1
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Stouth DW, vanLieshout TL, Mikhail AI, Ng SY, Raziee R, Edgett BA, Vasam G, Webb EK, Gilotra KS, Markou M, Pineda HC, Bettencourt-Mora BG, Noor H, Moll Z, Bittner ME, Gurd BJ, Menzies KJ, Ljubicic V. CARM1 drives mitophagy and autophagy flux during fasting-induced skeletal muscle atrophy. Autophagy 2024; 20:1247-1269. [PMID: 38018843 PMCID: PMC11210918 DOI: 10.1080/15548627.2023.2288528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
CARM1 (coactivator associated arginine methyltransferase 1) has recently emerged as a powerful regulator of skeletal muscle biology. However, the molecular mechanisms by which the methyltransferase remodels muscle remain to be fully understood. In this study, carm1 skeletal muscle-specific knockout (mKO) mice exhibited lower muscle mass with dysregulated macroautophagic/autophagic and atrophic signaling, including depressed AMP-activated protein kinase (AMPK) site-specific phosphorylation of ULK1 (unc-51 like autophagy activating kinase 1; Ser555) and FOXO3 (forkhead box O3; Ser588), as well as MTOR (mechanistic target of rapamycin kinase)-induced inhibition of ULK1 (Ser757), along with AKT/protein kinase B site-specific suppression of FOXO1 (Ser256) and FOXO3 (Ser253). In addition to lower mitophagy and autophagy flux in skeletal muscle, carm1 mKO led to increased mitochondrial PRKN/parkin accumulation, which suggests that CARM1 is required for basal mitochondrial turnover and autophagic clearance. carm1 deletion also elicited PPARGC1A (PPARG coactivator 1 alpha) activity and a slower, more oxidative muscle phenotype. As such, these carm1 mKO-evoked adaptations disrupted mitophagy and autophagy induction during food deprivation and collectively served to mitigate fasting-induced muscle atrophy. Furthermore, at the threshold of muscle atrophy during food deprivation experiments in humans, skeletal muscle CARM1 activity decreased similarly to our observations in mice, and was accompanied by site-specific activation of ULK1 (Ser757), highlighting the translational impact of the methyltransferase in human skeletal muscle. Taken together, our results indicate that CARM1 governs mitophagic, autophagic, and atrophic processes fundamental to the maintenance and remodeling of muscle mass. Targeting the enzyme may provide new therapeutic approaches for mitigating skeletal muscle atrophy.Abbreviation: ADMA: asymmetric dimethylarginine; AKT/protein kinase B: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CARM1: coactivator associated arginine methyltransferase 1; Col: colchicine; CSA: cross-sectional area; CTNS: cystinosin, lysosomal cystine transporter; EDL: extensor digitorum longus; FBXO32/MAFbx: F-box protein 32; FOXO: forkhead box O; GAST: gastrocnemius; H2O2: hydrogen peroxide; IMF: intermyofibrillar; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; mKO: skeletal muscle-specific knockout; MMA: monomethylarginine; MTOR: mechanistic target of rapamycin kinase; MYH: myosin heavy chain; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OXPHOS: oxidative phosphorylation; PABPC1/PABP1: poly(A) binding protein cytoplasmic 1; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PRMT: protein arginine methyltransferase; Sal: saline; SDMA: symmetric dimethylarginine; SIRT1: sirtuin 1; SKP2: S-phase kinase associated protein 2; SMARCC1/BAF155: SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1; SOL: soleus; SQSTM1/p62: sequestosome 1; SS: subsarcolemmal; TA: tibialis anterior; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TOMM20: translocase of outer mitochondrial membrane 20; TRIM63/MuRF1: tripartite motif containing 63; ULK1: unc-51 like autophagy activating kinase 1; VPS11: VPS11 core subunit of CORVET and HOPS complexes; WT: wild-type.
Collapse
Affiliation(s)
- Derek W. Stouth
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Andrew I. Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y. Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Rozhin Raziee
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin K. Webb
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin S. Gilotra
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Markou
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Hannah C. Pineda
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Haleema Noor
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Moll
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Megan E. Bittner
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Keir J. Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
4
|
Skelly LE, MacInnis MJ, Bostad W, McCarthy DG, Jenkins EM, Archila LR, Tarnopolsky MA, Gibala MJ. Human skeletal muscle mitochondrial responses to single-leg intermittent or continuous cycle exercise training matched for absolute intensity and total work. Scand J Med Sci Sports 2023; 33:872-881. [PMID: 36779702 DOI: 10.1111/sms.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
There is renewed interest in the potential for interval (INT) training to increase skeletal muscle mitochondrial content including whether the response differs from continuous (CONT) training. Comparisons of INT and CONT exercise are impacted by the manner in which protocols are "matched", particularly with respect to exercise intensity, as well as inter-individual differences in training responses. We employed single-leg cycling to facilitate a within-participant design and test the hypothesis that short-term INT training would elicit a greater increase in mitochondrial content than work- and intensity-matched CONT training. Ten young healthy adults (five males and five females) completed 12 training sessions over 4 weeks with each leg. Legs were randomly assigned to complete either 30 min of CONT exercise at a challenging sustainable workload (~50% single-leg peak power output; Wpeak) or INT exercise that involved 10 × 3-min bouts at the same absolute workload. INT bouts were interspersed with 1 min of recovery at 10% Wpeak and each CONT session ended with 10 min at 10% Wpeak. Absolute and mean intensity, total training time, and volume were thus matched between legs but the pattern of exercise differed. Contrary to our hypothesis, biomarkers of mitochondrial content including citrate synthase maximal activity, mitochondrial protein content and subsarcolemmal mitochondrial volume increased after CONT (p < 0.05) but not INT training. Both training modes increased single-leg Wpeak (p < 0.01) and time to exhaustion at 70% of single-leg Wpeak (p < 0.01). In a work- and intensity-matched comparison, short-term CONT training increased skeletal muscle mitochondrial content whereas INT training did not.
Collapse
Affiliation(s)
- Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - William Bostad
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Linda R Archila
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Nilsson MI, Crozier M, Di Carlo A, Xhuti D, Manta K, Roik LJ, Bujak AL, Nederveen JP, Tarnopolsky MG, Hettinga B, Meena NK, Raben N, Tarnopolsky MA. Nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants enhances autophagic clearance in Pompe disease. Mol Genet Metab 2022; 137:228-240. [PMID: 35718712 DOI: 10.1016/j.ymgme.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Donald Xhuti
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Katherine Manta
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Liza J Roik
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Adam L Bujak
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Bart Hettinga
- Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada
| | - Naresh K Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; Exerkine Corporation, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Dial AG, Grafham GK, Monaco CMF, Voth J, Brandt L, Tarnopolsky MA, Hawke TJ. Alterations in skeletal muscle repair in young adults with type 1 diabetes mellitus. Am J Physiol Cell Physiol 2021; 321:C876-C883. [PMID: 34586898 DOI: 10.1152/ajpcell.00322.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Though preclinical models of type 1 diabetes (T1D) exhibit impaired muscle regeneration, this has yet to be investigated in humans with T1D. Here, we investigated the impact of damaging exercise (eccentric quadriceps contractions) in 18 physically active young adults with and without T1D. Pre- and postexercise (48 h and 96 h), the participants provided blood samples, vastus lateralis biopsies, and performed maximal voluntary quadriceps contractions (MVCs). Skeletal muscle sarcolemmal integrity, extracellular matrix (ECM) content, and satellite cell (SC) content/proliferation were assessed by immunofluorescence. Transmission electron microscopy was used to quantify ultrastructural damage. MVC was comparable between T1D and controls before exercise. Postexercise, MVC was decreased in both groups, but subjects with T1D exhibited moderately lower strength recovery at both 48 h and 96 h. Serum creatine kinase, an indicator of muscle damage, was moderately higher in participants with T1D at rest and exhibited a small elevation 96 h postexercise. Participants with T1D showed lower SC content at all timepoints and demonstrated a moderate delay in SC proliferation after exercise. A greater number of myofibers exhibited sarcolemmal damage (disrupted dystrophin) and increased ECM (laminin) content in participants with T1D despite no differences between groups in ultrastructural damage as assessed by electron microscopy. Finally, transcriptomic analyses revealed dysregulated gene networks involving RNA translation and mitochondrial respiration, providing potential explanations for previous observations of mitochondrial dysfunction in similar cohorts with T1D. Our findings indicate that skeletal muscle in young adults with moderately controlled T1D is altered after damaging exercise, suggesting that longer recovery times following intense exercise may be necessary.
Collapse
Affiliation(s)
- Athan G Dial
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grace K Grafham
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Cynthia M F Monaco
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Voth
- Research and Evaluation Services Department, Hôtel-Dieu Grace Healthcare, Windsor, Ontario, Canada
| | - Linda Brandt
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
The Role of Nrf2 in Skeletal Muscle on Exercise Capacity. Antioxidants (Basel) 2021; 10:antiox10111712. [PMID: 34829582 PMCID: PMC8615226 DOI: 10.3390/antiox10111712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 Nfe2l2 (Nrf2) is believed to play a crucial role in protecting cells against oxidative stress. In addition to its primary function of maintaining redox homeostasis, there is emerging evidence that Nrf2 is also involved in energy metabolism. In this review, we briefly discuss the role of Nrf2 in skeletal muscle metabolism from the perspective of exercise physiology. This article is part of a special issue “Mitochondrial Function, Reactive Oxygen/Nitrogen Species and Skeletal Muscle” edited by Håkan Westerblad and Takashi Yamada.
Collapse
|
8
|
Abstract
Exercise stimulates the biogenesis of mitochondria in muscle. Some literature supports the use of pharmaceuticals to enhance mitochondria as a substitute for exercise. We provide evidence that exercise rejuvenates mitochondrial function, thereby augmenting muscle health with age, in disease, and in the absence of cellular regulators. This illustrates the power of exercise to act as mitochondrial medicine in muscle.
Collapse
Affiliation(s)
- Ashley N Oliveira
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
9
|
Deus CM, Yambire KF, Oliveira PJ, Raimundo N. Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends Mol Med 2019; 26:71-88. [PMID: 31791731 DOI: 10.1016/j.molmed.2019.10.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Cellular function requires coordination between different organelles and metabolic cues. Mitochondria and lysosomes are essential for cellular metabolism as major contributors of chemical energy and building blocks. It is therefore pivotal for cellular function to coordinate the metabolic roles of mitochondria and lysosomes. However, these organelles do more than metabolism, given their function as fundamental signaling platforms in the cell that regulate many key processes such as autophagy, proliferation, and cell death. Mechanisms of crosstalk between mitochondria and lysosomes are discussed, both under physiological conditions and in diseases that affect these organelles.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - King Faisal Yambire
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany.
| |
Collapse
|
10
|
Jones HN, Kuchibhatla M, Crisp KD, Hobson Webb LD, Case L, Batten MT, Marcus JA, Kravitz RM, Kishnani PS. [Not Available]. Mol Genet Metab 2019; 127:346-354. [PMID: 31303277 PMCID: PMC6717661 DOI: 10.1016/j.ymgme.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION: Morbidity and mortality in adults with late-onset Pompe disease (LOPD) results primarily from persistent progressive respiratory muscle weakness despite treatment with enzyme replacement therapy (ERT). To address this need, we have developed a 12-week respiratory muscle training (RMT) program that provides calibrated, individualized, and progressive pressure-threshold resistance against inspiration and expiration. Our previous results suggest that our RMT regimen is safe, well-tolerated, and results in large increases in respiratory muscle strength. We now conduct an exploratory double-blind, randomized control trial (RCT) to determine: 1) utility and feasibility of sham-RMT as a control condition, 2) the clinically meaningful outcome measures for inclusion in a future efficacy trial. This manuscript provides comprehensive information regarding the design and methods used in our trial and will aid in the reporting and interpretation of our future findings. METHODS: Twenty-eight adults with LOPD will be randomized (1:1) in blocks of 4 to RMT (treatment) or sham-RMT (control). Assessments will be conducted at pretest, posttest, 3-months detraining, and 6-months detraining. The primary outcome is maximum inspiratory pressure (MIP). Secondary outcomes include maximum expiratory pressure (MEP), 6-minute walk test (6MWT), Gait, Stairs, Gowers, and Chair test (GSGC), peak cough flow (PCF), and patient-reported life activity/social participation (Rasch-built Pompe-specific Activity scale [R-Pact]). Exploratory outcomes include quantitative measures from polysomnography; patient reported measures of fatigue, daytime sleepiness, and sleep quality; and ultrasound measures of diaphragm thickness. This research will use a novel tool to provide automated data collection and user feedback, and improve control over dose. ETHICS AND DISSEMINATION: The results of this clinical trial will be promptly analyzed and submitted for publication. Results will also be made available on clinicaltrials.gov. CLINICALTRIALS.GOV: ,
Collapse
Affiliation(s)
- Harrison N Jones
- Department of Surgery, Division of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA; Department of Speech Pathology and Audiology, Duke University Medical Center, Durham, NC, USA.
| | - Maragatha Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Kelly D Crisp
- Department of Surgery, Division of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, NC, USA
| | - Lisa D Hobson Webb
- Department of Neurology, Neuromuscular Division, Duke University Medical Center, Durham, NC, USA
| | - Laura Case
- Division of Physical Therapy, Duke University School Of Medicine, Durham, NC, USA
| | - Milisa T Batten
- Department of Speech Pathology and Audiology, Duke University Medical Center, Durham, NC, USA
| | - Jill A Marcus
- Department of Speech Pathology and Audiology, Duke University Medical Center, Durham, NC, USA
| | - Richard M Kravitz
- Division of Pediatric Pulmonary and Sleep Medicine, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Abstract
Pompe disease is a multisystemic metabolic disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA) leading to progressive accumulation of lysosomal glycogen, lysosomal swelling and rupture in all tissues of the human body. Furthermore, autophagic buildup, organelle abnormalities, and energy deficit are regularly observed. Enzyme replacement therapy has been available for patients living with Pompe disease for more than 15 years. Although our disease knowledge has grown enormously, we still have multiple challenges to overcome. Here, I will discuss unmet clinical needs, neglected or overlooked aspects of the pathophysiology, and issues related to future therapies.
Collapse
Affiliation(s)
- Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
12
|
Tarnopolsky MA, Nilsson MI. Nutrition and exercise in Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:282. [PMID: 31392194 DOI: 10.21037/atm.2019.05.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current standard of care for Pompe disease (PD) is the administration of enzyme replacement therapy (ERT). Exercise and nutrition are often considered as complementary strategies rather than "treatments" per se. Nutritional assessment is important in patients with locomotor disability because the relative hypodynamia limits energy expenditure and thus the total amount of energy must be reduced to avoid obesity. A lower total energy intake often leads to lower protein and micronutrient intake. Consequently, ensuring that Pompe patients are tested for and replaced for deficiencies (protein, vitamin D, vitamin B12, etc.) is an important aspect of care. Furthermore, given the role of autophagy in the pathophysiology of PD and the fact that fasting induces autophagy, it is important that strategies such as nutritional timing and amino acid intake (L-arginine, L-leucine) be evaluated as therapies. Exercise interventions have been shown to improve six-minute walk testing distance by more than what was seen in the seminal ERT study in late-onset PD. Exercise therapy can also activate autophagy, and this is likely another component of its efficacy. The current review will evaluate the theoretical and practical aspects of nutrition and exercise as therapies for patients with PD.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mats I Nilsson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Hughes MC, Ramos SV, Turnbull PC, Rebalka IA, Cao A, Monaco CM, Varah NE, Edgett BA, Huber JS, Tadi P, Delfinis LJ, Schlattner U, Simpson JA, Hawke TJ, Perry CG. Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H 2 O 2 emission during impaired oxidative phosphorylation. J Cachexia Sarcopenia Muscle 2019; 10:643-661. [PMID: 30938481 PMCID: PMC6596403 DOI: 10.1002/jcsm.12405] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Meghan C. Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Sofhia V. Ramos
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Patrick C. Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Irena A. Rebalka
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Andrew Cao
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Cynthia M.F. Monaco
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Nina E. Varah
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Brittany A. Edgett
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Jason S. Huber
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Peyman Tadi
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Luca J. Delfinis
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy)University Grenoble AlpesGrenobleFrance
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Thomas J. Hawke
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Christopher G.R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| |
Collapse
|
14
|
Nilsson MI, Tarnopolsky MA. Mitochondria and Aging-The Role of Exercise as a Countermeasure. BIOLOGY 2019; 8:biology8020040. [PMID: 31083586 PMCID: PMC6627948 DOI: 10.3390/biology8020040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved to regulate other cell functions that contribute to the aging process, such as reactive oxygen species generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that targets all the major hallmarks of aging and extends both health- and lifespan in modern humans.
Collapse
Affiliation(s)
- Mats I Nilsson
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University Medical Center, Hamilton, ON L8S 4L8, Canada.
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
15
|
Xu S, Sui S, Zhang X, Pang B, Wan L, Pang D. Modulation of autophagy in human diseases strategies to foster strengths and circumvent weaknesses. Med Res Rev 2019; 39:1953-1999. [PMID: 30820989 DOI: 10.1002/med.21571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is central to the maintenance of intracellular homeostasis across species. Accordingly, autophagy disorders are linked to a variety of diseases from the embryonic stage until death, and the role of autophagy as a therapeutic target has been widely recognized. However, autophagy-associated therapy for human diseases is still in its infancy and is supported by limited evidence. In this review, we summarize the landscape of autophagy-associated diseases and current autophagy modulators. Furthermore, we investigate the existing autophagy-associated clinical trials, analyze the obstacles that limit their progress, offer tactics that may allow barriers to be overcome along the way and then discuss the therapeutic potential of autophagy modulators in clinical applications.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boran Pang
- Department of Surgery, Rui Jin Hospital, Shanghai Key Laboratory of Gastric Neoplasm, Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjcontrary, induction of autophagy elongiang, China
| |
Collapse
|
16
|
Nilsson MI, Bourgeois JM, Nederveen JP, Leite MR, Hettinga BP, Bujak AL, May L, Lin E, Crozier M, Rusiecki DR, Moffatt C, Azzopardi P, Young J, Yang Y, Nguyen J, Adler E, Lan L, Tarnopolsky MA. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One 2019; 14:e0210863. [PMID: 30682077 PMCID: PMC6347267 DOI: 10.1371/journal.pone.0210863] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological aging is associated with progressive damage accumulation, loss of organ reserves, and systemic inflammation ('inflammaging'), which predispose for a wide spectrum of chronic diseases, including several types of cancer. In contrast, aerobic exercise training (AET) reduces inflammation, lowers all-cause mortality, and enhances both health and lifespan. In this study, we examined the benefits of early-onset, lifelong AET on predictors of health, inflammation, and cancer incidence in a naturally aging mouse model (C57BL/J6). Lifelong, voluntary wheel-running (O-AET; 26-month-old) prevented age-related declines in aerobic fitness and motor coordination vs. age-matched, sedentary controls (O-SED). AET also provided partial protection against sarcopenia, dynapenia, testicular atrophy, and overall organ pathology, hence augmenting the 'physiologic reserve' of lifelong runners. Systemic inflammation, as evidenced by a chronic elevation in 17 of 18 pro- and anti-inflammatory cytokines and chemokines (P < 0.05 O-SED vs. 2-month-old Y-CON), was potently mitigated by lifelong AET (P < 0.05 O-AET vs. O-SED), including master regulators of the cytokine cascade and cancer progression (IL-1β, TNF-α, and IL-6). In addition, circulating SPARC, previously known to be upregulated in metabolic disease, was elevated in old, sedentary mice, but was normalized to young control levels in lifelong runners. Remarkably, malignant tumours were also completely absent in the O-AET group, whereas they were present in the brain (pituitary), liver, spleen, and intestines of sedentary mice. Collectively, our results indicate that early-onset, lifelong running dampens inflammaging, protects against multiple cancer types, and extends healthspan of naturally-aged mice.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Department of Pathology and Molecular Medicine, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacqueline M. Bourgeois
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Joshua P. Nederveen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Marlon R. Leite
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Linda May
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Lin
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Daniel R. Rusiecki
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Chris Moffatt
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Paul Azzopardi
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacob Young
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Yifan Yang
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jenny Nguyen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Adler
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Lucy Lan
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Triolo M, Hood DA. Mitochondrial breakdown in skeletal muscle and the emerging role of the lysosomes. Arch Biochem Biophys 2018; 661:66-73. [PMID: 30439362 DOI: 10.1016/j.abb.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022]
Abstract
Skeletal muscle mitochondria are essential in providing the energy required for locomotion. In response to contractile activity, the production of mitochondria is upregulated to meet the energy demands placed upon muscle cells. In a coordinated fashion, exercise also promotes the breakdown of dysfunctional mitochondria via mitophagy. Mitophagy is characterized by the selection of poorly functioning organelles, engulfment in an autophagosome and transport to lysosomes for degradation. In addition to the activation of mitophagy, exercise also elevates lysosome biogenesis. This coordinated increase in mitophagy targeting and lysosomal biogenesis serves to enhance the capacity for autophagosomal degradation, thereby aiding in the maintenance of mitochondrial quality. Lysosome dysfunction, as observed in lysosomal storage disorders (LSDs), negatively impacts mitochondrial function likely through the suppression of mitophagy. Since exercise is capable of activating mitophagy and lysosome biogenesis, researchers have begun to investigate physical activity as an effective therapy for LSDs. This review summarizes the current understanding of how mitophagy and lysosomal biogenesis are regulated in exercising skeletal, with potential therapeutic implications.
Collapse
Affiliation(s)
- Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada; School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.
| | - David A Hood
- Muscle Health Research Centre, York University, Toronto, Ontario, M3J 1P3, Canada; School of Kinesiology and Health Science, York University, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
18
|
Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Sci Rep 2018; 8:11818. [PMID: 30087400 PMCID: PMC6081439 DOI: 10.1038/s41598-018-30365-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.
Collapse
|
19
|
Pi H, Li M, Xie J, Yang Z, Xi Y, Yu Z, Zhou Z. Transcription factor E3 protects against cadmium-induced apoptosis by maintaining the lysosomal-mitochondrial axis but not autophagic flux in Neuro-2a cells. Toxicol Lett 2018; 295:335-350. [PMID: 30030080 DOI: 10.1016/j.toxlet.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Cadmium (Cd), is a well-known environmental and occupational hazard with a potent neurotoxic action. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. Herein, we exposed Neuro-2a cells to different concentrations of cadmium chloride (CdCl2) (12.5, 25 and 50 μM) for 24 h and found that Cd significantly induced lysosomal membrane permeabilization (LMP) with the release of cathepsin B (CTSB) to the cytosol, which in turn caused the release of mitochondrial cytochrome c (Cyt c) and eventually triggered caspase-dependent apoptosis. Interestingly, Cd decreased TFE3 expression but induced the nuclear translocation of TFE3 and TFE3 target-gene expression, which might be associated with lysosomal stress mediated by Cd. Notably, Tfe3 overexpression protected against Cd-induced neurotoxicity by maintaining the lysosomal-mitochondrial axis, and the protective effect of TFE3 is not dependent on the restoration of autophagic flux. In conclusion, our study demonstrated for the first time that lysosomal-mitochondrial axis dependent apoptosis, a neglected mechanism, may be the most important reason for Cd-induced neurotoxicity and that manipulation of TFE3 signaling may be a potential therapeutic approach for treatment of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Min Li
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhiqi Yang
- Brain Research Center, Third Military Medical University, Chongqing, China; Department of Neurology, Army General Hospital in Lanzhou, Lanzhou, China
| | - Yu Xi
- Department of Occupational and Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China; State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Critical Care Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Monaco CMF, Hughes MC, Ramos SV, Varah NE, Lamberz C, Rahman FA, McGlory C, Tarnopolsky MA, Krause MP, Laham R, Hawke TJ, Perry CGR. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia 2018; 61:1411-1423. [PMID: 29666899 DOI: 10.1007/s00125-018-4602-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes. METHODS Physically active, young adults (men and women) with type 1 diabetes (HbA1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H2O2 emission and Ca2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence. RESULTS Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H2O2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKαThr172), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1Ser555) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups. CONCLUSIONS/INTERPRETATION Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Pathology and Molecular Medicine, McMaster University, 4N65 Health Sciences Centre, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Meghan C Hughes
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Sofhia V Ramos
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Nina E Varah
- Department of Pathology and Molecular Medicine, McMaster University, 4N65 Health Sciences Centre, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | | | - Fasih A Rahman
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Matthew P Krause
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Robert Laham
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, 4N65 Health Sciences Centre, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| | - Christopher G R Perry
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
21
|
Kim Y, Hood DA. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations. Physiol Rep 2017; 5:e13307. [PMID: 28720712 PMCID: PMC5532476 DOI: 10.14814/phy2.13307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle is adaptable to exercise stimuli via the upregulation of mitochondrial biogenesis, and recent studies have suggested that autophagy also plays a role in exercise-induced muscle adaptations. However, it is still obscure how muscle regulates autophagy over the time course of training adaptations. This study examined the expression of autophagic proteins in skeletal muscle of rats exposed to chronic contractile activity (CCA; 6 h/day, 9V, 10 Hz continuous, 0.1 msec pulse duration) for 1, 3, and 7 days (n = 8/group). CCA-induced mitochondrial adaptations were observed by day 7, as shown by the increase in mitochondrial proteins (PGC-1α, COX I, and COX IV), as well as COX activity. Notably, the ratio of LC3 II/LC3 I, an indicator of autophagy, decreased by day 7 largely due to a significant increase in LC3 I. The autophagic induction marker p62 was elevated on day 3 and returned to basal levels by day 7, suggesting a time-dependent increase in autophagic flux. The lysosomal system was upregulated early, prior to changes in mitochondrial proteins, as represented by increases in lysosomal system markers LAMP1, LAMP2A, and MCOLN1 as early as by day 1, as well as TFEB, a primary regulator of lysosomal biogenesis and autophagy flux. Our findings suggest that, in response to chronic exercise, autophagy is upregulated concomitant with mitochondrial adaptations. Notably, our data reveal the surprising adaptive plasticity of the lysosome in response to chronic contractile activity which enhances muscle health by providing cells with a greater capacity for macromolecular and organelle turnover.
Collapse
Affiliation(s)
- Yuho Kim
- Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
- School of Kinesiology and Health Science York University, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Evans TD, Sergin I, Zhang X, Razani B. Target acquired: Selective autophagy in cardiometabolic disease. Sci Signal 2017; 10:eaag2298. [PMID: 28246200 PMCID: PMC5451512 DOI: 10.1126/scisignal.aag2298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accumulation of damaged or excess proteins and organelles is a defining feature of metabolic disease in nearly every tissue. Thus, a central challenge in maintaining metabolic homeostasis is the identification, sequestration, and degradation of these cellular components, including protein aggregates, mitochondria, peroxisomes, inflammasomes, and lipid droplets. A primary route through which this challenge is met is selective autophagy, the targeting of specific cellular cargo for autophagic compartmentalization and lysosomal degradation. In addition to its roles in degradation, selective autophagy is emerging as an integral component of inflammatory and metabolic signaling cascades. In this Review, we focus on emerging evidence and key questions about the role of selective autophagy in the cell biology and pathophysiology of metabolic diseases such as obesity, diabetes, atherosclerosis, and steatohepatitis. Essential players in these processes are the selective autophagy receptors, defined broadly as adapter proteins that both recognize cargo and target it to the autophagosome. Additional domains within these receptors may allow integration of information about autophagic flux with critical regulators of cellular metabolism and inflammation. Details regarding the precise receptors involved, such as p62 and NBR1, and their predominant interacting partners are just beginning to be defined. Overall, we anticipate that the continued study of selective autophagy will prove to be informative in understanding the pathogenesis of metabolic diseases and to provide previously unrecognized therapeutic targets.
Collapse
Affiliation(s)
- Trent D Evans
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
20 Things You Didn’t Know About Exercise. J Cardiovasc Nurs 2016; 31:387-9. [DOI: 10.1097/jcn.0000000000000315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Krase AA, Papadimas GK, Terzis GD. Functional capacity in a late-onset Pompe disease patient: Effect of enzyme replacement therapy and exercise training. Ann Indian Acad Neurol 2016; 19:423-4. [PMID: 27570411 PMCID: PMC4980982 DOI: 10.4103/0972-2327.179980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Argyro A Krase
- First Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Athletics Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos K Papadimas
- First Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos D Terzis
- First Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Athletics Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|