1
|
Endo S, Morikawa Y, Matsunaga T, Hara A, Takasu M. Characterization of a novel porcine carbonyl reductase activated by glutathione: Relationship to carbonyl reductase 1, 3α/β-hydroxysteroid dehydrogenase and prostaglandin 9-ketoreductase. Chem Biol Interact 2023; 381:110572. [PMID: 37247810 DOI: 10.1016/j.cbi.2023.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
A porcine gene, LOC100622246, encodes carbonyl reductase [NADPH] 1 (pCBR-N1), whose function remains unknown. Previously, three porcine carbonyl reductases, carbonyl reductase 1 (pCBR1), 3α/β-hydroxysteroid dehydrogenase (p3α/β-HSD) and prostaglandine-9-keto reductase (pPG-9-KR), were purified from neonatal testis, adult testis and adult kidney, respectively. However, the relationship of pCBR-N1 with the three enzymes is still unknown. Here, we compare the properties of the recombinant pCBR-N1 and pCBR1. The two enzymes reduced various carbonyl compounds including 5α-dihydrotestosterone, which was converted to its 3α- and 3β-hydroxy-metabolites. Compared to pCBR1, pCBR-N1 exhibited higher Km and kcat values for most substrates, but more efficiently reduced prostaglandin E2. pCBR-N1 was inhibited by known inhibitors of p3α/β-HSD (hexestrol and indomethacin), but not by pCBR1 inhibitors. pCBR-N1 was highly expressed than pCBR1 in the several tissues of adult domestic and microminiature pigs. The results, together with partial amino acid sequence match between pCBR-N1 and pPG-9-KR, reveal that pCBR-N1 is identical to p3α/β-HSD and pPG-9-KR. Notably, pCBR-N1, but not pCBR1, reduced S-nitrosoglutathione and glutathione-adducts of alkenals including 4-oxo-2-nonenal with Km of 8.3-32 μM, and its activity toward non-glutathionylated substrates was activated 2- to 9-fold by 1 mM glutathione. Similar activation by glutathione was also observed for human CBR1. Site-directed mutagenesis revealed that the differences in kinetic constants and glutathione-mediated activation between pCBR-N1 and pCBR1 are due to differences in residue 236 and two glutathione-binding residues (at positions 97 and 193), respectively. Thus, pCBR-N1 is a glutathione-activated carbonyl reductase that functions in the metabolism of endogenous and xenobiotic carbonyl compounds.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshiyuki Matsunaga
- Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
2
|
Sardelli G, Scali V, Signore G, Balestri F, Cappiello M, Mura U, Del Corso A, Moschini R. Response of a Human Lens Epithelial Cell Line to Hyperglycemic and Oxidative Stress: The Role of Aldose Reductase. Antioxidants (Basel) 2023; 12:antiox12040829. [PMID: 37107204 PMCID: PMC10135174 DOI: 10.3390/antiox12040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
A common feature of different types of diabetes is the high blood glucose levels, which are known to induce a series of metabolic alterations, leading to damaging events in different tissues. Among these alterations, both increased polyol pathway flux and oxidative stress are considered to play relevant roles in the response of different cells. In this work, the effect on a human lens epithelial cell line of stress conditions, consisting of exposure to either high glucose levels or to the lipid peroxidation product 4-hydroxy-2-nonenal, is reported. The occurrence of osmotic imbalance, alterations of glutathione levels, and expression of inflammatory markers was monitored. A common feature of the two stress conditions was the expression of COX-2, which, only in the case of hyperglycemic stress, occurred through NF-κB activation. In our cell model, aldose reductase activity, which is confirmed as the only activity responsible for the osmotic imbalance occurring in hyperglycemic conditions, seemed to have no role in controlling the onset of the inflammatory phenomena. However, it played a relevant role in cellular detoxification against lipid peroxidation products. These results, in confirming the multifactorial nature of the inflammatory phenomena, highlight the dual role of aldose reductase as having both damaging but also protecting activity, depending on stress conditions.
Collapse
Affiliation(s)
- Gemma Sardelli
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Viola Scali
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2211450
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
3
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
4
|
Chemical profile and nutraceutical features of Salsola soda (agretti): Anti-inflammatory and antidiabetic potential of its flavonoids. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Aldose Reductase Differential Inhibitors in Green Tea. Biomolecules 2020; 10:biom10071003. [PMID: 32640594 PMCID: PMC7407822 DOI: 10.3390/biom10071003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Aldose reductase (AKR1B1), the first enzyme in the polyol pathway, is likely involved in the onset of diabetic complications. Differential inhibition of AKR1B1 has been proposed to counteract the damaging effects linked to the activity of the enzyme while preserving its detoxifying ability. Here, we show that epigallocatechin gallate (EGCG), one of the most representative catechins present in green tea, acts as a differential inhibitor of human recombinant AKR1B1. A kinetic analysis of EGCG, and of its components, gallic acid (GA) and epigallocatechin (EGC) as inhibitors of the reduction of L-idose, 4-hydroxy2,3-nonenal (HNE), and 3-glutathionyl l-4-dihydroxynonanal (GSHNE) revealed for the compounds a different model of inhibition toward the different substrates. While EGCG preferentially inhibited L-idose and GSHNE reduction with respect to HNE, gallic acid, which was still active in inhibiting the reduction of the sugar, was less active in inhibiting HNE and GSHNE reduction. EGC was found to be less efficient as an inhibitor of AKR1B1 and devoid of any differential inhibitory action. A computational study defined different interactive modes for the three substrates on the AKR1B1 active site and suggested a rationale for the observed differential inhibition. A chromatographic fractionation of an alcoholic green tea extract revealed that, besides EGCG and GA, other components may exhibit the differential inhibition of AKR1B1.
Collapse
|
6
|
Pathways of 4-Hydroxy-2-Nonenal Detoxification in a Human Astrocytoma Cell Line. Antioxidants (Basel) 2020; 9:antiox9050385. [PMID: 32380768 PMCID: PMC7278743 DOI: 10.3390/antiox9050385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
One of the consequences of the increased level of oxidative stress that often characterizes the cancer cell environment is the abnormal generation of lipid peroxidation products, above all 4-hydroxynonenal. The contribution of this aldehyde to the pathogenesis of several diseases is well known. In this study, we characterized the ADF astrocytoma cell line both in terms of its pattern of enzymatic activities devoted to 4-hydroxynonenal removal and its resistance to oxidative stress induced by exposure to hydrogen peroxide. A comparison with lens cell lines, which, due to the ocular function, are normally exposed to oxidative conditions is reported. Our results show that, overall, ADF cells counteract oxidative stress conditions better than normal cells, thus confirming the redox adaptation demonstrated for several cancer cells. In addition, the markedly high level of NADP+-dependent dehydrogenase activity acting on the glutahionyl-hydroxynonanal adduct detected in ADF cells may promote, at the same time, the detoxification and recovery of cell-reducing power in these cells.
Collapse
|
7
|
Barracco V, Moschini R, Renzone G, Cappiello M, Balestri F, Scaloni A, Mura U, Del-Corso A. Dehydrogenase/reductase activity of human carbonyl reductase 1 with NADP(H) acting as a prosthetic group. Biochem Biophys Res Commun 2019; 522:259-263. [PMID: 31759632 DOI: 10.1016/j.bbrc.2019.11.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022]
Abstract
Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis. This property, together with the multi-substrate specificity of CBR1 in both directions of red/ox reactions, generates inter-conversion red/ox cycles. This particular feature of CBR1, in the case of the transformation of 3-glutathionyl, 4-hydroxynonanal (GSHNE), which is a key substrate of the enzyme in detoxification, supports the disproportionation reaction of GSHNE without any apparent exchange of the cofactor with the solution. The importance of the cofactor as a prosthetic group for other dehydrogenases exerting a detoxification role is discussed.
Collapse
Affiliation(s)
- Vito Barracco
- University of Pisa, Department of Biology, Biochemistry Unit, Via S. Zeno, 51, Pisa, Italy; PhD Student at the Tuscany Region "Pegaso" PhD School in Biochemistry and Molecular Biology, Italy
| | - Roberta Moschini
- University of Pisa, Department of Biology, Biochemistry Unit, Via S. Zeno, 51, Pisa, Italy; Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Pisa, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine, 1085, Napoli, Italy
| | - Mario Cappiello
- University of Pisa, Department of Biology, Biochemistry Unit, Via S. Zeno, 51, Pisa, Italy; Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Pisa, Italy
| | - Francesco Balestri
- University of Pisa, Department of Biology, Biochemistry Unit, Via S. Zeno, 51, Pisa, Italy; Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Pisa, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine, 1085, Napoli, Italy
| | - Umberto Mura
- University of Pisa, Department of Biology, Biochemistry Unit, Via S. Zeno, 51, Pisa, Italy
| | - Antonella Del-Corso
- University of Pisa, Department of Biology, Biochemistry Unit, Via S. Zeno, 51, Pisa, Italy; Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Pisa, Italy.
| |
Collapse
|
8
|
Balestri F, Barracco V, Renzone G, Tuccinardi T, Pomelli CS, Cappiello M, Lessi M, Rotondo R, Bellina F, Scaloni A, Mura U, Del Corso A, Moschini R. Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct. Antioxidants (Basel) 2019; 8:antiox8100502. [PMID: 31652566 PMCID: PMC6827081 DOI: 10.3390/antiox8100502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The formation of the adduct between the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and glutathione, which leads to the generation of 3-glutathionyl-4-hydroxynonane (GSHNE), is one of the main routes of HNE detoxification. The aldo-keto reductase AKR1B1 is involved in the reduction of the aldehydic group of both HNE and GSHNE. In the present study, the effect of chirality on the recognition by aldose reductase of HNE and GSHNE was evaluated. AKR1B1 discriminates very modestly between the two possible enantiomers of HNE as substrates. Conversely, a combined kinetic analysis of the glutathionyl adducts obtained starting from either 4R- or 4S-HNE and mass spectrometry analysis of GSHNE products obtained from racemic HNE revealed that AKR1B1 possesses a marked preference toward the 3S,4R-GSHNE diastereoisomer. Density functional theory and molecular modeling studies revealed that this diastereoisomer, besides having a higher tendency to be in an open aldehydic form (the one recognized by AKR1B1) in solution than other GSHNE diastereoisomers, is further stabilized in its open form by a specific interaction with the enzyme active site. The relevance of this stereospecificity to the final metabolic fate of GSHNE is discussed.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Vito Barracco
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine 1085, 80147 Napoli, Italy.
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | | | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Marco Lessi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi, 13, 56124 Pisa, Italy.
| | - Rossella Rotondo
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi, 13, 56124 Pisa, Italy.
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, Via Argine 1085, 80147 Napoli, Italy.
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, via S. Zeno 51, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
9
|
Shan L, Gao G, Wang W, Tang W, Wang Z, Yang Z, Fan W, Zhu G, Zhai K, Jacobson O, Dai Y, Chen X. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials 2019; 210:62-69. [PMID: 31075724 PMCID: PMC6521851 DOI: 10.1016/j.biomaterials.2019.04.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
Nanomedicine has become a promising approach to improve cancer chemotherapy. It remains a major challenge how to enhance anti-drug efficacy and reduce side effects of anti-cancer drugs. Herein, we report a self-assembled nanoplatform (FDEP NPs) by integration of doxorubicin (DOX) and epigallocatechin-3-O-gallate (EGCG) with the help of coordination between Fe3+ ions and polyphenols. The EGCG from FDEP NPs could inhibit the expression of carbonyl reductase 1 (CBR1) protein and thereby inhibit the doxorubicinol (DOXOL) generation from DOX both in vitro and in vivo, thus the efficacy of DOX to cancerous cells is improved significantly. More importantly, the FDEP NPs could reduce cardiac toxicity and the DOX mediated toxicity to blood cells due to the repression of DOXOL production. Moreover, the blood half-life of FDEP NPs is longer than 23 h as determined by positron emission tomography (PET) imaging of biodistribution of radiolabelled NPs and HPLC measurement of plasma level of DOX, ensuring high tumor accumulation of FDEP NPs by enhanced permeability and retention (EPR) effect. The FDEP NPs also exhibited much improved antitumor effect over free drugs. Our work sheds new light on the engineering of nanomaterials for combination chemotherapy and may find unique clinical applications in the near future.
Collapse
Affiliation(s)
- Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, PR China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Guizhen Gao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Kefeng Zhai
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, PR China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, PR China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
10
|
Li D, Gu Z, Zhang J, Ma S. Protective effect of inducible aldo-keto reductases on 4-hydroxynonenal- induced hepatotoxicity. Chem Biol Interact 2019; 304:124-130. [PMID: 30849339 DOI: 10.1016/j.cbi.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
4-Hydroxynonenal (HNE), an end-product of lipid peroxidation generated in response to oxidative stress, has been implicated in the pathophysiology of chronic liver diseases. HNE is very reactive that forms Michael adducts with nucleophilic sites in DNA, lipids and proteins. At high concentrations, HNE causes rapid cell death associated with depletion of sulfhydryl groups and inhibition of key metabolic enzymes. At low concentrations, HNE stimulates expression of genes that are part of an adaptive response. In this study, we show that sub-lethal concentrations of HNE induce mRNA expression levels of heme oxygenase-1 (HO-1) (2.5-fold), NADPH:quinone oxidoreductase (NQO1) (4.5-fold), AKR1C3 (2-fold) and AKR7A2 (3-fold) enzymes. Protein expression levels of AKR1C and AKR7A2 are induced by 2- and 1.5-fold following exposure to HNE. The role of AKR1C3 and AKR7A2 in protecting HepG2 cells against HNE toxicity was investigated through using RNAi. Results show that AKR7A2, but not AKR1C3 contributes to the protection against HNE toxicity in HepG2 cells. Moreover, transcriptional factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) is activated by HNE through translocation to the nucleus. Overexpressing AKR7A2 could rescue the effect of knocking down Nrf2 on HNE-induced cytotoxicity. Furthermore, a natural compound 7-hydroxycoumain, an AKR7A2 inducer, shows hepatoprotection against HNE via AKR7A2 induction. Hence, the inducible AKR7A2 has provided a new therapeutic target to treat chronic liver disease.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhuoliang Gu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingdong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, China Medical University, Shenyang, 110001, China
| | - Shuren Ma
- Department of Endoscope, The General Hospital of Shenyang Military Region, Shenyang, 110016, China
| |
Collapse
|
11
|
Balestri F, Quattrini L, Coviello V, Sartini S, Da Settimo F, Cappiello M, Moschini R, Del Corso A, Mura U, La Motta C. Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chem Biol 2018; 25:1414-1418.e3. [PMID: 30122369 DOI: 10.1016/j.chembiol.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
Aldose reductase (AKR1B1), the key enzyme of the polyol pathway, plays a crucial role in the development of long-term complications affecting diabetic patients. Nevertheless, the expedience of inhibiting this enzyme to treat diabetic complications has failed, due to the emergence of side effects from compounds under development. Actually AKR1B1 is a Janus-faced enzyme which, besides ruling the polyol pathway, takes part in the antioxidant defense mechanism of the body. In this work we report the evidence that a class of compounds, characterized by a pyrazolo[1,5-a]pyrimidine core and an ionizable fragment, modulates differently the catalytic activity of the enzyme, depending on the presence of specific substrates such as sugar, toxic aldehydes, and glutathione conjugates of toxic aldehydes. The study stands out as a systematic attempt to generate aldose reductase differential inhibitors (ARDIs) intended to target long-term diabetic complications while leaving unaltered the detoxifying role of the enzyme.
Collapse
Affiliation(s)
- Francesco Balestri
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Luca Quattrini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Vito Coviello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Stefania Sartini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Mario Cappiello
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Roberta Moschini
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Antonella Del Corso
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Umberto Mura
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via L. Ghini 13, Pisa 56126, Italy
| | - Concettina La Motta
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, Pisa 56126, Italy.
| |
Collapse
|
12
|
Misuri L, Cappiello M, Balestri F, Moschini R, Barracco V, Mura U, Del-Corso A. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. J Enzyme Inhib Med Chem 2017; 32:1152-1158. [PMID: 28856935 PMCID: PMC6009938 DOI: 10.1080/14756366.2017.1363744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.
Collapse
Affiliation(s)
- Livia Misuri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Mario Cappiello
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Francesco Balestri
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Roberta Moschini
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Vito Barracco
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Umberto Mura
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Antonella Del-Corso
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
14
|
Kinetic features of carbonyl reductase 1 acting on glutathionylated aldehydes. Chem Biol Interact 2017; 276:127-132. [DOI: 10.1016/j.cbi.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/20/2022]
|
15
|
Papastavrou N, Chatzopoulou M, Ballekova J, Cappiello M, Moschini R, Balestri F, Patsilinakos A, Ragno R, Stefek M, Nicolaou I. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. Eur J Med Chem 2017; 130:328-335. [DOI: 10.1016/j.ejmech.2017.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
|
16
|
Balestri F, Sorce C, Moschini R, Cappiello M, Misuri L, Del Corso A, Mura U. Edible vegetables as a source of aldose reductase differential inhibitors. Chem Biol Interact 2017; 276:155-159. [PMID: 28159579 DOI: 10.1016/j.cbi.2017.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/18/2017] [Accepted: 01/29/2017] [Indexed: 11/25/2022]
Abstract
The hyperactivity of aldose reductase (AR) on glucose in diabetic conditions or on glutathionyl-hydroxynonenal in oxidative stress conditions, the source of cell damage and inflammation, appear to be balanced by the detoxifying action exerted by the enzyme. This detoxification acts on cytotoxic hydrophobic aldehydes deriving from membrane peroxidative processes. This may contribute to the failure in drug development for humans to favorably intervene in diabetic complications and inflammation, despite the specificity and high efficiency of several available aldose reductase inhibitors. This paper presents additional features to a previously proposed approach, on inhibiting the enzyme through molecules able to preferentially inhibit the enzyme depending on the substrate the enzyme is working on. These differential inhibitors (ARDIs) should act on glucose reduction catalyzed by AR without little or no effect on the reduction of alkenals or alkanals. The reasons why AR may be an eligible enzyme for differential inhibition are considered. These mainly refer to the evidence that, although AR is an unspecific enzyme that recognizes different substrates such as aldoses and hydrophobic aldehydes, it nevertheless displays a certain degree of specificity among substrates of the same class. After screening on edible vegetables, indications of the presence of molecules potentially acting as ARDIs are reported.
Collapse
Affiliation(s)
| | - Carlo Sorce
- University of Pisa, Department of Biology, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Roberta Moschini
- University of Pisa, Department of Biology, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Mario Cappiello
- University of Pisa, Department of Biology, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Livia Misuri
- University of Pisa, Department of Biology, Pisa, Italy; Tuscany Region PhD School in Biochemistry and Molecular Biology, Italy
| | - Antonella Del Corso
- University of Pisa, Department of Biology, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Umberto Mura
- University of Pisa, Department of Biology, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Rotondo R, Moschini R, Renzone G, Tuccinardi T, Balestri F, Cappiello M, Scaloni A, Mura U, Del-Corso A. Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radic Biol Med 2016; 99:323-332. [PMID: 27562619 DOI: 10.1016/j.freeradbiomed.2016.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/14/2022]
Abstract
Human recombinant carbonyl reductase 1 (E.C. 1.1.1.184, hCBR1) is shown to efficiently act as aldehyde reductase on glutathionylated alkanals, namely 3-glutathionyl-4-hydroxynonanal (GSHNE), 3-glutathionyl-nonanal, 3-glutathionyl-hexanal and 3-glutathionyl-propanal. The presence of the glutathionyl moiety appears as a necessary requirement for the susceptibility of these compounds to the NADPH-dependent reduction by hCBR1. In fact the corresponding alkanals and alkenals, and the cysteinyl and γ-glutamyl-cysteinyl alkanals adducts were either ineffective or very poorly active as CBR1 substrates. Mass spectrometry analysis reveals the ability of hCBR1 to reduce GSHNE to the corresponding GS-dihydroxynonane (GSDHN) and at the same time to catalyze the oxidation of the hemiacetal form of GSHNE, generating the 3-glutathionylnonanoic-δ-lactone. These data are indicative of the ability of the enzyme to catalyze a disproportion reaction of the substrate through the redox recycle of the pyridine cofactor. A rationale for the observed preferential activity of hCBR1 on different GSHNE diastereoisomers is given by molecular modelling. These results evidence the potential of hCBR1 acting on GSHNE to accomplish a dual role, both in terms of HNE detoxification and, through the production of GSDHN, in terms of involvement into the signalling cascade of the cellular inflammatory response.
Collapse
Affiliation(s)
- Rossella Rotondo
- University of Pisa, Department of Biology, Biochemistry Unit, via S. Zeno, 51, Pisa, Italy
| | - Roberta Moschini
- University of Pisa, Department of Biology, Biochemistry Unit, via S. Zeno, 51, Pisa, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, via Argine, 1085, Napoli, Italy
| | | | - Francesco Balestri
- University of Pisa, Department of Biology, Biochemistry Unit, via S. Zeno, 51, Pisa, Italy
| | - Mario Cappiello
- University of Pisa, Department of Biology, Biochemistry Unit, via S. Zeno, 51, Pisa, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, via Argine, 1085, Napoli, Italy
| | - Umberto Mura
- University of Pisa, Department of Biology, Biochemistry Unit, via S. Zeno, 51, Pisa, Italy
| | - Antonella Del-Corso
- University of Pisa, Department of Biology, Biochemistry Unit, via S. Zeno, 51, Pisa, Italy.
| |
Collapse
|
18
|
ROCCHICCIOLI M, MOSCHINI R, CAPPIELLO L, BALESTRI F, CAPPIELLO M, MURA U, DEL-CORSO A. Colorimetric Coupled Enzyme Assay for Cystathionine β-Synthase. ANAL SCI 2016; 32:901-6. [DOI: 10.2116/analsci.32.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - Laura CAPPIELLO
- University of Pisa, Department of Biology, Biochemistry Unit
| | | | - Mario CAPPIELLO
- University of Pisa, Department of Biology, Biochemistry Unit
| | - Umberto MURA
- University of Pisa, Department of Biology, Biochemistry Unit
| | | |
Collapse
|
19
|
Balestri F, Cappiello M, Moschini R, Rotondo R, Abate M, Del-Corso A, Mura U. Modulation of aldose reductase activity by aldose hemiacetals. Biochim Biophys Acta Gen Subj 2015. [PMID: 26215787 DOI: 10.1016/j.bbagen.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Glucose is considered as one of the main sources of cell damage related to aldose reductase (AR) action in hyperglycemic conditions and a worldwide effort is posed in searching for specific inhibitors of the enzyme. This AR substrate has often been reported as generating non-hyperbolic kinetics, mimicking a negative cooperative behavior. This feature was explained by the simultaneous action of two enzyme forms acting on the same substrate. METHODS The reduction of different aldoses and other classical AR substrates was studied using pure preparations of bovine lens and human recombinant AR. RESULTS The apparent cooperative behavior of AR acting on glucose and other hexoses and pentoses, but not on tethroses, glyceraldehyde, 4-hydroxynonenal and 4-nitrobenzaldehyde, is generated by a partial nonclassical competitive inhibition exerted by the aldose hemiacetal on the reduction of the free aldehyde. A kinetic model is proposed and kinetic parameters are determined for the reduction of l-idose. CONCLUSIONS Due to the unavoidable presence of the hemiacetal, glucose reduction by AR occurs under different conditions with respect to other relevant AR-substrates, such as alkanals and alkenals, coming from membrane lipid peroxidation. This may have implications in searching for AR inhibitors. The emerging kinetic parameters for the aldoses free aldehyde indicate the remarkable ability of the enzyme to interact and reduce highly hydrophilic and bulky substrates. GENERAL SIGNIFICANCE The discovery of aldose reductase modulation by hemiacetals offers a new perspective in searching for aldose reductase inhibitors to be developed as drugs counteracting the onset of diabetic complications.
Collapse
Affiliation(s)
- Francesco Balestri
- University of Pisa, Department of Biology, Biochemistry Unit, via San Zeno, 51, Pisa 56127, Italy
| | - Mario Cappiello
- University of Pisa, Department of Biology, Biochemistry Unit, via San Zeno, 51, Pisa 56127, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Roberta Moschini
- University of Pisa, Department of Biology, Biochemistry Unit, via San Zeno, 51, Pisa 56127, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Rossella Rotondo
- University of Pisa, Department of Biology, Biochemistry Unit, via San Zeno, 51, Pisa 56127, Italy
| | - Marco Abate
- University of Pisa, Department of Mathematics, via Buonarroti, 2, Pisa 56127, Italy
| | - Antonella Del-Corso
- University of Pisa, Department of Biology, Biochemistry Unit, via San Zeno, 51, Pisa 56127, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Umberto Mura
- University of Pisa, Department of Biology, Biochemistry Unit, via San Zeno, 51, Pisa 56127, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Hu D, Miyagi N, Arai Y, Oguri H, Miura T, Nishinaka T, Terada T, Gouda H, El-Kabbani O, Xia S, Toyooka N, Hara A, Matsunaga T, Ikari A, Endo S. Synthesis of 8-hydroxy-2-iminochromene derivatives as selective and potent inhibitors of human carbonyl reductase 1. Org Biomol Chem 2015; 13:7487-99. [DOI: 10.1039/c5ob00847f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase superfamily, reduces anthracycline anticancer drugs to their less potent anticancer C-13 hydroxy metabolites, which are linked with pathogenesis of cardiotoxicity, a side effect of the drugs.
Collapse
|