1
|
Yang L, Ran H, Yin Y, Liu J, Lu B, Ran X, Luo S, Wang W, Yang Z, Li R. Mitochondrial Targeted Cerium Oxide Nanoclusters for Radiation Protection and Promoting Hematopoiesis. Int J Nanomedicine 2024; 19:6463-6483. [PMID: 38946882 PMCID: PMC11214556 DOI: 10.2147/ijn.s459607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results TPP-PCNLs exhibited good stability and biocompatibility. In vitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.
Collapse
Affiliation(s)
- Luxun Yang
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yaru Yin
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Liu
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Binghui Lu
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xi Ran
- Department of Medical Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Shenglin Luo
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, 610041, People's Republic of China
| | - Zhangyou Yang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rong Li
- Institute of Combined Injury, National Key Laboratory of Trauma and Chemical Poisoning, Army Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
2
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
3
|
Mansouri E, Mesbahi A, Hamishehkar H, Montazersaheb S, Hosseini V, Rajabpour S. The effect of nanoparticle coating on biological, chemical and biophysical parameters influencing radiosensitization in nanoparticle-aided radiation therapy. BMC Chem 2023; 17:180. [PMID: 38082361 PMCID: PMC10712124 DOI: 10.1186/s13065-023-01099-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/04/2023] [Indexed: 04/25/2025] Open
Abstract
Nanoparticle-based composites have the potential to meet requirements for radiosensitization in both therapeutic and diagnostic applications. The radiosensitizing properties of nanoparticles could be reliant on the nature of their coating layer. Any gains in reduced toxicity and aggregation or improved delivery to tumor cells for coated nanoparticles must be weighed against the loss of dose enhancement. The radiosensitization potential of coated NPs is confirmed by numerous studies but in most of them, the coating layer is mostly applied to reduce toxicity of the NPs and for stability and biocompatibility aims. While the direct effects of the coating layer in radiosensitization-were ignored and not considered. This review provides an overview of double-edged impact of nanoparticle coating on the radiosensitization potential of nanostructures and discusses the challenges in choosing appropriate coating material in the aim of achieving improved radioenhancement. Coating layer could affect the radiosensitization processes and thereby the biological outcomes of nanoparticle-based radiation therapy. The physicochemical properties of the coating layer can be altered by the type of the coating material and its thickness. Under low-energy photon irradiation, the coating layer could act as a shield for nanoparticles capable of absorb produced low-energy electrons which are important levers for local and nanoscopic dose enhancement. Also, it seems that the coating layer could mostly affect the chemical process of ROS production rather than the physicochemical process. Based on the reviewed literature, for the irradiated coated nanoparticles, the cell survival and viability of cancer cells are decreased more than normal cells. Also, cell cycle arrest, inhibition of cell proliferation, DNA damage, cell death and apoptosis were shown to be affected by coated metallic nanoparticles under irradiation.
Collapse
Affiliation(s)
- Elham Mansouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Mesbahi
- Radiation Oncology Department, Olivia Newton-John Cancer, Wellness and Research center, Austin Health, Melbourne, Australia.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Institute of Biomedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Rajabpour
- Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Hancock ML, Grulke EA, Yokel RA. Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:762-780. [PMID: 37405151 PMCID: PMC10315891 DOI: 10.3762/bjnano.14.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Cerium atoms on the surfaces of nanoceria (i.e., cerium oxide in the form of nanoparticles) can store or release oxygen, cycling between Ce3+ and Ce4+; therefore, they can cause or relieve oxidative stress within living systems. Nanoceria dissolution occurs in acidic environments. Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, namely citric acid, is used in many synthesis protocols. Citric acid adsorbs onto nanoceria surfaces, limiting particle formation and creating stable dispersions with extended shelf life. To better understand factors influencing the fate of nanoceria, its dissolution and stabilization have been previously studied in vitro using acidic aqueous environments. Nanoceria agglomerated in the presence of some carboxylic acids over 30 weeks, and degraded in others, at pH 4.5 (i.e., the pH value in phagolysosomes). Plants release carboxylic acids, and cerium carboxylates are found in underground and aerial plant parts. To further test nanoceria stability, suspensions were exposed to light and dark conditions, simulating plant environments and biological systems. Light induced nanoceria agglomeration in the presence of some carboxylic acids. Nanoceria agglomeration did not occur in the dark in the presence of most carboxylic acids. Light initiates free radicals generated by ceria nanoparticles. Nanoceria completely dissolved in the presence of citric, malic, and isocitric acid when exposed to light, attributed to nanoceria dissolution, release of Ce3+ ions, and formation of cerium coordination complexes on the ceria nanoparticle surface that inhibit agglomeration. Key functional groups of carboxylic acids that prevented nanoceria agglomeration were identified. A long carbon chain backbone containing a carboxylic acid group geminal to a hydroxy group in addition to a second carboxylic acid group may optimally complex with nanoceria. The results provide mechanistic insight into the role of carboxylic acids in nanoceria dissolution and its fate in soils, plants, and biological systems.
Collapse
Affiliation(s)
- Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States
| | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States
| |
Collapse
|
6
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
7
|
Chong Y, Ning J, Min S, Ye J, Ge C. Emerging nanozymes for potentiating radiotherapy and radiation protection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Du Z, Liu H, Huang X, Li Y, Wang L, Liu J, Long S, Li R, Xiang Q, Luo S. Design and Synthesis of a Mitochondria-Targeting Radioprotectant for Promoting Skin Wound Healing Combined with Ionizing Radiation Injury. Pharmaceuticals (Basel) 2022; 15:ph15060721. [PMID: 35745640 PMCID: PMC9229538 DOI: 10.3390/ph15060721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Wound healing is seriously retarded when combined with ionizing radiation injury, because radiation-induced excessive reactive oxygen species (ROS) profoundly affect cell growth and wound healing. Mitochondria play vital roles not only as cellular energy factories but also as the main source of endogenous ROS, and in this work a mitochondria-targeting radioprotectant (CY-TMP1) is reported for radiation injury-combined wound repair. It was designed, synthesized and screened out from different conjugates between mitochondria-targeting heptamethine cyanine dyes and a peroxidation inhibitor 2,2,6,6-tetramethylpiperidinyloxy (TEMPO). CY-TMP1 specifically accumulated in mitochondria, efficiently mitigated mitochondrial ROS and total intracellular ROS induced by 6 Gy of X-ray ionizing irradiation, thereby exhibiting a notable radioprotective effect. The mechanism study further demonstrated that CY-TMP1 protected mitochondria from radiation-induced injury, including maintaining mitochondrial membrane potential (MMP) and ATP generation, thereby reducing the ratio of cell apoptotic death. Particularly, an in vivo experiment showed that CY-TMP1 could effectively accelerate wound closure of mice after 6 Gy of whole-body ionizing radiation. Immunohistochemical staining further indicated that CY-TMP1 may improve wound repair through angiogenesis and re-epithelialization. Therefore, mitochondria-targeting ROS scavengers may present a feasible strategy to conquer refractory wound combined with radiation injury.
Collapse
Affiliation(s)
- Zaizhi Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (X.H.); (J.L.); (S.L.); (R.L.)
| | - Han Liu
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; (H.L.); (Y.L.)
| | - Xie Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (X.H.); (J.L.); (S.L.); (R.L.)
| | - Yang Li
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; (H.L.); (Y.L.)
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing 400038, China;
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (X.H.); (J.L.); (S.L.); (R.L.)
| | - Shuang Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (X.H.); (J.L.); (S.L.); (R.L.)
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (X.H.); (J.L.); (S.L.); (R.L.)
| | - Qiang Xiang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; (H.L.); (Y.L.)
- Correspondence: (Q.X.); (S.L.)
| | - Shenglin Luo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; (Z.D.); (X.H.); (J.L.); (S.L.); (R.L.)
- Correspondence: (Q.X.); (S.L.)
| |
Collapse
|
9
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
10
|
Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112369. [PMID: 34579888 DOI: 10.1016/j.msec.2021.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Metal-organic frameworks (MOFs) are useful as drug delivery carriers with high loading capacity and excellent biocompatibility. We fabricated a new drug carrier based on MIL-101(Cr) environmentally and loaded it with 47.2 wt% WR-1065 (active metabolite of amifostine). Moreover, the permeability and stability of these nanoparticles increased after PEGylation by the N-hydroxysuccinimide active ester protocol. Then, a "green" continuous-flow system equipped with an ultrasound applicator was newly designed to prepare the nanoparticles under the effect of acoustic cavitation. Response surface methodology (RSM) was used to optimize the large-scale process conditions with Box-Behnken design to obtain high space-time yield (5785 kg m-3 day-1). These less toxic MOFs nanoparticles increased cell viability by scavenging the accumulated reactive oxygen species and resisting DNA damage after irradiation. They are capable of mitigating radiation injury, achieving a 30-d survival rate of 90% in mice after lethal total body irradiation (8.0 Gy). This countermeasure significantly improved the peripheral blood cell count, hematopoietic stem and progenitor cells frequency, and clonogenic function of hematopoietic progenitor cells. It probably prevents irradiation-induced hematopoietic damage through the p53-dependent apoptotic pathway. Therefore, ultrasound-assisted continuous-flow synthesis is a sustainable method to produce MOFs on a large scale for radioprotection.
Collapse
|
11
|
A A, Fletcher NL, Houston ZH, Thurecht KJ, Grøndahl L. Evaluation of the in vivo fate of ultrapure alginate in a BALB/c mouse model. Carbohydr Polym 2021; 262:117947. [PMID: 33838824 DOI: 10.1016/j.carbpol.2021.117947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 11/26/2022]
Abstract
The linear anionic polysaccharide alginate (ALG) has been comprehensively studied for biomedical applications, yet thus far the in vivo fate of this polymer has not been explored in detail. The current study therefore evaluates the biodistribution of ultrapure ALG (M/G ratio ≥ 0.67 with a measured Mw of 530 kg/mol and polydispersity index; PDI of 1.49) over a 14-day period in BALB/c mice. The biodistribution pattern over 2-days after sample administration using PET imaging with 64Cu-labelled ALG showed liver and spleen uptake. This was confirmed by the 14-day biodistribution profile of cyanine 5-labelled ALG from in vivo and ex vivo fluorescence imaging. Using MacGreen mice confirmed the uptake of the ALG by macrophages in the spleen at the 2-day time point. This extended biodistribution study confirmed the clearance of only a portion of the administered ALG biopolymer, but also uptake by macrophage populations in the spleen over a 14-day period.
Collapse
Affiliation(s)
- Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Li X, Wang X, Miao L, Liu Y, Lin X, Guo Y, Yuan R, Tian H. Synthesis and radioprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives. J Cell Mol Med 2021; 25:5470-5485. [PMID: 33963805 PMCID: PMC8184683 DOI: 10.1111/jcmm.16557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
As the potential risk of radiation exposure is increasing, radioprotectors studies are gaining importance. In this study, novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives were synthesized, and their radioprotective effects were evaluated. Among these, compound 10a displayed the highest radioprotective activity in IEC-6 and HFL-1 cells. Its oral administration increased the survival rates of irradiated mice and alleviated total body irradiation (TBI)-induced hematopoietic damage by mitigating myelosuppression and improving hematopoietic stem/progenitor cell frequencies. Furthermore, 10a treatment prevented abdominal irradiation (ABI)-induced structural damage to the small intestine. Experiment results demonstrated that 10a increased the number of Lgr5+ intestinal stem cells, lysozyme+ Paneth cells and Ki67+ transient amplifying cells, and reduced apoptosis of the intestinal epithelium cells in irradiated mice. Moreover, in vitro and in vivo studies demonstrated that the radioprotective activity of 10a is associated to the reduction of oxidative stress and the inhibition of DNA damage. Furthermore, compound 10a downregulated the expressions of p53, Bax, caspase-9 and caspase-3, and upregulated the expression of Bcl-2, suggesting that it could prevent irradiation-induced intestinal damage through the p53-dependent apoptotic pathway. Collectively, these findings demonstrate that 10a is beneficial for the prevention of radiation damage and has the potential to be a radioprotector.
Collapse
Affiliation(s)
- Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xinxin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yahong Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xiaona Lin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| |
Collapse
|
13
|
Zhao R, Liu H, Li Y, Guo M, Zhang XD. Catalytic Nanozyme for Radiation Protection. Bioconjug Chem 2021; 32:411-429. [PMID: 33570917 DOI: 10.1021/acs.bioconjchem.0c00648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Radiotherapy has been widely used in clinical cancer treatment. However, the ionizing radiation required to kill the tumor will inevitably cause damage to the surrounding normal tissues. To minimize the radiation damage and side effects, small molecular radioprotective agents have been used as clinical adjuvants for radiation protection of healthy tissues. However, the shortcomings of small molecules such as short circulation time and rapid kidney clearance from the body greatly hinder their biomedical applications. In recent years, nanozymes have attracted much attention because of their potential to treat a variety of diseases. Nanozymes exhibit catalytic properties and antioxidant capabilities to provide a potential solution for the development of high-efficiency radioprotective agents in radiotherapy and nuclear radiation accidents. Therefore, in this review, we systematically summarize the catalytic nanozymes used for radiation protection of healthy tissues and discuss the challenges and future prospects of nanomaterials in the field of radiation protection.
Collapse
Affiliation(s)
- Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Yongming Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Stephen Inbaraj B, Chen BH. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci 2020; 15:558-575. [PMID: 33193860 PMCID: PMC7610205 DOI: 10.1016/j.ajps.2019.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/25/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cerium oxide nanoparticles (CNPs) possess a great potential as therapeutic agents due to their ability to self-regenerate by reversibly switching between two valences +3 and +4. This article reviews recent articles dealing with in vivo studies of CNPs towards Alzheimer's disease, obesity, liver inflammation, cancer, sepsis, amyotrophic lateral sclerosis, acute kidney injury, radiation-induced tissue damage, hepatic ischemia reperfusion injury, retinal diseases and constipation. In vivo anti-cancer studies revealed the effectiveness of CNPs to reduce tumor growth and angiogenesis in melanoma, ovarian, breast and retinoblastoma cancer cell-induced mice, with their conjugation with folic acid, doxorubicin, CPM, or CXC receptor-4 antagonist ligand eliciting higher efficiency. After conjugation with triphenylphosphonium or magnetite nanoparticles, CNPs were shown to combat Alzheimer's disease by reducing amyloid-β, glial fibrillary acidic protein, inflammatory and oxidative stress markers in mice. By improving muscle function and longevity, the citrate/EDTA-stabilized CNPs could ameliorate amyotrophic lateral sclerosis. Also, they could effectively reduce obesity in mice by scavenging ROS and reducing adipogenesis, triglyceride synthesis, GAPDH enzyme activity, leptin and insulin levels. In CCl4-induced rats, stress signaling pathways due to inflammatory cytokines, liver enzymes, oxidative and endoplasmic reticulum messengers could be attenuated by CNPs. Commercial CNPs showed protective effects on rats with hepatic ischemia reperfusion and peritonitis-induced hepatic/cardiac injuries by decreasing oxidative stress and hepatic/cardiac inflammation. The same CNPs could improve kidney function by diminishing renal superoxide, hyperglycemia and tubular damage in peritonitis-induced acute kidney injury in rats. Radiation-induced lung and testicular tissue damage could be alleviated in mice, with the former showing improvement in pulmonary distress and bronchoconstriction and the latter exhibiting restoration in spermatogenesis rate and spermatid/spermatocyte number. Through enhancement of gastrointestinal motility, the CNPs could alleviate constipation in both young and old rats. They could also protect rat from light-induced retinal damage by slowing down neurodegenerative process and microglial activation.
Collapse
Affiliation(s)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, Taipei 242
| |
Collapse
|
15
|
Gutiérrez-Carcedo P, Navalón S, Simó R, Setoain X, Aparicio-Gómez C, Abasolo I, Victor VM, García H, Herance JR. Alteration of the Mitochondrial Effects of Ceria Nanoparticles by Gold: An Approach for the Mitochondrial Modulation of Cells Based on Nanomedicine. NANOMATERIALS 2020; 10:nano10040744. [PMID: 32295053 PMCID: PMC7221686 DOI: 10.3390/nano10040744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Ceria nanoparticles are cell compatible antioxidants whose activity can be enhanced by gold deposition and by surface functionalization with positive triphenylphosphonium units to selectively target the mitochondria. The antioxidant properties of these nanoparticles can serve as the basis of a new strategy for the treatment of several disorders exhibiting oxidative stress, such as cancer, diabetes or Alzheimer’s disease. However, all of these pathologies require a specific antioxidant according with their mechanism to remove oxidant species excess in cells and diminish their effect on mitochondrial function. The mechanism through which ceria nanoparticles neutralize oxidative stress and their effect on mitochondrial function have not been characterized yet. In the present study, the mitochondria antioxidant effect of ceria and ceria-supported gold nanoparticles, with or without triphenylphosphonium functionalization, was assessed in HeLa cells. The effect caused by ceria nanoparticles on mitochondria function in terms of mitochondrial membrane potential (∆Ψm), adenosine triphosphate (ATP) production, nuclear respiratory factor 1 (NRF1) and nuclear factor erythroid–2–like 1 (NFE2L1) was reversed by the presence of gold. Furthermore, this effect was enhanced when nanoparticles were functionalized with triphenylphosphonium. Our study illustrates how the mitochondrial antioxidant effect induced by ceria nanoparticles can be modulated by the presence of gold.
Collapse
Affiliation(s)
- Patricia Gutiérrez-Carcedo
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Universitat Autònoma de Barcelona (UAB) and Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (P.G.-C.); (C.A.-G.)
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Department of Endocrinology, Vall d’Hebron Research Institute, UAB, Biomedical Research Center in Diabetes Network and Associated Metabolic Diseases (CIBERDEM), 08035 Barcelona, Spain;
| | - Sergio Navalón
- Deparment of Chemistry and Instiute of Chemical Technology (CSIC-UPV), Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Department of Endocrinology, Vall d’Hebron Research Institute, UAB, Biomedical Research Center in Diabetes Network and Associated Metabolic Diseases (CIBERDEM), 08035 Barcelona, Spain;
| | - Xavier Setoain
- Hospital Clinic, Biophysics and Bioengineering Unit, Biomedicine Department, School of Medicine, University of Barcelona, and CIBER-BBN, 08036 Barcelona, Spain;
| | - Carolina Aparicio-Gómez
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Universitat Autònoma de Barcelona (UAB) and Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (P.G.-C.); (C.A.-G.)
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR), Group of Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d’Hebron Research Institute, UAB, CIBBER-BBN, 08035 Barcelona, Spain;
| | - Victor Manuel Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, FISABIO, 46017 Valencia, Spain;
- CIBERehd, Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Hermenegildo García
- Deparment of Chemistry and Instiute of Chemical Technology (CSIC-UPV), Universitat Politècnica de València, 46022 Valencia, Spain;
- Correspondence: (H.G.); (J.R.H.); Tel.: +34-96-387-7807 (H.G.); +34-93-489-3000 (ext. 4946) (J.R.H.)
| | - José Raúl Herance
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Universitat Autònoma de Barcelona (UAB) and Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (P.G.-C.); (C.A.-G.)
- Correspondence: (H.G.); (J.R.H.); Tel.: +34-96-387-7807 (H.G.); +34-93-489-3000 (ext. 4946) (J.R.H.)
| |
Collapse
|
16
|
Howard D, Sebastian S, Le QVC, Thierry B, Kempson I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int J Mol Sci 2020; 21:E579. [PMID: 31963205 PMCID: PMC7013516 DOI: 10.3390/ijms21020579] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/19/2023] Open
Abstract
Metal nanoparticles are of increasing interest with respect to radiosensitization. The physical mechanisms of dose enhancement from X-rays interacting with nanoparticles has been well described theoretically, however have been insufficient in adequately explaining radiobiological response. Further confounding experimental observations is examples of radioprotection. Consequently, other mechanisms have gained increasing attention, especially via enhanced production of reactive oxygen species (ROS) leading to chemical-based mechanisms. Despite the large number of variables differing between published studies, a consensus identifies ROS-related mechanisms as being of significant importance. Understanding the structure-function relationship in enhancing ROS generation will guide optimization of metal nanoparticle radiosensitisers with respect to maximizing oxidative damage to cancer cells. This review highlights the physico-chemical mechanisms involved in enhancing ROS, commonly used assays and experimental considerations, variables involved in enhancing ROS generation and damage to cells and identifies current gaps in the literature that deserve attention. ROS generation and the radiobiological effects are shown to be highly complex with respect to nanoparticle physico-chemical properties and their fate within cells. There are a number of potential biological targets impacted by enhancing, or scavenging, ROS which add significant complexity to directly linking specific nanoparticle properties to a macroscale radiobiological result.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia; (D.H.); (B.T.)
| |
Collapse
|
17
|
Long W, Mu X, Wang JY, Xu F, Yang J, Wang J, Sun S, Chen J, Sun YM, Wang H, Zhang XD. Dislocation Engineered PtPdMo Alloy With Enhanced Antioxidant Activity for Intestinal Injury. Front Chem 2019; 7:784. [PMID: 31803720 PMCID: PMC6873609 DOI: 10.3389/fchem.2019.00784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy is the mainstay for abdomen and pelvis cancers treatment. However, high energy ray would inflict gastrointestinal (GI) system and adversely disrupt the treatment. The anti-oxidative agents provide a potential route for protecting body from radiation-induced injuries. Herein, highly catalytic nanocubes with dislocation structure are developed for treatment of intestinal injury. Structural and catalytic properties show that Mo incorporation can enhance antioxidant activity by dislocation structure in the alloy. In vitro studies showed that PtPdMo improved cell survival by scavenging radiation-induced ROS accumulation. Furthermore, after animals were exposed to lethal dose of radiation, the survival was increased by 50% with the PtPdMo i.p. treatment. Radioprotection mechanism revealed that PtPdMo alleviated the oxidative stress in multi-organs especially the small intestine by inhibiting intestinal epithelium apoptosis, reducing DNA strands breaks and enhancing repairing ability. In addition, PtPdMo protected hematopoietic system by improving the number of bone marrow and peripheral blood cells.
Collapse
Affiliation(s)
- Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, China
| | - Jun-Ying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, China
| | - Fujuan Xu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingya Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, China
| | - Jing Chen
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, China
| | - Yuan-Ming Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Ren X, Huo M, Wang M, Lin H, Zhang X, Yin J, Chen Y, Chen H. Highly Catalytic Niobium Carbide (MXene) Promotes Hematopoietic Recovery after Radiation by Free Radical Scavenging. ACS NANO 2019; 13:6438-6454. [PMID: 31180624 DOI: 10.1021/acsnano.8b09327] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ionizing radiation (IR) has been extensively used in industry and radiotherapy, but IR exposure from nuclear or radiological accidents often causes serious health effects in an exposed individual, and its application in radiotherapy inevitably brings undesirable damage to normal tissues. In this work, we have developed ultrathin two-dimensional (2D) niobium carbide (Nb2C) MXene as a radioprotectant and explored its application in scavenging free radicals against IR. The 2D Nb2C MXene features intriguing antioxidant properties in effectively eliminating hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide radicals (O2•-). Pretreatment with biocompatible polyvinylpyrrolidone (PVP)-functionalized Nb2C nanosheets (Nb2C-PVP NSs) significantly reduces IR-induced production of reactive oxygen species (ROS), resulting in enhanced cell viability in vitro. A single intravenous injection of Nb2C-PVP significantly enhances the survival rate of 5 and 6.5 Gy irradiated mice to 100% and 81.25%, respectively, and significantly increases bone marrow mononuclear cells after IR. Critically, Nb2C-PVP reverses the damage of the hematopoietic system in irradiated mice. Single administration of Nb2C-PVP significantly increases superoxide dismutase (SOD) activities, decreases malondialdehyde levels, and thereby reduces IR-induced pathological damage in the testis, small intestine, lung, and liver of 5 Gy irradiated mice. Importantly, Nb2C-PVP is almost completely eliminated from the mouse body on day 14 post treatment, and no obvious toxicities are observed during the 30-day post treatment period. Our study pioneers the application of 2D MXenes with intrinsic radioprotective nature in vivo.
Collapse
Affiliation(s)
- Xiangyi Ren
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Science , Beijing , 100049 , People's Republic of China
| | - Mengmeng Wang
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Science , Beijing , 100049 , People's Republic of China
| | - Xuxia Zhang
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Jun Yin
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
| | - Honghong Chen
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| |
Collapse
|
19
|
Yokel RA, Hancock ML, Grulke EA, Unrine JM, Dozier AK, Graham UM. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution. Nanotoxicology 2019; 13:455-475. [PMID: 30729879 PMCID: PMC6609459 DOI: 10.1080/17435390.2018.1553251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material balances were conducted for the cassette and bath by sampling of each chamber and cerium quantitation by ICP-MS. Samples were collected from the cassette for high-resolution transmission electron microscopy observation of nanoceria size. In carboxylic acid solutions, nanoceria dissolution increased bath cerium concentration to >96% of the cerium introduced as nanoceria into the cassette and decreased nanoceria primary particle size in the cassette. In solutions of citric, malic, and lactic acids and the ammonium ion ∼15 nm, ceria agglomerates persisted. In solutions of other carboxylic acids, some select nanoceria agglomerates grew to ∼1 micron. In carboxylic acid solutions, dissolution half-lives were 800-4000 h; in water and horseradish peroxidase they were ≥55,000 h. Extending these findings to in vivo and environmental systems, one expects acidic environments containing carboxylic acids to degrade nanoceria by dissolution; two examples would be phagolysosomes and in the plant rhizosphere.
Collapse
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | | | - Eric A. Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
- CDC/NIOSH, Cincinnati, OH
| |
Collapse
|
20
|
Xie J, Wang N, Dong X, Wang C, Du Z, Mei L, Yong Y, Huang C, Li Y, Gu Z, Zhao Y. Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2579-2590. [PMID: 29509394 DOI: 10.1021/acsami.8b00949] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Numerous carbon networks materials comprised of benzene moieties, such as graphene and fullerene, have held great fascination for radioprotection because of their acknowledged good biocompatibility and strong free radical scavenging activity derived from their delocalized π-conjugated structure. Recently, graphdiyne, a new emerging carbon network material consisting of a unique chemical structure of benzene and acetylenic moieties, has gradually attracted attention in many research fields. Encouraged by its unique structure with strong conjugated π-system and highly reactive diacetylenic linkages, graphdiyne might have free radical activity and can thus be used as a radioprotector, which has not been investigated so far. Herein, for the first time, we synthesized bovine serum albumin (BSA)-modified graphdiyne nanoparticles (graphdiyne-BSA NPs) to evaluate their free radical scavenging ability and investigate their application for radioprotection both in cell and animal models. In vitro studies indicated that the graphdiyne-BSA NPs could effectively eliminate the free-radicals, decrease radiation-induced DNA damage in cells, and improve the viability of cells under ionizing radiation. In vivo experiments showed that the graphdiyne-BSA NPs could protect the bone marrow DNA of mice from radiation-induced damage and make the superoxide dismutase (SOD) and malondialdehyde (MDA) (two kinds of vital indicators of radiation-induced injury) recover back to normal levels. Furthermore, the good biocompatibility and negligible systemically toxicity responses of the graphdiyne-BSA NPs to mice were verified. All these results manifest the good biosafety and radioprotection activity of graphdiyne-BSA NPs to normal tissues. Therefore, our studies not only provide a new radiation protection platform based on graphdiyne for protecting normal tissues from radiation-caused injury but also provide a promising direction for the application of graphdiyne in the biomedicine field.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Ning Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences . No. 189 Songling Road , Qingdao 266101 , China
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Zhen Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering , Southwest Minzu University , Chengdu , 610041 , P.R. China
| | - Changshui Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences . No. 189 Songling Road , Qingdao 266101 , China
| | - Yuliang Li
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| |
Collapse
|
21
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
22
|
Zeng Y, Zeng W, Zhou Q, Jia X, Li J, Yang Z, Hao Y, Liu J. Hyaluronic acid mediated biomineralization of multifunctional ceria nanocomposites as ROS scavengers and tumor photodynamic therapy agents. J Mater Chem B 2019. [DOI: 10.1039/c8tb03374a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel HA@ceria nanoquantum dots (HA@CQDs) exhibit efficient protective effects against damage induced by ROS. More importantly, aided by H2O2, the HA@CQDs-Ce6/H2O2 significantly enhanced PDT efficacy for the tumor therapy.
Collapse
Affiliation(s)
- Yiping Zeng
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| | - Weinan Zeng
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| | - Qing Zhou
- State Key Laboratory of Trauma Burns and Combined Injury
- Institute of Combined Injury
- College of Preventive Medicine
- Third Military Medical University
- Chongqing
| | - Xiaolin Jia
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| | - Juan Li
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing
- China
| | - Zhangyou Yang
- Pharmaceutical Engineering Research Center
- College of Pharmacy
- Chongqing Medical University
- Chongqing
- China
| | - Yuhui Hao
- State Key Laboratory of Trauma Burns and Combined Injury
- Institute of Combined Injury
- College of Preventive Medicine
- Third Military Medical University
- Chongqing
| | - Junli Liu
- Department of Orthopedics
- Chongqing General Hospital
- University of Chinese Academy of Sciences
- Chongqing
- China
| |
Collapse
|
23
|
Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802244. [PMID: 30156333 DOI: 10.1002/adma.201802244] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Nano-radiosensitization has been a hot concept for the past ten years, and the nanomaterial-mediated tumor radiosensitization method is mainly focused on increasing intracellular radiation deposition by high atomic number (high Z) nanomaterials, particularly gold (Au)-mediated radiation enhancement. Recently, various new nanomaterial-mediated radiosensitive approaches have been successively reported, such as catalyzing reactive oxygen species (ROS) generation, consuming intracellular reduced glutathione (GSH), overcoming tumor hypoxia, and various synergistic radiotherapy ways. These strategies may open a new avenue for enhancing the radiotherapeutic effect and avoiding its side effects. Nevertheless, reviews systematically summarizing these newly emerging methods and their radiosensitive mechanisms are still rare. Therefore, the general strategies of nanomaterial-mediated tumor radiosensitization are comprehensively summarized, particularly aiming at introducing the emerging radiosensitive methods. The strategies are divided into three general parts. First, methods on account of the intrinsic radiosensitive properties of nanoradiosensitizers for radiosensitization are highlighted. Then, newly developed synergistic strategies based on multifunctional nanomaterials for enhancing radiotherapy efficacy are emphasized. Third, nanomaterial-mediated radioprotection approaches for increasing the radiotherapeutic ratio are discussed. Importantly, the clinical translation of nanomaterial-mediated tumor radiosensitization is also covered. Finally, further challenges and outlooks in this field are discussed.
Collapse
Affiliation(s)
- Jiani Xie
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Linji Gong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Yong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
24
|
Das S, Neal CJ, Ortiz J, Seal S. Engineered nanoceria cytoprotection in vivo: mitigation of reactive oxygen species and double-stranded DNA breakage due to radiation exposure. NANOSCALE 2018; 10:21069-21075. [PMID: 30226515 DOI: 10.1039/c8nr04640a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cerium oxide nanomaterials are known to absorb ionizing radiation energy, as well as to neutralize free radicals in solution, by undergoing redox changes. We, therefore, proposed that ceria nanoparticles could be used in biomedical applications as an injectable, radio-protectant material. In this study, we examine the effectiveness of engineered nanoparticles in protecting germ cells from the damaging effects of irradiation-induced cell death, in vivo. C57BL/6J male mice were used as a model and irradiation was localized to the scrotal region at 2.5, 5, and/or 10 Gy intensities. Ceria nanoparticles were introduced as 100 μL injections at 100 nM and 100 μM via tail vein injections, weekly, for one month. Following this, the animals were sacrificed and their organs (heart, brain, kidneys) were harvested. Tissues were fixed, sectioned, and stained for instances of cell death, DNA damage (TUNEL assay), and ROS (nitro-tyrosine evolution). Tissues from mice treated with ceria nanoparticles showed significantly less (∼13% decrease; *P < 0.05) tissue damage (per immunohistochemistry) over controls at up to 5 Gy radiation. DNA damage and ROS also decrease substantially with ceria treatment, confirming ceria's capacity as an injectable, radio-protectant material. The study also highlights the ability of ceria nanoparticles to protect cells/tissues from both direct and indirect effects of ionizing radiation.
Collapse
Affiliation(s)
- Soumen Das
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | |
Collapse
|
25
|
Xie J, Wang C, Zhao F, Gu Z, Zhao Y. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Adv Healthc Mater 2018; 7:e1800421. [PMID: 30019546 DOI: 10.1002/adhm.201800421] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been extensively used in clinic for malignant tumors treatment. However, a severe challenge of it is that the ionizing radiation needed to kill tumors inevitably causes damage to surrounding normal tissues. Although some of the molecular radioprotective drugs, such as amifostine, have been used as clinical adjuvants to radio-protect healthy tissues, their shortcomings such as short systemic circulation time and fast biological clearing from the body largely hinder the sustained bioactivity. Recently, with the rapid development of nanotechnology in the biological field, the multifunctional nanomaterials not only establish powerful drug delivery systems to improve the molecular radioprotective drugs' biological availability, but also open a new route to develop neozoic radioprotective agents because some nanoparticles possess intrinsic radioprotective abilities. Therefore, considering these overwhelming superiorities, this review systematically summarizes the advances in healthy tissue radioprotection applications of multifunctional nanomaterials. Furthermore, this review also points out a perspective of nanomaterial designs for radioprotection applications and discusses the challenges and future outlooks of the nanomaterial-mediated radioprotection.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
26
|
Ameliorative efficacy of bioencapsulated Chironomous larvae with Shilajit on Zebrafish (Danio rerio) exposed to Ionizing radiation. Appl Radiat Isot 2017; 128:108-113. [PMID: 28697403 DOI: 10.1016/j.apradiso.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/24/2017] [Accepted: 07/04/2017] [Indexed: 01/28/2023]
Abstract
Using Zebrafish (Danio rerio) as a model organism, we evaluated the radioprotective and antioxidant effects of the Indian traditional medicine Shilajit exposed to X-Ray. The Zebrafish were divided into three experimental groups and control group, each group containing ten fish. The three experimental fish groups, group I, group II and group III were fed with 3, 5 and 7ppm shilajit encapsulated Chironomous larvae and group IV served as a control fed with non- encapsulated larvae. After 60 days of feeding trial, fish were irradiated with X-Ray at a single acute dose of 1Gy. 72h of post-irradiation, each experimental fish were observed for its morphological, behavioral, clinical symptoms, antioxidant levels and DNA damage were evaluated. Among the experimental groups 5ppm shilajit encapsulated Chironomous larvae fed fish group shows the most significant radioprotective effects compared with control and other experimental fish groups. The present study indicates that shilajit have significant radioprotective and antioxidant enhancing capability. The humus substance of shilajit may be the factor responsible to react with radiation-derived or radiation related reactive species on zebrafish.
Collapse
|
27
|
Catalytic topological insulator Bi 2 Se 3 nanoparticles for in vivo protection against ionizing radiation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1597-1605. [DOI: 10.1016/j.nano.2017.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/23/2017] [Accepted: 02/27/2017] [Indexed: 12/22/2022]
|
28
|
Dai WW, Guo HF, Qian DH, Qin ZX, Lei Y, Hou XY, Wen C. Improving endothelialization by the combined application of polyethylene glycol coated cerium oxide nanoparticles and VEGF in electrospun polyurethane scaffolds. J Mater Chem B 2017; 5:1053-1061. [DOI: 10.1039/c6tb02391f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CNPs-PEG/VEGF loaded electrospun PU scaffolds inhibit oxidative stress-induced EPC apoptosis as well as promote endothelializationin vitro.
Collapse
Affiliation(s)
- Wei-Wei Dai
- Department of General Medicine
- Health Service Training Base, Third Military Medical University
- Chongqing 400038
- China
| | - Hong-Feng Guo
- Department of General Medicine
- Health Service Training Base, Third Military Medical University
- Chongqing 400038
- China
| | - De-Hui Qian
- Department of Cardiology
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Zhe-Xue Qin
- Department of Cardiology
- Xinqiao Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Yan Lei
- Department of General Medicine
- Health Service Training Base, Third Military Medical University
- Chongqing 400038
- China
| | - Xiao-Yu Hou
- Department of General Medicine
- Health Service Training Base, Third Military Medical University
- Chongqing 400038
- China
| | - Can Wen
- Department of General Medicine
- Health Service Training Base, Third Military Medical University
- Chongqing 400038
- China
| |
Collapse
|
29
|
Li H, Liu C, Zeng YP, Hao YH, Huang JW, Yang ZY, Li R. Nanoceria-Mediated Drug Delivery for Targeted Photodynamic Therapy on Drug-Resistant Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31510-31523. [PMID: 27933980 DOI: 10.1021/acsami.6b07338] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photodynamic therapy (PDT) has shown great potential for overcoming drug-resistant cancers. Here, we report a multifunctional drug delivery system based on chlorin e6 (Ce6)/folic acid (FA)-loaded branched polyethylenimine-PEGylation ceria nanoparticles (PPCNPs-Ce6/FA), which was developed for targeted PDT to overcome drug-resistant breast cancers. Nanocarrier delivery and FA targeting significantly promoted the cellular uptake of photosensitizers (PSs), followed by their accumulation in lysosomes. PPCNPs-Ce6/FA generated reactive oxygen species (ROS) after near-infrared irradiation (NIR, 660 nm), leading to reduced P-glycoprotein (P-gp) expression, lysosomal membrane permeabilization (LMP), and excellent phototoxicity toward resistant MCF-7/ADR cells, even at ultralow doses. Moreover, we identified NIR-triggered lysosomal-PDT using the higher dose of PPCNPs-Ce6/FA, which stimulated cell death by plasma membrane blebbing, cell swelling, and energy depletion, indicating an oncosis-like cell death pathway, despite the occurrence of apoptotic or autophagic mechanisms at lower drug doses. In vivo studies showed prolonged blood circulation times, low toxicity in mice, and high tumor accumulation of PPCNPs-Ce6/FA. In addition, using NIR-triggered PDT, PPCNPs-Ce6/FA displayed excellent potency for tumor regression in the MCF-7/ADR xenograft murine model. This study suggested that multifunctional PPCNPs-Ce6/FA nanocomposites are a versatile and effective drug delivery system that may potentially be exploited for phototherapy to overcome drug-resistant cancers, and the mechanisms of cell death induced by PDT should be considered in the design of clinical protocols.
Collapse
Affiliation(s)
- Hong Li
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Cong Liu
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yi-Ping Zeng
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yu-Hui Hao
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Jia-Wei Huang
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Zhang-You Yang
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| |
Collapse
|
30
|
Li K, Xie Y, You M, Huang L, Zheng X. Cerium Oxide-Incorporated Calcium Silicate Coating Protects MC3T3-E1 Osteoblastic Cells from H 2O 2-Induced Oxidative Stress. Biol Trace Elem Res 2016; 174:198-207. [PMID: 27038622 DOI: 10.1007/s12011-016-0680-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/16/2016] [Indexed: 12/23/2022]
Abstract
Oxidative stress regulates cellular functions in multiple pathological conditions, including bone formation by osteoblastic cells. In this work, the protective effects of cerium oxide (CeO2)-incorporated calcium silicate (CeO2-CS) coating on the response of osteoblasts to H2O2-induced oxidative stress and the related mechanism were examined. CeO2 incorporation significantly improved osteoblast viability and reduced cell apoptosis caused by H2O2 when compared with the control. H2O2-induced reduction of differentiation marker alkaline phosphatase (ALP) was recovered in the presence of the CeO2-CS coating. The above effects were mediated by the antioxidant effect of CeO2. The CeO2-CS coating immersed in 0.1 mM H2O2 aqueous solution was able to degrade 64 % of it in 1 week. In addition, CeO2 incorporation decreased reactive oxygen species (ROS) production and suppressed malondialdehyde (MDA) formation in H2O2-treated osteoblasts. Taken together, CeO2-CS biomedical coatings with antioxidant property would be promising for bone regeneration under oxidative stress.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Mingyu You
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China.
| |
Collapse
|
31
|
Zhang XD, Zhang J, Wang J, Yang J, Chen J, Shen X, Deng J, Deng D, Long W, Sun YM, Liu C, Li M. Highly Catalytic Nanodots with Renal Clearance for Radiation Protection. ACS NANO 2016; 10:4511-9. [PMID: 27018632 DOI: 10.1021/acsnano.6b00321] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ionizing radiation (gamma and X-ray) is widely used in industry and medicine, but it can also pose a significant hazardous effect on health and induce cancer, physical deformity, and even death, due to DNA damage and invasion of free radicals. There is therefore an urgent unmet demand in designing highly efficient radioprotectants with synergetic integration of effective renal clearance and low toxicity. In this study, we designed ultrasmall (sub-5 nm) highly catalytically active and cysteine-protected MoS2 dots as radioprotectants and investigated their application in protection against ionizing radiation. In vivo preclinical studies showed that the surviving fraction of MoS2-treated mice can appreciably increase to up to 79% when they were exposed to high-energy ionizing radiation. Furthermore, MoS2 dots can contribute in cleaning up the accumulated free radicals within the body, repairing DNA damage, and recovering all vital chemical and biochemical indicators, suggesting their unique role as free radical scavengers. MoS2 dots showed rapid and efficient urinary excretion with more than 80% injected dose eliminated from the body after 24 h due to their ultrasmall hydrodynamic size and did not cause any noticeable toxic responses up to 30 days.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Department of Physics, School of Science, Tianjin University , Tianjin 300354, China
| | - Jinxuan Zhang
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Junying Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , No. 238, Baidi Road, Tianjin 300192, China
| | - Jiang Yang
- Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University , No. 220, Handan Road, Shanghai, 200433, China
| | - Jie Chen
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , No. 238, Baidi Road, Tianjin 300192, China
| | - Xiu Shen
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , No. 238, Baidi Road, Tianjin 300192, China
| | - Jiao Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , No. 238, Baidi Road, Tianjin 300192, China
| | - Yuan-Ming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , No. 238, Baidi Road, Tianjin 300192, China
| | - Changlong Liu
- Department of Physics, School of Science, Tianjin University , Tianjin 300354, China
| | - Meixian Li
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
32
|
Arya A, Gangwar A, Singh SK, Roy M, Das M, Sethy NK, Bhargava K. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine 2016; 11:1159-73. [PMID: 27069362 PMCID: PMC4818056 DOI: 10.2147/ijn.s102096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.
Collapse
Affiliation(s)
- Aditya Arya
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Anamika Gangwar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Sushil Kumar Singh
- Functional Materials Division, Solid State Physics Laboratory, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Manas Roy
- Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, India; Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Mainak Das
- Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| |
Collapse
|
33
|
Zeng YP, Luo SL, Yang ZY, Huang JW, Li H, Liu C, Wang WD, Li R. A folic acid conjugated polyethylenimine-modified PEGylated nanographene loaded photosensitizer: photodynamic therapy and toxicity studies in vitro and in vivo. J Mater Chem B 2016; 4:2190-2198. [PMID: 32263186 DOI: 10.1039/c6tb00108d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted cancer therapies are currently a strong focus in biomedical research. Our recent studies have demonstrated that polyethylenimine-modified PEGylated nanographene loaded chlorin e6 (PPG-Ce6) shows excellent photodynamic efficacy because of the significantly enhanced intracellular targeted delivery of Ce6 to lysosomes. Based on our previous research, in this work, a novel nanographene-based tumor targeting delivery system was developed to selectively transport the photosensitizer into the tumor cells. In brief, we describe that the folic acid (FA) conjugated polyethylenimine-modified PEGylated nanographene system (PPG-FA) delivered in a targeted manner chlorin e6 (Ce6) to the tumor to simultaneously achieve targeted photodynamic therapy and biological imaging. The cellular internalization and the cellular uptake of PPG-FA-Ce6 were assessed, which indicated that the intracellular uptake of PPG-FA-Ce6 was target-specific. In vitro and in vivo photodynamic therapy results showed that PPG-FA-Ce6 exhibits excellent targeted delivery of Ce6, leading to simultaneous significant targeted photodynamic therapy and imaging. More importantly, the toxicity studies showed that PPG-FA-Ce6 had low toxicity as evidenced by blood biochemistry, hematological analysis, and histological examination. Our present work demonstrates that PPG-FA-Ce6 has high photodynamic therapy efficacy with no obvious toxicity because of its good tumor targeting property which can be potentially utilized in the biomedicine field.
Collapse
Affiliation(s)
- Yi-Ping Zeng
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 40038, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Yang ZY, Li H, Zeng YP, Hao YH, Liu C, Liu J, Wang WD, Li R. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24218-28. [PMID: 26485120 DOI: 10.1021/acsami.5b07702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A multifunctional theranostic platform based on photosensitizer (chlorin e6, Ce6)-loaded branched polyethylenimine-PEGylated ceria nanoparticles (PPCNPs-Ce6) was created for the development of effective cancer treatments involving the use of imaging-guided synchronous photochemotherapy. PPCNPs-Ce6 with high Ce6 photosensitizer loading (Ce6: cerium ∼40 wt %) significantly enhanced the delivery of Ce6 into cells and its accumulation in lysosomes, remarkably improving photodynamic therapeutic (PDT) efficacy levels compared to those in the administration of free Ce6 at ultralow drug doses (∼200 nM). Interestingly, PPCNPs-Ce6 efficiently induced HeLa cell death even at low concentrations (∼10 μM) without the use of laser irradiation and exhibit chemocytotoxicity. Inductively coupled plasma mass spectrometry (ICP-MS) and biology transmission electron microscopy (Bio-TEM) analyses demonstrated that ceria nanoparticles enter cells abundantly and accumulate in lysosomes or large vesicles. We then evaluated the effects of the different materials on lysosomal integrity and function, which revealed that PPCNPs-Ce6 catastrophically impaired lysosomal function compared to results with PPCNPs and Ce6. Studies of apoptosis revealed greater induction of apoptosis by PPCNPs-Ce6 treatment. This multifunctional nanocarrier also exhibited a high degree of solubility and stability in aqueous solutions, suggesting its applicability for extensive biomedical application.
Collapse
Affiliation(s)
- Zhang-You Yang
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Hong Li
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yi-Ping Zeng
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Yu-Hui Hao
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Cong Liu
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Jing Liu
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rong Li
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University , Chongqing 400038, China
| |
Collapse
|