hans Salzer
- Clinic for Pediatrics and Adolescent Medicine, University Clinic Tulln, Tulln, Austria
| | | | - Nicole Schmitner
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Tamina Österreicher
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Martin Distel
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), St. Anna Children's Cancer Research Institute, Vienna, Austria; Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria; Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, USA
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
4
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Zhi Y, Mei C, Liu Z, Liu Y, Wang H. Glutathione reductase modulates endogenous oxidative stress and affects growth and virulence in Avibacterium paragallinarum. Vet Res 2025; 56:1. [PMID: 39748435 PMCID: PMC11697956 DOI: 10.1186/s13567-024-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025] Open
Abstract
Glutathione reductase (GR) plays a pivotal role in managing oxidative stress, a process crucial for microbial virulence and adaptation, yet it has not been extensively explored in bacteria such as Avibacterium paragallinarum (Av. paragallinarum). This study examined the specific roles of GR in Av. paragallinarum, focusing on how GR modulates the bacterium's response to oxidative stress and impacts its pathogenic behavior. Using gene knockouts together with transcriptomic and metabolomic profiling, we identified an important shift in redox balance due to GR deficiency, which disrupted energy metabolism and weakened the oxidative stress defense, culminating in a notable decline in virulence. In addition, decreased growth rates, reduced biofilm production, and weakened macrophage interactions were observed in GR-deficient strains. Notably, our findings reveal a sophisticated adaptation mechanism wherein the bacterium recalibrated its metabolic pathways in response to GR deficiency without fully restoring virulence. Our in vivo studies further highlight the pivotal role of GR in pathogen fitness. Together, our findings connect GR-mediated redox control to bacterial virulence, thereby furthering the understanding of microbial adaptation and positioning GR as a potential antimicrobial target. Our insights into the GR-centric regulatory network pave the way for leveraging bacterial redox mechanisms in the development of novel antimicrobial therapies, highlighting the importance of oxidative stress management in bacterial pathogenicity.
Collapse
Affiliation(s)
- Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
6
|
Gedik D, Eraslan G. Evaluation of the efficacy of diosmin and chrysin against tau-fluvalinate exposure in rats. Food Chem Toxicol 2025; 195:115097. [PMID: 39522795 DOI: 10.1016/j.fct.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tau-fluvalinate is a type 2 pyrethroid insecticide. Diosmin and chrysin are flavonoids with antioxidant and anti-apoptotic effects. Role of diosmin and chrysin against infavorable toxic effects caused by tau-fluvalinate and the underlying mechanisms of these effects were investigated. Six groups were formed and diosmin, chrysin, tau-fluvalinate, tau-fluvalinate + diosmin and tau-fluvalinate + chrysin were administered orally to rats at a dose of 20 mg/kg.bw except for the control group, once a day for 21 days, respectively. Tau-fluvalinate elevated MDA and NO levels while diminishing the activities of antioxidant enzymes (SOD, CAT, GSH-Px, GR, GST, G6PD) and GSH levels in the majority of the analyzed blood and tissues, statistically significant. Serum triglyceride, cholesterol, total protein and albumin levels as well as LDH and PChE activities decreased. Conversely, serum creatinine, AST, ALT and ALP levels/activities increased. Elevated protein levels of caspase 3, caspase 9, p53 and Bax and decreased protein levels of Bcl-2 were observed in the liver. There were negative changes in body/some organ weights. Diosmin and chrysin administration resulted in a marked recovery in tau-fluvalinate-induced toxic effects, but this improvement was not complete. These flavonoids may be considered as promising potential therapeutic options to alleviate the adverse effects associated with tau-fluvalinate intoxication.
Collapse
Affiliation(s)
- Didem Gedik
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
7
|
Li W, Zan Y, Wu T, Yang S, Liu L, Li S, Dai P, Gao J. Impact of chlorantraniliprole on honey bees: Differential sensitivity and biological responses in Apis mellifera and Apis cerana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177417. [PMID: 39510278 DOI: 10.1016/j.scitotenv.2024.177417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Chlorantraniliprole (CAP), a diamide insecticide, is extensively applied to combat pests in various crops. However, the widespread use of insecticides has raised concerns about their potential impact on pollinators. In the present study, we explored the toxic effects of CAP in two important honey bee species, Apis mellifera and Apis cerana. The 48 h LC50 values of CAP for A. mellifera and A. cerana was 256.052 mg/L and 109.709 mg/L, implying that A. cerana is more sensitive to CAP. Prolonged exposure to 40 mg/L CAP significantly impaired sucrose responsiveness and climbing activity in both bee species. Both species showed a decrease in GR activity and GSH content with increasing CAP concentration. By contrast, the activities of GST, CAT, P450 and NAD-MDH were increased in both A. mellifera and A. cerana, but the differences between the 10 mg/L and 40 mg/L treatments were less pronounced in A. mellifera. Moreover, the immune related genes exhibited differential responses to CAP when comparing the two species. Low CAP concentrations led to down-regulation in expression of toll but up-regulation in expression of apideacin and hymeopatecin in A. mellifera, whereas A. cerana exhibited minimal changes in these genes. Additionally, CAP significantly inhibited the expression of ER stress response genes gp-93 and P58 in A. mellifera, while 10 mg/L of CAP promoted P58 expression in A. cerana. Our results highlight species-specific effects with the possible, distinct detoxification mechanisms and immune responses between A. mellifera and A. cerana. These findings serve as a foundation for further evaluating the safety of CAP for honey bee species and offer insights into the scientific use of pesticides.
Collapse
Affiliation(s)
- Wenmin Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yikun Zan
- Beijing No. 80 Middle School Guanzhuang Branch, Beijing 100024, China
| | - Tong Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sa Yang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Liu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jing Gao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Wang J, Zhang J, Shi M, Ma X, Chen S, Zhou Q, Zhu C. Metabolomic analysis revealed the inflammatory and oxidative stress regulation in response to Vibrio infection in Plectropomus leopardus. JOURNAL OF FISH BIOLOGY 2024; 105:1694-1702. [PMID: 39180247 DOI: 10.1111/jfb.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Frequent outbreaks of infectious diseases in aquaculture have led to significant economic losses. The leopard coral grouper (Plectropomus leopardus) often suffers from vibriosis. Improving host immunity presents a superior strategy for disease control, with minimal side effects compared to the use of antibiotics, highlighting the necessity of exploring the mechanisms underlying the fish's response to pathogen infections. Here, we conducted a comparative metabolomic analysis on the livers of the P. leopardus infected with Vibrio harveyi. A total of 1124 differential metabolites (DMs) were identified, with 190, 218, 359, and 353 DMs being identified at 6, 12, 24, and 48 h post-infection (hpi), respectively. Then, based on the time series analysis, we found that the lipid metabolism pathways were modulated in response to the Vibrio infection, with an increase in the quantity of eicosanoids and gycerophospholipids (GPLs), as well as a decrease in the quantity of bile acids (BAs), vitamin D, and sex hormones. Furthermore, 13 enriched pathways involving 31 DMs were identified through KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses. We identified histamine, 15(S)-HpETE, and anandamide in the transient receptor potential (TRP) channels pathway, as well as (7S,8S)-DiHODE, 5S,8R-DiHODE, and 13(S)-HpODE in the linoleic acid (LA) metabolism pathway. The DM levels increased, which may be attributed to inflammation. The DMs in the thyroid hormone synthesis pathway were identified, and the contents of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) decreased, which may be crucial in antioxidants. Our findings highlighted the dynamic adjustments in lipid metabolism and the response to inflammation and oxidative stress during the infection of V. harveyi in P. leopardus. This study not only deepens our understanding of the metabolic underpinnings of fish immune responses but also lays the groundwork for research into functional metabolomics and mechanisms of disease resistance.
Collapse
Affiliation(s)
- Jie Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangdong Research Centre on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Junwei Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Meng Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xinran Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Qian Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangdong Research Centre on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
9
|
Moshkelgosha S, Reza Deyhim M, Ali Khavari-Nejad R, Meschi M. Comparative evaluation of oxidative and biochemical parameters of red cell concentrates (RCCs) prepared from G6PD deficient donors and healthy donors during RCC storage. Transfus Clin Biol 2024; 31:201-208. [PMID: 39142558 DOI: 10.1016/j.tracli.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzyme disorder in red blood cell (RBC). Due to the importance of G6PD enzyme as an antioxidant in RBC, we tried to investigate the oxidative damage in red cell concentrates (RCCs) prepared from donors with G6PD enzyme deficiency in comparison with healthy donors. MATERIAL METHOD This cross-sectional study was conducted on 20 male donors. Ten of the donors had G6PD deficiency (as a case) and the others had normal enzyme activity (as a control). Biochemical and oxidative damage parameters were examined in RCCs prepared from two groups on days 0, 7, 14, 21, 28 and 35 of RCCs storage; data comparison was analyzed by SPSS statistical software. RESULTS According to the result, lactate concentration increased significantly from the 7th day to the 35th day of RCC storage in G6PD-deficient donors compared to the control (P < 0.05). In addition, malondialdehyde (MDA) concentration in G6PD-deficient RCC showed a significant increase compared to the control in all days of storage (P < 0.05). Among the hematological parameters, mean corpuscular volume (MCV) and mean cell hemoglobin (MCH) increased significantly in all days of RCC storage in G6PD-deficient donors compared to the control (P < 0.05). CONCLUSION Our study showed that oxidative changes in G6PD-deficient donors were significantly increased compared to the healthy donors, which probably leads to RCC storage lesion and an increase in blood transfusion complications. Due to the high prevalence of G6PD enzyme deficiency in pandemic areas, it seems that enzyme screening should be included in donor screening programs.
Collapse
Affiliation(s)
- Samira Moshkelgosha
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Deyhim
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | | | - Mahdieh Meschi
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
van Mever M, Mamani-Huanca M, Faught E, López-Gonzálvez Á, Hankemeier T, Barbas C, Schaaf MJM, Ramautar R. Application of a capillary electrophoresis-mass spectrometry metabolomics workflow in zebrafish larvae reveals new effects of cortisol. Electrophoresis 2024; 45:380-391. [PMID: 38072651 DOI: 10.1002/elps.202300186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 03/20/2024]
Abstract
In contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae. For six selected endogenous metabolites, a linear response (R2 > 0.98) for peak areas was obtained in extracts from these pools. The repeatability was satisfactory, with inter-day relative standard deviation values for peak area of 9.4%-17.7% for biological replicates (n = 3 over 3 days). Furthermore, the method allowed the analysis of over 70 endogenous metabolites in a pool of 12 zebrafish larvae, and 29 endogenous metabolites in an extract from only 1 zebrafish larva. Finally, we applied the optimized CE-MS workflow to identify potential novel targets of the mineralocorticoid receptor in mediating the effects of cortisol.
Collapse
Affiliation(s)
- Marlien van Mever
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Maricruz Mamani-Huanca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Erin Faught
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Marcel J M Schaaf
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Rawi Ramautar
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Hendricks AR, Cohen RS, McEwen GA, Tien T, Guilliams BF, Alspach A, Snow CD, Ackerson CJ. Laboratory Evolution of Metalloid Reductase Substrate Recognition and Nanoparticle Product Size. ACS Chem Biol 2024; 19:289-299. [PMID: 38295274 DOI: 10.1021/acschembio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Å of the enzyme active site. This mutation places a second H residue within 5 Å of an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.
Collapse
Affiliation(s)
- Alexander R Hendricks
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rachel S Cohen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gavin A McEwen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tony Tien
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Audrey Alspach
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
12
|
Sadri S, Zhang X, Audi SH, Cowley Jr. AW, Dash RK. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla. FUNCTION 2023; 4:zqad038. [PMID: 37575476 PMCID: PMC10413947 DOI: 10.1093/function/zqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
| | - Allen W Cowley Jr.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Dobreva A, Camacho ET, Miranda M. Mathematical model for glutathione dynamics in the retina. Sci Rep 2023; 13:10996. [PMID: 37419948 PMCID: PMC10328985 DOI: 10.1038/s41598-023-37938-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
The retina is highly susceptible to the generation of toxic reactive oxygen species (ROS) that disrupt the normal operations of retinal cells. The glutathione (GSH) antioxidant system plays an important role in mitigating ROS. To perform its protective functions, GSH depends on nicotinamide adenine dinucleotide phosphate (NADPH) produced through the pentose phosphate pathway. This work develops the first mathematical model for the GSH antioxidant system in the outer retina, capturing the most essential components for formation of ROS, GSH production, its oxidation in detoxifying ROS, and subsequent reduction by NADPH. We calibrate and validate the model using experimental measurements, at different postnatal days up to PN28, from control mice and from the rd1 mouse model for the disease retinitis pigmentosa (RP). Global sensitivity analysis is then applied to examine the model behavior and identify the pathways with the greatest impact in control compared to RP conditions. The findings underscore the importance of GSH and NADPH production in dealing with oxidative stress during retinal development, especially after peak rod degeneration occurs in RP, leading to increased oxygen tension. This suggests that stimulation of GSH and NADPH synthesis could be a potential intervention strategy in degenerative mouse retinas with RP.
Collapse
Affiliation(s)
- Atanaska Dobreva
- Department of Mathematics, Augusta University, Augusta, GA, 30912, USA.
| | - Erika Tatiana Camacho
- University of Texas at San Antonio, San Antonio, TX, 78249, USA
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115, Valencia, Spain
| |
Collapse
|
14
|
Hossen S, Hanif MA, Kho KH. Glutathione reductase, a biomarker of pollutant and stress in Pacific abalone. MARINE POLLUTION BULLETIN 2023; 192:115139. [PMID: 37301005 DOI: 10.1016/j.marpolbul.2023.115139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Abalone are frequently exposed to several environmental factors including heavy metal toxicity, thermal stress, H2O2-stress, starvation, viral and bacterial infection that can induce oxidative stress. Glutathione reductase is a vital enzyme in the antioxidant defense system that catalyzes the reduction of oxidized glutathione to reduced glutathione. The present study aimed to identify and localize glutathione reductase in Pacific abalone (Hdh-GR) and assess its potential role in stress physiology, heavy metal toxicity, immune response, gonadal development, and metamorphosis. The mRNA expression of Hdh-GR was upregulated in response to thermal stress, starvation, H2O2-stress, and cadmium-exposed toxicity. The induced mRNA expression was also quantified in immune-challenged abalone. Moreover, the Hdh-GR expression was significantly higher during metamorphosis. The Hdh-GR mRNA expression showed an inverse relationship with ROS production in heat stressed Pacific abalone. These results suggest that Hdh-GR has central role in the stress physiology, immune response, gonadal development, and metamorphosis of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
15
|
Ferrer M, Mourikis N, Davidson EE, Kleeman SO, Zaccaria M, Habel J, Rubino R, Flint TR, Connell CM, Lukey MJ, White EP, Coll AP, Venkitaraman AR, Janowitz T. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528937. [PMID: 36824830 PMCID: PMC9949105 DOI: 10.1101/2023.02.17.528937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The dependency of cancer cells on glucose can be targeted with high-fat low-carbohydrate ketogenic diet (KD). However, hepatic ketogenesis is suppressed in IL-6 producing cancers, which prevents the utilization of this nutrient source as energy for the organism. In two IL-6 associated murine models of cancer cachexia we describe delayed tumor growth but accelerated onset of cancer cachexia and shortened survival when mice are fed KD. Mechanistically, we find this uncoupling is a consequence of the biochemical interaction of two simultaneously occurring NADPH-dependent pathways. Within the tumor, increased production of lipid peroxidation products (LPPs) and, consequently, saturation of the glutathione (GSH) system leads to ferroptotic death of cancer cells. Systemically, redox imbalance and NADPH depletion impairs the biosynthesis of corticosterone, the main regulator of metabolic stress, in the adrenal glands. Administration of dexamethasone, a potent glucocorticoid, improves food intake, normalizes glucose homeostasis and utilization of nutritional substrates, delays onset of cancer cachexia and extends survival of tumor-bearing mice fed KD, while preserving reduced tumor growth. Our study highlights that the outcome of systemic interventions cannot necessarily be extrapolated from the effect on the tumor alone, but that they have to be investigated for anti-cancer and host effects. These findings may be relevant to clinical research efforts that investigate nutritional interventions such as KD in patients with cancer.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | | | - Emma E. Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Jill Habel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rachel Rubino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Thomas R. Flint
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Claire M. Connell
- Department of Oncology, CRUK Cambridge Institute, Cambridge Biomedical Campus, Cambridge CB2 0RE, UK
| | - Michael J. Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eileen P. White
- Department of Genetics, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Anthony P. Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ashok R. Venkitaraman
- MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Institute for Molecular & Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA
| |
Collapse
|
16
|
Ahmed HM, Shehata HH, El-Saeed GSM, Gabal HHA, El-Daly SM. Ameliorative effect of Lactobacillus rhamnosus GG on acetaminophen-induced hepatotoxicity via PKC/Nrf2/PGC-1α pathway. J Genet Eng Biotechnol 2022; 20:142. [PMID: 36201094 PMCID: PMC9537380 DOI: 10.1186/s43141-022-00422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2025]
Abstract
Background Acetaminophen (APAP) overdose is a common cause of hepatotoxicity. Antioxidants like N-acetyl cysteine are recommended as a therapeutic option; nevertheless, it has limitations. The search for efficient alternatives is ongoing. Probiotics are live microorganisms that maintain a healthy gut microecology. Lactobacillus rhamnosus GG (LGG) is one of the widely used probiotics. Our study aimed to assess the protective and therapeutic effects of probiotic LGG on APAP-induced hepatotoxicity and evaluate the molecular pathways behind this effect. Methods Wistar Albino male rats were randomly distributed into the following experimental groups: group 1, non-treated rats (vehicle); group 2, rats received oral gavage of suspension of probiotic LGG (5 × 1010 CFU GG/0.5 ml in PBS) daily for 2 weeks (probiotic control); group 3, rats received APAP dose of 2 g/kg body weight (positive control); group 4, rats received oral gavage of suspension of probiotic LGG for 2 weeks followed by a single dose of APAP injection (prophylactic); and group 5, rats received a single dose of APAP and then 24 h later treated with oral gavage of probiotic LGG daily for 2 weeks (treatment). Results Our study revealed that administration of probiotic LGG (either as prophylactic or treatment) exhibited a remarkable reduction in APAP-induced liver injury as resembled by the decrease in liver enzymes (ALT and AST) and the histopathological features of liver sections. Moreover, the significant reduction in the oxidative marker malondialdehyde, along with the enhancement in glutathione reductase, and the significant reduction in inflammatory markers (nitric oxide and tumor necrosis factor-α) were all indicators of the efficiency of LGG in ameliorating the alterations accompanied with APAP-induced hepatotoxicity. Our findings also demonstrate that LGG administration boosted the expression of Nrf2 and PGC-1 while decreasing the expression of protein kinase C (PKC). As a result, the nuclear abundance of Nrf2 is increased, and the expression of various antioxidants is eventually upregulated. Conclusion Our study shows that probiotic LGG supplementation exerts a prophylactic and therapeutic effect against APAP-induced hepatotoxicity through modulating the expression of PKC and the Nrf2/PGC-1α signaling pathway and eventually suppressing oxidative damage from APAP overdose.
Collapse
Affiliation(s)
- Hend M Ahmed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hanan H Shehata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gamila S M El-Saeed
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda H Abou Gabal
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt. .,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| |
Collapse
|
17
|
Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res 2022; 182:106326. [PMID: 35752357 DOI: 10.1016/j.phrs.2022.106326] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
18
|
Chenna S, Koopman WJH, Prehn JHM, Connolly NMC. Mechanisms and mathematical modelling of ROS production by the mitochondrial electron transport chain. Am J Physiol Cell Physiol 2022; 323:C69-C83. [PMID: 35613354 DOI: 10.1152/ajpcell.00455.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) are recognised both as damaging molecules and intracellular signalling entities. In addition to its role in ATP generation, the mitochondrial electron transport chain (ETC) constitutes a relevant source of mitochondrial ROS, in particular during pathological conditions. Mitochondrial ROS homeostasis depends on species- and site-dependent ROS production, their bioreactivity, diffusion, and scavenging. However, our quantitative understanding of mitochondrial ROS homeostasis has thus far been hampered by technical limitations, including lack of truly site- and/or ROS-specific reporter molecules. In this context, the use of computational models is of great value to complement and interpret empirical data, as well as to predict variables that are difficult to assess experimentally. During the last decades, various mechanistic models of ETC-mediated ROS production have been developed. Although these often-complex models have generated novel insights, their parameterisation, analysis, and integration with other computational models is not straightforward. In contrast, phenomenological (sometimes termed "minimal") models use a relatively small set of equations to describe empirical relationship(s) between ROS-related and other parameters, and generally aim to explore system behaviour and generate hypotheses for experimental validation. In this review, we first discuss ETC-linked ROS homeostasis and introduce various detailed mechanistic models. Next, we present how bioenergetic parameters (e.g. NADH/NAD+ ratio, mitochondrial membrane potential) relate to site-specific ROS production within the ETC and how these relationships can be used to design minimal models of ROS homeostasis. Finally, we illustrate how minimal models have been applied to explore pathophysiological aspects of ROS.
Collapse
Affiliation(s)
- Sandeep Chenna
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Disorders (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Niamh M C Connolly
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
20
|
Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci Rep 2022; 12:1089. [PMID: 35058551 PMCID: PMC8776969 DOI: 10.1038/s41598-022-05190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, galactan exopolysaccharide (EPS) from Weissella confusa KR780676 was evaluated for its potential to alleviate oxidative stress using in vitro assays and in vivo studies in Saccharomyces cerevisiae (wild type) and its antioxidant (sod1∆, sod2∆, tsa1∆, cta2∆ and ctt1∆), anti-apoptotic (pep4∆ and fis1∆) and anti-aging (sod2∆, tsa1∆ and ctt1∆)) isogenic gene deletion mutants. Galactan exhibited strong DPPH and nitric oxide scavenging activity with an IC50 value of 450 and 138 µg/mL respectively. In the yeast mutant model, oxidative stress generated by H2O2 was extensively scavenged by galactan in the medium as confirmed using spot assays followed by fluorescencent DCF-DA staining and microscopic studies. Galactan treatment resulted in reduction in the ROS generated in the yeast mutant cells as demonstrated by decreased fluorescence intensity. Furthermore, galactan exhibited protection against oxidative damage through H2O2 -induced apoptosis inhibition in the yeast mutant strains (pep4∆ and fis1∆) leading to increased survival rate by neutralizing the oxidative stress. In the chronological life span assay, WT cells treated with galactan EPS showed 8% increase in viability whereas sod2∆ mutant showed 10–15% increase indicating pronounced anti-aging effects. Galactan from W. confusa KR780676 has immense potential to be used as a natural antioxidant for nutraceutical, pharmaceutical and food technological applications. As per our knowledge, this is the first report on in-depth assessment of in vivo antioxidant properties of a bacterial EPS in a yeast deletion model system.
Collapse
|
21
|
Duong QV, Levitsky Y, Dessinger MJ, Strubbe-Rivera JO, Bazil JN. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab050. [PMID: 35330793 PMCID: PMC8788716 DOI: 10.1093/function/zqab050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) play important roles in cellular signaling; however, certain pathological conditions such as ischemia/reperfusion (I/R) injury disrupt ROS homeostasis and contribute to cell death. A major impediment to developing therapeutic measures against oxidative stress-induced cellular damage is the lack of a quantitative framework to identify the specific sources and regulatory mechanisms of mitochondrial ROS production. We developed a thermodynamically consistent, mass-and-charge balanced, kinetic model of mitochondrial ROS homeostasis focused on redox sites of electron transport chain complexes I, II, and III. The model was calibrated and corroborated using comprehensive data sets relevant to ROS homeostasis. The model predicts that complex I ROS production dominates other sources under conditions favoring a high membrane potential with elevated nicotinamide adenine dinucleotide (NADH) and ubiquinol (QH2) levels. In general, complex I contributes to significant levels of ROS production under pathological conditions, while complexes II and III are responsible for basal levels of ROS production, especially when QH2 levels are elevated. The model also reveals that hydrogen peroxide production by complex I underlies the non-linear relationship between ROS emission and O2 at low O2 concentrations. Lastly, the model highlights the need to quantify scavenging system activity under different conditions to establish a complete picture of mitochondrial ROS homeostasis. In summary, we describe the individual contributions of the electron transport system complex redox sites to total ROS emission in mitochondria respiring under various combinations of NADH- and Q-linked respiratory fuels under varying workloads.
Collapse
Affiliation(s)
- Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Levitsky
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Maria J Dessinger
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jasiel O Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
22
|
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, Nawijn MC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021; 43:101995. [PMID: 33979767 PMCID: PMC8131726 DOI: 10.1016/j.redox.2021.101995] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Marijn Berg
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Caspar H J Schiffers
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vasili Stylianidis
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maarten van den Berge
- Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Martijn C Nawijn
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic Res 2020; 54:695-721. [PMID: 33059489 DOI: 10.1080/10715762.2020.1836368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells. NOX2 is a widely-expressed and well-studied NOX family member, which is activated upon assembly of its membrane subunits gp91 phox and p22 phox with its cytosolic subunits p40 phox , p47 phox , p67 phox , and Rac, facilitating ROS production. NOX2 activation is also enhanced by GTP and inhibited by GDP. However, there remains a lack of a mechanistic, quantitative, and integrated understanding of the kinetics and regulation of the assembly of these subunits and their relative contributions toward NOX2 activation and ROS production. Toward this end, we have developed a mechanistic computational model, which incorporates a generalized random rapid equilibrium binding mechanism for NOX2 assembly and activation as well as regulations by GTP (activation), GDP (inhibition), and individual subunits enhancing the binding of other subunits (mutual binding enhancement). The resulting model replicates diverse published kinetic data, including subunit concentration-dependent NOX2 activation and ROS production, under different assay conditions, with appropriate estimates of the unknown model parameters. The model provides a mechanistic, quantitative, and integrated framework for investigating the critical roles of NOX2 subunits in NOX2 assembly and activation facilitating ROS production in a variety of physiological and pathophysiological conditions. However, there is also a need for better quantitative kinetic data based on current understanding of NOX2 assembly and activation in order to test and further develop this model.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WIS, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| |
Collapse
|
24
|
Kocpinar EF, Gonul Baltaci N, Ceylan H, Kalin SN, Erdogan O, Budak H. Effect of a Prolonged Dietary Iron Intake on the Gene Expression and Activity of the Testicular Antioxidant Defense System in Rats. Biol Trace Elem Res 2020; 195:135-141. [PMID: 31309445 DOI: 10.1007/s12011-019-01817-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Despite the fact that iron represents a crucial element for the catalysis of many metabolic reactions, its accumulation in the cell leads to the production of reactive oxygen species (ROS), provoking pathological conditions such as cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and fertility. Thus, ROS are neutralized by the enzymatic antioxidant system for the purpose of protecting cells against any damage. Iron is a potential risk factor for male fertility. However, the mechanism of action of iron on the testicular antioxidant system at the gene and protein levels is not fully understood. Thus, the purpose of the current research was to ensure a better understanding of how the long-term iron treatment influences both gene expression and enzyme activities of the testicular antioxidant system in rat testis. The data of our study showed that a significant dose-dependent increase occurred in the iron level in rat testis. A reduction occurred in reduced glutathione (GSH) levels, which represent a marker of oxidative stress, along with long-term iron overload. The expression and activity of glucose 6-phosphate dehydrogenase (G6pd), glutathione reductase (Gr), glutathione peroxidase (Gpx), and glutathione S-transferases (Gst) were significantly affected by the presence of iron. The findings of the current research demonstrate that the long-term toxic dietary iron overload influences the gene expression and enzyme activity of the testicular antioxidant defense system, but the actual effect occurs at the protein level. This may modify the sperm function and dysfunction of the male reproductive system.
Collapse
Affiliation(s)
- Enver Fehim Kocpinar
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
- Vocational School, Department of Medical Services and Techniques, Muş Alparslan University, Mus, Turkey
| | - Nurdan Gonul Baltaci
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Hamid Ceylan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Seyda Nur Kalin
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Orhan Erdogan
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
25
|
Tomar N, Sadri S, Cowley AW, Yang C, Quryshi N, Pannala VR, Audi SH, Dash RK. A thermodynamically-constrained mathematical model for the kinetics and regulation of NADPH oxidase 2 complex-mediated electron transfer and superoxide production. Free Radic Biol Med 2019; 134:581-597. [PMID: 30769160 PMCID: PMC6588456 DOI: 10.1016/j.freeradbiomed.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cell signaling, growth, and immunity. However, when produced in excess, they are toxic to the cell and lead to premature aging and a myriad of pathologies, including cardiovascular and renal diseases. A major source of ROS in many cells is the family of NADPH oxidase (NOX), comprising of membrane and cytosolic components. NOX2 is among the most widely expressed and well-studied NOX isoform. Although details on the NOX2 structure, its assembly and activation, and ROS production are well elucidated experimentally, there is a lack of a quantitative and integrative understanding of the kinetics of NOX2 complex, and the various factors such as pH, inhibitory drugs, and temperature that regulate the activity of this oxidase. To this end, we have developed here a thermodynamically-constrained mathematical model for the kinetics and regulation of NOX2 complex based on diverse published experimental data on the NOX2 complex function in cell-free and cell-based assay systems. The model incorporates (i) thermodynamics of electron transfer from NADPH to O2 through different redox centers of the NOX2 complex, (ii) dependence of the NOX2 complex activity upon pH and temperature variations, and (iii) distinct inhibitory effects of different drugs on the NOX2 complex activity. The model provides the first quantitative and integrated understanding of the kinetics and regulation of NOX2 complex, enabling simulation of diverse experimental data. The model also provides several novel insights into the NOX2 complex function, including alkaline pH-dependent inhibition of the NOX2 complex activity by its reaction product NADP+. The model provides a mechanistic framework for investigating the critical role of NOX2 complex in ROS production and its regulation of diverse cellular functions in health and disease. Specifically, the model enables examining the effects of specific targeting of various enzymatic sources of pathological ROS which could overcome the limitations of pharmacological efforts aimed at scavenging ROS which has resulted in poor outcomes of antioxidant therapies in clinical studies.
Collapse
Affiliation(s)
- Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nabeel Quryshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Venkat R Pannala
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA.
| |
Collapse
|
26
|
Gonul Baltaci N, Guler C, Ceylan H, Kalin SN, Adem S, Kocpinar EF, Erdogan O, Budak H. In vitro and in vivo effects of iron on the expression and activity of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase in rat spleen. J Biochem Mol Toxicol 2018; 33:e22229. [PMID: 30506659 DOI: 10.1002/jbt.22229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Iron is an indispensable element for vital activities in almost all living organisms. It is also a cofactor for many proteins, enzymes, and other essential complex biochemical processes. Therefore, iron trafficking is firmly regulated by Hepcidin (Hamp), which is regarded as the marker for iron accumulation. The disruption of iron homeostasis leads to oxidative stress that causes various human diseases, but this mechanism is still unclear. The aim of this study is to provide a better in vivo and in vitro understanding of how long-term iron overload affects the gene expression and activities of some antioxidant enzymes, such as glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) in the spleen. The findings of this study show that iron overload reduces the gene expression of G6pd, 6pgd, and Gr, but its actual effect was on the protein level.
Collapse
Affiliation(s)
- Nurdan Gonul Baltaci
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Caglar Guler
- Faculty of Science, Department of Chemistry, Cankiri Karatekin University, Cankiri, Turkey
| | - Hamid Ceylan
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Seyda Nur Kalin
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Sevki Adem
- Faculty of Science, Department of Chemistry, Cankiri Karatekin University, Cankiri, Turkey
| | - Enver Fehim Kocpinar
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
- Department of Medical Services and Techniques, Vocational School, Mus Alparslan University, Mus, Turkey
| | - Orhan Erdogan
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| |
Collapse
|
27
|
Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol 2018; 21:101050. [PMID: 30654300 PMCID: PMC6348771 DOI: 10.1016/j.redox.2018.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an electrophilic fatty acid formed under digestive and inflammatory conditions that both reacts with GSH and induces its synthesis upon activation of Nrf2 signaling. The effects of NO2-OA on intracellular GSH homeostasis were evaluated. In addition to upregulation of GSH biosynthesis, we observed that NO2-OA increased intracellular GSSG in an oxidative stress-independent manner. NO2-OA directly inhibited GR in vitro by covalent modification of the catalytic Cys61, with kon of (3.45 ± 0.04) × 103 M−1 s−1, koff of (4.4 ± 0.4) × 10−4 s−1, and Keq of (1.3 ± 0.1) × 10−7 M. Akin to NO2-OA, the electrophilic Nrf2 activators bardoxolone-imidazole (CDDO-Im), bardoxolone-methyl (CDDO-Me) and dimethyl fumarate (DMF) also upregulated GSH biosynthesis while promoting GSSG accumulation, but without directly inhibiting GR activity. In vitro assays in which GR was treated with increasing GSH concentrations and GSH depletion experiments in cells revealed that GR activity is finely regulated via product inhibition, an observation further supported by theoretical (kinetic modeling of cellular GSSG:GSH levels) approaches. Together, these results describe two independent mechanisms by which electrophiles modulate the GSH/GSSG couple, and provide a novel conceptual framework to interpret experimentally determined values of GSH and GSSG.
Collapse
|
28
|
Zheng C, Zhang L, Chen M, Zhao XQ, Duan Y, Meng Y, Zhang X, Shen RF. Effects of cadmium exposure on expression of glutathione synthetase system genes in Acidithiobacillus ferrooxidans. Extremophiles 2018; 22:895-902. [PMID: 30143860 DOI: 10.1007/s00792-018-1046-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
The glutathione synthetase system (GSS) is an important pathway of glutathione synthesis and plays a key role in heavy metal resistance. In this work, the response of Acidithiobacillus ferrooxidans to extracellular Cd2+ was investigated, and the interplay between Cd2+ resistance and the expression of GSS related-genes was analyzed by reverse-transcription quantitative PCR (RT-PCR). During growth in the presence of 5, 15 and 30 mM Cd2+, the transcript levels of eight GSS pathway genes were affected between 0.81- and 7.12-fold. Increased transcription was also reflected in increased enzyme activities: with those of glutathione reductase (GR) increased by 1.10-, 2.26- and 1.54-fold in the presence of 5, 15 and 30 mM Cd2+, respectively. In contrast, the activities of catalase (CAT) and superoxide dismutase (SOD) were decreased in the presence of Cd2+. At the metabolite level, intracellular methane dicarboxylic aldehyde (MDA) content was increased 1.97-, 3.31- and 1.92-fold in the presence of 5, 15 and 30 mM Cd2+, respectively. These results suggest that Cd2+ directly inhibits the activities of CAT and SOD, breaks the redox balance of the cells, which leads to the activation of the other antioxidant pathway of GSS. Resistance of A. ferrooxidans to Cd2+ may involve modulation of expression levels of glutathione S-transferase (GST), GR, and glutathione synthetase, which may protect against oxidative damage.
Collapse
Affiliation(s)
- Chunli Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China.,Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Baotou, 014010, People's Republic of China
| | - Li Zhang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Minjie Chen
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yizhuo Duan
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Ye Meng
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Xuefeng Zhang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Handy DE, Loscalzo J. Responses to reductive stress in the cardiovascular system. Free Radic Biol Med 2017; 109:114-124. [PMID: 27940350 PMCID: PMC5462861 DOI: 10.1016/j.freeradbiomed.2016.12.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 12/13/2022]
Abstract
There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury.
Collapse
Affiliation(s)
- Diane E Handy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA.
| |
Collapse
|
30
|
Mohammed A, Gutta V, Ansari MS, Saladi Venkata R, Jamil K. Altered antioxidant enzyme activity with severity and comorbidities of chronic obstructive pulmonary disease (COPD) in South Indian population. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40749-017-0023-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Bazil JN, Beard DA, Vinnakota KC. Catalytic Coupling of Oxidative Phosphorylation, ATP Demand, and Reactive Oxygen Species Generation. Biophys J 2016; 110:962-71. [PMID: 26910433 DOI: 10.1016/j.bpj.2015.09.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023] Open
Abstract
Competing models of mitochondrial energy metabolism in the heart are highly disputed. In addition, the mechanisms of reactive oxygen species (ROS) production and scavenging are not well understood. To deepen our understanding of these processes, a computer model was developed to integrate the biophysical processes of oxidative phosphorylation and ROS generation. The model was calibrated with experimental data obtained from isolated rat heart mitochondria subjected to physiological conditions and workloads. Model simulations show that changes in the quinone pool redox state are responsible for the apparent inorganic phosphate activation of complex III. Model simulations predict that complex III is responsible for more ROS production during physiological working conditions relative to complex I. However, this relationship is reversed under pathological conditions. Finally, model analysis reveals how a highly reduced quinone pool caused by elevated levels of succinate is likely responsible for the burst of ROS seen during reperfusion after ischemia.
Collapse
Affiliation(s)
- Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| | - Kalyan C Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
de Oliveira BL, Niederer S. A Biophysical Systems Approach to Identifying the Pathways of Acute and Chronic Doxorubicin Mitochondrial Cardiotoxicity. PLoS Comput Biol 2016; 12:e1005214. [PMID: 27870850 PMCID: PMC5117565 DOI: 10.1371/journal.pcbi.1005214] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022] Open
Abstract
The clinical use of the anthracycline doxorubicin is limited by its cardiotoxicity which is associated with mitochondrial dysfunction. Redox cycling, mitochondrial DNA damage and electron transport chain inhibition have been identified as potential mechanisms of toxicity. However, the relative roles of each of these proposed mechanisms are still not fully understood. The purpose of this study is to identify which of these pathways independently or in combination are responsible for doxorubicin toxicity. A state of the art mathematical model of the mitochondria including the citric acid cycle, electron transport chain and ROS production and scavenging systems was extended by incorporating a novel representation for mitochondrial DNA damage and repair. In silico experiments were performed to quantify the contributions of each of the toxicity mechanisms to mitochondrial dysfunction during the acute and chronic stages of toxicity. Simulations predict that redox cycling has a minor role in doxorubicin cardiotoxicity. Electron transport chain inhibition is the main pathway for acute toxicity for supratherapeutic doses, being lethal at mitochondrial concentrations higher than 200μM. Direct mitochondrial DNA damage is the principal pathway of chronic cardiotoxicity for therapeutic doses, leading to a progressive and irreversible long term mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bernardo L. de Oliveira
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| |
Collapse
|
33
|
Pannala VR, Camara AKS, Dash RK. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition. J Appl Physiol (1985) 2016; 121:1196-1207. [PMID: 27633738 DOI: 10.1152/japplphysiol.00524.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/11/2016] [Indexed: 01/03/2023] Open
Abstract
Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O2 to H2O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent Km of O2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; .,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
34
|
Zhang YY, Guo XL, Liu YL, Liu F, Wang HF, Guo XQ, Xu BH. Functional and mutational analyses of an omega-class glutathione S-transferase (GSTO2) that is required for reducing oxidative damage in Apis cerana cerana. INSECT MOLECULAR BIOLOGY 2016; 25:470-486. [PMID: 27170478 DOI: 10.1111/imb.12236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glutathione S-transferases perform a variety of vital functions, particularly in reducing oxidative damage. Here, we investigated the expression patterns of Apis cerana cerana omega-class glutathione S-transferase 2 (AccGSTO2) under various stresses and explored its connection with antioxidant defences. We found that AccGSTO2 knockdown by RNA interference triggered increased mortality in Ap. cerana cerana, and immunohistochemistry revealed significantly decreased AccGSTO2 expression, particularly in the midgut and fat body. Further analyses indicated that AccGSTO2 knockdown resulted in decreases in catalase and glutathione reductase activities, ascorbate content and the ratio of reduced to oxidized glutathione, and increases in H2 O2 , malondialdehyde and carbonyl contents. We also analysed the transcripts of other antioxidant genes and found that many genes were down-regulated in the AccGSTO2 knockdown samples, revealing that AccGSTO2 may be indispensable for attaining a normal lifespan by enhancing cellular oxidative resistance. In addition, the roles of cysteine residues in AccGSTO2 were explored using site-directed mutagenesis. Mutants of Cys(28) and Cys(124) significantly affected the enzyme and antioxidant activities of AccGSTO2, which may be attributed to the changes in the spatial structures of mutants as determined by homology modelling. In summary, these observations provide novel insight into the structural and functional characteristics of GSTOs.
Collapse
Affiliation(s)
- Y-Y Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, China
| | - X-L Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Y-L Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, China
| | - F Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - H-F Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - X-Q Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - B-H Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
35
|
Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9151290. [PMID: 26640618 PMCID: PMC4657145 DOI: 10.1155/2016/9151290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/28/2015] [Indexed: 01/07/2023]
Abstract
Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis.
Collapse
|
36
|
Abstract
This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure–function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi–bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate’s properties, and their kinetic mechanisms have evolved in response to substrate variability.
Collapse
Affiliation(s)
- Nuriye Nuray Ulusu
- School of Medicine, Koç University, Rumelifeneri yolu, Sarıyer, Istanbul, Turkey,
| |
Collapse
|
37
|
Pannala VR, Dash RK. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide. Free Radic Biol Med 2015; 78:42-55. [PMID: 25451645 PMCID: PMC4280359 DOI: 10.1016/j.freeradbiomed.2014.10.508] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 01/14/2023]
Abstract
The thioredoxin system, which consists of a family of proteins, including thioredoxin (Trx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR), plays a critical role in the defense against oxidative stress by removing harmful hydrogen peroxide (H2O2). Specifically, Trx donates electrons to Prx to remove H2O2 and then TrxR maintains the reduced Trx concentration with NADPH as the cofactor. Despite a great deal of kinetic information gathered on the removal of H2O2 by the Trx system from various sources/species, a mechanistic understanding of the associated enzymes is still not available. We address this issue by developing a thermodynamically consistent mathematical model of the Trx system which entails mechanistic details and provides quantitative insights into the kinetics of the TrxR and Prx enzymes. Consistent with experimental studies, the model analyses of the available data show that both enzymes operate by a ping-pong mechanism. The proposed mechanism for TrxR, which incorporates substrate inhibition by NADPH and intermediate protonation states, well describes the available data and accurately predicts the bell-shaped behavior of the effect of pH on the TrxR activity. Most importantly, the model also predicts the inhibitory effects of the reaction products (NADP(+) and Trx(SH)2) on the TrxR activity for which suitable experimental data are not available. The model analyses of the available data on the kinetics of Prx from mammalian sources reveal that Prx operates at very low H2O2 concentrations compared to their human parasite counterparts. Furthermore, the model is able to predict the dynamic overoxidation of Prx at high H2O2 concentrations, consistent with the available data. The integrated Prx-TrxR model simulations well describe the NADPH and H2O2 degradation dynamics and also show that the coupling of TrxR- and Prx-dependent reduction of H2O2 allowed ultrasensitive changes in the Trx concentration in response to changes in the TrxR concentration at high Prx concentrations. Thus, the model of this sort is very useful for integration into computational H2O2 degradation models to identify its role in physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Venkat R Pannala
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center and Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Budak H, Kocpinar EF, Gonul N, Ceylan H, Erol HS, Erdogan O. Stimulation of gene expression and activity of antioxidant related enzyme in Sprague Dawley rat kidney induced by long-term iron toxicity. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:44-50. [PMID: 25038477 DOI: 10.1016/j.cbpc.2014.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
The trace elements such as iron are vital for various enzyme activities and for other cellular proteins, but iron toxicity causes the production of reactive oxygen species (ROS) that causes alterations in morphology and function of the nephron. The present study was designed to determine the effect of long-term iron overload on the renal antioxidant system and to determine any possible correlation between enzymatic and molecular levels. Our data showed that reduced glutathione (GSH) levels, which is a marker for oxidative stress, strikingly decreased with a long-term iron overload in rat kidney. While renal mRNA levels of glucose 6-phosphate dehydrogenase (G6pd), 6-phosphogluconate dehydrogenase (6pgd) and glutathione peroxidase (Gpx) were significantly affected in the presence of ferric iron, no changes were seen for glutathione reductase (Gsr) and glutathione S-transferases (Gst). While the iron affected the enzymatic activity of G6PD, GSR, GST, and GPX, it had no significant effect on 6PGD activity in the rat kidney. In conclusion, we reported here that the gene expression of G6pd, 6pgd, Gsr, Gpx, and Gst did not correlate to enzyme activity, and the actual effect of long-term iron overload on renal antioxidant system is observed at protein level. Furthermore, the influence of iron on the renal antioxidant system is different from its effect on the hepatic antioxidant system.
Collapse
Affiliation(s)
- Harun Budak
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, 25240 Erzurum, Turkey.
| | - Enver Fehim Kocpinar
- Atatürk University, Science Faculty, Department of Chemistry, 25240 Erzurum, Turkey
| | - Nurdan Gonul
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, 25240 Erzurum, Turkey
| | - Hamid Ceylan
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, 25240 Erzurum, Turkey
| | - Huseyin Serkan Erol
- Atatürk University, Faculty of Veterinary, Department of Biochemistry, 25240 Erzurum, Turkey
| | - Orhan Erdogan
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, 25240 Erzurum, Turkey
| |
Collapse
|
39
|
Yao P, Chen X, Yan Y, Liu F, Zhang Y, Guo X, Xu B. Glutaredoxin 1, glutaredoxin 2, thioredoxin 1, and thioredoxin peroxidase 3 play important roles in antioxidant defense in Apis cerana cerana. Free Radic Biol Med 2014; 68:335-46. [PMID: 24389255 DOI: 10.1016/j.freeradbiomed.2013.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (Grxs) and thioredoxins (Trxs) play important roles in maintaining intracellular thiol-redox homeostasis by scavenging reactive oxygen species. However, few Grxs and Trxs have been functionally characterized in Apis cerana cerana. In this study, we identified three genes, AccGrx1, AccGrx2, and AccTrx1, and investigated their connection to antioxidant defense. AccGrx1 and AccGrx2 were mainly detected in dark-eyed pupae, whereas AccTrx1 was highly concentrated in 15-day postemergence adults. The expression levels of AccGrx1 and AccTrx1 were the highest in fat body and epidermis, respectively. However, the expression level of AccGrx2 was the highest in muscle, followed by the epidermis. AccGrx1, AccGrx2, and AccTrx1 were induced by 4, 16, and 42°C; H2O2; and pesticide (acaricide, paraquat, cyhalothrin, and phoxime) treatments and repressed by UV light. AccGrx1 and AccGrx2 were upregulated by HgCl2 treatment, whereas AccTrx1 was downregulated. We investigated the knockdown of AccGrx1, AccGrx2, AccTpx-3, and AccTrx1 in A. cerana cerana and surprisingly found that knockdown of the these four genes enhanced the enzymatic activities of CAT and POD; the metabolite contents of hydrogen peroxide, carbonyls, and ascorbate; and the ratios of GSH/GSSG and NADP(+)/NADPH. In addition, we also analyzed the transcripts of other antioxidant genes and found that some were upregulated and others were downregulated, revealing that the upregulated genes may be involved in compensating for the knockdown of AccGrx1, AccGrx2, AccTpx-3, and AccTrx1. Taken together, these results suggest that AccGrx1, AccGrx2, AccTpx-3, and AccTrx1 may play critical roles in antioxidant defense.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xiaobo Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|