1
|
Gao J, Luo F, Chen Q, Chen N, Wan J, Sun L, Cao Y, Ren H, Tu Y, Huang H, Cui F. The transferrin a signaling pathway mediates uranium-induced hematopoietic dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126077. [PMID: 40139297 DOI: 10.1016/j.envpol.2025.126077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE This study was designed to explore the toxic effects of Transferrin a(tfa)-mediated uranium exposure on the hematopoietic system. METHODS Zebrafish embryos were subjected to uranium nitrate solutions at concentrations of 50, 100, 250, and 500 μg/L for a defined period, followed by sample collection. The impact of uranium on hematopoietic system development in zebrafish was evaluated through hemoglobin staining, qRT-PCR, and in situ hybridization. RNA-Seq was utilized to detect differentially expressed genes (DEGs) in embryos exposed to 100 μg/L uranium, with subsequent bioinformatics analysis to confirm these DEGs. Furthermore, blood samples from patients with hematological disorders and impaired hematopoietic function were collected, and RNA-Seq was applied to identify DEGs. RESULTS Uranium exposure in zebrafish embryos led to reduced hemoglobin expression, with key transcription factors for primitive and definitive hematopoiesis being significantly downregulated at 100 μg/L uranium exposure. Overexpression of tfa resulted in a marked increase in hemoglobin content and upregulation of GATA1, a key factor in primitive hematopoiesis. Patients with hematopoietic dysfunction exhibited abnormalities in the tfa signaling pathway. CONCLUSION tfa plays a role in mediating the inhibitory effects of uranium on hematopoietic function.
Collapse
Affiliation(s)
- Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Fajian Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yiyao Cao
- Department of Occupational Health and Radiological Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hong Ren
- Department of Occupational Health and Radiological Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Haiwen Huang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
2
|
Xie Y, Liang B, Meng Z, Guo R, Liu C, Yuan Y, Mu W, Wang Y, Cao J. Downregulation of HSPB1 and MGST1 Promotes Ferroptosis and Impacts Immune Infiltration in Diabetic Cardiomyopathy. Cardiovasc Toxicol 2025; 25:719-734. [PMID: 40053272 DOI: 10.1007/s12012-025-09982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/26/2025] [Indexed: 03/12/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Current therapies do not adequately resolve this problem and focus only on the optimal level of blood glucose for patients. Ferroptosis plays an important role in diabetes mellitus and cardiovascular diseases. However, the role of ferroptosis in DCM remains unclear. Differentially expressed ferroptosis-related genes (DE-FRGs) were identified by intersection of the GSE26887 dataset and the Ferroptosis Database. The associations between the DE-FRGs and immune cells in DCM, estimated via the CIBERSORTx algorithm, were analysed. Flow cytometry (FCM) was used to evaluate the infiltration of immune cells in myocardial tissues. The expression of DE-FRGs, glutathione peroxidase 4 and solute carrier family 7 member 11 was examined via real-time quantitative PCR and Western blotting. Three DE-FRGs were identified: heat shock protein family B (small) member 1 (HSPB1), microsomal glutathione S-transferase 1 (MGST1) and solute carrier family 40 member 1 (SLC40A1), which are closely linked to immune cells in DCM. In vivo, the levels of CD8 + T cells, B cells and regulatory T (Treg) cells were significantly decreased in the DCM group, whereas the levels of CD4 + T cells, M1 cells, M2 cells and monocytes were increased. Diabetes significantly decreased HSPB1 and MGST1 levels and increased ferroptosis compared with the Normal group. Furthermore, the ferroptosis inhibitor ferrostatin-1 (Fer-1) alleviated high-fat diet (HFD)-induced cardiomyocyte injury and rescued ferroptosis. These findings suggest that the ferroptosis-related genes HSPB1 and MGST1 are closely related to immune cell infiltration and may be therapeutic targets for DCM.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Animals
- Diabetic Cardiomyopathies/immunology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/metabolism
- Male
- Down-Regulation
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Disease Models, Animal
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Humans
- Signal Transduction
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- HSP27 Heat-Shock Proteins/genetics
- HSP27 Heat-Shock Proteins/metabolism
- Mice, Inbred C57BL
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Databases, Genetic
Collapse
Affiliation(s)
- Yaoli Xie
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bin Liang
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhijun Meng
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Caihong Liu
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yi Yuan
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wei Mu
- Department of Interventional Therapy for Tumor and Vascular Interventional Therapy, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Yajing Wang
- Department of Biomedical Engineering, Heersink School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Jimin Cao
- MOE Key Laboratory of Cellular Physiology and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Zhang Z, Wang H, Kan X, Zhang X, Xu S, Cai J, Guo J. The interplay of ferroptosis and oxidative stress in the pathogenesis of aortic dissection. Front Pharmacol 2025; 16:1519273. [PMID: 39974735 PMCID: PMC11835687 DOI: 10.3389/fphar.2025.1519273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/09/2025] [Indexed: 02/21/2025] Open
Abstract
Aortic dissection (AD) is a life-threatening vascular condition marked by the separation or tearing of the aortic media. Ferroptosis, a form of iron-dependent programmed cell death, occurs alongside lipid peroxidation and the accumulation of reactive oxygen species (ROS). The relationship between ferroptosis and AD lies in its damaging effect on vascular cells. In AD, ferroptosis worsens the damage to vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), thereby weakening the vascular wall's structural integrity and accelerating the onset and progression of the condition. However, the molecular mechanisms through which ferroptosis regulates the onset and progression of AD remain poorly understood. This article explores the relationship between ferroptosis and AD.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Haichao Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xi Kan
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Xiaozhao Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Senping Xu
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Cai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, China
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Yangtze University, Jingzhou, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Coates TD. Management of iron overload: lessons from transfusion-dependent hemoglobinopathies. Blood 2025; 145:359-371. [PMID: 39293029 DOI: 10.1182/blood.2023022502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
ABSTRACT Before the advent of effective iron chelation, death from iron-induced cardiomyopathy and endocrine failure occurred in the second decade in patients with thalassemia major, and this experience has driven expectation of poor outcomes and caused anxiety in all disorders associated with iron loading to this day. To be clear, severe iron overload still causes significant morbidity and mortality in many parts of the world, but current understanding of iron metabolism, noninvasive monitoring of organ-specific iron loading in humans, and effective iron chelators have dramatically reduced morbidity of iron overload. Furthermore, clinical experience in hemoglobinopathies supports iron biology learned from animal studies and identifies common concepts in the biology of iron toxicity that inform the management of iron toxicity in several human disorders. The resultant significant increase in survival uncovers new complications due to much longer exposure to anemia and to iron, which must be considered in long-term therapeutic strategies. This review will discuss the management of iron toxicity in patients with hemoglobinopathies and transfusion-dependent anemias and how iron biology informs the clinical approach to treatment.
Collapse
Affiliation(s)
- Thomas D Coates
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
5
|
Mitra N, Chowdhury P, Basu A. Exploring the functional and immune landscape of E-β thalassemia patients through RNA sequencing of peripheral blood mononuclear cells. Heliyon 2025; 11:e41255. [PMID: 39811310 PMCID: PMC11730544 DOI: 10.1016/j.heliyon.2024.e41255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Thalassemia is a hematological disorder caused by mutations in the hemoglobin gene, often necessitating regular blood transfusions. These frequent transfusions exert continuous pressure on patients' immune systems. Despite extensive research on the hematological aspects of thalassemia, few studies have explored the immune status of these patients. In this study, we investigated the immune profiles of thalassemia patients using peripheral blood mononuclear cells (PBMCs). We examined the transcriptomes of PBMCs from five severe thalassemia patients, five non-severe patients, and five healthy volunteers. After isolating PBMCs, we extracted total RNA and performed RNA sequencing using the NOVASEQ 6000 platform. We analyzed the raw counts to observe differential gene expression between thalassemia patients and healthy controls, as well as between severe and non-severe patients. Additionally, we conducted gene set enrichment analysis (GSEA) to explore underlying immune conditions. The gene expression profile, along with GSEA, revealed a marked decrease in MHC-II-mediated antigen presentation. Notably, we identified, for the first time, the activation of reactive oxygen species (ROS) through NK cell-mediated eosinophil chemotaxis, suggesting a link to disease severity. Severe thalassemia patients also exhibited higher expression of pro-inflammatory cytokines. Furthermore, transcriptome analysis showed increased expression of the ABO gene in severe thalassemia patients, which may contribute to heightened immune reactions and an increased need for blood transfusions. Deconvolution of the RNA-seq data revealed lower abundances of CD4 T cells and monocytes in thalassemia patients. Thus, immune-modulating drugs could be explored as alternative therapeutic options for the management of thalassemia.
Collapse
Affiliation(s)
- Nibedita Mitra
- Department of Zoology, The University of Burdwan, West Bengal, India
- National Institute of Biomedical Genomics, Kalyani, India
| | - Prosanto Chowdhury
- Department of Zoology, The University of Burdwan, West Bengal, India
- Peerless Hospital and Research Centre, Kolkata, West Bengal, India
| | - Anupam Basu
- Department of Zoology, The University of Burdwan, West Bengal, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
6
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
7
|
Tsilionis V, Moustakli E, Dafopoulos S, Zikopoulos A, Sotiriou S, Zachariou A, Dafopoulos K. Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications. Metabolites 2024; 14:717. [PMID: 39728498 DOI: 10.3390/metabo14120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow. Regular red blood cell transfusions are the standard treatment for thalassemia. However, these transfusions can lead to increased iron overload, which can impair vital systems such as the liver, heart, ovaries, and endocrine system. Focusing on female reproductive endocrinology, recurrent blood transfusions can cause iron accumulation in the pituitary and hypothalamus, leading to hypogonadotropic hypogonadism (HH), the most common endocrinopathy in these patients, affecting 40-91% of women. Recurrent transfusions and the resulting iron overload can also lead to oxidative stress and ovarian damage in patients with beta-thalassemia major (BTM). Despite advancements in iron chelation therapy, hypothalamic-pituitary damage associated with HH contributes to subfertility and sexual dysfunction, often with little to no recovery. In women exposed to gonadotoxic drugs, particularly those with BTM, anti-Mullerian hormone (AMH)-a marker of ovarian reserve-is frequently used to assess ovarian damage. This review aims to explore the pathophysiology of β-thalassemia and its major clinical manifestations, with a focus on endocrine complications and their impact on ovarian reserve. It also investigates how metabolomics can provide insights into the disease's metabolic alterations and inform current and emerging therapeutic strategies to mitigate complications and optimize patient outcomes, potentially leading to more effective and personalized treatments.
Collapse
Affiliation(s)
- Vasileios Tsilionis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd., Exeter EX2 5DW, UK
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece
| | - Konstantinos Dafopoulos
- IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
8
|
Xie Y, Liang B, Meng Z, Guo R, Liu C, Yuan Y, Mu W, Wang Y, Cao J. Down-regulation of HSPB1 and MGST1 promote ferroptosis and impact immune infiltration in diabetic cardiomyopathy. RESEARCH SQUARE 2024:rs.3.rs-5153598. [PMID: 39711549 PMCID: PMC11661379 DOI: 10.21203/rs.3.rs-5153598/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of death in diabetic patients. Current therapies do not adequately resolve this problem and focus only on the optimal level of blood glucose for patients. Ferroptosis plays an important role in diabetes mellitus and cardiovascular diseases. However, the role of ferroptosis in DCM remains unclear. Differentially expressed ferroptosis-related genes (DE-FRGs) were identified by intersecting GSE26887 dataset and the Ferroptosis Database (FerrDb). The associations between the DE-FRGs and immune cells in DCM, estimated by CIBERSORTx algorithm, were analyzed. Using ow cytometry (FCM) to evaluated the infiltration of immune cells of myocardial tissues. The expression of DE-FRGs, Glutathione peroxidase 4 (GPX4) and Solute carrier family 7 member 11 (SLC7A11) were examined by real-time quantitative PCR and western blotting. 3 DE-FRGs were identified, which are Heat shock protein family B (small) member 1 (HSPB1), Microsomal glutathione S-transferase 1 (MGST1) and solute carrier family 40 member 1 (SLC40A1) respectively, and they were closely linked to immune cells in DCM. In vivo, the levels of CD8 + T cells, B cells and Treg cells were significantly decreased in the DCM group, while the levels of CD4 + T cells, M1 cells, M2 cells and monocytes were increased. Diabetes significantly decreased HSPB1 and MGST1 levels and increased ferroptosis compared to normal group. Furthermore, ferroptosis inhibitor ferrostatin-1 (Fer-1) alleviated high-fat diet (HFD)-induced cadiomyocyte injury and rescued the ferroptosis. This study suggests that ferroptosis related gene HSPB1 and MGST1 are closely related to immune cell infiltration, which may become therapeutic targets for DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Mu
- The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)
| | | | | |
Collapse
|
9
|
Sarocchi M, Li J, Li X, Wu D, Montaño Figueroa E, Rodriguez MG, Hou M, Finelli C, Shi HX, Xiao Z, Oliva EN, Gercheva Kyuchukova L, Drummond M, Symeonidis A, Velazquez EJ, Rivoli G, Izquierdo M, Kolekar Y, Spallarossa P, Angelucci E. Cardiac effects of deferasirox in transfusion-dependent patients with myelodysplastic syndromes: TELESTO study. Br J Haematol 2024; 204:2049-2056. [PMID: 38343073 DOI: 10.1111/bjh.19316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 05/15/2024]
Abstract
Iron overload from repeated transfusions has a negative impact on cardiac function, and iron chelation therapy may help prevent cardiac dysfunction in transfusion-dependent patients with myelodysplastic syndromes (MDS). TELESTO (NCT00940602) was a prospective, placebo-controlled, randomised study to evaluate the iron chelator deferasirox in patients with low- or intermediate-1-risk MDS and iron overload. Echocardiographic parameters were collected at screening and during treatment. Patients receiving deferasirox experienced a significant decrease in the composite risk of hospitalisation for congestive heart failure (CHF) or worsening of cardiac function (HR = 0.23; 95% CI: 0.05, 0.99; nominal p = 0.0322) versus placebo. No significant differences between the arms were found in left ventricular ejection fraction, ventricular diameter and mass or pulmonary artery pressure. The absolute number of events was low, but the enrolled patients were younger than average for patients with MDS, with no serious cardiac comorbidities and a modest cardiovascular risk profile. These results support the effectiveness of deferasirox in preventing cardiac damage caused by iron overload in this patient population. Identification of patients developing CHF is challenging due to the lack of distinctive echocardiographic features. The treatment of iron overload may be important to prevent cardiac dysfunction in these patients, even those with moderate CHF risk.
Collapse
Affiliation(s)
- Matteo Sarocchi
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Junmin Li
- School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Li
- Shanghai Sixth People's Hospital, Shanghai, China
| | - Depei Wu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Efreen Montaño Figueroa
- Department of Hematology, Hospital General de México Dr Eduardo Liceaga, Mexico City, Mexico
| | - Maria Guadalupe Rodriguez
- Department of Hematology, Hospital de Especialidades, Centro Médico Nacional La Raza, IMSS, Mexico City, Mexico
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Hong-Xia Shi
- Peking University People's Hospital, Beijing, China
| | - Zhijian Xiao
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Esther Natalie Oliva
- Hematology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Liana Gercheva Kyuchukova
- Clinical Hematology Clinic, Multiprofile Hospital for Active Treatment "Sveta Marina", Varna, Bulgaria
| | | | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Eric J Velazquez
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Giulia Rivoli
- Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Emanuele Angelucci
- Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
10
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
11
|
Lin S, Zheng Y, Chen M, Xu L, Huang H. The interactions between ineffective erythropoiesis and ferroptosis in β-thalassemia. Front Physiol 2024; 15:1346173. [PMID: 38468700 PMCID: PMC10925657 DOI: 10.3389/fphys.2024.1346173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In Guangxi, Hainan, and Fujian Province in southern China, β-thalassemia is a frequent monogenic hereditary disorder that is primarily defined by hemolytic anemia brought on by inefficient erythropoiesis. It has been found that ineffective erythropoiesis in β-thalassemia is closely associated with a high accumulation of Reactive oxygen species, a product of oxidative stress, in erythroid cells. During recent years, ferroptosis is an iron-dependent lipid peroxidation that involves abnormalities in lipid and iron metabolism as well as reactive oxygen species homeostasis. It is a recently identified kind of programmed cell death. β-thalassemia patients experience increased iron release from reticuloendothelial cells and intestinal absorption of iron, ultimately resulting in iron overload. Additionally, the secretion of Hepcidin is inhibited in these patients. What counts is both ineffective erythropoiesis and ferroptosis in β-thalassemia are intricately linked to the iron metabolism and Reactive oxygen species homeostasis. Consequently, to shed further light on the pathophysiology of β-thalassemia and propose fresh ideas for its therapy, this paper reviews ferroptosis, ineffective erythropoiesis, and the way they interact.
Collapse
Affiliation(s)
- Siyang Lin
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yanping Zheng
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Liangpu Xu
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Hailong Huang
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| |
Collapse
|
12
|
Fragodimitri C, Schiza V, Giakoumis A, Drakaki K, Salichou A, Karampatsos F, Yousef J, Karageorga M, Berdoukas V, Aessopos A. Successful chelation in beta-thalassemia major in the 21st century. Medicine (Baltimore) 2023; 102:e35455. [PMID: 37832083 PMCID: PMC10578721 DOI: 10.1097/md.0000000000035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
This century has seen a revolution the management of beta-thalassemia major. Over a 12-year period to 2016, we aimed to analyze the benefits of such advances. In 209 patients, independent of the chelation regimen, ferritin, cardiac T2* and liver iron concentration changes were evaluated. We defined chelation success (ChS) as no iron load in the heart and acceptable levels in the liver. Over 3 early magnetic resonance imagings, the same parameters were assessed in 2 subgroups, the only 2 that had sufficient patients continuing on 1 regimen and for a significant period of time, 1 on deferrioxamine (low iron load patients n = 41, Group A) and 1 on deferoxamine-deferiprone (iron overloaded n = 60, Group B). Finally, 28 deaths and causes were compared to those of an earlier period. The 209 patients significantly optimized those indices, while the number of patients with chelation success, increased from 6% to 51% (P < .0001). In group A, ChS after about 8 years increased from 21 to 46% (P = .006), while in Group B, from 0% to 60% (P < .001) after about 7 years. Deaths over the 2 periods showed significant reduction. Combined clearance of cardiac and liver iron (ChS) is feasible and should become the new target for all patients. This requires, serial magnetic resonance imagings and often prolonged intensified chelation for patients.
Collapse
Affiliation(s)
| | - Vasiliki Schiza
- Thalassemia Unit, “Aghia Sofia” Children’s Hospital, Athens, Greece
| | | | - Kalliopi Drakaki
- Thalassemia Unit, “Aghia Sofia” Children’s Hospital, Athens, Greece
| | | | | | | | | | | | - Athanasios Aessopos
- 1 Academic Department of Internal Medicine, “Laiko” General Hospital, Athens, Greece
| |
Collapse
|
13
|
Sahebkar A, Foroutan Z, Katsiki N, Jamialahmadi T, Mantzoros CS. Ferroptosis, a new pathogenetic mechanism in cardiometabolic diseases and cancer: Is there a role for statin therapy? Metabolism 2023; 146:155659. [PMID: 37442270 DOI: 10.1016/j.metabol.2023.155659] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
One of the newly recognized types of cell death is ferroptosis which is related to the accumulation of iron and lipid-reactive oxygen species. Ferroptosis is considered a programmed cell death with a different mechanism from apoptosis, necrosis, and autophagy. Emerging evidence suggests that ferroptosis may occur in the context of cardiovascular disease (CVD), cancer, neurodegenerative diseases, and non-alcoholic fatty liver disease (NAFLD). Statins are the first-line therapy for dyslipidemia. The suppression of the HMG-CoA reductase by statins leads to decreased expression of glutathione peroxidase 4 (GPX4), a key regulator of lipid peroxidation, which in turn results in lipid ROS production and induction of ferroptosis. Experimental data suggest that statins may act as anti-cancer drugs by enhancing tumor cells' ferroptosis. In contrast, statins have also been reported to mitigate ferroptosis in animal models of myocardial ischemia-reperfusion and heart failure. This mini-review presents statin effects on the ferroptosis pathway, based on up-to-date in vivo and in vitro research. Furthermore, the potential impact of these effects on cardiometabolic diseases (e.g., CVD and NAFLD) and cancer is briefly discussed. Overall, there is a need for future studies focusing on statin-induced changes in ferroptosis as a therapeutic approach to such diseases.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Western Australia, Mashhad, Iran.
| | - Zahra Foroutan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Ast T, Wang H, Marutani E, Nagashima F, Malhotra R, Ichinose F, Mootha VK. Continuous, but not intermittent, regimens of hypoxia prevent and reverse ataxia in a murine model of Friedreich's ataxia. Hum Mol Genet 2023; 32:2600-2610. [PMID: 37260376 PMCID: PMC10407700 DOI: 10.1093/hmg/ddad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Wang
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumiaki Nagashima
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Sayed SZ, Abd El-Hafez AH, Abu El-Ela MA, Mourad MAF, Mousa SO. OPG/RANK/RANKL axis relation to cardiac iron-overload in children with transfusion-dependent thalassemia. Sci Rep 2023; 13:12568. [PMID: 37532711 PMCID: PMC10397306 DOI: 10.1038/s41598-023-39596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
OPG/RANK/RANKL axis was reportedly involved in initiating various diseases, especially bone and cardiovascular diseases. This study aimed to assess the relationship between some OPG, RANK, and RANKL polymorphisms and alleles and iron-overload-induced cardiomyopathy in children with transfusion-dependent thalassemia (TDT). This study included 80 TDT children and 80 age and sex-matched controls. Real-time PCR was done for rs207318 polymorphism for the OPG gene and rs1805034, rs1245811, and rs75404003 polymorphisms for the RANK gene, and rs9594782 and rs2277438 polymorphisms for the RANKL gene. Cardiac T2* MRI and ejection fraction (EF) were done to assess the myocardial iron status and cardiac function. In this study, there were no significant differences in frequencies of the studied polymorphisms between cases and controls (p > 0.05 in all). In TDT children, OPG rs2073618 (G > C) had a significant relation to myocardial iron overload (p = 0.02). Its C allele had significantly more frequent normal EF than its G allele (p = 0.04). RANK rs75404403 (C > DEL) had a significant relation to cardiac dysfunction (p = 0.02). Moreover, the C allele of that gene had significantly more frequent affected EF than its DEL allele (p = 0.02). The A allele of RANKL rs2277438 (G > A) had significantly less frequent severe cardiac iron overload than the G allele (p = 0.04). In conclusion, the OPG/ RANK/RANKL genes may act as genetic markers for iron-induced cardiomyopathy in TDT children. Some of the studied genes' polymorphisms and alleles were significantly related to myocardial iron overload and cardiac dysfunction in TDT children.
Collapse
Affiliation(s)
- Samira Zein Sayed
- Department of Pediatrics, Faculty of Medicine, Minia University, El Minya, Egypt
| | | | | | | | - Suzan Omar Mousa
- Department of Pediatrics, Faculty of Medicine, Minia University, El Minya, Egypt.
| |
Collapse
|
16
|
Ghazaiean M, Aliasgharian A, Karami H, Darvishi-Khezri H. Ebselen: A promising therapy protecting cardiomyocytes from excess iron in iron-overloaded thalassemia patients. Open Med (Wars) 2023; 18:20230733. [PMID: 37465348 PMCID: PMC10350894 DOI: 10.1515/med-2023-0733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 07/20/2023] Open
Abstract
Iron-overload-associated cardiomyopathy has been one of the primary causes of mortality in thalassemia patients with iron burden. There is growing evidence citing the beneficial effects of ebselen as an antioxidant selectively blocking the divalent metal transporter 1 (DMT-1) to deter iron ingress into cardiomyocytes, raising internets in viewing this component in this population in order to treat and even prevent cardiomyopathy occurring from iron surplus. In this article, we reviewed the potential advantageous effects of ebselen in thalassemia patients who suffer from iron excess, susceptible to cardiomyopathy induced by iron overload. A systematic search in several databases, including PubMed, Scopus, and Web of Science, was conducted to explore the role of ebselen in controlling iron-overload-related cardiomyopathy in thalassemia patients by the keywords of Ebselen AND iron. The inclusion criteria were English-written preclinical and clinical studies investigating the efficacy and side effects of ebselen in an iron-overload context. After searching the databases, 44 articles were found. Next, of 19 published articles, 3 were included in this article. After reviewing the references of the included studies, no articles were added. In conclusion ebselen can be a promising adjuvant therapy in patients with thalassemia alongside the standard treatment with iron chelators, particularly in severe cases with cardiomyopathy, due to falling iron inflow by inhibiting DMT-1 and increasing ferroportin-1 expression and antioxidant properties. However, clinical studies need to be carried out to reach a definite conclusion.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Karami
- Department of Pediatric, School of Medicine, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Ferrara F, Coppi F, Riva R, Ventura P, Ricci A, Mattioli AV, Talarico M, Garuti C, Bevini M, Rochira V, Buzzetti E, Pietrangelo A, Corradini E. Labile plasma iron and echocardiographic parameters are associated with cardiac events in β-thalassemic patients. Eur J Clin Invest 2023; 53:e13954. [PMID: 36645727 DOI: 10.1111/eci.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIM Notwithstanding the improvement in therapies, patients affected by thalassemia major (TM) and intermedia (TI) are still at high risk of cardiac complications. This study aimed at evaluating the incidence and predictive factors for developing cardiac events in adult β-TM and TI patients. POPULATION AND METHODS Data on diagnosis and clinical history were collected retrospectively; prospective data on new-onset cardiac failure and arrhythmias, echocardiographic parameters, biochemical variables including non-transferrin-bound iron (NTBI) and labile plasma iron (LPI), magnetic resonance imaging (MRI) T2* measurement of hepatic and cardiac iron deposits, and iron chelation therapy were recorded during a 6-year follow-up. RESULTS Thirty-seven patients, 29 TM and 8 TI, were included. At baseline, 8 TM patients and 1 TI patient had previously experienced a cardiac event (mainly heart failure). All patients were on chelation therapy and only 3 TM patients had mild-to-severe cardiac siderosis. During follow-up, 11 patients (29.7%) experienced a new cardiac event. The occurrence of cardiac events was correlated to high LPI levels (OR 12.0, 95% CI 1.56-92.3, p .017), low mean pre-transfusion haemoglobin (OR 0.21, 95% C.I. 0.051-0.761, p .21) and echocardiographic parameters suggestive of myocardial hypertrophy. Multivariate analysis disclosed high LPI and left ventricle mass index (LVMI) as independent variables significantly associated with cardiac events. Cardiac iron deposits measured by MRI T2* failed to predict cardiac events. CONCLUSION LPI, Hb levels and echocardiographic parameters assessing cardiac remodelling are associated with cardiac events in adult TM and TI patients. LPI might represent both a prognostic marker and a potential target for novel treatment strategies. Further studies are warranted to confirm our findings on larger populations.
Collapse
Affiliation(s)
- Francesca Ferrara
- Internal Medicine Unit and Centre for Hereditary Anemias, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Francesca Coppi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Roberta Riva
- Internal Medicine Unit and Centre for Hereditary Anemias, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Paolo Ventura
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Andrea Ricci
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Marisa Talarico
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Cinzia Garuti
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Mirco Bevini
- Transfusion Unit, Hematology Department, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Vincenzo Rochira
- Endocrinology Unit, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Elena Buzzetti
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Antonello Pietrangelo
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Elena Corradini
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
18
|
Soliman Y, Abdelaziz A, Mouffokes A, Amer BE, Goudy YM, Abdelwahab OA, Badawy MM, Diab RA, Elsharkawy A. Efficacy and safety of calcium channel blockers in preventing cardiac siderosis in thalassemia patients: An updated meta-analysis with trial sequential analysis. Eur J Haematol 2023; 110:414-425. [PMID: 36565288 DOI: 10.1111/ejh.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Iron overload in patients with thalassemia represents a serious complication by affecting numerous organ systems. This meta-analysis aims to establish an evidence regarding the effect of amlodipine on cardiac iron overload in thalassemia patients. METHODS We searched PubMed, Scopus, Web of Science, Cochrane Central, and EMBASE for all relevant randomized controlled trials (RCTs). The primary outcomes were cardiac T2* and myocardial iron concentration (MIC). Secondary outcomes were liver iron concentration (LIC), risk of Gastrointestinal (G.I.) upset and risk of lower limb edema. We used Hedges' g to pool continuous outcomes, while odds ratio was used for dichotomous outcomes. RESULTS Seven RCTs were eligible for this systematic review and meta-analysis, comprising of 233 patients included in the analysis. Amlodipine had a statistically significant lower MIC (Hedges' g = -0.82, 95% confidence interval [CI] [-1.40, -0.24], p < .001) and higher cardiac T2* (Hedges' g = 0.36, 95% CI [0.10, 0.62], p = .03). Amlodipine was comparable to standard chelation therapy in terms of the risk of lower limb edema and GI upset. CONCLUSION Our meta-analysis found that amlodipine significantly increases cardiac T2* and decreases MIC, hence decreasing the incidence of cardiomyopathy-related iron overload in thalassemia patients.
Collapse
Affiliation(s)
- Youssef Soliman
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abdelaziz
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Adel Mouffokes
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, University of Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Basma E Amer
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, Benha University, Banha, Egypt
| | - Yomna Mohamed Goudy
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, South Valley University, Qena, Egypt
| | - Omar Ahmed Abdelwahab
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Marwa M Badawy
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, October 6 University, Giza, Egypt
| | - Rehab Adel Diab
- Medical Research Group of Egypt, Egypt.,Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Asmaa Elsharkawy
- Medical Research Group of Egypt, Egypt.,Department of Pediatrics, Hematology and Oncology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Massaiu I, Campodonico J, Mapelli M, Salvioni E, Valerio V, Moschetta D, Myasoedova VA, Cappellini MD, Pompilio G, Poggio P, Agostoni P. Dysregulation of Iron Metabolism-Linked Genes at Myocardial Tissue and Cell Levels in Dilated Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24032887. [PMID: 36769209 PMCID: PMC9918212 DOI: 10.3390/ijms24032887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).
Collapse
Affiliation(s)
| | | | | | | | | | - Donato Moschetta
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | | | - Maria Domenica Cappellini
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Correspondence: (P.P.); (P.A.); Tel.: +39-02-5800-2853 (P.P.); +39-02-5800-2488 (P.A.)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: (P.P.); (P.A.); Tel.: +39-02-5800-2853 (P.P.); +39-02-5800-2488 (P.A.)
| |
Collapse
|
20
|
Bruzzese A, Martino EA, Mendicino F, Lucia E, Olivito V, Bova C, Filippelli G, Capodanno I, Neri A, Morabito F, Gentile M, Vigna E. Iron chelation therapy. Eur J Haematol Suppl 2023; 110:490-497. [PMID: 36708354 DOI: 10.1111/ejh.13935] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Iron overload is a pathological condition resulting from a congenital impairment of its regulation, increased intestinal iron absorption secondary to bone marrow erythroid hyperplasia, or a chronic transfusional regimen. In normal conditions, intracellular and systemic mechanisms contribute to maintaining iron balance. When this complex homeostatic mechanism fails, an iron overload could be present. Detecting an iron overload is not easy. The gold standard remains the liver biopsy, even if it is invasive and dangerous. Identifying iron using noninvasive techniques allowed a better understanding of the rate of iron overload in different organs, with a low risk for the patient. Estimating serum ferritin (mg/L) is the easiest and, consequently, the most employed diagnostic tool for assessing body iron stores, even if it could be a not specific method. The most common hematological causes of iron overload are myelodysplastic syndromes, sickle cell disease, and thalassemia. In all of these conditions, three drugs have been approved for the treatment of iron overload: deferiprone, deferoxamine, and deferasirox. These chelators have been demonstrated to help lower tissue iron levels and prevent iron overload complications, improving event-free survival (EFS). Nowadays, the decision to start chelation and which chelator to choose remains the joint decision of the clinician and patient.
Collapse
Affiliation(s)
- Antonella Bruzzese
- Hematology Unit, Department of Onco-hematology, A.O. of Cosenza, Cosenza, Italy
| | | | - Francesco Mendicino
- Hematology Unit, Department of Onco-hematology, A.O. of Cosenza, Cosenza, Italy
| | - Eugenio Lucia
- Hematology Unit, Department of Onco-hematology, A.O. of Cosenza, Cosenza, Italy
| | - Virginia Olivito
- Hematology Unit, Department of Onco-hematology, A.O. of Cosenza, Cosenza, Italy
| | - Carlo Bova
- Internal Medicine Department, AO of Cosenza, Cosenza, Italy
| | | | - Isabella Capodanno
- SOC Ematologia Azienda USL-IRCSS di Reggio Emilia, Reggio Emilia, Emilia Romagna, Italy
| | - Antonino Neri
- Scientific Direction Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Emilia Romagna, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Aprigliano, A.O./ASP of Cosenza, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Department of Onco-hematology, A.O. of Cosenza, Cosenza, Italy.,Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Ernesto Vigna
- Hematology Unit, Department of Onco-hematology, A.O. of Cosenza, Cosenza, Italy
| |
Collapse
|
21
|
Ajoolabady A, Pratico D, Henninger N, Tuomilehto J, Klionsky DJ, Ren J. Ferroptosis: A Promising Therapeutic Target for Cardiovascular Diseases. FERROPTOSIS IN HEALTH AND DISEASE 2023:291-308. [DOI: 10.1007/978-3-031-39171-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Electrophysiological properties and heart rate variability of patients with thalassemia major in Jakarta, Indonesia. PLoS One 2023; 18:e0280401. [PMID: 36638135 PMCID: PMC9838856 DOI: 10.1371/journal.pone.0280401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Beta thalassemia major (TM) is a common hereditary disease in Indonesia. Iron overload due to regular transfusion may induce myocardial iron deposition leading to electrophysiological dysfunction and functional disorders of the heart. Ventricular arrhythmia is one of the most common causes of sudden cardiac death in thalassemia patients. This cross-sectional study of 62 TM patients aged 10-32 years in Cipto Mangunkusumo General Hospital was done to assess their electrophysiological properties and heart rate variability, including 24- hour Holter monitoring, signal averaged electrocardiogram (SAECG) for detection of ventricular late potential (VLP), and determination of heart rate variability (HRV). We also assessed their 12-lead ECG parameters, such as P wave, QRS complex, QT/ QTc interval, QRS dispersion, and QT/ QTc dispersion. Iron overload was defined by T2-star magnetic resonance (MR-T2*) values of less than 20 ms or ferritin level greater than 2500 ng/mL. Subjects were grouped accordingly. There were significant differences of QTc dispersion (p = 0.026) and deceleration capacity (p = 0.007) between MR-T2* groups. Multivariate analysis showed an inverse correlation between QTc dispersion and MR-T2* values. There was a proportional correlation between heart rate deceleration capacity in the low MR-T2* group (p = 0.058) and the high ferritin group (p = 0.007). No VLPs were detectable in any patients. In conclusion, prolonged QTc dispersion and decreased heart rate deceleration capacity were significantly correlated with greater odds of iron overload among patients with Thalassemia major.
Collapse
|
23
|
Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 2023; 20:7-23. [PMID: 35788564 PMCID: PMC9252571 DOI: 10.1038/s41569-022-00735-4] [Citation(s) in RCA: 511] [Impact Index Per Article: 255.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
The maintenance of iron homeostasis is essential for proper cardiac function. A growing body of evidence suggests that iron imbalance is the common denominator in many subtypes of cardiovascular disease. In the past 10 years, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process that mediates the pathogenesis and progression of numerous cardiovascular diseases, including atherosclerosis, drug-induced heart failure, myocardial ischaemia-reperfusion injury, sepsis-induced cardiomyopathy, arrhythmia and diabetic cardiomyopathy. Therefore, a thorough understanding of the mechanisms involved in the regulation of iron metabolism and ferroptosis in cardiomyocytes might lead to improvements in disease management. In this Review, we summarize the relationship between the metabolic and molecular pathways of iron signalling and ferroptosis in the context of cardiovascular disease. We also discuss the potential targets of ferroptosis in the treatment of cardiovascular disease and describe the current limitations and future directions of these novel treatment targets.
Collapse
Affiliation(s)
- Xuexian Fang
- grid.410595.c0000 0001 2230 9154Department of Nutrition and Toxicology, School of Public Health, State Key Laboratory of Experimental Hematology, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China ,grid.412017.10000 0001 0266 8918The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Hossein Ardehali
- grid.16753.360000 0001 2299 3507Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL USA
| | - Junxia Min
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Fourth Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China. .,The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
24
|
Wang T, Cheng J, Wang Y. Genetic support of a causal relationship between iron status and atrial fibrillation: a Mendelian randomization study. GENES & NUTRITION 2022; 17:8. [PMID: 35637428 PMCID: PMC9153204 DOI: 10.1186/s12263-022-00708-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Atrial fibrillation is the most common arrhythmia disease. Animal and observational studies have found a link between iron status and atrial fibrillation. However, the causal relationship between iron status and AF remains unclear. The purpose of this investigation was to use Mendelian randomization (MR) analysis, which has been widely applied to estimate the causal effect, to reveal whether systemic iron status was causally related to atrial fibrillation.
Methods
Single nucleotide polymorphisms (SNPs) strongly associated (P < 5 × 10−8) with four biomarkers of systemic iron status were obtained from a genome-wide association study involving 48,972 subjects conducted by the Genetics of Iron Status consortium. Summary-level data for the genetic associations with atrial fibrillation were acquired from the AFGen (Atrial Fibrillation Genetics) consortium study (including 65,446 atrial fibrillation cases and 522,744 controls). We used a two-sample MR analysis to obtain a causal estimate and further verified credibility through sensitivity analysis.
Results
Genetically instrumented serum iron [OR 1.09; 95% confidence interval (CI) 1.02–1.16; p = 0.01], ferritin [OR 1.16; 95% CI 1.02–1.33; p = 0.02], and transferrin saturation [OR 1.05; 95% CI 1.01–1.11; p = 0.01] had positive effects on atrial fibrillation. Genetically instrumented transferrin levels [OR 0.90; 95% CI 0.86–0.97; p = 0.006] were inversely correlated with atrial fibrillation.
Conclusion
In conclusion, our results strongly elucidated a causal link between genetically determined higher iron status and increased risk of atrial fibrillation. This provided new ideas for the clinical prevention and treatment of atrial fibrillation.
Collapse
|
25
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Molecular Mechanisms of Ferroptosis and Relevance to Cardiovascular Disease. Cells 2022; 11:cells11172726. [PMID: 36078133 PMCID: PMC9454912 DOI: 10.3390/cells11172726] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/23/2022] Open
Abstract
Ferroptosis has recently been demonstrated to be a novel regulated non-apoptotic cell death characterized by iron-dependence and the accumulation of lipid peroxidation that results in membrane damage. Excessive iron induces ferroptosis by promoting the generation of both soluble and lipid ROS via an iron-dependent Fenton reaction and lipoxygenase (LOX) enzyme activity. Cytosolic glutathione peroxidase 4 (cGPX4) pairing with ferroptosis suppressor protein 1 (FSP1) and mitochondrial glutathione peroxidase 4 (mGPX4) pairing with dihydroorotate dehydrogenase (DHODH) serve as two separate defense systems to detoxify lipid peroxidation in the cytoplasmic as well as the mitochondrial membrane, thereby defending against ferroptosis in cells under normal conditions. However, disruption of these defense systems may cause ferroptosis. Emerging evidence has revealed that ferroptosis plays an essential role in the development of diverse cardiovascular diseases (CVDs), such as hemochromatosis-associated cardiomyopathy, doxorubicin-induced cardiotoxicity, ischemia/reperfusion (I/R) injury, heart failure (HF), atherosclerosis, and COVID-19–related arrhythmias. Iron chelators, antioxidants, ferroptosis inhibitors, and genetic manipulations may alleviate the aforementioned CVDs by blocking ferroptosis pathways. In conclusion, ferroptosis plays a critical role in the pathogenesis of various CVDs and suppression of cardiac ferroptosis is expected to become a potential therapeutic option. Here, we provide a comprehensive review on the molecular mechanisms involved in ferroptosis and its implications in cardiovascular disease.
Collapse
|
27
|
Another tool in the toolkit to manage iron overload. Proc Natl Acad Sci U S A 2022; 119:e2208868119. [PMID: 35881800 PMCID: PMC9351487 DOI: 10.1073/pnas.2208868119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
28
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
29
|
Liu J, Zhao Y, Ding Z, Zhao Y, Chen T, Ge W, Zhang J. Iron accumulation with age alters metabolic pattern and circadian clock gene expression through the reduction of AMP-modulated histone methylation. J Biol Chem 2022; 298:101968. [PMID: 35460695 PMCID: PMC9117543 DOI: 10.1016/j.jbc.2022.101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Iron accumulates with age in mammals, and its possible implications in altering metabolic responses are not fully understood. Here, we report that both high-iron diet and advanced age in mice consistently altered gene expression of many pathways, including those governing the oxidative stress response and the circadian clock. We used a metabolomic approach to reveal similarities between metabolic profiles and the daily oscillation of clock genes in old and iron-overloaded mouse livers. In addition, we show that phlebotomy decreased iron accumulation in old mice, partially restoring the metabolic patterns and amplitudes of the oscillatory expression of clock genes Per1 and Per2. We further identified that the transcriptional regulation of iron occurred through a reduction in AMP-modulated methylation of histone H3K9 in the Per1 and H3K4 in the Per2 promoters, respectively. Taken together, our results indicate that iron accumulation with age can affect metabolic patterns and the circadian clock.
Collapse
Affiliation(s)
- Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Tingting Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
30
|
Dos Santos L, Bertoli SR, Ávila RA, Marques VB. Iron overload, oxidative stress and vascular dysfunction: Evidences from clinical studies and animal models. Biochim Biophys Acta Gen Subj 2022; 1866:130172. [PMID: 35597504 DOI: 10.1016/j.bbagen.2022.130172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/07/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
Although iron is a metal involved in many in vital processes due to its redox capacity, body iron overloads lead to tissue damage, including the cardiovascular system. While cardiomyopathy was the focus since the 1960s, the impact on the vasculature was comparatively neglected for about 40 years, when clinical studies correlating iron overload, oxidative stress, endothelial dysfunction, arterial stiffness and atherosclerosis reinforced an "iron hypothesis". Due to controversial results from some epidemiological studies investigating atherosclerotic events and iron levels, well-controlled trials and animal studies provided essential data about the influence of iron, per se, on the vasculature. As a result, the pathophysiology of vascular dysfunction in iron overload have been revisited. This review summarizes the knowledge obtained from epidemiological studies, animal models and "in vitro" cellular systems in recent decades, highlighting a more harmful than innocent role of iron excess for the vascular homeostasis, which supports our proposal to hereafter denominate "iron overload vasculopathy". Additionally, evidence-based therapeutic targets are pointed out to be tested in pre-clinical research that may be useful in cardiovascular protection for patients with iron overload syndromes.
Collapse
Affiliation(s)
- Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil.
| | - Sabrina Rodrigues Bertoli
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil; Faculdade Novo Milenio, Vila Velha, ES, Brazil
| | - Renata Andrade Ávila
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil; Faculdades Integradas São Pedro (FAESA), Vitória, ES, Brazil
| | | |
Collapse
|
31
|
Guo Y, Lu C, Hu K, Cai C, Wang W. Ferroptosis in Cardiovascular Diseases: Current Status, Challenges, and Future Perspectives. Biomolecules 2022; 12:biom12030390. [PMID: 35327582 PMCID: PMC8945958 DOI: 10.3390/biom12030390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases (CVDs) are still a major cause of global mortality and disability, seriously affecting people’s lives. Due to the severity and complexity of these diseases, it is important to find new regulatory mechanisms to treat CVDs. Ferroptosis is a new kind of regulatory cell death currently being investigated. Increasing evidence showed that ferroptosis plays an important role in CVDs, such as in ischemia/reperfusion injury, heart failure, cardiomyopathy, and atherosclerosis. Protecting against CVDs by targeting ferroptosis is a promising approach; therefore, in this review, we summarized the latest regulatory mechanism of ferroptosis and the current studies related to each CVD, followed by critical perspectives on the ferroptotic treatment of CVDs and the future direction of this intriguing biology.
Collapse
Affiliation(s)
- Yi Guo
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (C.L.); (K.H.); (C.C.)
- Correspondence: ; Tel.: +86-180-7170-5166
| |
Collapse
|
32
|
Mungmunpuntipantip R, Wiwanitkit V. Correspondence on "Does wearing double surgical masks during the COVID-19 pandemic and maternal oxygen saturation in term pregnant women". Arch Gynecol Obstet 2022; 306:2197. [PMID: 35201415 PMCID: PMC8867444 DOI: 10.1007/s00404-022-06474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
|
33
|
Hong M, Rong J, Tao X, Xu Y. The Emerging Role of Ferroptosis in Cardiovascular Diseases. Front Pharmacol 2022; 13:822083. [PMID: 35153792 PMCID: PMC8826236 DOI: 10.3389/fphar.2022.822083] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 01/31/2023] Open
Abstract
Ferroptosis is one type of programmed cell death discovered in recent years, which is characterized by iron-dependent lipid peroxidation and participating in iron, lipid and antioxidant metabolism. Ferroptosis is different from the traditional cell death types such as apoptosis, necroptosis and autophagy in morphology, biochemistry and genetics. Cardiovascular diseases are considered as an important cause of death from non-communicable diseases in the global population and poses a serious threat to human health. Apoptosis has long been thought to be the major type of cardiomyocyte death, but now ferroptosis has been shown to play a major role in cardiovascular diseases as well. This review will discuss related issues such as the mechanisms of ferroptosis and its effects on the occurrence and development of cardiovascular diseases, aiming to provide a novel target for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Min Hong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabing Rong
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinran Tao
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Buzzetti E, Ventura P, Corradini E. Iron in Porphyrias: Friend or Foe? Diagnostics (Basel) 2022; 12:272. [PMID: 35204362 PMCID: PMC8870839 DOI: 10.3390/diagnostics12020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Iron is a trace element that is important for many vital processes, including oxygen transport, oxidative metabolism, cellular proliferation, and catalytic reactions. Iron supports these functions mainly as part of the heme molecule. Heme synthesis is an eight-step process which, when defective at the level of one of the eight enzymes involved, can cause the development of a group of diseases, either inherited or acquired, called porphyrias. Despite the strict link between iron and heme, the role of iron in the different types of porphyrias, particularly as a risk factor for disease development/progression or as a potential therapeutic target or molecule, is still being debated, since contrasting results have emerged from clinical observations, in vitro studies and animal models. In this review we aim to deepen such aspects by drawing attention to the current evidence on the role of iron in porphyrias and its potential implication. Testing for iron status and its metabolic pathways through blood tests, imaging techniques or genetic studies on patients affected by porphyrias can provide additional diagnostic and prognostic value to the clinical care, leading to a more tailored and effective management.
Collapse
Affiliation(s)
- Elena Buzzetti
- Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, 41124 Modena, Italy;
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paolo Ventura
- Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, 41124 Modena, Italy;
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Corradini
- Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN-EuroBloodNet Center for Iron Disorders, Azienda Ospedaliero-Universitaria di Modena-Policlinico, 41124 Modena, Italy;
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
35
|
Malagù M, Marchini F, Fiorio A, Sirugo P, Clò S, Mari E, Gamberini MR, Rapezzi C, Bertini M. Atrial Fibrillation in β-Thalassemia: Overview of Mechanism, Significance and Clinical Management. BIOLOGY 2022; 11:biology11010148. [PMID: 35053146 PMCID: PMC8772694 DOI: 10.3390/biology11010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
Thalassemia is an inherited blood disorder with worldwide distribution. Transfusion and chelation therapy have radically improved the prognosis of β-thalassemic patients in the developed world, but this has led to the development of new chronic cardiac complications like atrial fibrillation (AF). Prevalence of AF in patients with β-thalassemia is higher than in the general population, ranging from 2 to 33%. Studies are lacking, and the little evidence available comes from a small number of observational studies. The pathophysiology is not well understood but, while iron overload seems to be the principal mechanism, AF could develop even in the absence of iron deposition. Furthermore, the clinical presentation is mainly paroxysmal, and patients are highly symptomatic. The underlying disease, the pathophysiology, and the clinical presentation require a different management of AF in β-thalassemia than in the general population. Rhythm control should be preferred over rate control, and the most important antiarrhythmic therapy is represented by chelation drugs. Thromboembolic risk is high, but the available risk scores are not validated in β-thalassemia, and the choice of anticoagulation therapy should be considered early. The main purpose of this review is to summarize the actual knowledge about AF in β-thalassemia, with a specific focus on the clinical management of these complex patients.
Collapse
Affiliation(s)
- Michele Malagù
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
- Correspondence: ; Tel.: +39-532-236269
| | - Federico Marchini
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
| | - Alessio Fiorio
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
| | - Paolo Sirugo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
| | - Stefano Clò
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
| | - Elisa Mari
- Day Hospital Thalassemia and Hemoglobinopathies, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (E.M.); (M.R.G.)
| | - Maria Rita Gamberini
- Day Hospital Thalassemia and Hemoglobinopathies, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (E.M.); (M.R.G.)
| | - Claudio Rapezzi
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
| | - Matteo Bertini
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, 44124 Ferrara, Italy; (F.M.); (A.F.); (P.S.); (S.C.); (C.R.); (M.B.)
| |
Collapse
|
36
|
Du S, Shi H, Xiong L, Wang P, Shi Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:1011669. [PMID: 36313744 PMCID: PMC9616119 DOI: 10.3389/fendo.2022.1011669] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Canagliflozin (Cana), an anti-diabetes drug belongs to sodium-glucose cotransporter 2 inhibitor, is gaining interest because of its extra cardiovascular benefits. Ferroptosis is a new mode of cell death, which can promote the occurrence of diabetic cardiomyopathy (DCM). Whether Cana can alleviate DCM by inhibiting ferroptosis is the focus of this study. Here, we induced DCM models in diabetic C57BL6 mice and treated with Cana. Meanwhile, in order to exclude its hypoglycemic effect, the high glucose model in H9C2 cells were established. In the in vivo study, we observed that Cana could effectively alleviate the damage of cardiac function in DCM mice, including the increasing of lactate dehydrogenase (LDH) and cardiac troponin I (cTnI), the alleviating of myocardial fiber breakage, inflammation, collagen fiber deposition and mitochondrial structural disorder. We evaluated reactive oxygen species (ROS) levels by DCFH-DA and BODIPY 581/591 C11, in vitro Cana reduced ROS and lipid ROS in H9C2 cells induced by high glucose. Meanwhile, JC-1 fluorochrome assay showed that the decreased mitochondrial membrane potential (MMP) was increased by Cana. Furthermore, the inhibitory effects of Cana on myocardial oxidative stress and ferroptosis were verified in vivo and in vitro by protein carbonyl (PCO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH). As a key inducer of ferroptosis, the deposition of total iron and Fe2+ can be inhibited by Cana both in vivo and in vitro. In addition, western blot results indicated that the expression of ferritin heavy-chain (FTN-H) was down-regulated, and cystine-glutamate antiporter (xCT) was up-regulated by Cana in DCM mice and cells, suggesting that Cana inhibit ferroptosis by balancing cardiac iron homeostasis and promoting the system Xc-/GSH/GPX4 axis in DCM. These findings underscore the fact that ferroptosis plays an important role in the development and progression of DCM and targeting ferroptosis may be a novel strategy for prevention and treatment. In conclusion, Cana may exert some of its cardiovascular benefits by attenuating ferroptosis.
Collapse
Affiliation(s)
- Shuqin Du
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Hanqiang Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Lie Xiong
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Ping Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- *Correspondence: Yanbo Shi,
| |
Collapse
|
37
|
Javdani H, Etemad L, Moshiri M, Zarban A, Hanafi-Bojd MY. Effect of tannic acid-templated mesoporous silica nanoparticles on iron-induced oxidative stress and liver toxicity in rats. Toxicol Rep 2021; 8:1721-1728. [PMID: 34692422 PMCID: PMC8512627 DOI: 10.1016/j.toxrep.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
The present study sought to investigate the effects of amino-functionalized tannic acid-templated mesoporous silica nanoparticles (TA-MS-NH2 NPs) on giving rats protection against iron-induced liver toxicity. To this end, the TA-MS-NH2 NPs were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). Moreover, 50 Wistar rats were randomly divided into one control group (group 1) and four experimental groups (groups 2- 5) (n = 10), each of which received 100 mg/kg oral normal saline and FeSO4, respectively. Then, post-exposure hepatotoxicity and oxidative stress markers were measured in two intervals, i.e., after 4 and 24 h, followed by the measurement of the acute iron toxicity. Furthermore, hepatotoxicity markers, including the alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total antioxidant capacity (TAC), were measured via Ferric Reducing Antioxidant Power (FRAP) and 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) assays. Also, malondialdehyde (MDA), total thiol groups, advanced oxidation protein products (AOPP), and nitrite/nitrate (NOx) levels were measured as oxidative stress markers in the serum samples. The results indicated that oral administration of iron significantly elevated the liver enzymes and altered the level of oxidative stress markers. It was also found that treatment with TA-MS-NH2 NPs meaningfully protected against hepatotoxicity, decreased ALT, AST, ALP, and significantly improved oxidative stress markers by decreasing MDA, AOPP, and NOx levels and increasing TAC and thiol group contents, proving that TA-MS-NH2 NPs could protect rats against iron-induced acute liver toxicity through their antioxidant features.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AOPP, advanced oxidation protein products
- AST, aspartate aminotransferase
- Acute iron toxicity
- Antioxidant activity
- DLS, dynamic light scattering
- DPPH, 2,2,1-diphenyl-1-picrylhydrazyl
- FE-SEM, field-emission scanning electron microscope
- FRAP, Ferric Reducing Antioxidant Power
- FT-IR, Fourier-transform infrared spectroscopy
- Liver damage
- MDA, malondialdeide
- Mesoporous silica nanoparticles
- Oxidative stress
- TA-MS-NH2 NPs, amino-functionalized tannic acid-templated mesoporous silica nanoparticles
- TAC, total antioxidant capacity
- TEM, transmission electron microscopy
- Tannic acid
Collapse
Affiliation(s)
- Hossein Javdani
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Nanomedicine Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
38
|
Salvia miltiorrhiza (SM) Injection Ameliorates Iron Overload-Associated Cardiac Dysfunction by Regulating the Expression of DMT1, TfR1, and FP1 in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6864723. [PMID: 34135983 PMCID: PMC8175163 DOI: 10.1155/2021/6864723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/26/2020] [Accepted: 04/17/2021] [Indexed: 01/12/2023]
Abstract
Previous studies have found that Salvia miltiorrhiza (SM) injection have a protective effect on the iron overloaded (IO) heart. However, the mechanisms are not completely known. In the present study, we investigated the underlying mechanisms based on the iron transport-related proteins. The rats were randomly divided into five groups: control, IO group, low-dose SM group, high-dose SM group, and deferoxamine control group. Iron dextran was injected to establish the IO model. After 14 days of treatment, cardiac histological changes were observed by hematoxylin and eosin (H&E) staining. Iron uptake-related proteins divalent metal transporter-1 (DMT-1), transferrin receptor-1 (TfR-1), and iron export-related proteins ferroportin1 (FP1) in the heart were detected by Western blotting. The results showed that SM injection decreased cardiac iron deposition, ameliorated cardiac function, and inhibited cardiac oxidation. Most important of all, SM injection downregulated the expression of DMT-1 and TfR-1 and upregulated FP1 protein levels compared with the IO group. Our results indicated that reducing cardiac iron uptake and increasing iron excretion may be one of the important mechanisms of SM injection reducing cardiac iron deposition and improving cardiac function under the conditions of IO.
Collapse
|
39
|
Ficiarà E, Munir Z, Boschi S, Caligiuri ME, Guiot C. Alteration of Iron Concentration in Alzheimer's Disease as a Possible Diagnostic Biomarker Unveiling Ferroptosis. Int J Mol Sci 2021; 22:4479. [PMID: 33923052 PMCID: PMC8123284 DOI: 10.3390/ijms22094479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of all organs, including the brain, requires iron. It is present in different forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurodegeneration. However, the clinical parameters normally used for monitoring iron concentration in biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbalance caused by alterations detectable by standard and non-standard indicators of iron status. These indicators for iron transport, storage, and metabolism can help to understand which biomarkers can better detect iron imbalances responsible for neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| | - Zunaira Munir
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| | - Silvia Boschi
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (Z.M.); (S.B.); (C.G.)
| |
Collapse
|
40
|
Gbotosho OT, Taylor M, Malik P. Cardiac pathophysiology in sickle cell disease. J Thromb Thrombolysis 2021; 52:248-259. [PMID: 33677791 DOI: 10.1007/s11239-021-02414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Oluwabukola Temitope Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Michael Taylor
- Division of Cardiology, Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA. .,Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
41
|
Ju J, Song YN, Wang K. Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. Aging Dis 2021; 12:261-276. [PMID: 33532140 PMCID: PMC7801281 DOI: 10.14336/ad.2020.0323] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a form of programmed cell death caused by production of reactive oxygen species and disequilibrium of iron homeostasis. Many chemical compounds and clinical drugs induce ferroptosis in normal and cancer cells, while peroxidation inhibitors, iron chelators, and antioxidants can block ferroptosis. Glutathione peroxidase 4, ferroptosis suppressor protein 1, nuclear factor erythroid 2-related factor 2, and system Xc- are the negative regulators of ferroptosis, whereas nicotinamide adenine dinucleotide phosphate oxidase, p53, mitochondria voltage-dependent anion channel, and cysteinyl-tRNA synthetase function as positive regulators. Ferroptosis plays important roles in pathogen infection and tumor immunology. Recent studies suggest that ferroptosis plays a vital role in the pathogenesis of cardiovascular diseases (CVDs), which seriously threaten human health. Potential therapies designed around ferroptosis may alter the pathological progression of CVDs. Therefore, we redacted an overview of the discovery of ferroptosis, its regulatory mechanisms, and its potential impact on CVDs treatment.
Collapse
Affiliation(s)
- Jie Ju
- 1Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, China
| | - Ya-Nan Song
- 2Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- 1Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, China
| |
Collapse
|
42
|
Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients. Metabolites 2021; 11:metabo11020070. [PMID: 33530524 PMCID: PMC7912378 DOI: 10.3390/metabo11020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Despite advances in our knowledge and attempts to improve therapies, β-thalassemia remains a prevalent disorder with increased risk for the development of cardiomyopathy. Using an untargeted discovery-based lipidomic workflow, we uncovered that transfusion-dependent thalassemia (TDT) patients had a unique circulating lipidomic signature consisting of 387 lipid features, allowing their significant discrimination from healthy controls (Q-value < 0.01). In particular, TDT patients had elevated triacylglycerols and long-chain acylcarnitines, albeit lower ether phospholipids or plasmalogens, sphingomyelins, and cholesterol esters, reminiscent of that previously characterized in cardiometabolic diseases resulting from mitochondrial and peroxisomal dysfunction. Discriminating lipid (sub)classes correlated differentially with clinical parameters, reflecting blood (ether phospholipids) and iron (cholesterol ester) status or heart function (triacylglycerols). We also tested 15 potential serum biomarkers related to cardiometabolic disease and found that both lipocalin-2 and, for the first time, endocan-1 levels were significantly elevated in TDT patients and showed a strong correlation with blood parameters and three ether diacylglycerophosphatidylcholine species. In conclusion, this study identifies new characteristics of TDT patients which may have relevance in developing biomarkers and therapeutics.
Collapse
|
43
|
Vlachou M, Kamperidis V, Vlachaki E, Tziatzios G, Pantelidou D, Boutou A, Apostolou C, Papadopoulou D, Giannakoulas G, Karvounis H. Left Atrial Strain Identifies Increased Atrial Ectopy in Patients with Beta-Thalassemia Major. Diagnostics (Basel) 2020; 11:diagnostics11010001. [PMID: 33375056 PMCID: PMC7822012 DOI: 10.3390/diagnostics11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Patients with beta-thalassemia major (β-ΤΜ) may develop cardiac arrhythmias through a multifactorial mechanism. The current study evaluated the association of cardiac structure and function on echocardiography with atrial ectopic burden on 24-hour tape recording in β-ΤΜ patients. This prospective study included consecutive β-ΤΜ patients. Demographic, laboratory, echocardiographic, cardiac magnetic resonance (CMR) T2* and 24-hour tape recording data were prospectively collected. The patients were classified according to the median value of premature atrial contractions (PACs) on 24-hour tape. In total, 50 β-TM patients (37.6 ± 9.1 years old, 50% male) were divided in 2 groups; PACs ≤ 24/day and > 24/day. Patients with PACs > 24/day were treated with blood transfusion for a longer period of time (39.0 ± 8.6 vs. 32.0 ± 8.9 years, p < 0.007), compared to their counterparts. Older age (OR: 1.121, 95% CI: 1.032–1.217, p = 0.007), longer duration of blood transfusion (OR:1.101, 95% CI:1.019–1.188, p = 0.014), larger LV end-diastolic diameter (OR: 4.522, 95% CI:1.009–20.280, p = 0.049), higher values of LA peak systolic strain (OR: 0.869, 95% CI: 0.783–0.964, p = 0.008), higher MV E/E′ average (OR: 1.407, 95% CI: 1.028–1.926, p = 0.033) and higher right ventricular systolic pressure (OR: 1.147, 95% CI: 1.039–1.266, p = 0.006) were univariably associated with PACs > 24/day. LA peak systolic strain remained significantly associated with PACs > 24/day after adjusting for the duration of blood transfusions or for CMR T2*. The multivariable model including blood transfusion duration and LA peak systolic strain was the most closely associated with PACs > 24/day. Receiver operating characteristic curve analysis identified a left atrial peak systolic strain of 31.5%, as the best cut-off value (83% sensitivity, 68% specificity) for prediction of PACs > 24/day. In β-TM patients, LA peak systolic strain was associated with the atrial arrhythmia burden independently to the duration of blood transfusions and CMR T2*.
Collapse
Affiliation(s)
- Maria Vlachou
- 1st Cardiology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54621 Thessaloniki, Greece; (M.V.); (G.T.); (G.G.); (H.K.)
| | - Vasileios Kamperidis
- 1st Cardiology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54621 Thessaloniki, Greece; (M.V.); (G.T.); (G.G.); (H.K.)
- Correspondence: ; Tel./Fax: +30-2310-994830
| | - Efthymia Vlachaki
- Thalassaemia Unit, Ippokratio University Hospital, 54642 Thessaloniki, Greece; (E.V.); (C.A.)
| | - Georgios Tziatzios
- 1st Cardiology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54621 Thessaloniki, Greece; (M.V.); (G.T.); (G.G.); (H.K.)
| | - Despoina Pantelidou
- Thalassaemia Unit, AHEPA University Hospital, 54621 Thessaloniki, Greece; (D.P.); (D.P.)
| | - Afroditi Boutou
- Pulmonary Department, Papanikolaou Hospital, 57010 Thessaloniki, Greece;
| | - Chrysa Apostolou
- Thalassaemia Unit, Ippokratio University Hospital, 54642 Thessaloniki, Greece; (E.V.); (C.A.)
| | - Despoina Papadopoulou
- Thalassaemia Unit, AHEPA University Hospital, 54621 Thessaloniki, Greece; (D.P.); (D.P.)
| | - George Giannakoulas
- 1st Cardiology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54621 Thessaloniki, Greece; (M.V.); (G.T.); (G.G.); (H.K.)
| | - Haralambos Karvounis
- 1st Cardiology Department, AHEPA Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, 54621 Thessaloniki, Greece; (M.V.); (G.T.); (G.G.); (H.K.)
| |
Collapse
|
44
|
Kumfu S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Silencing of lipocalin-2 improves cardiomyocyte viability under iron overload conditions via decreasing mitochondrial dysfunction and apoptosis. J Cell Physiol 2020; 236:5108-5120. [PMID: 33319934 DOI: 10.1002/jcp.30219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the mechanistic roles of LCN-2 and LCN-2 receptors (LCN-2R) as iron transporters in cardiomyocytes under iron overload condition. H9c2 cardiomyocytes were treated with either LCN-2 small interfering RNA (siRNA) or LCN-2R siRNA or L-type or T-type calcium channel (LTCC or TTCC) blockers, or iron chelator deferiprone (DFP). After the treatments, the cells were exposed to Fe3+ or Fe2+ , after that biological parameters were determined. Silencing of lipocalin-2 or its receptor improved cardiomyocyte viability via decreasing iron uptake, mitochondrial fission, mitophagy and cleaved caspase-3 only in the Fe3+ overload condition. In contrast, treatments with LTCC blocker and TTCC blocker showed beneficial effects on those parameters only in conditions of Fe2+ overload. Treatment with DFP has been shown beneficial effects both in Fe2+ and Fe3+ overload condition. All of these findings suggested that LTCC and TTCC play crucial roles in the Fe2+ uptake, whereas LCN-2 and LCN-2R were essential for Fe3+ uptake into the cardiomyocytes under iron overload conditions.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
45
|
Deficiency in gp91Phox (NOX2) Protects against Oxidative Stress and Cardiac Dysfunction in Iron Overloaded Mice. HEARTS 2020. [DOI: 10.3390/hearts1020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of NADPH oxidase subunit, gp91phox (NOX2) in development of oxidative stress and cardiac dysfunction due to iron (Fe)-overload was assessed. Control (C57BL/6J) and gp91phox knockout (KO) mice were treated for up to 8 weeks with Fe (2.5 mg/g/wk, i.p.) or Na-dextran; echocardiography, plasma 8-isoprostane (lipid peroxidation marker), cardiac Fe accumulation (Perl’s staining), and CD11b+ (WBCs) infiltrates were assessed. Fe caused no adverse effects on cardiac function at 3 weeks. At 6 weeks, significant declines in left ventricular (LV) ejection fraction (14.6% lower), and fractional shortening (19.6% lower) occurred in the Fe-treated control, but not in KO. Prolonging Fe treatment (8 weeks) maintained the depressed LV systolic function with a trend towards diastolic dysfunction (15.2% lower mitral valve E/A ratio) in controls but produced no impact on the KO. Fe-treatment (8 weeks) caused comparable cardiac Fe accumulation in both strains, but a 3.3-fold elevated plasma 8-isoprostane, and heightened CD11b+ staining in controls. In KO mice, lipid peroxidation and CD11b+ infiltration were 50% and 68% lower, respectively. Thus, gp91phox KO mice were significantly protected against oxidative stress, and systolic and diastolic dysfunction, supporting an important role of NOX2-mediated oxidative stress in causing cardiac dysfunction during Fe overload.
Collapse
|
46
|
Nakanishi T, Nanami M, Kuragano T. The pathogenesis of CKD complications; Attack of dysregulated iron and phosphate metabolism. Free Radic Biol Med 2020; 157:55-62. [PMID: 31978539 DOI: 10.1016/j.freeradbiomed.2020.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Chronic kidney disease (CKD) patients have a tremendously higher risk of developing cardiovascular disease (CVD) and infection than the non-CKD population, which could be caused by intertwining actions of hyperphosphatemia and CKD associated misdistribution of iron. CVD is often associated with vascular calcification, which has been attributed to hyperphosphatemia, and could be initiated in mitochondria, inducing apoptosis, and accelerated by reactive oxygen species (ROS). The production of ROS is principally linked to intracellular ferrous iron. For infection, the virulence and pathogenicity of a pathogen is directly related to its capacity to acquire iron for proliferation and to escape or subvert the host's immune response. Iron administration for renal anemia can sometimes be overdosed, which could decrease host immune mechanisms through its direct effect on neutrophils, macrophages and T cell function. Hyperphosphatemia has been demonstrated to be associated with an increased incidence of infection. We hypothesized two possible mechanisms: 1) fibroblast growth factor-23 levels are increased in parallel with serum phosphate levels and directly impair leukocyte recruitment and host defense mechanisms, and 2) circulating non-transferrin-bound iron (NTBI) is increased due to decreased iron binding capacity of the carrier protein transferrin in high-phosphate conditions. From these observations, maintaining an adequate serum range of phosphate levels and minimizing intracellular iron accumulation could attenuate the development of CKD complications.
Collapse
Affiliation(s)
- Takeshi Nakanishi
- Department of Nephrology, Sumiyoshigawa Hospital, Japan; Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Japan.
| | - Masayoshi Nanami
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Japan.
| | - Takahiro Kuragano
- Department of Internal Medicine, Division of Kidney and Dialysis, Hyogo College of Medicine, Japan.
| |
Collapse
|
47
|
Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants (Basel) 2020; 9:E758. [PMID: 32824344 PMCID: PMC7465659 DOI: 10.3390/antiox9080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Iron (Fe) plays an essential role in many physiological processes. Hereditary hemochromatosis or frequent blood transfusions often cause iron overload (IO), which can lead to cardiomyopathy and arrhythmias; however, the underlying mechanism is not well defined. In the present study, we assess the hypothesis that IO promotes arrhythmias via reactive oxygen species (ROS) production, mitochondrial membrane potential (∆Ψm) depolarization, and disruption of cytosolic Ca dynamics. In ventricular myocytes isolated from wild type (WT) mice, both cytosolic and mitochondrial Fe levels were elevated following perfusion with the Fe3+/8-hydroxyquinoline (8-HQ) complex. IO promoted mitochondrial superoxide generation (measured using MitoSOX Red) and induced the depolarization of the ΔΨm (measured using tetramethylrhodamine methyl ester, TMRM) in a dose-dependent manner. IO significantly increased the rate of Ca wave (CaW) formation measured in isolated ventricular myocytes using Fluo-4. Furthermore, in ex-vivo Langendorff-perfused hearts, IO increased arrhythmia scores as evaluated by ECG recordings under programmed S1-S2 stimulation protocols. We also carried out similar experiments in cyclophilin D knockout (CypD KO) mice in which the mitochondrial permeability transition pore (mPTP) opening is impaired. While comparable cytosolic and mitochondrial Fe load, mitochondrial ROS production, and depolarization of the ∆Ψm were observed in ventricular myocytes isolated from both WT and CypD KO mice, the rate of CaW formation in isolated cells and the arrhythmia scores in ex-vivo hearts were significantly lower in CypD KO mice compared to those observed in WT mice under conditions of IO. The mPTP inhibitor cyclosporine A (CsA, 1 µM) also exhibited a protective effect. In conclusion, our results suggest that IO induces mitochondrial ROS generation and ∆Ψm depolarization, thus opening the mPTP, thereby promoting CaWs and cardiac arrhythmias. Conversely, the inhibition of mPTP ameliorates the proarrhythmic effects of IO.
Collapse
Affiliation(s)
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (R.G.); (N.F.); (J.K.G.)
| |
Collapse
|
48
|
Aboutalebi A, Jouyban A, Chavoshi H, Movassaghpour Akbari A, Shaseb E, Sarbakhsh P, Ghaffary S. Protective Effects of Selenium in Patients with Beta-Thalassemia Major. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2019.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background
: Beta-thalassemia major patients require repeated blood transfusion which is associated with iron overload in different organs such as heart, liver, kidney and their related complications. In this study the effects of selenium in iron overload related complications of patients with beta-thalassemia major were assessed. Methods: In this clinical trial, 34 beta-thalassemia major patients over 12 years old were enrolled. Patients with severe renal failure, history of selenium consumption over the last three months, change of blood transfusion pattern, and any change of chelating agent were excluded from the study. For all patients, tablet of selenium 200 µg/day was administered for a month. Blood samples were taken at baseline and after one-month to assess the level of ferritin, total iron-binding capacity (TIBC), aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine (Scr), selenium. Hair loss was assessed by questionnaire before and after intervention. Results: From 34 patients, 27 (79.4%) had deficient level of selenium at baseline. The selenium level was increased after intervention (p=0.005). The level of serum ALT and Scr decreased remarkably after one-month selenium consumption (p=0.007 for both). In addition, the AST level decreased remarkably after intervention (p=0.053). Severe hair loss profile has improved significantly after supplementation (p=0.004). Conclusion: One-month selenium consumption improved liver and kidney function related markers remarkably. Moreover, selenium improved hair profile and severe hair loss in thalassemia patients. Further studies are needed on the effect of selenium administration on liver and kidney function.
Collapse
Affiliation(s)
- Ajand Aboutalebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Chavoshi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Elnaz Shaseb
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Coates TD. Iron overload in transfusion-dependent patients. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:337-344. [PMID: 31808901 PMCID: PMC6913424 DOI: 10.1182/hematology.2019000036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Before the advent of effective iron chelation, death from iron-induced cardiomyopathy occurred in the second decade in patients with transfusion-dependent chronic anemias. The advances in our understanding of iron metabolism; the ability to monitor iron loading in the liver, heart, pancreas and pituitary; and the availability of several effective iron chelators have dramatically improved survival and reduced morbidity from transfusion-related iron overload. Nevertheless, significantly increased survival brings about new complications such as malignant transformation resulting from prolonged exposure to iron, which need to be considered when developing long-term therapeutic strategies. This review discusses the current biology of iron homeostasis and its close relation to marrow activity in patients with transfusion-dependent anemias, and how biology informs clinical approach to treatment.
Collapse
Affiliation(s)
- Thomas D Coates
- Hematology Section, Children's Center for Cancer, Blood Diseases and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA
| |
Collapse
|
50
|
Shizukuda Y, Rosing DR. Iron overload and arrhythmias: Influence of confounding factors. J Arrhythm 2019; 35:575-583. [PMID: 31410226 PMCID: PMC6686354 DOI: 10.1002/joa3.12208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias as a cardiac complication of iron overload (IO) have been well described for decades in the clinical literature. They are assumed to be directly associated with the myocardial accumulation of iron. However, the influence of heart failure and elevated oxidative stress, which are major arrhythmogenic confounding factors associated with IO on arrhythmias, has not been critically reviewed in the published literature. A comprehensive narrative review of published articles in PubMed was conducted to address the influence of confounding factors of IO on arrhythmias. The previous data may have been largely confounded by the other cardiac complications of IO, particularly heart failure. The previous studies on IO-related arrhythmias lack proper age-gender-matched control subjects and/or comparison groups with properly controlled confounding factors to assess accurately their etiology and clinical significance. Given the above considerations, further mechanistic investigations to clarify the etiology and clinical relevance of IO-induced arrhythmias are needed. In addition, investigations to develop arrhythmia management strategy specific to IO, are warranted.
Collapse
Affiliation(s)
- Yukitaka Shizukuda
- Cardiovascular BranchNational Heart, Lung, and Blood InstituteBethesdaMaryland
- Cincinnati VA Medical CenterCincinnatiOhio
- Division of Cardiovascular Health and DiseaseUniversity of CincinnatiCincinnatiOhio
| | - Douglas R. Rosing
- Cardiovascular BranchNational Heart, Lung, and Blood InstituteBethesdaMaryland
| |
Collapse
|