1
|
Zoumpoulaki M, Chiappetta G, Bouvet J, John N, Schanne G, Gehan P, Diebolt S, Shakir S, Quévrain E, Mathieu E, Demignot S, Seksik P, Delsuc N, Vinh J, Policar C. Kinetic Redox Shotgun Proteomics Reveals Specific Lipopolysaccharide Effects on Intestinal Epithelial Cells, Mitigated by a Mn Superoxide Dismutase Mimic. Angew Chem Int Ed Engl 2025; 64:e202422644. [PMID: 40000394 PMCID: PMC12051783 DOI: 10.1002/anie.202422644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Overproduction of reactive oxygen species and antioxidant superoxide dismutases (SOD1, SOD2) dysregulation contribute to chronic inflammation such as generated in inflammatory bowel diseases (IBD). A kinetic redox shotgun proteomic strategy (OcSILAC for Oxidized cysteine Stable Isotope Labelling by Amino acids in Cell culture) was used to explore the lipopolysaccharide (LPS) effects including LPS-induced oxidation and inflammation cascades on a dedicated intestinal epithelial cell line (HT29-MD2) together with the potential mitigating role of a Mn-based SOD-mimic Mn1. While LPS induced transient oxidative damages at early times (15 min), cells incubated with Mn1 showed, in this time frame, a significantly reduced cysteine oxidation, highlighting Mn1 antioxidant properties. Over time, cysteine oxidation of LPS-treated cells was counteracted by an overexpression of antioxidant proteins (SOD1, NQO1) and a late (6 h) preponderant increase in SOD2 level. Mn1, when co-incubated with LPS, attenuated the level of most LPS-modified proteins, that is, proteins involved in the inflammatory response. Our results highlight Mn1 as a potentially effective antioxidant and anti-inflammatory agent to consider in the treatment of IBD, as well as a useful tool for exploring the interconnection between oxidative stress and inflammation.
Collapse
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
- Laboratoire de Spectrométrie de Masse Biologique et ProtéomiqueSMBPUAR2051ESPCI ParisPSL University, CNRSParis75005France
- Gastroenterology DepartmentSorbonne UniversitéINSERMCentre de Recherche Saint‐AntoineCRSAParis Center for Microbiome Medicine (PaCeMM) FHUAP‐HP, Saint‐Antoine HospitalParisFrance
| | - Giovanni Chiappetta
- Laboratoire de Spectrométrie de Masse Biologique et ProtéomiqueSMBPUAR2051ESPCI ParisPSL University, CNRSParis75005France
| | - Jean Bouvet
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
| | - Namita‐Raju John
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
| | - Gabrielle Schanne
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
- Gastroenterology DepartmentSorbonne UniversitéINSERMCentre de Recherche Saint‐AntoineCRSAParis Center for Microbiome Medicine (PaCeMM) FHUAP‐HP, Saint‐Antoine HospitalParisFrance
| | - Pauline Gehan
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
| | - Samuel Diebolt
- Laboratoire de Spectrométrie de Masse Biologique et ProtéomiqueSMBPUAR2051ESPCI ParisPSL University, CNRSParis75005France
| | - Shakir Shakir
- Laboratoire de Spectrométrie de Masse Biologique et ProtéomiqueSMBPUAR2051ESPCI ParisPSL University, CNRSParis75005France
| | - Elodie Quévrain
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
- Gastroenterology DepartmentSorbonne UniversitéINSERMCentre de Recherche Saint‐AntoineCRSAParis Center for Microbiome Medicine (PaCeMM) FHUAP‐HP, Saint‐Antoine HospitalParisFrance
| | - Emilie Mathieu
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
| | - Sylvie Demignot
- Gastroenterology DepartmentSorbonne UniversitéINSERMCentre de Recherche Saint‐AntoineCRSAParis Center for Microbiome Medicine (PaCeMM) FHUAP‐HP, Saint‐Antoine HospitalParisFrance
- EPHEPSL UniversityParis75014France
| | - Philippe Seksik
- Gastroenterology DepartmentSorbonne UniversitéINSERMCentre de Recherche Saint‐AntoineCRSAParis Center for Microbiome Medicine (PaCeMM) FHUAP‐HP, Saint‐Antoine HospitalParisFrance
| | - Nicolas Delsuc
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
| | - Joelle Vinh
- Laboratoire de Spectrométrie de Masse Biologique et ProtéomiqueSMBPUAR2051ESPCI ParisPSL University, CNRSParis75005France
| | - Clotilde Policar
- Laboratoire Chimie Physique et Chimie du Vivant—CPCVUMR8228Département de Chimie, Ecole Normale SupérieurePSL University, Sorbonne Université, CNRSParis75005France
| |
Collapse
|
2
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Xu C, Wu M, Yu W, Xie D, Wang Q, Chen B, Xi Y, Yu L, Yan Y, Yamamoto T, Koyama H, Zhao H, Cheng J. High Uric Acid Orchestrates Ferroptosis to Promote Cardiomyopathy Via ROS-GPX4 Signaling. Antioxid Redox Signal 2024; 41:1134-1149. [PMID: 39113539 DOI: 10.1089/ars.2023.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aims: High uric acid (HUA), as a pro-oxidant, plays a significant role in the pathophysiology of cardiovascular disease. Studies have indicated that elevated uric acid levels can adversely affect cardiovascular health. Nevertheless, the impact of hyperuricemia on cardiomyopathy remains uncertain. Further research is needed to elucidate the relationship between HUA and cardiomyopathy, shedding light on its potential implications for heart health. Results: We demonstrated that uricase knockout (Uox-KO) mice accelerated the development of cardiomyopathy, causing significantly impaired cardiac function and myocardial fibrosis. Meanwhile, the mitochondrial morphology was destroyed, the lipid peroxidation products increased in number and the antioxidant function was weakened. In addition, we evaluated the effects of ferrostatin-1 (Fer-1), the ferroptosis inhibitor. Myocardial damage can be reversed by the Fer-1 treatment caused by HUA combined with doxorubicin (DOX) treatment. Benzbromarone, a uric acid-lowering drug, decreases myocardial fibrosis, and ferroptosis by alleviating hyperuricemia in Uox-KO mice by DOX administration. In vitro, we observed that the activity of cardiomyocytes treated with HUA combined with DOX decreased significantly, and lipid reactive oxygen species (ROS) increased significantly. Afterward, we demonstrated that HUA can promote oxidative stress in DOX, characterized by increased mitochondrial ROS, and downregulate protein levels of glutathione peroxidase 4 (GPX4). N-acetyl-l-cysteine, an antioxidant, inhibits the process by which HUA promotes DOX-induced ferroptosis by increasing the GPX4 expression. Innovation: We verified that HUA can exacerbate myocardial damage. This has clinical implications for the treatment of cardiac damage in patients with hyperuricemia. Conclusions: Our data suggested that HUA promotes the cardiomyopathy. HUA promotes DOX-induced ferroptosis by increasing oxidative stress and downregulating GPX4. Antioxid. Redox Signal. 41, 1134-1149.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Institute of Metabolism and Cell Death, Helmholtz Munich, 85764 Neuherberg, Bavaria, Germany
| | - Mengni Wu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Linqian Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunbo Yan
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Tetsuya Yamamoto
- Department of Diabetes, Endocrinology, and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology, and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China
- Department of Diabetes, Endocrinology, and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
4
|
Wang C, Wu S. Hybrid cell membranes camouflage liposomes containing payloads to improve breast cancer chemo and photodynamic therapy. Biomater Sci 2024; 12:4980-4992. [PMID: 39169828 DOI: 10.1039/d4bm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The treatment of unresectable locally advanced triple-negative breast cancer (TNBC) and TNBC with metastasis is challenging. Many anticancer drugs, such as doxorubicin, still hinder positive therapeutic outcomes due to severe side effects. Photodynamic therapy (PDT) has an anticancer effect, and combining PDT with chemotherapy may improve breast cancer therapy. The use of cargo-loaded biomimetic PEGylated liposomes for cancer therapy may enhance efficacy and reduce side effects. In this study, liposomes were formulated to accommodate doxorubicin (Dox) and IR780. Breast cancer cells (4T1 cells) and macrophage cell membranes were isolated and camouflaged onto the PEGylated liposomes, creating a new biomimetic platform called Dox-IR780@Lip@Ms. The Dox-IR780@Lip@Ms platform was characterized and tested in vitro and in vivo. The results showed that the Dox-IR780@Lip@Ms had an ovoid shape with a double lamina structure, monodispersity, and uniform distribution. The size was 132.37 ± 1.22 nm, the PDI was 0.044 ± 0.067, and the zeta potential was -9.67 ± 1.08 mV. The encapsulation efficiency of Dox and IR780 in Dox-IR780@Lip@Ms was 89.36% ± 3.07% and 92.34% ± 0.66%, respectively. The release rate of Dox from Dox-IR780@Lip@Ms was good after laser irradiation. At pH 7.4, the release rate of Dox was 23.85% ± 0.62% at 3 h without laser irradiation and 36.62% ± 1.32% at 3.5 h with laser irradiation. At pH 6.5, the release rate of Dox was 32.54% ± 0.32% at 3 h without laser irradiation and 62.79% ± 2.15% at 3.5 h with laser irradiation. The cytotoxicity of IR780@Lip@Ms was lower than that of Dox-IR780@Lip@Ms. The cell uptake and generation of reactive oxygen species of Dox-IR780@Lip@Ms were significant. Dox-IR780@Lip@Ms exhibited immune escaping ability in vitro, homotypic targeting ability to cancer cells, high capability to kill cancer cells after laser irradiation, minimal cardiotoxicity, increased accumulation of Dox and IR780 in the tumor, and an increased anticancer effect in a tumor-bearing animal model. In conclusion, hybrid cell membranes of breast cancer and macrophages camouflaging PEGylated liposomes loaded with Dox and IR780 can significantly improve breast cancer therapy after laser irradiation in murine models.
Collapse
Affiliation(s)
- Chengfang Wang
- The First Affiliated Hospital of Hainan Medical University, Department of Ultrasound, Haikou, Hainan, China.
| | - Size Wu
- The First Affiliated Hospital of Hainan Medical University, Department of Ultrasound, Haikou, Hainan, China.
| |
Collapse
|
5
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
6
|
Tuo H, Li W, Zhao W, Zhao J, Li D, Jin L. Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice. Sci Rep 2024; 14:924. [PMID: 38195835 PMCID: PMC10776756 DOI: 10.1038/s41598-024-51675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
Doxorubicin (DOX) is a popular and potent anticancer drug, but its cardiotoxicity limits its clinical application. Shikonin has a wide range of biological functions, including antioxidant and anti-inflammatory effects. The aim of this study was to investigate the effects of shikonin on DOX-induced cardiac injury and to identify the underlying mechanisms. Mice receiving shikonin showed reduced cardiac injury response and enhanced cardiac function after DOX administration. Shikonin significantly attenuated DOX-induced oxidative damage, inflammation accumulation and cardiomyocyte apoptosis. Shikonin protects against DOX-induced cardiac injury by inhibiting Mammalian sterile 20-like kinase 1 (Mst1) and oxidative stress and activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In conclusion, shikonin alleviates DOX-induced cardiotoxicity by inhibiting Mst1 and activating Nrf2. Shikonin may be used to treat DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danni Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
7
|
Demos-Davies K, Lawrence J, Ferreira C, Seelig D. The Distant Molecular Effects on the Brain by Cancer Treatment. Brain Sci 2023; 14:22. [PMID: 38248237 PMCID: PMC10813787 DOI: 10.3390/brainsci14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer survivors experience cancer-related cognitive impairment (CRCI) secondary to treatment. Chemotherapy and radiation therapy independently contribute to cognitive dysfunction; however, the underlying mechanisms leading to dysfunction remain unclear. We characterized brain gene expression changes in a mouse model of CRCI to identify the mechanistic underpinnings. Eleven-to-twelve-week-old SKH1 mice were treated with doxorubicin (DOX), hindlimb radiation (RT), concurrent hindlimb radiation and doxorubicin (DOX-RT), or no treatment (control). Sixteen days following treatment, gene expression was measured from murine brains using the NanoString nCounter® glial profiling panel. Gene expression was normalized and compared between groups. No two groups shared the same expression pattern, and only Gnb1 and Srpr were upregulated in multiple treatment groups. Brains from DOX-treated mice had upregulated Atf2, Atp5b, Gnb1, Rad23b, and Srpr and downregulated Sirt5 expression compared to control brains. Brains from RT-treated mice demonstrated increased Abcg2 and Fgf2 and decreased C1qa and C1qb expression compared to control brains. Brains from DOX-RT-treated mice had upregulated Adar, E2f3, Erlec1, Gnb1, Srpr, Vim, and Pdgfra expression and downregulated Rock2 and Inpp5f expression compared to control brains. The gene expression changes demonstrated here highlight roles for neuronal transmission and oxidative stress in the pathogenesis of doxorubicin-related CRCI and inflammation in RT-related CRCI.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455,USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455,USA
| |
Collapse
|
8
|
Chang YC, Lee HL, Yang W, Hsieh ML, Liu CC, Lee TY, Huang JY, Nong JY, Li FA, Chuang HL, Ding ZZ, Su WL, Chueh LY, Tsai YT, Chen CH, Mochly-Rosen D, Chuang LM. A common East-Asian ALDH2 mutation causes metabolic disorders and the therapeutic effect of ALDH2 activators. Nat Commun 2023; 14:5971. [PMID: 37749090 PMCID: PMC10520061 DOI: 10.1038/s41467-023-41570-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Obesity and type 2 diabetes have reached pandemic proportion. ALDH2 (acetaldehyde dehydrogenase 2, mitochondrial) is the key metabolizing enzyme of acetaldehyde and other toxic aldehydes, such as 4-hydroxynonenal. A missense Glu504Lys mutation of the ALDH2 gene is prevalent in 560 million East Asians, resulting in reduced ALDH2 enzymatic activity. We find that male Aldh2 knock-in mice mimicking human Glu504Lys mutation were prone to develop diet-induced obesity, glucose intolerance, insulin resistance, and fatty liver due to reduced adaptive thermogenesis and energy expenditure. We find reduced activity of ALDH2 of the brown adipose tissue from the male Aldh2 homozygous knock-in mice. Proteomic analyses of the brown adipose tissue from the male Aldh2 knock-in mice identifies increased 4-hydroxynonenal-adducted proteins involved in mitochondrial fatty acid oxidation and electron transport chain, leading to markedly decreased fatty acid oxidation rate and mitochondrial respiration of brown adipose tissue, which is essential for adaptive thermogenesis and energy expenditure. AD-9308 is a water-soluble, potent, and highly selective ALDH2 activator. AD-9308 treatment ameliorates diet-induced obesity and fatty liver, and improves glucose homeostasis in both male Aldh2 wild-type and knock-in mice. Our data highlight the therapeutic potential of reducing toxic aldehyde levels by activating ALDH2 for metabolic diseases.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wenjin Yang
- Foresee Pharmaceuticals, Co.Ltd, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cai-Cin Liu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Tung-Yuan Lee
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Jing-Yong Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiun-Yi Nong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Zhi-Zhong Ding
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Su
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Tsai
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Nagoor Meeran MF, Arunachalam S, Azimullah S, Saraswathiamma D, Albawardi A, Almarzooqi S, Jha NK, Subramanya S, Beiram R, Ojha S. α-Bisabolol, a Dietary Sesquiterpene, Attenuates Doxorubicin-Induced Acute Cardiotoxicity in Rats by Inhibiting Cellular Signaling Pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 Inflammasomes Regulating Oxidative Stress and Inflammatory Cascades. Int J Mol Sci 2023; 24:14013. [PMID: 37762315 PMCID: PMC10530367 DOI: 10.3390/ijms241814013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer chemotherapy with doxorubicin (DOX) may have multiorgan toxicities including cardiotoxicity, and this is one of the major limitations of its clinical use. The present study aimed to evaluate the cardioprotective role of α-Bisabolol (BSB) in DOX-induced acute cardiotoxicity in rats and the underlying pharmacological and molecular mechanisms. DOX (12.5 mg/kg, single dose) was injected intraperitoneally into the rats for induction of acute cardiotoxicity. BSB was given orally to rats (25 mg/kg, p.o. twice daily) for a duration of five days. DOX administration induced cardiac dysfunction as evidenced by altered body weight, hemodynamics, and release of cardio-specific diagnostic markers. The occurrence of oxidative stress was evidenced by a significant decline in antioxidant defense along with a rise in lipid peroxidation and hyperlipidemia. Additionally, DOX also increased the levels and expression of proinflammatory cytokines and inflammatory mediators, as well as activated NF-κB/MAPK signaling in the heart, following alterations in the Nrf2/Keap-1/HO-1 and Akt/mTOR/GSK-3β signaling. DOX also perturbed NLRP3 inflammasome activation-mediated pyroptosis in the myocardium of rats. Furthermore, histopathological studies revealed cellular alterations in the myocardium. On the contrary, treatment with BSB has been observed to preserve the myocardium and restore all the cellular, molecular, and structural perturbations in the heart tissues of DOX-induced cardiotoxicity in rats. Results of the present study clearly demonstrate the protective role of BSB against DOX-induced cardiotoxicity, which is attributed to its potent antioxidant, anti-inflammatory, and antihyperlipidemic effects resulting from favorable modulation of numerous cellular signaling regulatory pathways, viz., Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 inflammasomes, in countering the cascades of oxidative stress and inflammation. The observations suggest that BSB can be a promising agent or an adjuvant to limit the cardiac injury caused by DOX. Further studies including the role in tumor-bearing animals as well as regulatory toxicology are suggested.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Dhanya Saraswathiamma
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeeda Almarzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sandeep Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.F.N.M.); (R.B.)
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
10
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Hungerford A, Bakos HW, Aitken RJ. Sperm cryopreservation: current status and future developments. Reprod Fertil Dev 2023; 35:265-281. [PMID: 36521496 DOI: 10.1071/rd22219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
The cryopreservation of spermatozoa is an important reproductive technology for the preservation of fertility in man and animals. Since the serendipitous discovery of glycerol as an effective cryoprotectant in 1947, sperm cryopreservation has undergone many changes in terms of the freezing methods employed, the rates at which samples are frozen and thawed, and the media used to preserve sperm functionality and DNA integrity. An extensive literature survey has been conducted addressing the cryoprotectants employed for both animal and human semen and the freezing protocols utilised. The results indicate that glycerol remains the dominant cryoprotective agent, usually incorporated into a balanced salt solution containing energy substrates, buffers, osmolytes and protein in the form of human serum albumin (human) or skimmed milk (animal). Realisation that some of the damage observed in cryostored cells involves the generation of reactive oxygen species during the thawing process, has prompted many studies to assess the relative merits of incorporating antioxidants into the cryopreservation media. However, in the absence of systematic comparisons, there is currently no consensus as to which antioxidant combination might be the most effective. Utilising our fundamental understanding of cryodamage to optimise cryopreservation protocols for each species will be important in the future.
Collapse
Affiliation(s)
- Alena Hungerford
- Priority Research Centre for Reproductive Science, University of Newcastle, Life Sciences Building, Callaghan, NSW 2308, Australia
| | - Hassan W Bakos
- Priority Research Centre for Reproductive Science, University of Newcastle, Life Sciences Building, Callaghan, NSW 2308, Australia; and Monash IVF Group, Sydney, NSW, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Life Sciences Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
12
|
Aitken RJ, Bromfield EG, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: The impact of oxidative stress on reproduction: a focus on gametogenesis and fertilization. Reproduction 2022; 164:F79-F94. [PMID: 35929832 DOI: 10.1530/rep-22-0126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
In brief Many aspects of the reproductive process are impacted by oxidative stress. This article summarizes the chemical nature of reactive oxygen species and their role in both the physiological regulation of reproductive processes and the pathophysiology of infertility. Abstract This article lays out the fundamental principles of oxidative stress. It describes the nature of reactive oxygen species (ROS), the way in which these potentially toxic metabolites interact with cells and how they impact both cellular function and genetic integrity. The mechanisms by which ROS generation is enhanced to the point that the cells' antioxidant defence mechanisms are overwhelmed are also reviewed taking examples from both the male and female reproductive system, with a focus on gametogenesis and fertilization. The important role of external factors in exacerbating oxidative stress and impairing reproductive competence is also examined in terms of their ability to disrupt the physiological redox regulation of reproductive processes. Developing diagnostic and therapeutic strategies to cope with oxidative stress within the reproductive system will depend on the development of a deeper understanding of the nature, source, magnitude, and location of such stress in order to fashion personalized treatments that meet a given patient's clinical needs.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
13
|
Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M, Miriyala S. Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:1555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Tara Bailey
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Srivatsan Kidambi
- Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NB 68588, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| |
Collapse
|
14
|
Brandão SR, Carvalho F, Amado F, Ferreira R, Costa VM. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings. Metabolism 2022; 134:155250. [PMID: 35809654 DOI: 10.1016/j.metabol.2022.155250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
Several anticancer agents have been associated with cardiac toxic effects. The currently proposed mechanisms to explain cardiotoxicity differ among anticancer agents, but in fact, the specific modulation is not completely elucidated. Thus, this systematic review aims to provide an integrative perspective of the molecular mechanisms underlying the toxicity of anticancer agents on heart muscle while using a high-throughput technology, mass spectrometry (MS)-based proteomics. A literature search using PubMed database led to the selection of 27 studies, of which 13 reported results exclusively on animal models, 13 on cardiomyocyte-derived cell lines and only one included both animal and a cardiomyocyte line. The reported anticancer agents were the proteasome inhibitor carfilzomib, the anthracyclines daunorubicin, doxorubicin, epirubicin and idarubicin, the antimicrotubule agent docetaxel, the alkylating agent melphalan, the anthracenedione mitoxantrone, the tyrosine kinase inhibitors (TKIs) erlotinib, lapatinib, sorafenib and sunitinib, and the monoclonal antibody trastuzumab. Regarding the MS-based proteomic approaches, electrophoretic separation using two-dimensional (2D) gels coupled with tandem MS (MS/MS) and liquid chromatography-MS/MS (LC-MS/MS) were the most common. Overall, the studies highlighted 1826 differentially expressed proteins across 116 biological processes. Most of them were grouped in larger processes and critically analyzed in the present review. The selection of studies using proteomics on heart muscle allowed to obtain information about the anticancer therapy-induced modulation of numerous proteins in this tissue and to establish connections that have been disregarded in other studies. This systematic review provides interesting points for a comprehensive understanding of the cellular cardiotoxicity mechanisms of different anticancer drugs.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Doxorubicin induced cardio toxicity through sirtuins mediated mitochondrial disruption. Chem Biol Interact 2022; 365:110028. [DOI: 10.1016/j.cbi.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 12/06/2022]
|
16
|
Extracellular Vesicles and Cancer Therapy: Insights into the Role of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061194. [PMID: 35740091 PMCID: PMC9228181 DOI: 10.3390/antiox11061194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress plays a significant role in cancer development and cancer therapy, and is a major contributor to normal tissue injury. The unique characteristics of extracellular vesicles (EVs) have made them potentially useful as a diagnostic tool in that their molecular content indicates their cell of origin and their lipid membrane protects the content from enzymatic degradation. In addition to their possible use as a diagnostic tool, their role in how normal and diseased cells communicate is of high research interest. The most exciting area is the association of EVs, oxidative stress, and pathogenesis of numerous diseases. However, the relationship between oxidative stress and oxidative modifications of EVs is still unclear, which limits full understanding of the clinical potential of EVs. Here, we discuss how EVs, oxidative stress, and cancer therapy relate to one another; how oxidative stress can contribute to the generation of EVs; and how EVs’ contents reveal the presence of oxidative stress. We also point out the potential promise and limitations of using oxidatively modified EVs as biomarkers of cancer and tissue injury with a focus on pediatric oncology patients.
Collapse
|
17
|
Rummel NG, Butterfield DA. Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid Redox Signal 2022; 36:1289-1305. [PMID: 34416829 PMCID: PMC9229240 DOI: 10.1089/ars.2021.0177] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Alzheimer disease (AD) is an all-too-common condition in the aging population. However, aging does not automatically equal neurodegeneration and memory decline. Recent Advances: This review article involves metabolic changes in the AD brain that are related to oxidative stress. Selected pathways are identified as potential targets for intervention in AD. Critical Issues: One of the main factors of AD is the oxidative imbalance within the central nervous system, causing a disruption in metabolic processes. Reactive oxygen species (ROS) are a natural consequence of many cellular processes, especially those associated with mitochondria, such as the electron transport chain. Some ROS, when kept under control and maintained at reasonable levels, often play roles in cell signaling. The cellular damage of ROS arises when oxidative imbalance occurs, in which case ROS are not controlled, leading to a myriad of alterations in cellular metabolic processes. These altered pathways include, among others, dysfunctional glycolysis, calcium regulation, lipid metabolism, mitochondrial processes, and mammalian target of rapamycin pathway dysregulation. Future Directions: Understanding how ROS can lead to these alterations can, ideally, elucidate therapeutic options for retarding AD progression in the aging population. Antioxid. Redox Signal. 36, 1289-1305.
Collapse
Affiliation(s)
- Nicole G Rummel
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
19
|
Aitken RJ, Drevet JR, Moazamian A, Gharagozloo P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants (Basel) 2022; 11:antiox11020306. [PMID: 35204189 PMCID: PMC8868102 DOI: 10.3390/antiox11020306] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in defining the functional competence of human spermatozoa. When generated in moderate amounts, ROS promote sperm capacitation by facilitating cholesterol efflux from the plasma membrane, enhancing cAMP generation, inducing cytoplasmic alkalinization, increasing intracellular calcium levels, and stimulating the protein phosphorylation events that drive the attainment of a capacitated state. However, when ROS generation is excessive and/or the antioxidant defences of the reproductive system are compromised, a state of oxidative stress may be induced that disrupts the fertilizing capacity of the spermatozoa and the structural integrity of their DNA. This article focusses on the sources of ROS within this system and examines the circumstances under which the adequacy of antioxidant protection might become a limiting factor. Seminal leukocyte contamination can contribute to oxidative stress in the ejaculate while, in the germ line, the dysregulation of electron transport in the sperm mitochondria, elevated NADPH oxidase activity, or the excessive stimulation of amino acid oxidase action are all potential contributors to oxidative stress. A knowledge of the mechanisms responsible for creating such stress within the human ejaculate is essential in order to develop better antioxidant strategies that avoid the unintentional creation of its reductive counterpart.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: ; Tel.: +61-2-4921-6851
| | - Joël R. Drevet
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
| | - Aron Moazamian
- GReD Institute, INSERM U1103-CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC Building, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France; (J.R.D.); (A.M.)
- CellOxess LLC, Ewing, NJ 08628, USA;
| | | |
Collapse
|
20
|
Sheibani M, Azizi Y, Shayan M, Nezamoleslami S, Eslami F, Farjoo MH, Dehpour AR. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc Toxicol 2022; 22:292-310. [DOI: 10.1007/s12012-022-09721-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
21
|
Lee H, Ha TY, Jung CH, Nirmala FS, Park SY, Huh YH, Ahn J. Mitochondrial dysfunction in skeletal muscle contributes to the development of acute insulin resistance in mice. J Cachexia Sarcopenia Muscle 2021; 12:1925-1939. [PMID: 34605225 PMCID: PMC8718067 DOI: 10.1002/jcsm.12794] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2021] [Accepted: 08/23/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although mounting evidence indicates that insulin resistance (IR) co-occurs with mitochondrial dysfunction in skeletal muscle, there is no clear causal link between mitochondrial dysfunction and IR pathogenesis. In this study, the exact role of mitochondria in IR development was determined. METHODS Six-week-old C57BL/6 mice were fed a high-fat diet for 2 weeks to induce acute IR or for 24 weeks to induce chronic IR (n = 8 per group). To characterize mitochondrial function, we measured citrate synthase activity, ATP content, mitochondrial DNA (mtDNA) content, and oxygen consumption rate in gastrocnemius and liver tissues. We intraperitoneally administered mitochondrial division inhibitor 1 (mdivi-1) to mice with acute IR and measured mitochondrial adaptive responses such as mitophagy, mitochondrial unfolded protein response (UPRmt), and oxidative stress (n = 6 per group). RESULTS Acute IR occurred coincidently with impaired mitochondrial function, including reduced citrate synthase activity (-37.8%, P < 0.01), ATP production (-88.0%, P < 0.01), mtDNA (-53.1%, P < 0.01), and mitochondrial respiration (-52.2% for maximal respiration, P < 0.05) in skeletal muscle but not in liver. Administration of mdivi-1 attenuated IR development by increasing mitochondrial function (+58.5% for mtDNA content, P < 0.01; 4.06 ± 0.69 to 5.84 ± 0.95 pmol/min/mg for citrate synthase activity, P < 0.05; 13.06 ± 0.70 to 34.87 ± 0.70 pmol/min/g for maximal respiration, P < 0.001). Western blot analysis showed acute IR resulted in increased autophagy (mitophagy) and UPRmt induction in muscle tissue. This adaptive response was inhibited by mdivi-1, which reduced the mitochondrial oxidative stress of skeletal muscle during acute IR. CONCLUSIONS Acute IR induced mitochondrial oxidative stress that impaired mitochondrial function in skeletal muscle. Improving mitochondrial function has important potential for treating acute IR.
Collapse
Affiliation(s)
- Hyunjung Lee
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae Youl Ha
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chang Hwa Jung
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Farida Sukma Nirmala
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiyun Ahn
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, Republic of Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Nelson MAM, Efird JT, Kew KA, Katunga LA, Monroe TB, Doorn JA, Beatty CN, Shi Q, Akhter SA, Alwair H, Robidoux J, Anderson EJ. Enhanced Catecholamine Flux and Impaired Carbonyl Metabolism Disrupt Cardiac Mitochondrial Oxidative Phosphorylation in Diabetes Patients. Antioxid Redox Signal 2021; 35:235-251. [PMID: 33066717 PMCID: PMC8262387 DOI: 10.1089/ars.2020.8122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aims: Catecholamine metabolism via monoamine oxidase (MAO) contributes to cardiac injury in models of ischemia and diabetes, but the pathogenic mechanisms involved are unclear. MAO deaminates norepinephrine (NE) and dopamine to produce H2O2 and highly reactive "catecholaldehydes," which may be toxic to mitochondria due to the localization of MAO to the outer mitochondrial membrane. We performed a comprehensive analysis of catecholamine metabolism and its impact on mitochondrial energetics in atrial myocardium obtained from patients with and without type 2 diabetes. Results: Content and maximal activity of MAO-A and MAO-B were higher in the myocardium of patients with diabetes and they were associated with body mass index. Metabolomic analysis of atrial tissue from these patients showed decreased catecholamine levels in the myocardium, supporting an increased flux through MAOs. Catecholaldehyde-modified protein adducts were more abundant in myocardial tissue extracts from patients with diabetes and were confirmed to be MAO dependent. NE treatment suppressed mitochondrial ATP production in permeabilized myofibers from patients with diabetes in an MAO-dependent manner. Aldehyde dehydrogenase (ALDH) activity was substantially decreased in atrial myocardium from these patients, and metabolomics confirmed lower levels of ALDH-catalyzed catecholamine metabolites. Proteomic analysis of catechol-modified proteins in isolated cardiac mitochondria from these patients identified >300 mitochondrial proteins to be potential targets of these unique carbonyls. Innovation and Conclusion: These findings illustrate a unique form of carbonyl toxicity driven by MAO-mediated metabolism of catecholamines, and they reveal pathogenic factors underlying cardiometabolic disease. Importantly, they suggest that pharmacotherapies targeting aldehyde stress and catecholamine metabolism in heart may be beneficial in patients with diabetes and cardiac disease. Antioxid. Redox Signal. 35, 235-251.
Collapse
Affiliation(s)
- Margaret-Ann M Nelson
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jimmy T Efird
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Kimberly A Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Lalage A Katunga
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - T Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | - Cherese N Beatty
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Qian Shi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shahab A Akhter
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina Heart Institute, Greenville, North Carolina, USA
| | - Hazaim Alwair
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina Heart Institute, Greenville, North Carolina, USA
| | - Jacques Robidoux
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
23
|
Tola AJ, Jaballi A, Missihoun TD. Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1451. [PMID: 34371653 PMCID: PMC8309296 DOI: 10.3390/plants10071451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Collapse
Affiliation(s)
| | | | - Tagnon D. Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada; (A.J.T.); (A.J.)
| |
Collapse
|
24
|
Brandão SR, Reis-Mendes A, Domingues P, Duarte JA, Bastos ML, Carvalho F, Ferreira R, Costa VM. Exploring the aging effect of the anticancer drugs doxorubicin and mitoxantrone on cardiac mitochondrial proteome using a murine model. Toxicology 2021; 459:152852. [PMID: 34246718 DOI: 10.1016/j.tox.2021.152852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
Current cancer therapies are successfully increasing the lifespan of cancer patients. Nevertheless, cardiotoxicity is a serious chemotherapy-induced adverse side effect. Doxorubicin (DOX) and mitoxantrone (MTX) are cardiotoxic anticancer agents, whose toxicological mechanisms are still to be identified. This study focused on DOX and MTX's cardiac mitochondrial damage and their molecular mechanisms. As a hypothesis, we also sought to compare the cardiac modulation caused by 9 mg/kg of DOX or 6 mg/kg of MTX in young adult mice (3 months old) with old control mice (aged control, 18-20 months old) to determine if DOX- and MTX-induced damage had common links with the aging process. Cardiac homogenates and enriched mitochondrial fractions were prepared from treated and control animals and analyzed by immunoblotting and enzymatic assays. Enriched mitochondrial fractions were also characterized by mass spectrometry-based proteomics. Data obtained showed a decrease in mitochondrial density in young adults treated with DOX or MTX and aged control, as assessed by citrate synthase (CS) activity. Furthermore, aged control had increased expression of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and manganese superoxide dismutase (MnSOD). Regarding the enriched mitochondrial fractions, DOX and MTX led to downregulation of proteins related to oxidative phosphorylation, fatty acid oxidation, amino acid metabolic process, and tricarboxylic acid cycle. MTX had a greater impact on malate dehydrogenase (MDH2) and pyruvate dehydrogenase E1 component subunit α (PDHA1). No significant proteomic changes were observed in the enriched mitochondrial fractions of aged control when compared to young control. To conclude, DOX and MTX promoted changes in several mitochondrial-related proteins in young adult mice, but none resembling the aged phenotype.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Pedro Domingues
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal.
| |
Collapse
|
25
|
da Cunha Menezes Souza L, Fernandes FH, Presti PT, Anjos Ferreira AL, Fávero Salvadori DM. Effect of doxorubicin on cardiac lipid metabolism-related transcriptome and the protective activity of Alda-1. Eur J Pharmacol 2021; 898:173955. [PMID: 33617823 DOI: 10.1016/j.ejphar.2021.173955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
The use of doxorubicin (DOX) as an antineoplastic drug is compromised by its cardiotoxicity risk. Although several mechanisms have been proposed for DOX-induced cardiac dysfunction, there is still increased interest in assessing its effects. Likewise, it is important to find protocols that can prevent or minimize the side effects of DOX without hindering its antitumor activity. Thus, this study was designed to investigate the molecular mechanisms underlying DOX cardiotoxicity, with a special focus on cardiac energy metabolism and the ability of Alda-1 (ALDH2 agonist) to prevent DOX-induced cardiac alterations. We explored the effects of DOX on the histological morphology of the myocardium, on lipid profile, and on the expression of genes related to fatty acid metabolism, in the presence and absence of Alda-1 (8 mg/kg body weight; b.wt.). Two DOX treatment protocols were used: a single dose of DOX (4 mg/kg b.wt.); four doses of DOX (4 mg/kg b.wt.), one dose/week, for 4 weeks. Treatment with DOX caused a progressive injury in the cardiac tissue and an increase in the blood total cholesterol, high-density lipoproteins, very low-density lipoproteins and triglyceride, as well as an up-regulation of FABP4 (DOX and DOX + Alda-1 groups) and Slc27a2 (in DOX-treated animals). Alda-1 administration promoted reduction in the severity of the histopathological injuries (after single dose of DOX) and Slc27a2 overexpression was restored. In conclusion, the study revealed novel insights regarding the development of DOX-mediated cardiomyopathy, indicating a relationship between DOX exposure and FABP4 and Slc27a2 overexpression, and confirmed the cardioprotective effect of Alda-1.
Collapse
Affiliation(s)
| | - Fábio Henrique Fernandes
- Department of Pathology, Botucatu Medical School, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | |
Collapse
|
26
|
Chen X, Li X, Xu X, Li L, Liang N, Zhang L, Lv J, Wu YC, Yin H. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic Res 2021; 55:405-415. [PMID: 33455488 DOI: 10.1080/10715762.2021.1876856] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD), including heart attack, stroke, heart failure, arrhythmia, and other congenital heart diseases remain the leading cause of morbidity and mortality worldwide. The leading cause of deaths in CVD is attributed to myocardial infarction due to the rupture of atherosclerotic plaque. Atherosclerosis refers a condition when restricted or even blockage of blood flow occurs due to the narrowing of blood vessels as a result of the buildup of plaques composed of oxidized lipids. It is well-established that free radical oxidation of polyunsaturated fatty acids (PUFAs) in lipoproteins or cell membranes, termed lipid peroxidation (LPO), plays a significant role in atherosclerosis. LPO products are involved in immune responses and cell deaths in this process, in which previous evidence supports the role of programmed cell death (apoptosis) and necrosis. Ferroptosis is a newly identified form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels, which exhibits distinct features from apoptosis, necrosis and autophagy in morphology, biochemistry and genetics. Emerging evidence appears to demonstrate that ferroptosis is also involved in CVD. In this review, we summarize the recent progress on ferroptosis in CVD and atherosclerosis, highlighting the role of free radical LPO. The evidence underlying the ferroptosis and challenges in the field will also be critically discussed.
Collapse
Affiliation(s)
- Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuan Li
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jingwen Lv
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yun-Cheng Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021; 83:100941. [PMID: 33422637 DOI: 10.1016/j.preteyeres.2021.100941] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic and knockout mice have documented the ability of increased UCP2 activity to provide neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a strong candidate for a therapeutic target. Molecular studies have identified the structural mechanism of action of UCP2 and have detailed the ways in which its expression and activity can be controlled at the transcriptional, translational and posttranslational levels. These studies suggest a number of ways in control of UCP2 expression and activity can be used therapeutically for both acute and chronic conditions. The development of such therapeutic approaches will greatly increase the tools available to combat a broad range of serious retinal diseases.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA, 98109, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
28
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
29
|
Tanaka Y, Nagoshi T, Yoshii A, Oi Y, Takahashi H, Kimura H, Ito K, Kashiwagi Y, Tanaka TD, Yoshimura M. Xanthine oxidase inhibition attenuates doxorubicin-induced cardiotoxicity in mice. Free Radic Biol Med 2021; 162:298-308. [PMID: 33470212 DOI: 10.1016/j.freeradbiomed.2020.10.303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggests that high serum uric acid (UA) is associated with left ventricular (LV) dysfunction. Although xanthine oxidase (XO) activation is a critical regulatory mechanism of the terminal step in ATP and purine degradation, the pathophysiological role of cardiac tissue XO in LV dysfunction remains unclear. We herein investigated the role and functional significance of tissue XO activity in doxorubicin-induced cardiotoxicity. Either doxorubicin (10 mg/kg) or vehicle was intraperitonially administered in a single injection to mice. Mice were treated with or without oral XO-inhibitors (febuxostat 3 mg/kg/day or topiroxostat 5 mg/kg/day) for 8 days starting 24 h before doxorubicin injection. Cardiac tissue XO activity measured by a highly sensitive assay with liquid chromatography/mass spectrometry and cardiac UA content were significantly increased in doxorubicin-treated mice at day 7 and dramatically reduced by XO-inhibitors. Accordingly, XO-inhibitors substantially improved LV ejection fraction (assessed by echocardiography) and LV developed pressure (assessed by ex vivo Langendorff heart perfusion) impaired by doxorubicin administration. This was associated with an increase in XO-derived hydrogen peroxide production with concomitant upregulation of apoptotic and ferroptotic pathways, all of which were reduced by XO-inhibitors. Furthermore, metabolome analyses revealed enhanced purine metabolism in doxorubicin-treated hearts, and XO-inhibitors suppressed the serial metabolic reaction of hypoxanthine-xanthine-UA, the paths of ATP and purine degradation. In summary, doxorubicin administration induces cardiac tissue XO activation associated with impaired LV function. XO-inhibitors attenuate doxorubicin-induced cardiotoxicity through inhibition of XO-derived oxidative stress and cell death signals as well as the maintenance of cardiac energy metabolism associated with modulation of the purine metabolic pathway.
Collapse
Affiliation(s)
- Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan.
| | - Akira Yoshii
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Hirotake Takahashi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Keiichi Ito
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Toshikazu D Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| |
Collapse
|
30
|
Sharma S, Bhattarai S, Ara H, Sun G, St Clair DK, Bhuiyan MS, Kevil C, Watts MN, Dominic P, Shimizu T, McCarthy KJ, Sun H, Panchatcharam M, Miriyala S. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol 2020; 37:101740. [PMID: 33049519 PMCID: PMC7559509 DOI: 10.1016/j.redox.2020.101740] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Electrophilic aldehyde (4-hydroxynonenal; 4-HNE), formed after lipid peroxidation, is a mediator of mitochondrial dysfunction and implicated in both the pathogenesis and the progression of cardiovascular disease. Manganese superoxide dismutase (MnSOD), a nuclear-encoded antioxidant enzyme, catalyzes the dismutation of superoxide radicals (O2•-) in mitochondria. To study the role of MnSOD in the myocardium, we generated a cardiomyocyte-specific SOD2 (SOD2Δ) deficient mouse strain. Unlike global SOD2 knockout mice, SOD2Δ mice reached adolescence; however, they die at ~4 months of age due to heart failure. Ultrastructural analysis of SOD2Δ hearts revealed altered mitochondrial architecture, with prominent disruption of the cristae and vacuole formation. Noninvasive echocardiographic measurements in SOD2Δ mice showed dilated cardiomyopathic features such as decreased ejection fraction and fractional shortening along with increased left ventricular internal diameter. An increased incidence of ventricular tachycardia was observed during electrophysiological studies of the heart in SOD2Δ mice. Oxidative phosphorylation (OXPHOS) measurement using a Seahorse XF analyzer in SOD2Δ neonatal cardiomyocytes and adult cardiac mitochondria displayed reduced O2 consumption, particularly during basal conditions and after the addition of FCCP (H+ ionophore/uncoupler), compared to that in SOD2fl hearts. Measurement of extracellular acidification (ECAR) to examine glycolysis in these cells showed a pattern precisely opposite that of the oxygen consumption rate (OCR) among SOD2Δ mice compared to their SOD2fl littermates. Analysis of the activity of the electron transport chain complex identified a reduction in Complex I and Complex V activity in SOD2Δ compared to SOD2fl mice. We demonstrated that a deficiency of SOD2 increases reactive oxygen species (ROS), leading to subsequent overproduction of 4-HNE inside mitochondria. Mechanistically, proteins in the mitochondrial respiratory chain complex and TCA cycle (NDUFS2, SDHA, ATP5B, and DLD) were the target of 4-HNE adduction in SOD2Δ hearts. Our findings suggest that the SOD2 mediated 4-HNE signaling nexus may play an important role in cardiomyopathy.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hosne Ara
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Grace Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Megan N Watts
- Division of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Division of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Takahiko Shimizu
- National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu Aichi, Japan
| | - Kevin J McCarthy
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
31
|
Ma ZG, Kong CY, Wu HM, Song P, Zhang X, Yuan YP, Deng W, Tang QZ. Toll-like receptor 5 deficiency diminishes doxorubicin-induced acute cardiotoxicity in mice. Am J Cancer Res 2020; 10:11013-11025. [PMID: 33042267 PMCID: PMC7532690 DOI: 10.7150/thno.47516] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Clinical application of doxorubicin (DOX) is limited by its toxic cardiovascular side effects. Our previous study found that toll-like receptor (TLR) 5 deficiency attenuated cardiac fibrosis in mice. However, the role of TLR5 in DOX-induced cardiotoxicity remains unclear. Methods: To further investigate this, TLR5-deficient mice were subjected to a single intraperitoneal injection of DOX to mimic an acute model. Results: Here, we reported that TLR5 expression was markedly increased in response to DOX injection. Moreover, TLR5 deficiency exerted potent protective effects against DOX-related cardiac injury, whereas activation of TLR5 by flagellin exacerbated DOX injection-induced cardiotoxicity. Mechanistically, the effects of TLR5 were largely attributed to direct interaction with spleen tyrosine kinase to activate NADPH oxidase (NOX) 2, increasing the production of superoxide and subsequent activation of p38. The toxic effects of TLR5 activation in DOX-related acute cardiac injury were abolished by NOX2 deficiency in mice. Our further study showed that neutralizing antibody-mediated TLR5 depletion also attenuated DOX-induced acute cardiotoxicity. Conclusion: These findings suggest that TLR5 deficiency attenuates DOX-induced cardiotoxicity in mice, and targeting TLR5 may provide feasible therapies for DOX-induced acute cardiotoxicity.
Collapse
|
32
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
33
|
Hwang HV, Sandeep N, Paige SL, Ranjbarvaziri S, Hu DQ, Zhao M, Lan IS, Coronado M, Kooiker KB, Wu SM, Fajardo G, Bernstein D, Reddy S. 4HNE Impairs Myocardial Bioenergetics in Congenital Heart Disease-Induced Right Ventricular Failure. Circulation 2020; 142:1667-1683. [PMID: 32806952 DOI: 10.1161/circulationaha.120.045470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND In patients with complex congenital heart disease, such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload stress, leading to RV hypertrophy and eventually RV failure. The role of lipid peroxidation, a potent form of oxidative stress, in mediating RV hypertrophy and failure in congenital heart disease is unknown. METHODS Lipid peroxidation and mitochondrial function and structure were assessed in right ventricle (RV) myocardium collected from patients with RV hypertrophy with normal RV systolic function (RV fractional area change, 47.3±3.8%) and in patients with RV failure showing decreased RV systolic function (RV fractional area change, 26.6±3.1%). The mechanism of the effect of lipid peroxidation, mediated by 4-hydroxynonenal ([4HNE] a byproduct of lipid peroxidation) on mitochondrial function and structure was assessed in HL1 murine cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS RV failure was characterized by an increase in 4HNE adduction of metabolic and mitochondrial proteins (16 of 27 identified proteins), in particular electron transport chain proteins. Sarcomeric (myosin) and cytoskeletal proteins (desmin, tubulin) also underwent 4HNE adduction. RV failure showed lower oxidative phosphorylation (moderate RV hypertrophy, 287.6±19.75 versus RV failure, 137.8±11.57 pmol/[sec×mL]; P=0.0004), and mitochondrial structural damage. Using a cell model, we show that 4HNE decreases cell number and oxidative phosphorylation (control, 388.1±23.54 versus 4HNE, 143.7±11.64 pmol/[sec×mL]; P<0.0001). Carvedilol, a known antioxidant did not decrease 4HNE adduction of metabolic and mitochondrial proteins and did not improve oxidative phosphorylation. CONCLUSIONS Metabolic, mitochondrial, sarcomeric, and cytoskeletal proteins are susceptible to 4HNE-adduction in patients with RV failure. 4HNE decreases mitochondrial oxygen consumption by inhibiting electron transport chain complexes. Carvedilol did not improve the 4HNE-mediated decrease in oxygen consumption. Strategies to decrease lipid peroxidation could improve mitochondrial energy generation and cardiomyocyte survival and improve RV failure in patients with congenital heart disease.
Collapse
Affiliation(s)
- HyunTae V Hwang
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Nefthi Sandeep
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Sharon L Paige
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Sara Ranjbarvaziri
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Dong-Qing Hu
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Mingming Zhao
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Ingrid S Lan
- Department of Bioengineering (I.S.L.), Stanford University, Palo Alto, CA
| | | | | | - Sean M Wu
- Department of Medicine (Cardiology) (S.M.W.), Stanford University, Palo Alto, CA
| | - Giovanni Fajardo
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology) (HT.V.H., N.S., S.L.P., S. Ranjbarvairi, D-Q.H., M.Z., G.F., D.B., S. Reddy), Stanford University, Palo Alto, CA
| |
Collapse
|
34
|
Follistatin-Like 1 Protects against Doxorubicin-Induced Cardiomyopathy through Upregulation of Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3598715. [PMID: 32831995 PMCID: PMC7421745 DOI: 10.1155/2020/3598715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
Abstract
Doxorubicin- (DOX-) induced cardiomyocyte loss results in irreversible heart failure, which limits the clinical applications of DOX. Currently, there are no drugs that can effectively treat DOX-related cardiotoxicity. Follistatin-like 1 (FSTL1) has been reported to be a transforming growth factor-beta-inducible gene, and FSTL1 supplementation attenuated ischemic injury and cardiac apoptotic loss in mice. However, the effect of FSTL1 on DOX-induced cardiomyopathy has not been elucidated. We aimed to explore whether FSTL1 could prevent DOX-related cardiotoxicity in mice. Mice were intraperitoneally injected with a single dose of DOX to induce acute cardiotoxicity. We used an adeno-associated virus system to overexpress FSTL1 in the heart. DOX administration decreased FSTL1 mRNA and protein expression in the heart and in cells. FSTL1 prevented DOX-related cardiac injury and inhibited cardiac oxidative stress and apoptosis, thereby improving cardiac function in mice. FSTL1 also improved cardiomyocyte contractile functions in vitro. FSTL1 upregulated expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in DOX-treated hearts. FSTL1 was not capable of protecting against these toxic effects in Nrf2-deficient mice. In conclusion, FSTL1 protected against DOX-induced cardiotoxicity via upregulation of Nrf2 expression.
Collapse
|
35
|
Asiatic Acid Protects against Doxorubicin-Induced Cardiotoxicity in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5347204. [PMID: 32509145 PMCID: PMC7246415 DOI: 10.1155/2020/5347204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022]
Abstract
The use of doxorubicin (DOX) can result in depression of cardiac function and refractory cardiomyopathy. Currently, there are no effective approaches to prevent DOX-related cardiac complications. Asiatic acid (AA) has been reported to provide cardioprotection against several cardiovascular diseases. However, whether AA could attenuate DOX-related cardiac injury remains unclear. DOX (15 mg/kg) was injected intraperitoneally into the mice to mimic acute cardiac injury, and the mice were given AA (10 mg/kg or 30 mg/kg) for 2 weeks for protection. The data in our study found that AA-treated mice exhibited attenuated cardiac injury and improved cardiac function in response to DOX injection. AA also suppressed myocardial oxidative damage and apoptosis without affecting cardiac inflammation in DOX-treated mice. AA also provided protection in DOX-challenged cardiomyocytes, improved cell viability, and suppressed intracellular reactive oxygen species (ROS) in vitro. Detection of signaling pathways showed that AA activated protein kinase B (AKT) signaling pathway in vivo and in vitro. Furthermore, we found that AA lost its protective effects in the heart with AKT inactivation. In conclusion, our results found that AA could attenuate DOX-induced myocardial oxidative stress and apoptosis via activation of the AKT signaling pathway.
Collapse
|
36
|
Pini T, Parks J, Russ J, Dzieciatkowska M, Hansen KC, Schoolcraft WB, Katz-Jaffe M. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet 2020; 37:777-787. [PMID: 32026202 PMCID: PMC7183029 DOI: 10.1007/s10815-020-01707-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In men, obesity may lead to poor semen parameters and reduced fertility. However, the causative links between obesity and male infertility are not totally clear, particularly on a molecular level. As such, we investigated how obesity modifies the human sperm proteome, to elucidate any important implications for fertility. METHODS Sperm protein lysates from 5 men per treatment, classified as a healthy weight (body mass index (BMI) ≤ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), were FASP digested, submitted to liquid chromatography tandem mass spectrometry, and compared by label-free quantification. Findings were confirmed for several proteins by qualitative immunofluorescence and a quantitative protein immunoassay. RESULTS A total of 2034 proteins were confidently identified, with 24 proteins being significantly (p < 0.05) less abundant (fold change < 0.05) in the spermatozoa of obese men and 3 being more abundant (fold change > 1.5) compared with healthy weight controls. Proteins with altered abundance were involved in a variety of biological processes, including oxidative stress (GSS, NDUFS2, JAGN1, USP14, ADH5), inflammation (SUGT1, LTA4H), translation (EIF3F, EIF4A2, CSNK1G1), DNA damage repair (UBEA4), and sperm function (NAPA, RNPEP, BANF2). CONCLUSION These results suggest that oxidative stress and inflammation are closely tied to reproductive dysfunction in obese men. These processes likely impact protein translation and folding during spermatogenesis, leading to poor sperm function and subfertility. The observation of these changes in obese men with no overt andrological diagnosis further suggests that traditional clinical semen assessments fail to detect important biochemical changes in spermatozoa which may compromise fertility.
Collapse
Affiliation(s)
- T Pini
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA.
| | - J Parks
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - J Russ
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Dzieciatkowska
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - K C Hansen
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - W B Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| |
Collapse
|
37
|
Lipid peroxidation is involved in calcium dependent upregulation of mitochondrial metabolism in skeletal muscle. Biochim Biophys Acta Gen Subj 2020; 1864:129487. [DOI: 10.1016/j.bbagen.2019.129487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
|
38
|
Santin Y, Fazal L, Sainte-Marie Y, Sicard P, Maggiorani D, Tortosa F, Yücel YY, Teyssedre L, Rouquette J, Marcellin M, Vindis C, Shih JC, Lairez O, Burlet-Schiltz O, Parini A, Lezoualc'h F, Mialet-Perez J. Mitochondrial 4-HNE derived from MAO-A promotes mitoCa 2+ overload in chronic postischemic cardiac remodeling. Cell Death Differ 2019; 27:1907-1923. [PMID: 31819159 DOI: 10.1038/s41418-019-0470-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/01/2023] Open
Abstract
Chronic remodeling postmyocardial infarction consists in various maladaptive changes including interstitial fibrosis, cardiomyocyte death and mitochondrial dysfunction that lead to heart failure (HF). Reactive aldehydes such as 4-hydroxynonenal (4-HNE) are critical mediators of mitochondrial dysfunction but the sources of mitochondrial 4-HNE in cardiac diseases together with its mechanisms of action remain poorly understood. Here, we evaluated whether the mitochondrial enzyme monoamine oxidase-A (MAO-A), which generates H2O2 as a by-product of catecholamine metabolism, is a source of deleterious 4-HNE in HF. We found that MAO-A activation increased mitochondrial ROS and promoted local 4-HNE production inside the mitochondria through cardiolipin peroxidation in primary cardiomyocytes. Deleterious effects of MAO-A/4-HNE on cardiac dysfunction were prevented by activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2), the main enzyme for 4-HNE metabolism. Mechanistically, MAO-A-derived 4-HNE bound to newly identified targets VDAC and MCU to promote ER-mitochondria contact sites and MCU higher-order complex formation. The resulting mitochondrial Ca2+ accumulation participated in mitochondrial respiratory dysfunction and loss of membrane potential, as shown with the protective effects of the MCU inhibitor, RU360. Most interestingly, these findings were recapitulated in a chronic model of ischemic remodeling where pharmacological or genetic inhibition of MAO-A protected the mice from 4-HNE accumulation, MCU oligomer formation and Ca2+ overload, thus mitigating ventricular dysfunction. To our knowledge, these are the first evidences linking MAO-A activation to mitoCa2+ mishandling through local 4-HNE production, contributing to energetic failure and postischemic remodeling.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Loubina Fazal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Yannis Sainte-Marie
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Pierre Sicard
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.,INSERM, CNRS, Université de Montpellier, PHYMEDEXP, Montpellier, France
| | - Damien Maggiorani
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Florence Tortosa
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Yasemin Yücel Yücel
- Department of Biochemistry, School of Pharmacy, Altinbas University, Istanbul, Turkey
| | | | | | - Marlene Marcellin
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Vindis
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jean C Shih
- University of Southern California, Los Angeles, CA, USA
| | - Olivier Lairez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| | - Frank Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
39
|
Tomin T, Schittmayer M, Honeder S, Heininger C, Birner-Gruenberger R. Irreversible oxidative post-translational modifications in heart disease. Expert Rev Proteomics 2019; 16:681-693. [PMID: 31361162 PMCID: PMC6816499 DOI: 10.1080/14789450.2019.1645602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers. Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart.
Collapse
Affiliation(s)
- Tamara Tomin
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Matthias Schittmayer
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Sophie Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
40
|
Yarana C, Thompson H, Chaiswing L, Butterfield DA, Weiss H, Bondada S, Alhakeem S, Sukati S, St Clair DK. Extracellular vesicle-mediated macrophage activation: An insight into the mechanism of thioredoxin-mediated immune activation. Redox Biol 2019; 26:101237. [PMID: 31276937 PMCID: PMC6612011 DOI: 10.1016/j.redox.2019.101237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) generated from redox active anticancer drugs are released into the extracellular environment. These EVs contain oxidized molecules and trigger inflammatory responses by macrophages. Using a mouse model of doxorubicin (DOX)-induced tissue injury, we previously found that the major sources of circulating EVs are from heart and liver, organs that are differentially affected by DOX. Here, we investigated the effects of EVs from cardiomyocytes and those from hepatocytes on macrophage activation. EVs from H9c2 rat cardiomyocytes (H9c2 EVs) and EVs from FL83b mouse hepatocytes (FL83 b EVs) have different levels of protein-bound 4-hydroxynonenal and thus different immunostimulatory effects on mouse RAW264.7 macrophages. H9c2 EVs but not FL83 b EVs induced both pro-inflammatory and anti-inflammatory macrophage activation, mediated by NFκB and Nrf-2 pathways, respectively. DOX enhanced the effects of H9c2 EVs but not FL83 b EVs. While EVs from DOX-treated H9c2 cells (H9c2 DOXEVs) suppressed mitochondrial respiration and increased glycolysis of macrophages, EVs from DOX-treated FL83b cells (FL83b DOXEVs) enhanced mitochondrial reserve capacity. Mechanistically, the different immunostimulatory functions of H9c2 EVs and FL83 b EVs are regulated, in part, by the redox status of the cytoplasmic thioredoxin 1 (Trx1) of macrophages. H9c2 DOXEVs lowered the level of reduced Trx1 in cytoplasm while FL83b DOXEVs did the opposite. Trx1 overexpression alleviated the effect of H9c2 DOXEVs on NFκB and Nrf-2 activation and prevented the upregulation of their target genes. Our findings identify EVs as a novel Trx1-mediated redox mediator of immune response, which greatly enhances our understanding of innate immune responses during cancer therapy.
Collapse
Affiliation(s)
- Chontida Yarana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, 73170, Thailand
| | - Hannah Thompson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA; Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Heidi Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Subbarao Bondada
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Sara Alhakeem
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Suriyan Sukati
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80161, Thailand
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
41
|
Bioanalytical and Mass Spectrometric Methods for Aldehyde Profiling in Biological Fluids. TOXICS 2019; 7:toxics7020032. [PMID: 31167424 PMCID: PMC6630274 DOI: 10.3390/toxics7020032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible modifications. These modifications, if not eliminated or repaired, can lead to alteration in cellular homeostasis, cell death and ultimately contribute to disease pathogenesis. This review provides an overview of the current knowledge of the methods and applications of aldehyde exposure measurements, with a particular focus on bioanalytical and mass spectrometric techniques, including recent advances in mass spectrometry (MS)-based profiling methods for identifying potential biomarkers of aldehyde exposure. We discuss the various derivatization reagents used to capture small polar aldehydes and methods to quantify these compounds in biological matrices. In addition, we present emerging mass spectrometry-based methods, which use high-resolution accurate mass (HR/AM) analysis for characterizing carbonyl compounds and their potential applications in molecular epidemiology studies. With the availability of diverse bioanalytical methods presented here including simple and rapid techniques allowing remote monitoring of aldehydes, real-time imaging of aldehydic load in cells, advances in MS instrumentation, high performance chromatographic separation, and improved bioinformatics tools, the data acquired enable increased sensitivity for identifying specific aldehydes and new biomarkers of aldehyde exposure. Finally, the combination of these techniques with exciting new methods for single cell analysis provides the potential for detection and profiling of aldehydes at a cellular level, opening up the opportunity to minutely dissect their roles and biological consequences in cellular metabolism and diseases pathogenesis.
Collapse
|
42
|
Ren Y, Sun Q, Yuan Z, Jiang Y. Combined inhibition of HDAC and DNMT1 induces p85α/MEK-mediated cell cycle arrest by dual target inhibitor 208 in U937 cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Zhang Y, Ahmad KA, Khan FU, Yan S, Ihsan AU, Ding Q. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem Biol Interact 2019; 305:54-65. [PMID: 30928397 DOI: 10.1016/j.cbi.2019.03.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
Abstract
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, the incidence of cardiotoxicity compromises its therapeutic index. Oxidative stress and apoptosis are believed to be involved in DOX-induced cardiotoxicity. Chitosan oligosaccharides (COS), the enzymatic hydrolysates of chitosan, have been reported to possess diverse biological activities including antioxidant and anti-apoptotic properties. The objective of the present study was to investigate the potential role of COS against DOX-induced cardiotoxicity, and the effects of COS on apoptosis and oxidative stress in rats and H9C2 cells. Furthermore, we also shed light on the involved pathways during the whole process. For this purpose, first, we demonstrated that COS exhibited a significant protective effect on cardiac tissue by not only inducing a decrease in body and heart growth but also ameliorated oxidative damage and ECG alterations in DOX-treated rats. Second, we found that COS reversed the decrease of cell viability induced by DOX, reduced the intracellular reactive oxygen species (ROS), increased the mitochondrial membrane potential (MMP) and Bcl-2/Bax ratio. COS treatment also results in reduced caspase-3 and caspase-9 expressions, and an increase in the phosphorylation of MAPKs (mitogen-activated protein kinases) in DOX-exposed H9C2 cells. Additionally, cellular homeostasis was re-established via stabilization of MAPK mediated nuclear factor erythroid 2-related factor 2/antioxidant-response element (Nrf2/ARE) signaling and transcription of downstream cytoprotective genes. In summary, these findings suggest that COS could be a potential candidate for the prevention and treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yongtian Zhang
- Experimental and Teaching Center of Medical Basis for Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Khalil Ali Ahmad
- Experimental and Teaching Center of Medical Basis for Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Farhan Ullah Khan
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Simin Yan
- Experimental and Teaching Center of Medical Basis for Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Awais Ullah Ihsan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Qilong Ding
- Experimental and Teaching Center of Medical Basis for Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
44
|
Orr SE, Barnes MC, Joshee L, Uchakina O, McKallip RJ, Bridges CC. Potential mechanisms of cellular injury following exposure to a physiologically relevant species of inorganic mercury. Toxicol Lett 2019; 304:13-20. [PMID: 30630035 DOI: 10.1016/j.toxlet.2019.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
Mercury is a toxic metal that is found ubiquitously in the environment. Humans are exposed to different forms of mercury via ingestion, inhalation, and/or dermal absorption. Following exposure, mercuric ions may gain access to target cells and subsequently lead to cellular intoxication. The mechanisms by which mercury accumulation leads to cellular injury and death are not understood fully. Therefore, purpose of this study was to identify the specific intracellular mechanisms that are altered by exposure to inorganic mercury (Hg2+). Normal rat kidney (NRK) cells were exposed to a physiologically relevant form of Hg2+, as a conjugate of cysteine (10 μM or 50 μM). Alterations in oxidative stress were estimated by measuring lipid peroxidation and mitochondrial oxidative stress. Alterations in actin and tubulin were measured using specific fluorescent dyes. Calcium levels were measured using Fluo-3 AM Calcium Indicator while autophagy was identified with Premo™ Autophagy Sensor LC3B-GFP. The current findings show that exposure to Hg2+ leads to enhanced oxidative stress, alterations in cytoskeletal structure, increases in intracellular calcium, and enhanced autophagy. We have established a more complete understanding of intoxication and cellular injury induced by a relevant form of Hg2+ in proximal tubule cells.
Collapse
Affiliation(s)
- Sarah E Orr
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Mary C Barnes
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Lucy Joshee
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Olga Uchakina
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Robert J McKallip
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| | - Christy C Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
45
|
El-Agamy DS, El-Harbi KM, Khoshhal S, Ahmed N, Elkablawy MA, Shaaban AA, Abo-Haded HM. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag Res 2018; 11:47-61. [PMID: 30588110 PMCID: PMC6304079 DOI: 10.2147/cmar.s186696] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background/purpose Pristimerin (Pris) is triterpenoid compound with many biological effects. Until now, nothing is known about its effect on doxorubicin (DOX)-induced cardiotoxicity. Hence, this study investigated the impact of Pris on DOX-induced cardiotoxic effects. Materials and methods Rats were treated with Pris 1 week before and 2 weeks contaminant with repeated DOX injection. Afterwards, electrocardiography (ECG), biochemical, histopathological, PCR, and Western blot assessments were performed. Results Pris effectively alleviated DOX-induced deleterious cardiac damage. It inhibited DOX-induced ECG abnormities as well as DOX-induced elevation of serum indices of cardiotoxicity. The histopathological cardiac lesions and fibrosis were remarkably improved in Pris-treated animals. Pris reduced hydroxyproline content and attenuated the mRNA and protein expression of the pro-fibrogenic genes. The antioxidant activity of Pris was prominent through the amelioration of oxidative stress parameters and enhancement of antioxidants. Furthermore, Pris enhanced the activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway as it increased the mRNA and protein expression of Nrf2 and Nrf2-dependent antioxidant genes (GCL, NQO1, HO-1). Additionally, the anti-inflammatory effect of Pris was obvious through the inhibition of mitogen activated protein kinase (MAPK)/nuclear factor kappa-B (NF-kB) signaling and subsequent inhibition of inflammatory mediators. Conclusion This study provides evidence of the cardioprotective activity of Pris which is related to the modulation of Nrf2 and MAPK/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Khaled M El-Harbi
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Saad Khoshhal
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia,
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
| | - Mohamed A Elkablawy
- Department of Pathology, Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Pharmacology, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Hany M Abo-Haded
- Cardiogenetic Team, Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia, .,Pediatric Cardiology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt,
| |
Collapse
|
46
|
Ferreira LL, Cunha-Oliveira T, Veloso CD, Costa CF, Wallace KB, Oliveira PJ. Single nanomolar doxorubicin exposure triggers compensatory mitochondrial responses in H9c2 cardiomyoblasts. Food Chem Toxicol 2018; 124:450-461. [PMID: 30557669 DOI: 10.1016/j.fct.2018.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Dose-dependent and cumulative cardiotoxicity associated with doxorubicin (DOX) is the main limitation of anticancer therapy. Pediatric cancer survivors are particularly vulnerable, and no effective prevention measures are available. The aim of the present study was to investigate the persistent effects of nanomolar DOX concentrations and determine whether a pretreatment would induce mitochondrial adaptations in H9c2 cardiomyoblasts. H9c2 cells were incubated with DOX (10 and 25 nM) for 24 h, followed by 9 days of recovery in drug-free medium. We found that the sub-therapeutic DOX treatment induced persistent hypertrophy and dose-dependent cell cycle arrest in G2/M. Glycolytic activity, indirectly based on extracellular acidification rate, and basal respiration were significantly decreased in DOX-treated cells compared to controls, although both groups showed similar maximal respiration. Additionally, nanomolar DOX pretreatment resulted in upregulation of mitochondrial DNA transcripts accompanied by a decrease in DNA methyltransferase 1 (DNMT1) and global methylation levels. Finally, the pretreatment with DOX ameliorated H9c2 cells resistance against a subsequent exposure to DOX. These results suggest that nanomolar DOX pretreatment induced a beneficial and possibly epigenetic-based mitochondrial adaptation, raising the possibility that an early sub-therapeutic DOX treatment can be used as a preconditioning and protective approach during anticancer therapies.
Collapse
Affiliation(s)
- Luciana L Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Caroline D Veloso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Cláudio F Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, 3060-197, Cantanhede, Portugal.
| |
Collapse
|
47
|
Altınkaynak Y, Kural B, Akcan BA, Bodur A, Özer S, Yuluğ E, Munğan S, Kaya C, Örem A. Protective effects of L-theanine against doxorubicin-induced nephrotoxicity in rats. Biomed Pharmacother 2018; 108:1524-1534. [DOI: 10.1016/j.biopha.2018.09.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
|
48
|
Chaiswing L, St. Clair WH, St. Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018; 29:1237-1272. [PMID: 29325444 PMCID: PMC6157438 DOI: 10.1089/ars.2017.7485] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cancer cells that are resistant to radiation and chemotherapy are a major problem limiting the success of cancer therapy. Aggressive cancer cells depend on elevated intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and metastasize. As a result, these aggressive cancers maintain high basal levels of ROS compared with normal cells. The prominence of the redox state in cancer cells led us to consider whether increasing the redox state to the condition of oxidative stress could be used as a successful adjuvant therapy for aggressive cancers. Recent Advances: Past attempts using antioxidant compounds to inhibit ROS levels in cancers as redox-based therapy have met with very limited success. However, recent clinical trials using pro-oxidant compounds reveal noteworthy results, which could have a significant impact on the development of strategies for redox-based therapies. CRITICAL ISSUES The major objective of this review is to discuss the role of the redox state in aggressive cancers and how to utilize the shift in redox state to improve cancer therapy. We also discuss the paradox of redox state parameters; that is, hydrogen peroxide (H2O2) as the driver molecule for cancer progression as well as a target for cancer treatment. FUTURE DIRECTIONS Based on the biological significance of the redox state, we postulate that this system could potentially be used to create a new avenue for targeted therapy, including the potential to incorporate personalized redox therapy for cancer treatment.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky-Lexington, Lexington, Kentucky
| | - Daret K. St. Clair
- Department of Toxicology and Cancer Biology, University of Kentucky-Lexington, Lexington, Kentucky
| |
Collapse
|
49
|
Santacatterina F, Torresano L, Núñez-Salgado A, Esparza-Molto PB, Olive M, Gallardo E, García-Arumi E, Blazquez A, González-Quintana A, Martín MA, Cuezva JM. Different mitochondrial genetic defects exhibit the same protein signature of metabolism in skeletal muscle of PEO and MELAS patients: A role for oxidative stress. Free Radic Biol Med 2018; 126:235-248. [PMID: 30138712 DOI: 10.1016/j.freeradbiomed.2018.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A major challenge in mitochondrial diseases (MDs) is the identification of biomarkers that could inform of the mechanisms involved in the phenotypic expression of genetic defects. Herein, we have investigated the protein signature of metabolism and of the antioxidant response in muscle biopsies of clinically and genetically diagnosed patients with Progressive External Ophthalmoplegia due to single large-scale (PEO-sD) or multiple (PEO-mD) deletions of mtDNA and Mitochondrial Encephalopathy Lactic Acidosis and Stroke-like episode (MELAS) syndrome, and healthy donors. A high-throughput immunoassay technique that quantitates the expression of relevant proteins of glycolysis, glycogenolysis, pentose phosphate pathway, oxidative phosphorylation, pyruvate and fatty acid oxidation, tricarboxylic acid cycle and the antioxidant response in two large independent and retrospectively collected cohorts of PEO-sD, PEO-mD and MELAS patients revealed that despite the heterogeneity of the genetic alterations, the three MDs showed the same metabolic signatures in both cohorts of patients, which were highly divergent from those of healthy individuals. Linear Discriminant Analysis and Support Vector Machine classifier provided a minimum of four biomarkers to discriminate healthy from pathological samples. Regardless of the induction of a large number of enzymes involved in ameliorating oxidative stress, the down-regulation of mitochondrial superoxide dismutase (SOD2) and catalase expression favored the accumulation of oxidative damage in patients' proteins. Down-regulation of SOD2 and catalase expression in MD patients is not due to relevant changes in the availability of their mRNAs, suggesting that oxidative stress regulates the expression of the two enzymes post-transcriptionally. We suggest that SOD2 and catalase could provide specific targets to improve the detoxification of reactive oxygen species that affects muscle proteins in these patients.
Collapse
Affiliation(s)
- Fulvio Santacatterina
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Laura Torresano
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Alfonso Núñez-Salgado
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain
| | - Pau B Esparza-Molto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain
| | - Montse Olive
- Servicio de Anatomía Patológica, Unidad Patología Neuromuscular, IDIBELL-Hospital Universitario de Bellvitge, Spain
| | - Eduard Gallardo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elena García-Arumi
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Laboratorio de Patología Mitocondrial y Neuromuscular, Área de Genética Clínica y Molecular, Hospital Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Blazquez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Adrián González-Quintana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Miguel A Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain; Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain; Instituto de Investigación Hospital, 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
50
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|