1
|
Haque S, Mathkor DM, Bhat SA, Musayev A, Khituova L, Ramniwas S, Phillips E, Swamy N, Kumar S, Yerer MB, Tuli HS, Yadav V. A Comprehensive Review Highlighting the Prospects of Phytonutrient Berberine as an Anticancer Agent. J Biochem Mol Toxicol 2025; 39:e70073. [PMID: 39717894 DOI: 10.1002/jbt.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer. Notably, berberine enhances the effectiveness of conventional chemotherapeutic drugs, mitigating associated drug resistance. Mechanistically, it has been shown to exert its efficacy by targeting molecules like nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphoinositide 3-kinase (PI3K)/Akt, thereby inhibiting survival pathways and promoting apoptosis of cancer cells. Moreover, berberine influences the expression of tumor suppressor genes, curtails cancer cell migration and invasion, and modulates the tumour microenvironment. Despite promising preclinical evidence, further research is essential to comprehensively elucidate its mechanisms of action and evaluate its safety and efficacy in clinical settings. In the present review, we have highlighted the pharmacokinetics, biosynthesis, and recent research work done pertaining to berberine's strong anticancer activity. We have also emphasised on the research being done on nanoformulations of berberine, which aim to improve its stability and bioavailability.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Bhat
- Department of Biochemistry, International Medical School, University of International Business (UIB), Almaty, Kazakhstan
| | - Abdugani Musayev
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Lidiya Khituova
- Department of Pediatrics with a Course of Children's Infectious Diseases, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Enosh Phillips
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Nitin Swamy
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Suneel Kumar
- Department of Botany, Government Girls College, Khargone, Madhya Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
2
|
Saxena S, Anand SK, Sharma A, Kakkar P. Involvement of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitochondrial turnover in according protection to hyperglycemic NRK-52E cells by Berberine. Toxicol In Vitro 2024; 100:105916. [PMID: 39127087 DOI: 10.1016/j.tiv.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Aberrant accumulation of dysfunctional mitochondria in renal cells during hyperglycemia signifies perturbed autophagy and mitochondrial turnover. This study aims to focus on the underlying mechanism involved in autophagy and mitophagy inducing efficacy of Berberine (isoquinoline alkaloid) in hyperglycemic NRK-52E cells. Berberine mediated protection to hyperglycemic cells prevented alteration in mitochondrial structure and function. Treatment with SRT-1720 (Sirt1 activator) enhanced autophagy, decreased apoptosis, upregulated expression of downstream moieties (FoxO3a and Bnip3) and ameliorated mitochondria related anomalies while nicotinamide (Sirt1 inhibitor) treatment exhibited reversal of the same. GFP reporter assay ascertained enhanced transcriptional activity of FoxO in Berberine-treated hyperglycemic cells, which was found to be correlated to increased expression of downstream protein Bnip3. Knocking down FoxO3a disrupted autophagy and stimulated apoptosis. N-acetyl-L-cysteine pre-treatment confirmed that generation of ROS intervened high glucose induced toxicity in NRK-52E cells. Berberine co-treatment resulted in differential expressions of key proteins involved in autophagy and mitophagy like LC3B, ATGs, Beclin1, Sirt1, Bnip3, FoxO3a and Parkin. Further, enhanced mitophagy in Berberine-treated cells was confirmed by transmission electron microscopy. Thus, our findings give evidence that the protection accorded by Berberine against hyperglycemia in renal proximal tubular cells (NRK-52E) involves instigation of Sirt1-FoxO3a-Bnip3 axis and autophagy mediated mitophagy induction.
Collapse
Affiliation(s)
- Sugandh Saxena
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sumit Kumar Anand
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Tan J, Lin G, Zhang R, Wen Y, Luo C, Wang R, Wang F, Peng S, Zhang J. Bufotalin Induces Oxidative Stress-Mediated Apoptosis by Blocking the ITGB4/FAK/ERK Pathway in Glioblastoma. Antioxidants (Basel) 2024; 13:1179. [PMID: 39456433 PMCID: PMC11505062 DOI: 10.3390/antiox13101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Bufotalin (BT), a major active constituent of Chansu, has been found to possess multiple pharmacological activities. Although previous studies have shown that BT could inhibit the growth of glioblastoma (GBM), the safety of BT in vivo and the potential mechanism are still unclear. We conducted a systematic assessment to investigate the impact of BT on GBM cell viability, migration, invasion, and colony formation. Furthermore, in vivo results were obtained to evaluate the effect of BT on tumor growth. The preliminary findings of our study demonstrate the effective inhibition of GBM cell growth and subcutaneous tumor development in mice by BT, with tolerable levels of tolerance observed. Mechanistically, BT treatment induced mitochondrial dysfunction, bursts of reactive oxygen species (ROS), and subsequent cell apoptosis. More importantly, proteomic-based differentially expressed proteins analysis revealed a significant downregulation of integrin β4 (ITGB4) following BT treatment. Furthermore, our evidence suggested that the ITGB4/focal adhesion kinase (FAK)/extracellular signal-related kinase (ERK) pathway involved BT-induced apoptosis. Overall, our study demonstrates the anti-GBM effects of BT and elucidates the underlying mechanism, highlighting BT as a potential therapeutic option for GBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feiyun Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Shoujiao Peng
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.T.); (G.L.); (R.Z.); (Y.W.); (C.L.); (R.W.)
| |
Collapse
|
4
|
Roohi TF, Krishna KL, Shakeel F. Synergistic modulation of endoplasmic reticulum stress pathway, oxidative DNA damage and apoptosis by β-amyrin and metformin in mitigating hyperglycemia-induced renal damage using adult zebrafish model. BMC Pharmacol Toxicol 2024; 25:66. [PMID: 39334288 PMCID: PMC11430224 DOI: 10.1186/s40360-024-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic nephropathy (DN) can be prevented with early therapeutic intervention in diabetic patients. Recent investigations suggest that β-amyrin, a pentacyclic triterpenoid, could offer significant benefits with its potential antihyperglycemic and nephroprotective effects. We investigated the protective effects of β-amyrin alone and combined it with metformin, the cornerstone therapy for diabetes, using a hyperglycemic adult Zebrafish (ZF) model. The ZF were subjected to hyperglycemia by immersing them in 111 mM glucose solutions. Treatment efficacy was assessed by measuring serum glucose and insulin levels and antioxidant, ER stress, apoptosis, and proinflammatory markers. ZF kidneys were also studied for immunohistochemistry and histopathology. Results revealed that the combined treatment of β-amyrin and metformin resulted in a significant decrease (p ≤ 0.05) in blood glucose levels to 104.54 ± 1.63 mg/dL, in comparison to 388.75 ± 4.32 mg/dL in the untreated diseased control group. The reduction in hyperglycemia was more pronounced than treatment with either compound alone. Moreover, treatment with the combination restored renal function in diseased ZF, leading to significantly lower (p ≤ 0.05) serum urea (SU: 19.57 ± 1.61 mg/dL) and serum creatinine (SC: 0.56 ± 0.02 mg/dL) values compared to treatment with β-amyrin (SU:27.02 ± 0.96 mg/dL; SC: 0.7 ± 0.01 mg/dL) or metformin (SU: 24.53 ± 1.29 mg/dL; SC: 0.6 ± 0.02 mg/dL) alone. The treatment also reduced oxidative stress markers, apoptosis and ER stress markers, and proinflammatory cytokines. Histopathological analysis showed improved renal architecture with significantly lower (p ≤ 0.05) renal tubular injury scores with the combination than with individual treatment. This study provides novel insights into the combined therapeutic effects of β-amyrin and metformin in mitigating hyperglycemia-induced renal damage through key molecular pathways, highlighting a potentially effective therapeutic strategy for diabetic nephropathy. The findings hold promising translational relevance for developing combination therapies aimed at improving clinical outcomes in diabetic nephropathy patients.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, 570015, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, 570015, India.
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Xu N, Wu J, Wang W, Sun S, Sun M, Bian Y, Zhang H, Liu S, Yu G. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:2386-2402. [PMID: 38236508 DOI: 10.1007/s13346-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.
Collapse
Affiliation(s)
- Na Xu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China.
| | - Weihao Wang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shujie Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Mengmeng Sun
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Yandong Bian
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Huien Zhang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shuzhen Liu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Guohua Yu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China.
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China.
| |
Collapse
|
6
|
Liao W, Zhang R, Chen G, Zhu X, Wu W, Chen Z, Jiang C, Lin Z, Ma L, Yu H. Berberine synergises with ferroptosis inducer sensitizing NSCLC to ferroptosis in p53-dependent SLC7A11-GPX4 pathway. Biomed Pharmacother 2024; 176:116832. [PMID: 38850659 DOI: 10.1016/j.biopha.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Berberine (BBR) is a compound derived from Chinese herbal medicine, known for its anticancer properties through multiple signaling pathways. However, whether BBR can inhibit tumor growth by participating in ferroptosis remains unconfirmed. In this study, we demonstrated that berberine synergistically inhibited NSCLC in combination with multiple ferroptosis inducers, and this combination synergistically down-regulated the mRNA and protein expression of SLC7A11, GPX4, and NRF2, resulting in ferroptosis accompanied by significant depletion of GSH, and aberrant accumulation of reactive oxygen species and malondialdehyde. In a lung cancer allograft model, the combination treatment exhibited enhanced anticancer effects compared to using either drug alone. Notably, p53 is critical in determining the ferroptosis sensitivity. We found that the combination treatment did not elicit a synergistic anticancer effect in cells with a p53 mutation or with exogenous expression of mutant p53. These findings provide insight into the mechanism by which combination induces ferroptosis and the regulatory role of p53 in this process. It may guide the development of new strategies for treating NSCLC, offering great medical potential for personal diagnosis and treatment.
Collapse
Affiliation(s)
- Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Chenyu Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Zicong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
7
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
8
|
Zhang J, Bao Z, Guo J, Su X, Zou Y, Guo H. Comparative Transcriptome Analysis of the Hepatopancreas from Macrobrachium rosenbergii Exposed to the Heavy Metal Copper. Animals (Basel) 2024; 14:1117. [PMID: 38612356 PMCID: PMC11011146 DOI: 10.3390/ani14071117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The contamination of aquatic ecosystems by the heavy metal copper (Cu) is an important environmental issue and poses significant risks to the physiological functions of aquatic organisms. Macrobrachium rosenbergii is one of the most important freshwater-cultured prawns in the world. The hepatopancreas of crustaceans is a key organ for immune defense, heavy metal accumulation, and detoxification, playing a pivotal role in toxicological research. However, research on the molecular response of the hepatopancreas in M. rosenbergii to Cu exposure is still lacking. In this study, the transcriptomic response in the hepatopancreas of M. rosenbergii was studied after Cu exposure for 3 and 48 h. Compared with the control group, 11,164 (7288 up-regulated and 3876 down-regulated genes) and 10,937 (6630 up-regulated and 4307 down-regulated genes) differentially expressed genes (DEGs) were identified after 3 and 48 h exposure, respectively. Most of these DEGs were up-regulated, implying that gene expressions were largely induced by Cu. Functional enrichment analysis of these DEGs revealed that immunity, copper homeostasis, detoxification, DNA damage repair, and apoptosis were differentially regulated by Cu. Seven genes involved in immunity, detoxification, and metabolism were selected for validation by qRT-PCR, and the results confirmed the reliability of RNA-Seq. All these findings suggest that M. rosenbergii attempts to resist the toxicity of Cu by up-regulating the expression of genes related to immunity, metabolism, and detoxification. However, with the excessive accumulation of reactive oxygen species (ROS), the antioxidant enzyme system was destroyed. As a result, DNA damage repair and the cellular stress response were inhibited, thereby exacerbating cell damage. In order to maintain the normal function of the hepatopancreas, M. rosenbergii removes damaged cells by activating the apoptosis mechanism. Our study not only facilitates an understanding of the molecular response mechanisms of M. rosenbergii underlying Cu toxicity effects but also helps us to identify potential biomarkers associated with the stress response in other crustaceans.
Collapse
Affiliation(s)
- Jiayuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (J.Z.); (Z.B.); (J.G.); (X.S.); (Y.Z.)
| | - Zhiming Bao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (J.Z.); (Z.B.); (J.G.); (X.S.); (Y.Z.)
| | - Jieyu Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (J.Z.); (Z.B.); (J.G.); (X.S.); (Y.Z.)
| | - Xianbin Su
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (J.Z.); (Z.B.); (J.G.); (X.S.); (Y.Z.)
| | - Yongfeng Zou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (J.Z.); (Z.B.); (J.G.); (X.S.); (Y.Z.)
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; (J.Z.); (Z.B.); (J.G.); (X.S.); (Y.Z.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
9
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Wang H, Liu J, Zhang Z, Peng J, Wang Z, Yang L, Wang X, Hu S, Hong L. β-Sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic Biol Med 2024; 214:137-157. [PMID: 38364944 DOI: 10.1016/j.freeradbiomed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
The exploration of drugs derived from natural sources holds significant promise in addressing current limitations in ovarian cancer (OC) treatments. While previous studies have highlighted the remarkable anti-cancer properties of the natural compound β-sitosterol (SIT) across various tumors, its specific role in OC treatment remains unexplored. This study aims to investigate the anti-tumor activity of SIT in OC using in vitro and in vivo models, delineate potential mechanisms, and establish a preclinical theoretical foundation for future clinical trials, thus fostering further research. Utilizing network pharmacology, we pinpoint SIT as a promising candidate for OC treatment and predict its potential targets and pathways. Through a series of in vitro and in vivo experiments, we unveil a novel mechanism through which SIT mitigates the malignant biological behaviors of OC cells by modulating redox status. Specifically, SIT selectively targets argininosuccinate synthetase 1 (ASS1), a protein markedly overexpressed in OC tissues and cells. Inhibiting ASS1, SIT enhances the interaction between Nrf2 and Keap1, instigating the ubiquitin-dependent degradation of Nrf2, subsequently diminishing the transcriptional activation of downstream antioxidant genes HO-1 and NQO1. The interruption of the antioxidant program by SIT results in the substantial accumulation of reactive oxygen species (ROS) in OC cells. This, in turn, upregulates PTEN, exerting negative regulation on the phosphorylation activation of AKT. The suppression of AKT signaling disrupted downstream pathways associated with cell cycle, cell survival, apoptosis, migration, and invasion, ultimately culminating in the death of OC cells. Our research uncovers new targets and mechanisms of SIT against OC, contributing to the existing knowledge on the anti-tumor effects of natural products in the context of OC. Additionally, this research unveils a novel role of ASS1 in regulating the Nrf2-mediated antioxidant program and governing redox homeostasis in OC, providing a deeper understanding of this complex disease.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Zhi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Lian Yang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Xinqi Wang
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Siyuan Hu
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| | - Li Hong
- Department of Obstetrics and Gynecology, RenMin Hospital of Wuhan University, Jiefang Road NO.238, Wuhan, 430060, PR China.
| |
Collapse
|
11
|
Singh N, Anand SK, Sharma A, Singh S, Kakkar P, Srivastava V. Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells. Int J Biol Macromol 2024; 257:128717. [PMID: 38081485 DOI: 10.1016/j.ijbiomac.2023.128717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Biopolymer-based nanoscale drug delivery systems have become a promising approach to overcome the limitations associated with conventional chemotherapeutics used for cancer treatment. Herein, we reported to develop a hydrophilic nanogel (NG) composed of Chitosan (Chi) and sodium alginate (Alg) using the ion gelation method for delivering Berberine hydrochloride (BBR), an alkaloid obtained from Berberis aristata roots. The use of different nanocarriers for BBR delivery has been reported previously, but the bioavailability of these carriers was limited due to phagocytic uptake and poor systemic delivery. The developed NG showed enhanced stability and efficient entrapment of BBR ∼92 %, resulting in a significant increase in bioavailability. The pH-dependent release behavior demonstrated sustained and effective release of ∼86 %, ∼74 % and, ∼53 % BBR at pH 5.5, 6.6, and 7.4 respectively after 72h, indicating its potential as a drug carrier. Additionally, the cellular uptake of BBR was significantly higher ∼19 % in the BBR-NG (25 μM) than in bulk BBR (100 μM), leading to enhanced ROS generation, mitochondrial depolarisation, and inhibition of cell proliferation and colony formation in HepG2 cells. In summary, the results suggest that the Chi/Alg biopolymer-based nano-formulation could be an effective approach for delivering BBR and enhancing its cellular uptake, efficacy, and cytotoxicity.
Collapse
Affiliation(s)
- Neha Singh
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sumit Kumar Anand
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Department of Pathology and Translational Pathobiology, LSU Health, Shreveport, LA-71103, USA
| | - Ankita Sharma
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Sukhveer Singh
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Poonam Kakkar
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Vikas Srivastava
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
12
|
Ma S, Zheng Y, Ma J, Zhang X, Qu D, Song N, Sang C, Hui L. Lappaconitine sulfate inhibits proliferation and induces mitochondrial-mediated apoptosis via regulating PI3K/AKT/GSK3β signaling pathway in HeLa cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3695-3705. [PMID: 37306713 DOI: 10.1007/s00210-023-02564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Lappaconitine (LA), a diterpenoid alkaloid extracted from the root of Aconitum sinomontanum Nakai, exhibits broad pharmacological effects, including anti-tumor activity. The inhibitory effect of lappaconitine hydrochloride (LH) on HepG2 and HCT-116 cells and the toxicity of lappaconitine sulfate (LS) on HT-29, A549, and HepG2 cells have been described. But the mechanisms of LA against human cervical cancer HeLa cells still need to be clarified. This study was designed to investigate the effects and molecular mechanisms of lappaconitine sulfate (LS) on the growth inhibition and apoptosis in HeLa cells. The cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2´-deoxyuridine (EdU) assay, respectively. The cell cycle distribution and apoptosis were detected by flow cytometry analysis and 4', 6-diamidino-2-phenylindole (DAPI) staining. The mitochondrial membrane potential (MMP) was determined through the 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbocyanine iodide (JC-1) staining. The cell cycle arrest-, apoptosis-, and the phosphatidylinositol-3-kinase/protein kinase B/glycogen synthase kinase 3β (PI3K/AKT/GSK3β) pathway-related proteins were estimated by western blot analysis. LS markedly reduced the viability and suppressed the proliferation of HeLa cells. LS induced G0/G1 cell cycle arrest through the inhibition of Cyclin D1, p-Rb, and induction of p21 and p53. Furthermore, LS triggered apoptosis through the activation of mitochondrial-mediated pathway based on decrease of Bcl-2/Bax ratio and MMP and activation of caspase-9/7/3. Additionally, LS led to constitutive downregulation of the PI3K/AKT/GSK3β signaling pathway. Collectively, LS inhibited cell proliferation and induced apoptosis through mitochondrial-mediated pathway by suppression of the PI3K/AKT/GSK3β signaling pathway in HeLa cells.
Collapse
Affiliation(s)
- Shaocheng Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yidan Zheng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Xuemei Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Danni Qu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Na Song
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Chunyan Sang
- Key Laboratory of Stem Cells and Gene Drug of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Ling Hui
- Key Laboratory of Stem Cells and Gene Drug of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China.
| |
Collapse
|
13
|
Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, Jiang Y, Zhang YH. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front Endocrinol (Lausanne) 2023; 14:1172481. [PMID: 37600717 PMCID: PMC10436748 DOI: 10.3389/fendo.2023.1172481] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Normal levels of reactive oxygen species (ROS) play an important role in regulating follicular growth, angiogenesis and sex hormone synthesis in ovarian tissue. When the balance between ROS and antioxidants is disrupted, however, it can cause serious consequences of oxidative stress (OS), and the quantity and quality of oocytes will decline. Therefore, this review discusses the interrelationship between OS and premature ovarian insufficiency (POI), the potential mechanisms and the methods by which antioxidants can improve POI through controlling the level of OS. We found that OS can mediate changes in genetic materials, signal pathways, transcription factors and ovarian microenvironment, resulting in abnormal apoptosis of ovarian granulosa cells (GCs) and abnormal meiosis as well as decreased mitochondrial Deoxyribonucleic Acid(mtDNA) and other changes, thus accelerating the process of ovarian aging. However, antioxidants, mesenchymal stem cells (MSCs), biological enzymes and other antioxidants can delay the disease process of POI by reducing the ROS level in vivo.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Su-Na Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Dodangeh F, Sadeghi Z, Maleki P, Raheb J. Long non-coding RNA SOX2-OT enhances cancer biological traits via sponging to tumor suppressor miR-122-3p and miR-194-5p in non-small cell lung carcinoma. Sci Rep 2023; 13:12371. [PMID: 37524903 PMCID: PMC10390639 DOI: 10.1038/s41598-023-39000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
The oncogenic role of long non-coding RNA SOX2 overlapping transcript (SOX2-OT) has been demonstrated as a miRNA decay system that sponges tumor suppressor miRNA, including miR-122-3p in glioblastoma and miR-194-5p in glioblastoma, gastric, and colorectal cancers. However, the molecular function of SOX2-OT remains unknown in most cancers, including lung cancer. In the current study, we aimed to evaluate the downstream regulatory function of SOX2-OT in A549 and Calu-3 lung cancer cell lines. We knocked down SOX2-OT expression using an RNA interference system, which significantly decreased expression in A549 and Calu-3 cells. The expression of down-regulating miRNAs (miR-122-3p and miR-194-5p) was evaluated, revealing increased expression of miR-122-3p and miR-194-5p. Additionally, the expression of miRNAs downstream mRNA, including FOXO1 (Forkhead Box O1) and FOXA1 (Forkhead Box O1), changed. Recently, critical roles of FOXO1 and FOXA1 proteins in pathways involved in proliferation, metastasis and apoptosis have been demonstrated. Downstream changes in cellular traits were assessed using MTT, flow cytometry, metastasis and apoptosis assays. These assessments confirmed that the biological behaviors of lung cancer cells were influenced after SOX2-OT knockdown. In summary, the present study highlights the oncogenic role of SOX2-OT through the regulation of miR-122-3p/FOXO1 and miR-194-5p/FOXA1 pathways.
Collapse
Affiliation(s)
- Fatemeh Dodangeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Sadeghi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parichehr Maleki
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Jamshid Raheb
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
15
|
Wang J, Zhang X, Ni Z, Elam E, Thakur K, Li K, Wang C, Zhang J, Wei Z. The anti-cancerous mechanism of licochalcone A on human hepatoma cell HepG2 based on the miRNA omics. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des 2023; 102:177-200. [PMID: 36905314 DOI: 10.1111/cbdd.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Berberine (BBR) is a potential plant metabolite and has remarkable anticancer properties. Many kinds of research are being focused on the cytotoxic activity of berberine in in vitro and in vivo studies. A variety of molecular targets which lead to the anticancer effect of berberine ranges from p-53 activation, Cyclin B expression for arresting cell cycles; protein kinase B (AKT), MAP kinase and IKB kinase for antiproliferative activity; effect on beclin-1 involved in autophagy; reduced expression of MMP-9 and MMP-2 for the inhibition of invasion and metastasis etc. Berberine also interferes with transcription factor-1 (AP-1) activity responsible for the expression of oncogenes and neoplastic transformation of the cell. It also leads to the inhibition of various enzymes which are directly or indirectly involved in carcinogenesis like N acetyl transferase, Cyclo-oxygenase-2, Telomerase and Topoisomerase. In addition to these actions, Berberine plays a role in, the regulation of reactive oxygen species and inflammatory cytokines in preventing cancer formation. Berberine anticancer properties are demonstrated due to the interaction of berberine with micro-RNA. The summarized information presented in this review article may help and lead the researchers, scientists/industry persons to use berberine as a promising candidate against cancer.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281 46, Uttar Pradesh, India
| |
Collapse
|
17
|
Lei Z, Ali I, Yang M, Yang C, Li Y, Li L. Non-Esterified Fatty Acid-Induced Apoptosis in Bovine Granulosa Cells via ROS-Activated PI3K/AKT/FoxO1 Pathway. Antioxidants (Basel) 2023; 12:antiox12020434. [PMID: 36829992 PMCID: PMC9952034 DOI: 10.3390/antiox12020434] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Non-esterified fatty acid (NEFA), one of negative energy balance (NEB)'s most well-known products, has a significant impact on cows' reproductive potential. Our study used an in vitro model to investigate the deleterious effects of NEFA on bovine granulosa cells (BGCs) and its underlying molecular mechanism. The results showed that high levels of NEFA led to the accumulation of reactive oxygen species (ROS), increased the expression of apoptosis-related factors such as Bcl2-Associated X/B-cell lymphoma-2 (Bax/Bcl-2) and Caspase-3, and down-regulated steroid synthesis-related genes such as sterol regulatory element binding protein 1 (SREBP-1), cytochrome P450c17 (CYP17), and cytochrome P450 aromatase (CYP19), to promote oxidative stress, cell apoptosis, and steroid hormone synthesis disorders in BGCs. In addition, NEFA significantly inhibited phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT) activity and increased forkhead box O1 (FoxO1) expression. To further explore the role of the PI3K/AKT/FoxO1 signaling pathway in NEFA, we found that pretreatment with AKT-specific activator SC79 (5 mg/mL) for 2 h or transfection with FoxO1 knockdown siRNA in BGCs could alleviate the negative effects of NEFA treatment by decreasing Bax/Bcl-2 ratio and Caspase-3 expression, and upregulating SREBP-1, CYP17, and CYP19 expression. Meanwhile, SC79 significantly inhibited NEFA-induced dephosphorylation and massive nuclear translocation of FoxO1. Taken together, the NEFA induced oxidative stress, apoptosis, and steroid hormone synthesis disorders in BGCs by inhibiting the PI3K/AKT pathway that regulates FoxO1 phosphorylation and nuclear translocation. Our findings help to clarify the molecular mechanisms underlying the negative effects of high levels of NEFA on BGCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Lian Li
- Correspondence: ; Tel.: +86-25-84395314
| |
Collapse
|
18
|
Castora FJ, Kerns KA, Pflanzer HK, Hitefield NL, Gershon B, Shugoll J, Shelton M, Coleman RA. Expression Changes in Mitochondrial Genes Affecting Mitochondrial Morphology, Transmembrane Potential, Fragmentation, Amyloidosis, and Neuronal Cell Death Found in Brains of Alzheimer’s Disease Patients. J Alzheimers Dis 2022; 90:119-137. [DOI: 10.3233/jad-220161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurological disease that has both a genetic and non-genetic origin. Mitochondrial dysfunction is a critical component in the pathogenesis of AD as deficits in oxidative capacity and energy production have been reported. Objective: Nuclear-encoded mitochondrial genes were studied in order to understand the effects of mitochondrial expression changes on mitochondrial function in AD brains. These expression data were to be incorporated into a testable mathematical model for AD used to further assess the genes of interest as therapeutic targets for AD. Methods: RT2-PCR arrays were used to assess expression of 84 genes involved in mitochondrial biogenesis in AD brains. A subset of mitochondrial genes of interest was identified after extensive Ingenuity Pathway Analysis (IPA) (Qiagen). Further filtering of this subset of genes of interest was achieved by individual qPCR analyses. Expression values from this group of genes were included in a mathematical model being developed to identify potential therapeutic targets. Results: Nine genes involved in trafficking proteins to mitochondria, morphology of mitochondria, maintenance of mitochondrial transmembrane potential, fragmentation of mitochondria and mitochondrial dysfunction, amyloidosis, and neuronal cell death were identified as significant to the changes seen. These genes include TP53, SOD2, CDKN2A, MFN2, DNM1L, OPA1, FIS1, BNIP3, and GAPDH. Conclusion: Altered mitochondrial gene expression indicates that a subset of nuclear-encoded mitochondrial genes compromise multiple aspects of mitochondrial function in AD brains. A new mathematical modeling system may provide further insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Frank J. Castora
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kimberly A. Kerns
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Haley K. Pflanzer
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Naomi L. Hitefield
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Blake Gershon
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jason Shugoll
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Morgan Shelton
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| | - Randolph A. Coleman
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
19
|
Effects of Berberine on Liver Cancer. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Liver cancer, otherwise known as hepatocellular carcinoma, is a chronic disease condition with an excessive deposition and growth of malignant cells in the body. The high incidence and prevalence rates of liver cancer continue to be problems, as well as its poor prognosis and therapeutic limitations involving severe drug adverse reactions linked to the use of synthetic chemotherapeutic compounds. Continuous experimental studies, as well as utilization of pure herbal-based compounds, are essential towards finding more potent cures for liver cancer. Natural bioactive compounds, particularly alkaloids (eg, berberine), have been shown to be highly beneficial in the treatment of various diseases. Berberine (BBR), an isoquinoline alkaloid, is obtained from stem, bark, roots, rhizomes, and leaves of several medicinal plants, including Berberis species. It is commonly synthesized from the benzyltetrahydroisoquinoline system with the incorporation of an additional carbon atom as a bridge. The multiple attributes of BBR involving effective inhibitory and cytotoxic actions against the proliferation of cancer cells have been demonstrated. The use of BBR in experimental studies (in vivo and in vitro) for over a decade for liver cancer treatment has proven to be highly effective, safe, and potent. Until now, the poor solubility of BBR remains one of the contributing factors leading to its minimal clinical bioavailability. Therefore, BBR could serve as a prospective drug candidate in the future towards drug formulation for liver cancer treatment. The relevant information regarding this review was obtained electronically through the use of databases such as PubMed, Google Scholar, Springer, Hindawi, Embase, Web of Science, and China National Knowledge Infrastructure. All the aforementioned databases were searched from 1981 to 2020. This literature represents an update of previous review papers discussing the various positive pharmacological and mechanistic effects (oxidative stress regulation, inflammation reduction, apoptosis activation, overcoming drug resistance, and metastasis inhibition) of BBR for liver cancer treatment, which would be of great significance to drug development and clinical research.
Collapse
|
20
|
Liu J, Hu W, Ma X, Liang X, Lin L, Huang J, Liu J. 3,4,5-O-tricaffeoylquinic acid alleviates ionizing radiation-induced injury in vitro and in vivo through regulating ROS/JNK/p38 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:349-361. [PMID: 34741589 DOI: 10.1002/tox.23403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Ionizing radiation (IR) brings many health problems to humans, causing damage to the digestive system, hematopoietic system, and immune system. Natural compounds derived from plants have attracted widespread attention due to their low toxicity. Here, we found that 3,4,5-O-tricaffeoylquinic acid (tCQA) extracted from natural plant Azolla imbricata could significantly alleviate the systemic damage in mice caused by IR. In order to further explore the molecular mechanism of the radioprotective effect of tCQA, in vitro experiments confirmed that tCQA could attenuate the cytotoxic effect of IR on the colonic epithelial cell line NCM460 and alleviate the IR-induced mitochondrial dysfunction characterized by the decrease of mitochondrial transmembrane potential, ROS production, and caspase-dependent apoptosis. In addition, the generation of ROS induced by H2 O2 could also be reversed by tCQA. Then, Western blot demonstrated that tCQA could reverse the MAPK signaling pathway activated by IR. However, the inhibitory effect of tCQA on JNK and P38 levels activated by the JNK agonist anisomycin is not obvious; meanwhile, tCQA could inhibit the activation of JNK/P38 induced by H2 O2 , which suggests that tCQA might inhibit the JNK/P38 signaling pathway by reducing ROS. In short, tCQA inhibits the generation of ROS caused by IR, and then regulates the activity of caspase in the mitochondrial pathway by inhibiting the JNK/P38 signaling pathway, thereby alleviating the apoptosis of NCM460. This research provides an experimental basis for the development of new types of radioprotective agents for medical diagnosis and radiotherapy.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Long Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianming Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Fang X, Wu H, Wei J, Miao R, Zhang Y, Tian J. Research progress on the pharmacological effects of berberine targeting mitochondria. Front Endocrinol (Lausanne) 2022; 13:982145. [PMID: 36034426 PMCID: PMC9410360 DOI: 10.3389/fendo.2022.982145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Berberine is a natural active ingredient extracted from the rhizome of Rhizoma Coptidis, which interacts with multiple intracellular targets and exhibits a wide range of pharmacological activities. Previous studies have preliminarily confirmed that the regulation of mitochondrial activity is related to various pharmacological actions of berberine, such as regulating blood sugar and lipid and inhibiting tumor progression. However, the mechanism of berberine's regulation of mitochondrial activity remains to be further studied. This paper summarizes the molecular mechanism of the mitochondrial quality control system and briefly reviews the targets of berberine in regulating mitochondrial activity. It is proposed that berberine mainly regulates glycolipid metabolism by regulating mitochondrial respiratory chain function, promotes tumor cell apoptosis by regulating mitochondrial apoptosis pathway, and protects cardiac function by promoting mitophagy to alleviate mitochondrial dysfunction. It reveals the mechanism of berberine's pharmacological effects from the perspective of mitochondria and provides a scientific basis for the application of berberine in the clinical treatment of diseases.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian,
| |
Collapse
|
22
|
Yang L, Cao J, Wei J, Deng J, Hou X, Hao E, Du Z, Zou L, Li P. Antiproliferative activity of berberine in HepG2 cells via inducing apoptosis and arresting cell cycle. Food Funct 2021; 12:12115-12126. [PMID: 34787617 DOI: 10.1039/d1fo02783b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The therapeutic targets of berberine for hepatocellular carcinoma (HCC) and its detailed mechanisms remain unexplored. Here, an integration of network pharmacology, proteomic, bioinformatic and in vitro biochemical approach was proposed to reveal therapeutic targets and pathways underlying the antiproliferative activity of berberine against HepG2 cells. Results indicated that berberine caused the cytotoxicity and inhibited the growth of HepG2 cells with IC50 values ranging from 92 μM to 118 μM. Network pharmacology analysis revealed that targeting apoptosis and cell cycle pathways by berberine contributed to its antitumor efficacy against HCC. Proteomic analysis demonstrated that mitochondria-related apoptosis pathways were involved in the cytotoxic action of berberine, as evidenced by the expression of mitochondrial dysfunction-mediated proteins. Moreover, a total of 160 significantly altered proteins were screened, among which AKAP12 presented significantly increased levels under berberine treatment. Bioinformatic analysis of various public datasets showed that expression of AKAP12 in HCC liver tissues was downregulated, emphasizing its role as a tumor suppressor. Immunoblotting validated the increased levels of AKAP12, while co-immunoprecipitation identified its interaction with Cyclin D1. These data, together with flow cytometry analysis, suggested that AKAP12 mediated cell cycle arrest, thereby suppressing cell proliferation. Altogether, the antiproliferative action of berberine in HepG2 cells involves both apoptosis and cell cycle arrest. Regulating AKAP12 signalling by berberine might provide a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhengcai Du
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
23
|
Khan MF, Mathur A, Pandey VK, Kakkar P. Naringenin alleviates hyperglycemia-induced renal toxicity by regulating activating transcription factor 4-C/EBP homologous protein mediated apoptosis. J Cell Commun Signal 2021; 16:271-291. [PMID: 34613591 DOI: 10.1007/s12079-021-00644-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Endoplasmic reticulum (ER) dysfunction plays a prominent role in the pathophysiology of diabetic nephropathy (DN). This study aimed to investigate the novel role of Naringenin (a flavanone mainly found in citrus fruits) in modulating ER stress in hyperglycemic NRK 52E cells and STZ/nicotinamide induced diabetes in Wistar rats. The results demonstrated that Naringenin supplementation downregulated the expression of ER stress marker proteins, including p-PERK, p-eIF2α, XBP1s, ATF4 and CHOP during hyperglycemic renal toxicity in vitro and in vivo. Naringenin abrogated hyperglycemia-induced ultrastructural changes in ER, evidencing its anti-ER stress effects. Interestingly, treatment of Naringenin prevented nuclear translocation of ATF4 and CHOP in hyperglycemic renal cells and diabetic kidneys. Naringenin prevented apoptosis in hyperglycemic renal cells and diabetic kidney tissues by downregulating expression of apoptotic marker proteins. Further, photomicrographs of TEM confirmed anti-apoptotic potential of Naringenin as it prevented membrane blebbing and formation of apoptotic bodies in hyperglycemic renal cells. Naringenin improved glucose tolerance, restored serum insulin level and reduced serum glucose level in diabetic rats evidencing its anti-hyperglycemic effects. Histopathological examination of kidney tissues also confirmed prevention of damage after 28 days of Naringenin treatment in diabetic rats. Additionally, Naringenin diminished oxidative stress and improved antioxidant defense response during hyperglycemic renal toxicity. Taken together, our study revealed a novel role of Naringenin in ameliorating ER stress during hyperglycemic renal toxicity along with prevention of apoptosis, cellular and tissue damage. The findings suggest that prevention of ER stress can be exploited as a novel approach for the management of hyperglycemic nephrotoxicity.
Collapse
Affiliation(s)
- Mohammad Fareed Khan
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alpana Mathur
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Vivek Kumar Pandey
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, USA
| | - Poonam Kakkar
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res 2021; 35:5459-5476. [PMID: 34056769 DOI: 10.1002/ptr.7181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are life-threatening illnesses and are the major cause of mortality and morbidity worldwide. These may include liver fibrosis, liver cirrhosis, and drug-induced liver toxicity. Liver diseases have a wide prevalence globally and the fifth most common cause of death among all gastrointestinal disorders. Several novel therapeutic approaches have emerged for the therapy of liver diseases that may provide better clinical outcomes with improved safety. The use of phytochemicals for the amelioration of liver diseases has gained considerable popularity. Berberine (BBR), an isoquinoline alkaloid of the protoberberine type, has emerged as a promising molecule for the treatment of gastrointestinal disorders. Accumulating studies have proved the hepatoprotective effects of BBR. BBR has been shown to modulate multiple signaling pathways implicated in the pathogenesis of liver diseases including Akt/FoxO2, PPAR-γ, Nrf2, insulin, AMPK, mTOR, and epigenetic pathways. In the present review, we have emphasized the important pharmacological activities and mechanisms of BBR in liver diseases. Further, we have reviewed various pharmacokinetic and toxicological barriers of this promising phytoconstituent. Finally, formulation-based novel approaches are also summarized to overcome the clinical hurdles for BBR.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
25
|
The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int J Mol Sci 2021; 22:ijms22041653. [PMID: 33562110 PMCID: PMC7915290 DOI: 10.3390/ijms22041653] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Isoquinoline alkaloids-enriched herbal plants have been used as traditional folk medicine for their anti-inflammatory, antimicrobial, and analgesic effects. They induce cell cycle arrest, apoptosis, and autophagy, leading to cell death. While the molecular mechanisms of these effects are not fully understood, it has been suggested that binding to nucleic acids or proteins, enzyme inhibition, and epigenetic modulation by isoquinoline alkaloids may play a role in the effects. This review discusses recent evidence on the molecular mechanisms by which the isoquinoline alkaloids can be a therapeutic target of cancer treatment.
Collapse
|
26
|
Huo Q, Xu C, Shao Y, Yu Q, Huang L, Liu Y, Bao H. Free CA125 promotes ovarian cancer cell migration and tumor metastasis by binding Mesothelin to reduce DKK1 expression and activate the SGK3/FOXO3 pathway. Int J Biol Sci 2021; 17:574-588. [PMID: 33613114 PMCID: PMC7893585 DOI: 10.7150/ijbs.52097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023] Open
Abstract
Objective: CA125/MUC16 is an O-glycosylated protein that is expressed on the surfaces of ovarian epithelial cells. This molecule is a widely used tumor-associated marker for diagnosis of ovarian cancer. Recently, CA125 was shown to be involved in ovarian cancer metastasis. The purpose of this study was to investigate the mechanism of CA125 during ovarian cancer metastasis. Methods: We analyzed the Oncomine and CSIOVDB databases to determine the expression levels of DKK1 in ovarian cancer. DKK1 expression levels were upregulated or downregulated and applied with CA125 to Transwell and Western blot assays to ascertain the underlying mechanism by which CA125 stimulates cell migration via the SGK3/FOXO3 pathway. Anti-mesothelin antibodies (anti-MSLN) were used to block CA125 stimulation. Then the expression levels of DKK1were tested by enzyme-linked immunosorbent assay (ELISA) to eliminate the blocking effect of anti-MSLN to CA125 stimulation. Xenograft mouse models were used to detect the effects of CA125 and anti-MSLN on ovarian cancer metastasis in vivo. Results: DKK1 levels were downregulated in ovarian tumor tissues according to the analyses of two databases and significantly correlated with FIGO stage, grade and disease-free survival in ovarian cancer patients. DKK1 levels were downregulated by CA125 stimulation in vitro. Overexpression of DKK1 reversed the ability of exogenous CA125 to mediate cell migration by activating the SGK3/FOXO3 signaling pathway. Anti-MSLN abrogated the DKK1 reduction and increased the apoptosis of ovarian cancer cells. The use of anti-MSLN in xenograft mouse models significantly reduced tumor growth and metastasis accelerated by CA125. Conclusions: These experiments revealed that the SGK3/FOXO3 pathway was activated, wherein decreased expression of DKK1 was caused by CA125, which fuels ovarian cancer cell migration. Mesothelin is a potential therapeutic target for the treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Qianyu Huo
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Chen Xu
- Laboratory Science Department, Tianjin 4th Central Hospital, Tianjin, 300100, China
| | - Yanhong Shao
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Qin Yu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Lunhui Huang
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Yunde Liu
- School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| | - Huijing Bao
- Integrative Medical Diagnosis Laboratory, Tianjin Nankai Hospital, Tianjin, 300100, China; School of Medical Technology, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
27
|
The pharmacological activity of berberine, a review for liver protection. Eur J Pharmacol 2020; 890:173655. [PMID: 33068590 DOI: 10.1016/j.ejphar.2020.173655] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Liver plays an important role in bile synthesis, metabolic function, degradation of toxins, new substances synthesis in body. However, hepatopathy morbidity and mortality are increasing year by year around the world, which become a major public health problem. Traditional Chinese medicine (TCM) has a prominent role in the treatment of liver diseases due to its definite curative effect and small side effects. The hepatoprotective effect of berberine has been extensively studied, so we comprehensively summarize the pharmacological activities of lipid metabolism regulation, bile acid adjustment, anti-inflammation, oxidation resistance, anti-fibrosis and anti-cancer and so on. Besides, the metabolism and toxicity of berberine and its new formulations to improve its effectiveness are expounded, providing a reference for the safe and effective clinical use of berberine.
Collapse
|
28
|
Burns M, Rizvi SHM, Tsukahara Y, Pimentel DR, Luptak I, Hamburg NM, Matsui R, Bachschmid MM. Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6803. [PMID: 32948023 PMCID: PMC7555996 DOI: 10.3390/ijms21186803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body's reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents.
Collapse
Affiliation(s)
- Mannix Burns
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Yuko Tsukahara
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - David R. Pimentel
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Ivan Luptak
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Naomi M. Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| |
Collapse
|
29
|
Effects of FOXO1 on the proliferation and cell cycle-, apoptosis- and steroidogenesis-related genes expression in sheep granulosa cells. Anim Reprod Sci 2020; 221:106604. [PMID: 32980650 DOI: 10.1016/j.anireprosci.2020.106604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Forkhead boxO (FOXO) transcription factors regulate diverse biological processes, including cellular metabolism, cell apoptosis, and the cell cycle. Results from several studies indicate FOXO1 regulates different granulosa cell (GC) pathways involved in proliferation, survival and differentiation. Functions and mechanisms of FOXO1 regulation of sheep GCs remain unclear. This study was conducted to analyze the function of FOXO1 in regulation of sheep GCs. In this study, the 1827 bp sheep FOXO1 coding sequence was cloned from sheep GCs. Multiple sequence alignment and phylogenetic analysis indicated that the FOXO1 protein sequence is highly homologous to FOXO1 protein sequences from other species. The results obtained from using CCK-8 assays indicated sheep GC proliferation increased when there was suppression of FOXO1 gene expression. When there was induced expression of the FOXO1 gene in sheep GCs, there was a resulting increased abundance of P21 and P27 mRNA transcript, whereas suppression of the FOXO1 gene expression had the opposite effect. Furthermore, the relative abundance in vitro of apoptosis-related protein mRNA transcripts (caspase3, caspase8, caspase9, Bax/Bcl-2) was markedly increased or decreased when there was induction or suppression of FOXO1 gene expression, respectively,(P < 0.05). Induction of FOXO1 gene expression resulted in an increase in abundance of steroidogenic protein mRNA transcripts (CYP11A1, 3β-HSD), while suppression of FOXO1 gene expresion resulted in a decrease abundance of the CYP11A1, STAR mRNA transcripts. Results from the present study indicated that FOXO1 inhibited the proliferation of sheep GCs and affected mRNA transcript abundance for proteins involved in regulation of apoptosis, the cell cycle and steroidogenesis.
Collapse
|
30
|
Nasimian A, Farzaneh P, Tamanoi F, Bathaie SZ. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: The role of FOXO3a, PTEN and AKT signaling. Biochem Pharmacol 2020; 177:113999. [PMID: 32353423 DOI: 10.1016/j.bcp.2020.113999] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
Different groups have reported the Crocin anticancer activity. We previously showed Crocin-induced apoptosis in rat model of breast and gastric cancers, through the increased Bax/Bcl-2 ratio and caspases activity, as well as the cell cycle arrest in a p53-dependent manner. Since Crocin antioxidant activity has been shown under different conditions, it is interesting to elucidate its apoptotic mechanism. Here, we treated two breast cancer cell lines, MCF-7 and MDA-MB-231, with Crocin. MTT and ROS assays, cell cycle arrest, Bax/Bcl-2 ratio and caspase3 activity were determined. PARP cleavage and expression of some proteins were studied using Western blotting and immunofluorescence. The results indicated stepwise ROS generation in cytosol and mitochondria after Crocin treatment. Attenuating the early ROS level, using diphenyleneiodonium, diminished the sequent mitochondrial damage (decreasing Δψ) and downstream apoptotic signaling. Crocin induced ROS production, FOXO3a expression and nuclear translocation, and then, elevation of the expression of FOXO3a target genes (Bim and PTEN) and caspase-3 activation. Application of N-acetylcysteine blocked AKT/FOXO3a/Bim signaling. FOXO3a knockdown resulted in a decrease of Bim, PTEN and caspase 3, after Crocin treatment. PTEN knockdown caused a decrease in FOXO3a, Bim and caspase 3, in addition to an increase in p-AKT and p-FOXO3a, after Crocin treatment. In conclusion, Crocin induced apoptosis in MCF-7 and MDA-MB-231 human breast cancer cells. The ROS-activated FOXO3a cascade plays a central role in this process. FOXO3a-mediated upregulation of PTEN exerted a further inhibition of the AKT survival pathway. These data provide a new insight into applications of Crocin for cancer therapy.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14155-331, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics (MIMG), UCLA, LA, CA, USA
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14155-331, Tehran, Iran.
| |
Collapse
|
31
|
Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med 2020; 14:564-582. [DOI: 10.1007/s11684-019-0724-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
|
32
|
NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep 2020; 10:3078. [PMID: 32080264 PMCID: PMC7033235 DOI: 10.1038/s41598-020-59743-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The highly selective magnesium transporter non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2) has recently been associated with the development and progression of type 2 diabetes osteoporosis, but the mechanisms involved are still poorly understood. Because mitophagy is involved in the pathology of type 2 diabetes osteoporosis, the present study aimed to explore the relationship among NIPA2, mitophagy and osteoblast osteogenic capacity. NIPA2 expression was reduced in C57BKS background db/db mice and in vitro models of type 2 diabetes osteoporosis, and the activation of mitophagy in primary culture osteoblast-derived from db/db mice and in high glucose-treated human fetal osteoblastic cells (hFOB1.19) was observed. Knockdown, overexpression of NIPA2 and pharmacological inhibition of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) showed that NIPA2 increased osteoblast function, which was likely regulated by PTEN induced kinase 1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy via the PGC-1α/forkhead box O3a(FoxO3a)/mitochondrial membrane potential (MMP) pathway. Furthermore, the negative effect of mitophagy on osteoblast function was confirmed by pharmacological regulation of mitophagy and knockdown of Parkin. Taken together, these results suggest that NIPA2 positively regulates the osteogenic capacity of osteoblasts via the mitophagy pathway in type 2 diabetes.
Collapse
|
33
|
Wang Y, Liu Y, Du X, Ma H, Yao J. The Anti-Cancer Mechanisms of Berberine: A Review. Cancer Manag Res 2020; 12:695-702. [PMID: 32099466 PMCID: PMC6996556 DOI: 10.2147/cmar.s242329] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR) has been extensively studied in vivo and vitro experiments. BBR inhibits cell proliferation by regulating cell cycle and cell autophagy, and promoting cell apoptosis. BBR also inhibits cell invasion and metastasis by suppressing EMT and down-regulating the expression of metastasis-related proteins and signaling pathways. In addition, BBR inhibits cell proliferation by interacting with microRNAs and suppressing telomerase activity. BBR exerts its anti-inflammation and antioxidant properties, and also regulates tumor microenvironment. This review emphasized that BBR as a potential anti-inflammation and antioxidant agent, also as an effective immunomodulator, is expected to be widely used in clinic for cancer therapy.
Collapse
Affiliation(s)
- Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xinyang Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
34
|
Wang D, Wang Y, Zou X, Shi Y, Liu Q, Huyan T, Su J, Wang Q, Zhang F, Li X, Tie L. FOXO1 inhibition prevents renal ischemia-reperfusion injury via cAMP-response element binding protein/PPAR-γ coactivator-1α-mediated mitochondrial biogenesis. Br J Pharmacol 2019; 177:432-448. [PMID: 31655022 DOI: 10.1111/bph.14878] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Growing evidence indicates targeting mitochondrial dynamics and biogenesis could accelerate recovery from renal ischemia-reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Transcription factor forkhead box O1 (FOXO1) is a key regulator of mitochondrial homeostasis and plays a pathological role in the progression of renal disease. EXPERIMENTAL APPROACH A mouse model of renal I/R injury and a hypoxia/reoxygenation (H/R) injury model for human renal tubular epithelial cells were used. KEY RESULTS I/R injury up-regulated renal expression of FOXO1 and treatment with FOXO1-selective inhibitor AS1842856 prior to I/R injury decreased serum urea nitrogen, serum creatinine and the tubular damage score after injury. Post-I/R injury AS1842856 treatment could also ameliorate renal function and improve the survival rate of mice following injury. AS1842856 administration reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial ROS and accelerated recovery of ATP both in vivo and in vitro. Additionally, FOXO1 inhibition improved mitochondrial biogenesis and suppressed mitophagy. Expression of PPAR-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis, was down-regulated in both I/R and H/R injury, which could be abrogated by FOXO1 inhibition. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that FOXO1 inhibited PGC-1α transcription by competing with cAMP-response element binding protein (CREB) for its binding to transcriptional coactivators CREBBP/EP300 (CBP/P300). CONCLUSION AND IMPLICATIONS These findings suggested that FOXO1 was critical to maintain mitochondrial function in renal tubular epithelial cells and FOXO1 may serve as a therapeutic target for pharmacological intervention in renal I/R injury.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.,Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiantong Zou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| | - Yundi Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Qian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Tianru Huyan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Lu Tie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
35
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
36
|
Hu P, Li H, Yu X, Liu X, Wang X, Qing Y, Wang Z, Wang H, Zhu M, Xu J, Tan R, Guo Q, Hui H. GL-V9 exerts anti-T cell malignancies effects via promoting lysosome-dependent AKT1 degradation and activating AKT1/FOXO3A/BIM axis. Free Radic Biol Med 2019; 145:237-249. [PMID: 31560953 DOI: 10.1016/j.freeradbiomed.2019.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
T-cell malignancies are characterized by the excessive proliferation of hematopoietic precursor cells of T-cell lineage lymphocytes in the bone marrow. Previous studies suggest that T-cell malignancies are usually accompanied by highly activated PI3K/AKT signaling which confers the ability of cancer cells to proliferate and survive. Here, we found that GL-V9, a newly synthesized flavonoid compound, had a potent to inhibit the activation of AKT1 and induce the cell apoptosis in T-cell malignancies including cell lines and primary lymphoblastic leukemia. Results showed that GL-V9-induced degradation of AKT1 blocked PI3K/AKT1 signaling and the degradation of AKT1 could be reversed by NH4Cl, an inhibitor of lysosomal function. Inhibiting AKT1 promoted dephosphorylation of FOXO3A and its nuclear translocation. We further demonstrated that GL-V9-induced apoptosis effects were dependent on the binding of FOXO3A to the BIM promoter, resulting in the production of BH3-only protein BIM. Moreover, GL-V9 showed a more persistent and stronger apoptosis induction effects than pharmacologic PI3K inhibitor. The in vivo studies also verified that GL-V9 possessed the anti-tumor effects by reducing the leukemic burden in T-ALL-bearing BALB/c nude mice. In conclusion, our study provides a new insight into the mechanism of GL-V9-induced apoptosis, suggesting the potency of GL-V9 to be a promising agent against T-cell malignancies.
Collapse
Affiliation(s)
- Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
37
|
Yang Y, Yu S, Liu N, Xu H, Gong Y, Wu Y, Wang P, Su X, Liao Y, De Saeger S, Humpf HU, Wu A. Transcription Factor FOXO3a Is a Negative Regulator of Cytotoxicity of Fusarium mycotoxin in GES-1 Cells. Toxicol Sci 2019; 166:370-381. [PMID: 30169763 DOI: 10.1093/toxsci/kfy216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Molecular mechanism and key factors responsible for cytotoxicity against mycotoxin deoxynivalenol (DON) from Fusarium pathogens are rarely elucidated. In this study, rapid increases of ROS were first observed in human gastric epithelial (GES-1) cells under DON exposure. Mitochondrial DNA damage, impaired respiratory chain, and decreased oxygen consumption rate (OCR) values, as well as G2/M cell cycle arrest and apoptosis, were also detected. Via combinatorial approaches of a large-scale microarray of differentially expressed genes, high content and RNAi analysis, a transcription factor of Forkhead box O3 (FOXO3a) was found with crucial functionalities, regulated some apoptotic genes associated with mitochondrial toxicity and cell death after activation by nuclear translocation. Namely, knockdown of FOXO3a decreased the cytotoxicity of DON to GES-1 cells. Moreover, knockdown of the FOXO ortholog DAF16 in Caenorhabditis elegans increased the resistance to DON-induced cytotoxicity. Simultaneously, the signaling pathway of ROS/JNK/FOXO3a of DON-induced cytotoxicity was newly proposed. In total, FOXO3a via ROS/JNK/FOXO3a plays a critical role to function as negative regulator associating with DON-induced cytotoxicity, with the potential extending to other substances.
Collapse
Affiliation(s)
- Yunxia Yang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| | - Haibin Xu
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China
| | - Yunyun Gong
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China.,School of Food Sciences and Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | - Yongning Wu
- China National Center for Food Safety Risk Assessmen (CFSA), 100000, Beijing, P. R. China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, 100000, Beijing, P. R. China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, 100000, Beijing, P. R. China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, 430000, Wuhan, P. R. China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 00329, Ghent, Belgium
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149 Münster, Germany
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Institute of nutrition, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200000, Shanghai, P.R China
| |
Collapse
|
38
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
39
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
40
|
Liu HQ, An YW, Hu AZ, Li MH, Cui GH. Photodynamic Therapy Enhanced the Antitumor Effects of Berberine on HeLa Cells. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractIn this study we investigated the antineoplastic effects of Berberine (BBR)-mediated photodynamic therapy (PDT) on HeLa cells and its related mechanisms. The CCK-8 assay and flow cytometry were used to evaluate the proliferation and apoptosis of cells respectively. In addition, changes in protein expression levels were assessed using western blot. BBR at dose of 10 mg/kg was injected intraperitoneally to mice with tumors and PDT treatments were performed 24 hours later. In vivo imaging systems were used to evaluate the fluorescence of BBR. In vitro, PDT significantly enhanced the effects of BBR on inducing cell apoptosis and inhibiting proliferation. The in vivo results showed that the fluorescence intensity in the PDT group was decreased compared with that in the BBR group. Tumor weights and tumor size in the PDT group were less than those in the control group; however, when BBR was applied without PDT, no significant differences were observed between the BBR and control group. The results of western blot showed that PDT enhanced the inhibitory effects of BBR on the mammalian target of rapamycin (mTOR) signaling pathway, that may partly explain the potential underlying mechanisms.
Collapse
Affiliation(s)
- Han-Qing Liu
- Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen City, Guangdong, China, 518036
| | - Ya-Wen An
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen City, Guangdong, China, 518055
| | - A-Zhen Hu
- Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen City, Guangdong, China, 518036
| | - Ming-Hua Li
- Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen City, Guangdong, China, 518036
| | - Guang-Hui Cui
- Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen City, Guangdong, China, 518036
| |
Collapse
|
41
|
Tang H, Inoki K, Brooks SV, Okazawa H, Lee M, Wang J, Kim M, Kennedy CL, Macpherson PCD, Ji X, Van Roekel S, Fraga DA, Wang K, Zhu J, Wang Y, Sharp ZD, Miller RA, Rando TA, Goldman D, Guan K, Shrager JB. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell 2019; 18:e12943. [PMID: 30924297 PMCID: PMC6516169 DOI: 10.1111/acel.12943] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 12/15/2022] Open
Abstract
Aging leads to skeletal muscle atrophy (i.e., sarcopenia), and muscle fiber loss is a critical component of this process. The mechanisms underlying these age-related changes, however, remain unclear. We show here that mTORC1 signaling is activated in a subset of skeletal muscle fibers in aging mouse and human, colocalized with fiber damage. Activation of mTORC1 in TSC1 knockout mouse muscle fibers increases the content of morphologically abnormal mitochondria and causes progressive oxidative stress, fiber damage, and fiber loss over the lifespan. Transcriptomic profiling reveals that mTORC1's activation increases the expression of growth differentiation factors (GDF3, 5, and 15), and of genes involved in mitochondrial oxidative stress and catabolism. We show that increased GDF15 is sufficient to induce oxidative stress and catabolic changes, and that mTORC1 increases the expression of GDF15 via phosphorylation of STAT3. Inhibition of mTORC1 in aging mouse decreases the expression of GDFs and STAT3's phosphorylation in skeletal muscle, reducing oxidative stress and muscle fiber damage and loss. Thus, chronically increased mTORC1 activity contributes to age-related muscle atrophy, and GDF signaling is a proposed mechanism.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| | - Ken Inoki
- Life Science InstituteUniversity of MichiganAnn ArborMichigan,Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichigan
| | - Susan V. Brooks
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichigan
| | - Hideki Okazawa
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCalifornia
| | - Myung Lee
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| | - Junying Wang
- Life Science InstituteUniversity of MichiganAnn ArborMichigan
| | - Michael Kim
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| | - Catherine L. Kennedy
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| | - Peter C. D. Macpherson
- Molecular and Behavioral Neuroscience Institute and Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of MedicineStanfordCalifornia
| | - Sabrina Van Roekel
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichigan
| | - Danielle A. Fraga
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| | - Kun Wang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia,Present address:
The Department of Thoracic SurgeryThird Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jinguo Zhu
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia,Present address:
Department of Cardiothoracic SurgeryGuangxi International Zhuang Hospital of GuangXi University of Chinese MedicineNanNingChina
| | - Yoyo Wang
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| | - Zelton D. Sharp
- Department of Molecular MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichigan
| | - Thomas A. Rando
- VA Palo Alto Healthcare SystemPalo AltoCalifornia,Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCalifornia
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Kun‐Liang Guan
- Department of Pharmacology and Moores Cancer CenterUniversity of California San DiegoLa JollaCalifornia
| | - Joseph B. Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordCalifornia,VA Palo Alto Healthcare SystemPalo AltoCalifornia
| |
Collapse
|
42
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X, Wang J. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett 2019; 458:1-12. [PMID: 31132431 DOI: 10.1016/j.canlet.2019.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao 266003, China
| | - Hu Ge
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qiong Wang
- Molecular Informatics Department, Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
43
|
Macáková K, Afonso R, Saso L, Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic Biol Med 2019; 134:429-444. [PMID: 30703480 DOI: 10.1016/j.freeradbiomed.2019.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alkaloids have always attracted scientific interest due to either their positive or negative effects on human beings. This review aims to summarize their antioxidant effects by both classical in vitro scavenging assay and at the cellular level. Since most in vitro studies used the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, the results from those studies are summed up in the first part of the article. In the second part, available data on the effect of alkaloids on NADPH-oxidase, the key enzyme for reactive oxygen species production, at the cellular level, are summarized. More than 130 alkaloids were tested by DPPH assay. However, due to methodological differences, a direct comparison is hardly possible. It can be at least concluded that some of them were either similar to or even more active than standard antioxidants and the number of aromatic hydroxyl groups seems to be the major determinant for the activity. The data on inhibition of NADPH-oxidase activity by alkaloids demonstrated that there is little relationship to the DPPH assay. The mechanism seems to be based on inhibition of synthesis, activation or translocation of NADPH-oxidase subunits. In some alkaloids, activation of the nuclear factor Nrf2 pathway was documented to be the grounds for inhibition of NADPH-oxidase. Interestingly, many alkaloids can behave both as anti-oxidants and pro-oxidants depending on conditions and pro-oxidation might be the reason for activation of Nrf2. Available data on other "antioxidant" transcription factors FOXOs and PPARs are also mentioned.
Collapse
Affiliation(s)
- Kateřina Macáková
- Department of Pharmaceutical Botany, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rita Afonso
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
44
|
FoxO3a inhibiting expression of EPS8 to prevent progression of NSCLC: A new negative loop of EGFR signaling. EBioMedicine 2019; 40:198-209. [PMID: 30738830 PMCID: PMC6413682 DOI: 10.1016/j.ebiom.2019.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background The resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKI) is a major challenge in the treatment of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms behind resistance is therefore an important issue. Here we assessed the role of EGFR pathway substrate 8 (EPS8) and Forkhead box O 3a (FoxO3a) as potentially valuable targets in the resistance of NSCLC . Methods The expression levels of EPS8 and FoxO3a in patients with NSCLC (n = 75) were examined by immunohistochemistry staining, while in cells were detected by qPCR and western blot. The effects of EPS8 and FoxO3a on resistance, migration and invasion, cell cycle arrest were detected by MTT, transwell and flow cytometry, respectively. Chromatin immunoprecipitation and luciferase reporter assays were performed to determine the mechanisms of EPS8 expression and FoxO3a regulation. Findings We observed that the expression of EPS8 inversely correlated with FoxO3a in NSCLC cell lines and NSCLC patients. FoxO3a levels were significantly decreased in tumor tissues compared with para-carcinoma tissues, while EPS8 is opposite. Besides, they play reverse roles in the resistance to gefitinib, the migration and invasion abilities, the cell cycle arrest in vitro and the tumor growth in vivo. Mechanistically, FoxO3a inhibits EPS8 levels by directly binding its gene promoter and they form a negative loop in EGFR pathway. Interpretation Targeting FoxO3a and EPS8 in EGFR signaling pathway prevents the progression of NSCLC, which implied that the negative loop they formed could served as a therapeutic target for overcoming resistance in NSCLC. Funds National Natural Science Foundation of China, Science and Technology Project of Henan, Outstanding Young Talent Research Fund of Zhengzhou University and the National Scholarship Fund.
Collapse
|
45
|
Liu H, Zheng T, Zhou Z, Hu A, Li M, Zhang Z, Yu G, Feng H, An Y, Peng J, Chen Y. Berberine nanoparticles for promising sonodynamic therapy of a HeLa xenograft tumour. RSC Adv 2019; 9:10528-10535. [PMID: 35515276 PMCID: PMC9062522 DOI: 10.1039/c8ra09172b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Here we show that berberine (BBR) nanoparticles (BBRNPs, ∼300 nm hydrodynamic diameter) is a promising sonosensitizer for cancer sonodynamic therapy (SDT).
Collapse
|
46
|
Song D, Ma J, Chen L, Guo C, Zhang Y, Chen T, Zhang S, Zhu Z, Tian L, Niu P. FOXO3 promoted mitophagy via nuclear retention induced by manganese chloride in SH-SY5Y cells. Metallomics 2018; 9:1251-1259. [PMID: 28661534 DOI: 10.1039/c7mt00085e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To evaluate the role of FOXO3 during the process of mitophagy induced by manganese chloride (MnCl2), mitochondrial dysfunction and mitophagy were detected before and after FOXO3 was knocked down in SH-SY5Y cells. METHOD Transmission electron microscopy (TEM), flow cytometry, confocal microscopy and a western blot were used to detect mitochondrial ultrastructure and autophagy, Ca2+ levels, mitochondrial reactive oxygen species (ROS) and the mitochondrial membrane potential (MMP), autophagosomes and mitophagy marker proteins (p62, LC3-II/LC3-I, Beclin-1, PINK1 and P-parkin), respectively. RESULTS After SH-SY5Y cells were exposed to MnCl2, the levels of cytoplasmic Ca2+ and mitochondrial ROS increased but the mitochondrial MMP decreased significantly compared to the control in a dose- and time-dependent manner (p < 0.05), which indicated that MnCl2 can lead to mitochondrial dysfunction. Under TEM, mitophagy and autolysosomes were observed. The WB results also showed that mitophagy marker proteins including LC3-II/LC3-I, Beclin-1, PINK1 and P-parkin except for p62 increased in a dose- and time-dependent manner, accompanied by FOXO3 nuclear retention, which indicated that MnCl2 can lead to mitophagy and FOXO3 nuclear translocation may be involved in this process. After FOXO3 was knocked down, the inverse results of mitophagy and the levels of mitochondrial ROS decreasing were observed, which showed that FOXO3 silencing could inhibit mitophagy and mitochondrial dysfunction induced by MnCl2. CONCLUSIONS Our results indicated that Mn could induce mitophagy by enhancing FOXO3 nuclear retention, which might promote mitophagy induced by MnCl2.
Collapse
Affiliation(s)
- Dongmei Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao Road, You'anmenwai Street, Fengtai District, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maimaiti Y, Dong L, Aili A, Maimaitiaili M, Huang T, Abudureyimu K. Bim may be a poor prognostic biomarker in breast cancer patients especially in those with luminal A tumors. Cancer Biomark 2018; 19:411-418. [PMID: 28582840 DOI: 10.3233/cbm-160377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Bcl-2 interacting mediator of cell death (Bim) appears to have contradictory roles in cancer. It is uncertain whether Bim show prognostic significance in patients with breast cancer. OBJECTIVE To investigate the correlation between Bim expression and clinicopathological characteristics of breast cancer and to evaluate Bim's effect on overall survival (OS). METHODS We used immunohistochemistry (IHC) technique to detect the expression of Bim via tissue microarray in 275 breast cancer samples, Kaplan-Meier analysis to perform survival analysis, and Cox proportional hazards regression model to explore the risk factors of breast cancer. RESULTS The results revealed that Bim expression was significantly correlated with age, estrogen receptor (ER) and/or progesterone receptor (PR), human epidermal growth factor receptor (HER2) and Ki67 expression (P< 0.05). Bim expression was significantly different in the four molecular subtypes (P= 0.000). Survival analysis showed that Bim positive expression contributed to a shorter OS (P= 0.034), especially in patients with luminal A tumors (P= 0.039). Univariate and multivariate regression analysis showed that Bim was an independent prognostic factor for breast cancer (P< 0.05). CONCLUSION Bim may serve as an effective predictive factor for lower OS in breast cancer patients, especially in those with luminal A tumors.
Collapse
Affiliation(s)
- Yusufu Maimaiti
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.,Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Lingling Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Aikebaier Aili
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Maimaitiaili Maimaitiaili
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kelimu Abudureyimu
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
48
|
Berberine induced modulation of PHLPP2-Akt-MST1 kinase signaling is coupled with mitochondrial impairment and hepatoma cell death. Toxicol Appl Pharmacol 2018; 347:92-103. [DOI: 10.1016/j.taap.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
|
49
|
Cao W, Li M, Wu T, Feng F, Feng T, Xu Y, Sun C. αMSH prevents ROS-induced apoptosis by inhibiting Foxo1/mTORC2 in mice adipose tissue. Oncotarget 2018; 8:40872-40884. [PMID: 28388573 PMCID: PMC5522219 DOI: 10.18632/oncotarget.16606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
Alpha-melanocyte stimulating hormone (αMSH) is an important adenohypophysis polypeptide hormone that regulates body metabolic status. To date, it is well known that the disorder of hypothalamic αMSH secretion is related to many metabolic diseases, such as obesity and type II diabetes. However, the underlying mechanisms are poorly understood. In our study, we focused on the reactive oxygen species (ROS)-induced adipocyte apoptosis and tried to unveil the role of αMSH in this process and the signal pathway which αMSH acts through. Kunming white mice were used and induced to oxidative stress status by hydrogen peroxide (H2O2) injection and a significant reduction of αMSH were found in mice serum, while elevated ROS level and mRNA level of pro-apoptotic genes were observed in mice adipose tissue. What is more, when detect the function of αMSH in ROS-induced apoptosis, similar inhibitory trend was found with the oxidative stress inhibitor N-acetyl-L-cysteine (NAC) in ROS-induced adipocyte apoptosis and this trend is αMSH receptor melanocortin 5 receptor (MC5R) depended, while an opposite trend was found between αMSH and Foxo1, which is a known positive regulator of adipocyte apoptosis. Further, we found that the repress effect of αMSH in adipocytes apoptosis is acting through Foxo1/mTORC2 pathway. These findings indicate that, αMSH has a strong inhibitory effect on ROS-induced adipocyte apoptosis and underlying mechanism is interacting with key factors in mTOR signal pathway. Our study demonstrated a great role of αMSH in adipocyte apoptosis and brings a new therapeutic mean to the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Weina Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongying Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
50
|
Chu Q, Jiang Y, Zhang W, Xu C, Du W, Tuguzbaeva G, Qin Y, Li A, Zhang L, Sun G, Cai Y, Feng Q, Li G, Li Y, Du Z, Bai Y, Yang B. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget 2018; 7:84658-84665. [PMID: 27705930 PMCID: PMC5356689 DOI: 10.18632/oncotarget.12384] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/24/2016] [Indexed: 01/20/2023] Open
Abstract
Pyroptosis is a caspase-1 dependent programmed cell death, which is involved in the pathologic process of several kinds of cancers. Loss of caspase-1 gene expression has been observed in prostate and gastric cancers. However, the role of pyroptosis in human hepatocellular carcinoma (HCC) remains largely unknown. The aim of this study was to investigate the involvement of pyroptosis in the pathogenesis of HCC. Our study showed that pyroptosis was inhibited in HCC tissues and cells. Administration of berberine inhibited the viability, migration and invasion capacity of HepG2 cells through the induction of pyroptosis both in vitro and in vivo, which was attenuated by caspase-1 inhibitor Ac-YVAD-CMK. Conclusively, pyroptosis is involved in the pathogenesis of HCC, and may be a new neoplastic target for the treatment of HCC.
Collapse
Affiliation(s)
- Qun Chu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Wei Zhang
- Institute of Medical Sciences of Heilongjiang Province, Harbin, P.R. China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Weijie Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Gulnara Tuguzbaeva
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Republic Bashkortostan, Russian Federation
| | - Ying Qin
- Institute of Medical Sciences of Heilongjiang Province, Harbin, P.R. China
| | - Anqi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Liangshuan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Guiyuan Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yongqiao Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qiang Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Guiyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanyao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Zhimin Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital, Harbin Medical University (Key Laboratory of Drug Development, Universities of Heilongjiang Province), Heilongjiang Province, P. R. China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China.,Institute of Medical Sciences of Heilongjiang Province, Harbin, P.R. China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China.,Institute of Medical Sciences of Heilongjiang Province, Harbin, P.R. China.,Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australian
| |
Collapse
|