1
|
Fan J, Li Y, Yang S, Yang J, Jin H, Wang Y, Wei F, Ma S. Two polysaccharides from Polygonum multiflorum Thunb. exert anti-aging by regulating P53/P21 pathway and amino acid metabolism. Int J Biol Macromol 2025; 306:141573. [PMID: 40023426 DOI: 10.1016/j.ijbiomac.2025.141573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Polygonum multiflorum Thunb (PM) is known for its potential to extend lifespan. Although the polysaccharides, the primary constituents of PM, remain largely unexplored in terms of their anti-aging effects and underlying mechanisms, this study investigates them in detail. The anti-aging effects of two purified polysaccharides from PM were evaluated: neutral polysaccharide (RPMP-N, weight average molecular weight 245.30 kDa) and acidic polysaccharide (RPMP-A, weight average molecular weight 28.45 kDa), using a D-Galactose-induced (D-Gal) aging mouse model. In the experimental group, RPMP-N and RPMP-A were administered at doses of 50 (low) and 150 mg/kg/day (high). The activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), which are essential for scavenging free radicals and form a key part of the body's antioxidant defense system, was measured in aging mice. The results showed significant improvements following treatment with RPMP-N and RPMP-A. Additionally, both polysaccharides demonstrated the ability to repair and protect against liver and brain injuries. The expression of P16, P21, and P53 proteins, which regulate cellular senescence through distinct mechanisms, was significantly reduced in liver and brain tissues after treatment. Notably, untargeted metabolomics revealed that RPMP-N and RPMP-A exerted significant anti-aging effects in the D-Gal aging mouse model, primarily influencing metabolism pathways related to lysine, sphingolipids, cysteine, and methionine. In conclusion, these findings provide important insights into the anti-aging mechanisms of PM polysaccharides, supporting their potential for clinical applications, drug development, and regulatory science.
Collapse
Affiliation(s)
- Jing Fan
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Yaolei Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 26003, Shandong, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 102629, China.
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Singh MK, Han S, Ju S, Ranbhise JS, Ha J, Yeo SG, Kim SS, Kang I. Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease. Cells 2025; 14:509. [PMID: 40214463 PMCID: PMC11989206 DOI: 10.3390/cells14070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its presence in multiple cellular organelles enables it to mediate stress responses, apoptosis, and inflammation, highlighting its significance in disease progression. Initially recognized for its essential roles in protein folding, disaggregation, and degradation, later studies have demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen. Additionally, epichaperome networks stabilize protein-protein interactions in large and long-lived assemblies, contributing to both cancer progression and neurodegeneration. However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate immune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiology and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic target across multiple human diseases. This review highlights the structural and functional importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna S. Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Khan IM, Gul H, Khan S, Nassar N, Khalid A, Swelum AA, Wang Z. Green tea polyphenol epigallocatechin-3-gallate mediates an antioxidant response via Nrf2 pathway in heat-stressed poultry: A review. Poult Sci 2025; 104:105071. [PMID: 40157268 PMCID: PMC11995091 DOI: 10.1016/j.psj.2025.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Heat stress is a critical challenge in the poultry industry. It arises when birds are exposed to elevated ambient temperatures beyond their thermoneutral zone, often exacerbated by high humidity and inadequate ventilation. This condition disrupts the birds' ability to maintain thermal homeostasis, leading to physiological and behavioral changes such as increased panting, reduced feed intake, and elevated water consumption. These responses aim to dissipate heat but often result in energy imbalances, oxidative stress, and impaired immune function. Green tea polyphenols (GTPs) mitigate heat stress in poultry birds by modulating oxidative stress pathways, primarily by scavenging reactive oxygen species (ROS) and enhancing antioxidant defense mechanisms. These pathways play a pivotal role in neutralizing ROS generated during oxidative stress, inflammation, and exposure to electrophilic compounds. This action helps restore cellular balance and enhances overall antioxidant defense mechanisms by converting harmful free radicals into less reactive molecules, such as water and oxygen. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant character in the activation of the enzymatic antioxidants network. It translocates to the nucleus upon activation, binds to antioxidant response elements (AREs) in the promoter regions of target genes, and upregulates the expression of key antioxidant enzymes. Therefore, the regulation of Nrf2 is considered a critical molecular marker in mitigating the effects of heat stress, as its activation enhances the expression of antioxidant and detoxification enzymes, protecting against oxidative damage and inflammation induced by elevated temperatures. This exploratory review summarizes the antioxidant mechanisms and anti-oxidative stress effects of GTPs in mitigating heat stress in poultry. It highlights the cytoprotective molecular basis of epigallocatechin-3-gallate (EGCG), particularly its role in modulating Nrf2-mediated cellular pathways, which enhance antioxidant defense systems and protect against oxidative damage.
Collapse
Affiliation(s)
| | - Haji Gul
- District Livestock Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Xin C, Jia P, Zhao Y, Cheng Z, Liu W, Di P, Li W, Zhu H. Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing. Int J Biol Macromol 2025; 296:139809. [PMID: 39805458 DOI: 10.1016/j.ijbiomac.2025.139809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds. First, chitosan (CS) was modified and Gastrodin (GAS) was grafted onto its main chain structure to obtain GAS/CS. Then GAS/CS was mixed with oxidized Gastrodia elata polysaccharides (GEP) to form a hydrogel using the principle of adsorbent reaction, and Puerarin (PUE), a natural plant ingredient, was embedded by gelatin microspheres and then loaded into the hydrogel. As a result, the composite hydrogel effectively reduced oxidative stress in tissue cells at the wound site and inhibited bacterial growth. It also reduced inflammation, promoted angiogenesis, and enhanced collagen deposition, which facilitated the repair of all aspects of the wound healing process in aging mouse skin. In short, this study explored the anti-aging effects of polysaccharides from Gastrodia elata, which might serve as both a treatment and an auxiliary for aging skin wounds. Additionally, the Gastrodia elata polysaccharide hydrogel was expected to be a promising drug carrier for skin repair.
Collapse
Affiliation(s)
- Chenran Xin
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China
| | - Pinhui Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Peng Di
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
5
|
Kakizawa S. Involvement of ROS signal in aging and regulation of brain functions. J Physiol Sci 2025; 75:100003. [PMID: 39823967 PMCID: PMC11979664 DOI: 10.1016/j.jphyss.2024.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/23/2024] [Accepted: 12/17/2024] [Indexed: 01/20/2025]
Abstract
Reactive oxygen species (ROS) are redox-signaling molecules involved in aging and lifestyle-related diseases. In the brain, in addition to the production of ROS as byproducts of metabolism, expression of ROS synthases has recently been demonstrated, suggesting possible involvement of ROS in various brain functions. This review highlights current knowledge on the relationship between ROS and brain functions, including their contribution to age-related decline in synaptic plasticity and cognitive function. While most studies demonstrate either the positive or negative effects of ROS on synaptic plasticity, the dual effects of ROS at individual synapses have been demonstrated recently in the mouse cerebellum. Furthermore, the cooperative interaction between these two effects determines the direction of synaptic plasticity. It is anticipated that further elucidation of both the positive and negative effects of ROS on brain function will lead to the development of more effective therapeutic strategies with fewer side effects for ROS-related brain dysfunction.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Ősz F, Nazir A, Takács-Vellai K, Farkas Z. Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in C. elegans. Antioxidants (Basel) 2025; 14:76. [PMID: 39857410 PMCID: PMC11761250 DOI: 10.3390/antiox14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using Caenorhabditis elegans as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels. We highlight the utility of redox sensors in C. elegans for in vivo studies of reactive oxygen species, offering both quantitative and qualitative insights. Finally, we examine the potential of C. elegans as a platform for testing ETC-targeting drug candidates, including OXPHOS inhibitors, which represent promising avenues in cancer therapeutics. This review underscores the translational relevance of ETC research in C. elegans, bridging fundamental biology and therapeutic innovation.
Collapse
Affiliation(s)
- Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India;
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary; (F.Ő.); (Z.F.)
| |
Collapse
|
7
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
8
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
10
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
12
|
Bai D, Wang Z, Xiao Y, Liu T, Pu Y, Sun H, Wang M, Guo C, Zhang J. Transdermal delivery of elastin peptide assisted by betaine-based deep eutectic solvent to ameliorate skin photoaging. BIOMATERIALS ADVANCES 2024; 163:213965. [PMID: 39053386 DOI: 10.1016/j.bioadv.2024.213965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The unique amino acid composition of elastin peptide (EP) makes it an excellent resource to obtain antioxidant peptides. It exhibits high elastase inhibitory activity with the potential to resist skin aging and is currently used in a many cosmetic products. However, the inherent low permeability of the skin limits its ability to penetrate the skin. To address this issue, a deep eutectic solvent (SAB) with excellent bioactivity was synthesized from betaine and succinic acid and used as a permeation enhancer to improve the absorption and utilization of EP in this paper. The results showed that low SAB concentrations significantly increased the transdermal delivery of EP. The 3D epidermal skin model (EpiKutis®) demonstrated that SAB/EP induced the synthesis of hyaluronic acid (HA) and filaggrin (FLG), accelerated skin barrier repair, and reduced water loss. Additionally, the zebrafish embryonic model showed that SAB/EP could reduce melanin secretion, decrease melanin deposition, and have an ameliorative effect on skin photoaging. Cellular experiments proved that SAB/EP can stimulate human skin fibroblasts to secrete procollagen I and elastin, improving skin elasticity and anti-wrinkle. The combination of EP and DES is a new attempt that is expected to be used as a safe and effective anti-wrinkle cosmetic material.
Collapse
Affiliation(s)
- De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Zhenyuan Wang
- Shenzhen Shinehigh Innovation technology LTD., Shenzhen 518055, PR China
| | - Yuan Xiao
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Yan Pu
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China.
| | - Chaowan Guo
- Guangdong Marubi Biotechnol Co Ltd, Guangzhou 510700, PR China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, PR China; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, PR China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China; Shenzhen Shinehigh Innovation technology LTD., Shenzhen 518055, PR China.
| |
Collapse
|
13
|
Yang Y, Yuan F, Xiang D, Wang P, Yang R, Li X. Spotlight on endoplasmic reticulum stress in acute kidney injury: A bibliometric analysis and visualization from 1997 to 2024. Medicine (Baltimore) 2024; 103:e39567. [PMID: 39252224 PMCID: PMC11384828 DOI: 10.1097/md.0000000000039567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, a protective stress response of body and play important role in maintain ER stability. Acute kidney injury (AKI) is a severe syndrome, and the molecular mechanisms of AKI has not been fully elucidated. With an increasing understanding of ER stress, ER stress has been investigated and considered a potential and novel therapeutic target in AKI. This study aims to employ a bibliometric approach to analyze research trends and focal points in ER stress associated with AKI over 3 decades. METHODS Data were retrieved from the Web of Science Core Collection on April 15, 2024. CiteSpace and VOSviewer bibliometric software were mainly used to measure bibliometrics and analyze knowledge graphs to predict the latest research trends in the field. RESULTS There were 452 "ER stress in AKI" articles in the Web of Science Core Collection. According to the report, China and the United States were the leading research drivers in this field. Central South University was the most active academic institution, contributing the most documents. In this field, Dong Zheng was the most prolific author. The American Journal of Physiology-Renal Physiology was the journal with the most records among all journals. The keywords "NLRP3 inflammasome," "redox signaling," and novel forms of cell death such as "ferroptosis" may represent current research trends and directions. CONCLUSION The bibliometric analysis comprehensively examines the trends and hotspots on "ER stress and AKI." Studies on AKI related to stress in the ER are still in their infancy. Research should focus on understanding the relationship between ER stress and inflammasome, redox signal pathways and new forms of cell death such as ferroptosis.
Collapse
Affiliation(s)
- Yuan Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Rui Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| |
Collapse
|
14
|
Paiva B, Laranjinha J, Rocha BS. Do oral and gut microbiota communicate through redox pathways? A novel asset of the nitrate-nitrite-NO pathway. FEBS Lett 2024; 598:2211-2223. [PMID: 38523057 DOI: 10.1002/1873-3468.14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Nitrate may act as a regulator of •NO bioavailability via sequential reduction along the nitrate-nitrite-NO pathway with widespread health benefits, including a eubiotic effect on the oral and gut microbiota. Here, we discuss the molecular mechanisms of microbiota-host communication through redox pathways, via the production of •NO and oxidants by the family of NADPH oxidases, namely hydrogen peroxide (via Duox2), superoxide radical (via Nox1 and Nox2) and peroxynitrite, which leads to downstream activation of stress responses (Nrf2 and NFkB pathways) in the host mucosa. The activation of Nox2 by microbial metabolites is also discussed. Finally, we propose a new perspective in which both oral and gut microbiota communicate through redox pathways, with nitrate as the pivot linking both ecosystems.
Collapse
Affiliation(s)
- Beatriz Paiva
- Faculty of Pharmacy, University of Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Bárbara S Rocha
- Faculty of Pharmacy, University of Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| |
Collapse
|
15
|
Percio A, Cicchinelli M, Masci D, Summo M, Urbani A, Greco V. Oxidative Cysteine Post Translational Modifications Drive the Redox Code Underlying Neurodegeneration and Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2024; 13:883. [PMID: 39199129 PMCID: PMC11351139 DOI: 10.3390/antiox13080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Redox dysregulation, an imbalance between oxidants and antioxidants, is crucial in the pathogenesis of various neurodegenerative diseases. Within this context, the "redoxome" encompasses the network of redox molecules collaborating to maintain cellular redox balance and signaling. Among these, cysteine-sensitive proteins are fundamental for this homeostasis. Due to their reactive thiol groups, cysteine (Cys) residues are particularly susceptible to oxidative post-translational modifications (PTMs) induced by free radicals (reactive oxygen, nitrogen, and sulfur species) which profoundly affect protein functions. Cys-PTMs, forming what is referred to as "cysteinet" in the redox proteome, are essential for redox signaling in both physiological and pathological conditions, including neurodegeneration. Such modifications significantly influence protein misfolding and aggregation, key hallmarks of neurodegenerative diseases such as Alzheimer's, Parkinson's, and notably, amyotrophic lateral sclerosis (ALS). This review aims to explore the complex landscape of cysteine PTMs in the cellular redox environment, elucidating their impact on neurodegeneration at protein level. By investigating specific cysteine-sensitive proteins and the regulatory networks involved, particular emphasis is placed on the link between redox dysregulation and ALS, highlighting this pathology as a prime example of a neurodegenerative disease wherein such redox dysregulation is a distinct hallmark.
Collapse
Affiliation(s)
- Anna Percio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Mariagrazia Summo
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| |
Collapse
|
16
|
Lamontagne F, Paz-Trejo C, Zamorano Cuervo N, Grandvaux N. Redox signaling in cell fate: Beyond damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119722. [PMID: 38615720 DOI: 10.1016/j.bbamcr.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This review explores the nuanced role of reactive oxygen species (ROS) in cell fate, challenging the traditional view that equates ROS with cellular damage. Through significant technological advancements in detecting localized redox states and identifying oxidized cysteines, a paradigm shift has emerged: from ROS as merely damaging agents to crucial players in redox signaling. We delve into the intricacies of redox mechanisms, which, although confined, exert profound influences on cellular physiological responses. Our analysis extends to both the positive and negative impacts of these mechanisms on cell death processes, including uncontrolled and programmed pathways. By unraveling these complex interactions, we argue against the oversimplified notion of a 'stress response', advocating for a more nuanced understanding of redox signaling. This review underscores the importance of localized redox states in determining cell fate, highlighting the sophistication and subtlety of ROS functions beyond mere damage.
Collapse
Affiliation(s)
- Felix Lamontagne
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Cynthia Paz-Trejo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
17
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
18
|
Elzainy A, El Sadik A, Altowayan WM. Comparison between the Regenerative and Therapeutic Impacts of Bone Marrow Mesenchymal Stem Cells and Adipose Mesenchymal Stem Cells Pre-Treated with Melatonin on Liver Fibrosis. Biomolecules 2024; 14:297. [PMID: 38540717 PMCID: PMC10968153 DOI: 10.3390/biom14030297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The distinctive feature of liver fibrosis is the progressive replacement of healthy hepatic cells by the extracellular matrix protein, which is abundant in collagen I and III, with impaired matrix remodeling. The activation of myofibroblastic cells enhances the fibrogenic response of complex interactions of hepatic stellate cells, fibroblasts, and inflammatory cells to produce the excessive deposition of the extracellular protein matrix. This process is activated by multiple fibrogenic mediators and cytokines, such as TNF-α and IL-1β, accompanied with a decrease in the anti-fibrogenic factor NF-κβ. Mesenchymal stem cells (MSCs) represent a promising therapy for liver fibrosis, allowing for a more advanced regenerative influence when cultured with extrinsic or intrinsic proliferative factors, cytokines, antioxidants, growth factors, and hormones such as melatonin (MT). However, previous studies showed conflicting findings concerning the therapeutic effects of adipose (AD) and bone marrow (BM) MSCs; therefore, the present work aimed to conduct a comparative and comprehensive study investigating the impact of MT pre-treatment on the immunomodulatory, anti-inflammatory, and anti-apoptotic effects of AD- and BM-MSCs and to critically analyze whether MT-pre-treated AD-MSCs and BM-MSCs reveal equal or different therapeutic and regenerative potentials in a CCl4-injured liver experimental rat model. MATERIALS AND METHODS Six groups of experimental rats were used, with ten rats in each group: group I (control group), group II (CCl4-treated group), group III (CCl4- and BM-MSC-treated group), group IV (CCl4 and MT-pre-treated BM-MSC group), group V (CCl4- and AD-MSC-treated group), and group VI (CCl4 and MT-pre-treated AD-MSC group). Liver function tests and the gene expression of inflammatory, fibrogenic, apoptotic, and proliferative factors were analyzed. Histological and immunohistochemical changes were assessed. RESULTS The present study compared the ability of AD- and BM-MSCs, with and without MT pre-treatment, to reduce hepatic fibrosis. Both types of MSCs improved hepatocyte function by reducing the serum levels of ALT, aspartate aminotransferase (AST), alkaline phosphatase (AKP), and total bilirubin (TBIL). In addition, the changes in the hepatocellular architecture, including the hepatocytes, liver sinusoids, central veins, portal veins, biliary ducts, and hepatic arteries, showed a decrease in hepatocyte injury and cholestasis with a reduction in inflammation, apoptosis, and necrosis of the hepatic cells, together with an inhibition of liver tissue fibrosis. These results were augmented by an analysis of the expression of the pro-inflammatory cytokines TNFα and IL-1β, the anti-fibrogenic factor NF-κβ, the apoptotic factor caspase-3, and the proliferative indicators antigen Ki-67 and proliferating cell nuclear antigen (PCNA). These findings were found to be statistically significant, with the restoration of normal parameters in the rats that received AD-MSCs pre-treated with MT, denoting optimal regenerative and therapeutic effects. CONCLUSIONS AD-MSCs pre-treated with MT are the preferred choice in improving hepatic fibrosis and promoting the therapeutic and regenerative ability of liver tissue. They represent a very significant tool for future stem cell use in the tissue regeneration strategy for the treatment of liver diseases.
Collapse
Affiliation(s)
- Ahmed Elzainy
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Abir El Sadik
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.E.); (A.E.S.)
- Department of Anatomy and Embryology, College of Medicine, Cairo University, Cairo 11956, Egypt
| | - Waleed Mohammad Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
19
|
Gonçalves JS, Marçal AL, Marques BS, Costa FD, Laranjinha J, Rocha BS, Lourenço CF. Dietary nitrate supplementation and cognitive health: the nitric oxide-dependent neurovascular coupling hypothesis. Biochem Soc Trans 2024; 52:279-289. [PMID: 38385536 DOI: 10.1042/bst20230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.
Collapse
Affiliation(s)
- João S Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana L Marçal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Marques
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa D Costa
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Rocha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
21
|
Song J, Chen Q, Xu S, Gou Y, Guo Y, Jia C, Zhao C, Zhang Z, Li B, Zhao Y, Ji E. Hydrogen Attenuates Chronic Intermittent Hypoxia-Induced Cardiac Hypertrophy by Regulating Iron Metabolism. Curr Issues Mol Biol 2023; 45:10193-10210. [PMID: 38132482 PMCID: PMC10742465 DOI: 10.3390/cimb45120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The present study aimed to investigate the impact of hydrogen (H2) on chronic intermittent hypoxia (CIH)-induced cardiac hypertrophy in mice by modulating iron metabolism. C57BL/6N mice were randomly allocated into four groups: control (Con), CIH, CIH + H2, and H2. The mice were exposed to CIH (21-5% FiO2, 3 min/cycle, 8 h/d), and received inhalation of a hydrogen-oxygen mixture (2 h/d) for 5 weeks. Cardiac and mitochondrial function, levels of reactive oxygen species (ROS), and iron levels were evaluated. The H9C2 cell line was subjected to intermittent hypoxia (IH) and treated with H2. Firstly, we found H2 had a notable impact on cardiac hypertrophy, ameliorated pathological alterations and mitochondrial morphology induced by CIH (p < 0.05). Secondly, H2 exhibited a suppressive effect on oxidative injury by decreasing levels of inducible nitric oxide synthase (i-NOS) (p < 0.05) and 4-hydroxynonenal (4-HNE) (p < 0.01). Thirdly, H2 demonstrated a significant reduction in iron levels within myocardial cells through the upregulation of ferroportin 1 (FPN1) proteins (p < 0.01) and the downregulation of transferrin receptor 1 (TfR1), divalent metal transporter 1 with iron-responsive element (DMT1(+ire)), and ferritin light chain (FTL) mRNA or proteins (p < 0.05). Simultaneously, H2 exhibited the ability to decrease the levels of Fe2+ and ROS in H9C2 cells exposed to IH (p < 0.05). Moreover, H2 mediated the expression of hepcidin, hypoxia-inducible factor-1α (HIF-1α) (p < 0.01), and iron regulatory proteins (IRPs), which might be involved in the regulation of iron-related transporter proteins. These results suggested that H2 may be beneficial in preventing cardiac hypertrophy, a condition associated with reduced iron toxicity.
Collapse
Affiliation(s)
- Jixian Song
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qi Chen
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shan Xu
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
| | - Yujing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yajing Guo
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Cuiling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chenbing Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Boliang Li
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang 050013, China
| | - Ensheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; (J.S.); (Q.C.); (S.X.); (Y.G.); (Y.G.); (C.J.); (C.Z.); (Z.Z.); (B.L.)
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
22
|
Shen M, Jiang H, Zhao Y, Wu L, Yang H, Yao Y, Meng H, Yang Q, Liu L, Li Y. Shear Stress and ROS Dual-Responsive RBC-Hitchhiking Nanoparticles for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43374-43386. [PMID: 37669139 DOI: 10.1021/acsami.3c07371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Atherosclerosis (AS), a leading cause of death worldwide, is a chronic inflammatory disease rich in lipids and reactive oxygen species (ROS) within plaques. Therefore, lowering lipid and ROS levels is effective in treating AS and reducing AS-induced mortality. In this study, an intelligent biomimetic drug delivery system that specifically responded to both shear stress and ROS microenvironment was developed, consisting of red blood cells (RBCs) and cross-linked polyethyleneimine nanoparticles (SA PEI) loaded with a lipid-lowering drug simvastatin acid (SA), and RBCs were self-assembled with SA PEI to obtain biresponsive SA PEI@RBCs for the treatment of AS. SA PEI could achieve sustained release of SA in response to ROS and reduce ROS and lipid levels to achieve the purpose of treating AS. Shear stress model experiments showed that SA PEI@RBCs could respond to the high shear stress level (100 dynes/cm2) at plaques, realizing the desorption and enrichment of SA PEI and improving the therapeutic efficiency of SA PEI@RBCs. In vitro and in vivo experiments have confirmed that SA PEI@RBCs exhibits better in vivo safety and therapeutic efficacy than SA PEI and free SA. Therefore, shaping SA PEI@RBCs into a biomimetic drug delivery system with dual sensitivity to ROS and shear stress is an effective strategy and treatment to facilitate their delivery into plaques.
Collapse
Affiliation(s)
- Meili Shen
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Hui Jiang
- Department of Blood Purification, Tong Liao City Hospital, Tong Liao 028000, Inner Mongolia, China
| | - Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Hao Meng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
23
|
Faujo Nintewoue GF, Tali Nguefak LD, Ngatcha G, Tagni SM, Talla P, Menzy Moungo‐Ndjole CM, Kouitcheu Mabeku LB. Helicobacter pylori infection-A risk factor for lipid peroxidation and superoxide dismutase over-activity: A cross-sectional study among patients with dyspepsia in Cameroon. JGH Open 2023; 7:618-628. [PMID: 37744703 PMCID: PMC10517442 DOI: 10.1002/jgh3.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023]
Abstract
Background and Aim There is an intimate relationship between oxidative stress and inflammation. Helicobacter pylori (H. pylori) infection leads to gastritis in almost all the hosts. So, we hypothesize that gastritis in H. pylori infection may be described as the accumulation of continuous oxidative damage. Methods The study was conducted from October 2020 to October 2021 at three reference health facilities in Cameroon. A total of 266 participants (131 males and 135 females) ranging from 15 to 88 years old with 48.28 ± 17.29 years as mean age were enrolled. Each participant gave a written informed consent and ethical committees approved the protocol. Biopsies samples were collected for H. pylori detection using histological examination and rapid urease test. Malondialdehyde (MDA) and glutathione (GSH) content, and catalase (CAT) and superoxide dismutase (SOD) activities were evaluated in serum as biomarkers of oxidative stress. Results Helicobacter pylori was detected in 71.80% of our sample population. Low income level was associated with higher GSH level (P = 0.0249) and having family history of gastric cancer to higher SOD activity (P = 0.0156). A significant higher MDA content (P < 0.0001) and SOD activity (P = 0.0235) was recorded among infected individuals compared with noninfected ones. A significantly higher MDA content and SOD activity was recorded among smokers (P = 0.0461) and participants older than 50 years old (P = 0.0491) with H. pylori positivity. Conclusion Our findings showed that H. pylori infection is associated with overproduction of reactive oxygen species and oxidative stress. The presence of this pathogen in elderly individuals or in smokers increased their risk for oxidative stress.
Collapse
Affiliation(s)
| | - Lionel Danny Tali Nguefak
- Microbiology and Pharmacology Laboratory, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
| | | | | | | | | | - Laure Brigitte Kouitcheu Mabeku
- Microbiology and Pharmacology Laboratory, Department of Biochemistry, Faculty of ScienceUniversity of DschangDschangCameroon
- Medical Microbiology Laboratory, Department of Microbiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| |
Collapse
|
24
|
Madalosso LM, Balok FRM, Bortolotto VC, Dahleh MMM, Backes LG, Escalante ESS, Benites FV, da Silva e Silva FA, Segat HJ, Boeira SP. Pitaya Juice Consumption Protects against Oxidative Damage Induced by Aflatoxin B1. J Fungi (Basel) 2023; 9:874. [PMID: 37754981 PMCID: PMC10532851 DOI: 10.3390/jof9090874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Mycotoxins are toxic fungal metabolites and are responsible for contaminating several foods. The intake of foods contaminated by these substances is related to hepatotoxicity and carcinogenic effects, possibly due to increasing oxidative stress. The current study evaluated Pitaya fruit juice's antioxidant effects on oxidative damage aflatoxin B1 (AFB1)-induced. Rats received 1.5 mL of Pitaya juice via gavage (for 30 days), and on the 31st day, they received AFB1 (250 µg/kg, via gavage). Forty-eight hours after the AFB1 dose, rats were euthanized for dosages of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP); dosage of oxidative markers (thiobarbituric acid reactive species (TBARS), reactive species (RS)) and antioxidant defenses (catalase (CAT), superoxide dismutase (SOD), Glutathione S-transferase (GST) activities and Glutathione (GSH)) levels in the liver; and detection of Heat shock protein 70 (Hsp-70) and nuclear factor- erythroid 2-related factor 2 (Nrf2) immunocontent in the liver. Our results indicated that the Pitaya juice reduced ALP activity. Further, rats exposed to AFB1 experienced liver damage due to the increase in TBARS, RS, and Hsp-70 and the reduction in CAT, GSH, and Nrf2. Pitaya juice could, however, protect against these damages. Finally, these results indicated that pre-treatment with Pitaya juice was effective against the oxidative damage induced. However, other aspects may be elucidated in the future to discover more targets of its action against mycotoxicosis.
Collapse
Affiliation(s)
- Luiggi Müller Madalosso
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Franciéle Romero Machado Balok
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| | - Vandreza Cardoso Bortolotto
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| | - Mustafa Munir Mustafa Dahleh
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| | - Lucas Gabriel Backes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Elizabeth Sabryna Sarquis Escalante
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Fernanda Vilhalba Benites
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Francisco Andrey da Silva e Silva
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Hecson Jesser Segat
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules—LaftamBio, Federal University of Pampa, Itaqui 97650-000, Brazil; (L.M.M.); (L.G.B.); (E.S.S.E.); (F.V.B.); (F.A.d.S.e.S.); (H.J.S.)
- Programa de Pós-Graduação em Bioquímica, Federal University of Pampa, Uruguaiana 97650-000, Brazil; (F.R.M.B.); (V.C.B.); (M.M.M.D.)
| |
Collapse
|
25
|
Kontoghiorghes GJ. The Vital Role Played by Deferiprone in the Transition of Thalassaemia from a Fatal to a Chronic Disease and Challenges in Its Repurposing for Use in Non-Iron-Loaded Diseases. Pharmaceuticals (Basel) 2023; 16:1016. [PMID: 37513928 PMCID: PMC10384919 DOI: 10.3390/ph16071016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The iron chelating orphan drug deferiprone (L1), discovered over 40 years ago, has been used daily by patients across the world at high doses (75-100 mg/kg) for more than 30 years with no serious toxicity. The level of safety and the simple, inexpensive synthesis are some of the many unique properties of L1, which played a major role in the contribution of the drug in the transition of thalassaemia from a fatal to a chronic disease. Other unique and valuable clinical properties of L1 in relation to pharmacology and metabolism include: oral effectiveness, which improved compliance compared to the prototype therapy with subcutaneous deferoxamine; highly effective iron removal from all iron-loaded organs, particularly the heart, which is the major target organ of iron toxicity and the cause of mortality in thalassaemic patients; an ability to achieve negative iron balance, completely remove all excess iron, and maintain normal iron stores in thalassaemic patients; rapid absorption from the stomach and rapid clearance from the body, allowing a greater frequency of repeated administration and overall increased efficacy of iron excretion, which is dependent on the dose used and also the concentration achieved at the site of drug action; and its ability to cross the blood-brain barrier and treat malignant, neurological, and microbial diseases affecting the brain. Some differential pharmacological activity by L1 among patients has been generally shown in relation to the absorption, distribution, metabolism, elimination, and toxicity (ADMET) of the drug. Unique properties exhibited by L1 in comparison to other drugs include specific protein interactions and antioxidant effects, such as iron removal from transferrin and lactoferrin; inhibition of iron and copper catalytic production of free radicals, ferroptosis, and cuproptosis; and inhibition of iron-containing proteins associated with different pathological conditions. The unique properties of L1 have attracted the interest of many investigators for drug repurposing and use in many pathological conditions, including cancer, neurodegenerative conditions, microbial conditions, renal conditions, free radical pathology, metal intoxication in relation to Fe, Cu, Al, Zn, Ga, In, U, and Pu, and other diseases. Similarly, the properties of L1 increase the prospects of its wider use in optimizing therapeutic efforts in many other fields of medicine, including synergies with other drugs.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
26
|
Zhuang J, Jiang Z, Chen D, Li J, Crabbe MJC, Qiu M, Zheng Y, Qu W. Thyroid-Disrupting Effects of Exposure to Fipronil and Its Metabolites from Drinking Water Based on Human Thyroid Follicular Epithelial Nthy-ori 3-1 Cell Lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6072-6084. [PMID: 37022920 DOI: 10.1021/acs.est.2c08627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fipronil is a broad-spectrum insecticide used for plants and poultry. Owing to its widespread use, fipronil and its metabolites (fipronil sulfone, fipronil desulfinyl, and fipronil sulfide), termed FPM, can be frequently detected in drinking water and food. Fipronil can affect the thyroid function of animals, but the effects of FPM on the human thyroid remain unclear. We employed human thyroid follicular epithelial Nthy-ori 3-1 cells to examine combined cytotoxic responses, thyroid-related functional proteins including the sodium-iodide symporter (NIS), thyroid peroxidase (TPO), deiodinases I-III (DIO I-III), and the nuclear factor erythroid-derived factor 2-related factor 2 (NRF2) pathway induced by FPM of 1-1000-fold concentrations detected in school drinking water collected from a heavily contaminated area of the Huai River Basin. Thyroid-disrupting effects of FPM were evaluated by examining biomarkers of oxidative stress and thyroid function and tetraiodothyronine (T4) levels secreted by Nthy-ori 3-1 cells after FPM treatment. FPM activated the expression of NRF2, HO-1 (heme oxygenase 1), TPO, DIO I, and DIO II but inhibited NIS expression and increased the T4 level of thyrocytes, indicating that FPM can disrupt the function of human thyrocytes through oxidative pathways. Given the adverse impact of low FPM concentrations on human thyrocytes, supportive evidence from rodent studies, and the critical importance of thyroid hormones on development, the effects of FPM on the neurodevelopment and growth of children warrant priority attention.
Collapse
Affiliation(s)
- Jianhui Zhuang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Dawei Chen
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, U.K
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Dzięgielewska-Gęsiak S, Muc-Wierzgoń M. Inflammation and Oxidative Stress in Frailty and Metabolic Syndromes-Two Sides of the Same Coin. Metabolites 2023; 13:475. [PMID: 37110134 PMCID: PMC10144989 DOI: 10.3390/metabo13040475] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In developed countries, aging is often seen as typical, but it is made complicated by many disorders and co-morbidities. Insulin resistance seems to be an underlying pathomechanism in frailty and metabolic syndromes. The decline in insulin sensitivity leads to changes in the oxidant-antioxidant balance and an accelerated inflammatory response, especially by adipocytes and macrophages in adipose tissue, as well as muscle mass density. Thus, in the pathophysiology of syndemic disorders-the metabolic syndrome and frailty syndrome-an extremely important role may be played by increased oxidative stress and pro-inflammatory state. Papers included in this review explored available full texts and the reference lists of relevant studies from the last 20 years, before the end of 2022; we also investigated the PubMed and Google Scholar electronic databases. The online resources describing an elderly population (≥65 years old) published as full texts were searched for the following terms: "oxidative stress and/or inflammation", "frailty and/or metabolic syndrome". Then, all resources were analyzed and narratively described in the context of oxidative stress and/or inflammation markers which underlie pathomechanisms of frailty and/or metabolic syndromes in elderly patients. So far, different metabolic pathways discussed in this review show that a similar pathogenesis underlies the development of the metabolic as well as frailty syndromes in the context of increased oxidative stress and acceleration of inflammation. Thus, we argue that the syndemia of the syndromes represents two sides of the same coin.
Collapse
Affiliation(s)
- Sylwia Dzięgielewska-Gęsiak
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | |
Collapse
|
28
|
The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants (Basel) 2023; 12:antiox12020236. [PMID: 36829795 PMCID: PMC9952802 DOI: 10.3390/antiox12020236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Redox balance is essential to maintain the body's normal metabolism. Once disrupted, it may lead to various chronic diseases, such as diabetes, neurodegenerative diseases, cardiovascular diseases, inflammatory diseases, cancer, aging, etc. Oxidative stress can cause or aggravate a series of pathological processes. Inhibition of oxidative stress and related pathological processes can help to ameliorate these chronic diseases, which have been found to be associated with Nrf2 activation. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damage, but also directly regulate genes related to the above-mentioned pathological processes to counter the corresponding changes. Therefore, targeting Nrf2 has great potential for the prevention or treatment of chronic diseases, and many natural phytochemicals have been reported as Nrf2 activators although the defined mechanisms remain to be elucidated. This review article focuses on the possible mechanism of Nrf2 activation by natural phytochemicals in the prevention or treatment of chronic diseases and the regulation of oxidative stress. Moreover, the current clinical trials of phytochemical-originated drug discovery by targeting the Nrf2-ARE pathway were also summarized; the outcomes or the relationship between phytochemicals and chronic diseases prevention are finally analyzed to propose the future research strategies and prospective.
Collapse
|
29
|
Li Y, Zhang X, Wang Z, Li B, Zhu H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front Pharmacol 2023; 14:1156538. [PMID: 37033606 PMCID: PMC10073466 DOI: 10.3389/fphar.2023.1156538] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer treatment is hampered by resistance to conventional therapeutic strategies, including chemotherapy, immunotherapy, and targeted therapy. Redox homeostasis manipulation is one of the most effective innovative treatment techniques for overcoming drug resistance. Reactive oxygen species (ROS), previously considered intracellular byproducts of aerobic metabolism, are now known to regulate multiple signaling pathways as second messengers. Cancer cells cope with elevated amounts of ROS during therapy by upregulating the antioxidant system, enabling tumor therapeutic resistance via a variety of mechanisms. In this review, we aim to shed light on redox modification and signaling pathways that may contribute to therapeutic resistance. We summarized the molecular mechanisms by which redox signaling-regulated drug resistance, including altered drug efflux, action targets and metabolism, enhanced DNA damage repair, maintained stemness, and reshaped tumor microenvironment. A comprehensive understanding of these interrelationships should improve treatment efficacy from a fundamental and clinical research point of view.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China School of Basic Medical Sciences and Forensic Medicine, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- *Correspondence: Huili Zhu,
| |
Collapse
|
30
|
The Common Single Cause of Chronic Multi-Hormonal Resistance in Oxidative Stress. Antioxidants (Basel) 2022; 12:antiox12010075. [PMID: 36670938 PMCID: PMC9854708 DOI: 10.3390/antiox12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
In diseases with concomitant oxidative stress, chronic multi-hormonal resistances could be detected. The most conspicuous component of these resistances is insulin resistance, but also leptin, erythropoietin, acetylcholine, triiodothyronine and glucagon-like peptide-1 resistances also occur. On the other hand, in oxidative stress, abnormal tyrosines, for instance, meta- and ortho-tyrosine are also produced and incorporated into the proteins through the translational process. In case these modified proteins are components of the intracellular signalling pathways, a hormonal resistance may develop. The above-mentioned hormones, owning overlapping signalling pathways at the insulin receptor substrate, develop an abnormal tyrosine phosphorylation dependent chronic multi-hormonal resistance. A few weeks free of oxidative stress or the use of antioxidant therapy are required to provide a return from this resistance, which return may be further supported by the supplementation of physiological para-tyrosine and by the add-on therapy of a pharmacological dose of glucagon-like peptide-1 receptor agonist, which is able to bypass the critical insulin receptor substrate signalling.
Collapse
|
31
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
32
|
Liu X, Wu L, Tong A, Zhen H, Han D, Yuan H, Li F, Wang C, Fan G. Anti-Aging Effect of Agrocybe aegerita Polysaccharide through Regulation of Oxidative Stress and Gut Microbiota. Foods 2022; 11:foods11233783. [PMID: 36496591 PMCID: PMC9740570 DOI: 10.3390/foods11233783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Polysaccharides extracted from Agrocybe aegerita (AAPS) have various physiological effects. In this study, we used the naturally aging Drosophila melanogaster and D-galactose-induced aging mice as animal models to study the anti-aging effects of AAPS via the alleviation of oxidative stress and regulation of gut microbiota. Results showed that AAPS could significantly prolong lifespan and alleviate oxidative stress induced by H2O2 of Drosophila melanogaster. In addition, AAPS significantly increased the activities of antioxidant enzymes in Drosophila melanogaster and mice, and reduced the content of MDA. Furthermore, AAPS reshaped the disordered intestinal flora, increased the abundance ratio of Firmicutes to Bacteroidetes, and increased the abundance of beneficial bacteria Lactobacillus. Our results demonstrated that AAPS had good antioxidant and potential anti-aging effects in vivo.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linxiu Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Aijun Tong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dong Han
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyang Yuan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fannian Li
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
33
|
Kaidow A, Ishii N, Suzuki S, Shiina T, Kasahara H. Vitamin C Maintenance against Cell Growth Arrest and Reactive Oxygen Species Accumulation in the Presence of Redox Molecular Chaperone hslO Gene. Int J Mol Sci 2022; 23:12786. [PMID: 36361576 PMCID: PMC9659236 DOI: 10.3390/ijms232112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome damage combined with defective recombinase activity renders cells inviable, owing to deficient double-strand break repair. Despite this, recA polA cells grow well under either DNA damage response (SOS) conditions or catalase medium supplementation. Catalase treatments reduce intracellular reactive oxygen species (ROS) levels, suggesting that recA polA cells are susceptible to not only chronic chromosome damage but also ROS. In this study, we used a reducing agent, vitamin C, to confirm whether cell growth could be improved. Vitamin C reduced ROS levels and rescued colony formation in recAts polA cells under restrictive temperatures in the presence of hslO, the gene encoding a redox molecular chaperone. Subsequently, we investigated the role of hslO in the cell growth failure of recAts polA cells. The effects of vitamin C were observed in hslO+ cells; simultaneously, cells converged along several ploidies likely through a completion of replication, with the addition of vitamin C at restrictive temperatures. These results suggest that HslO could manage oxidative stress to an acceptable level, allowing for cell division as well as rescuing cell growth. Overall, ROS may regulate several processes, from damage response to cell division. Our results provide a basis for understanding the unsolved regulatory interplay of cellular processes.
Collapse
Affiliation(s)
- Akihiro Kaidow
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
- Hokkaido Regional Research Center, Tokai University, Sapporo 005-8601, Japan
| | - Noriko Ishii
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Hirokazu Kasahara
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo 005-8601, Japan
| |
Collapse
|
34
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
35
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
36
|
Induction and assessment of persistent radioresistance in murine leukocytes in vivo. Biochem Biophys Rep 2022; 31:101296. [PMID: 35707716 PMCID: PMC9189778 DOI: 10.1016/j.bbrep.2022.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood. First evidence of cell radioresistance induced in vivo in mice. Leukocyte precursor cells in vivo a model for study radioresistance induction. Irradiation-division cycles in vivo cause long-lasting cellular radioresistance. Increase of <5% DNA at tail after irradiation an index of cell radioresistance. Course of radioresistance caused by mutation-selection differ from adaptive response.
Collapse
|
37
|
Emami Kazemabad MJ, Asgari Toni S, Tizro N, Dadkhah PA, Amani H, Akhavan Rezayat S, Sheikh Z, Mohammadi M, Alijanzadeh D, Alimohammadi F, Shahrokhi M, Erabi G, Noroozi M, Karimi MA, Honari S, Deravi N. Pharmacotherapeutic potential of pomegranate in age-related neurological disorders. Front Aging Neurosci 2022; 14:955735. [PMID: 36118710 PMCID: PMC9476556 DOI: 10.3389/fnagi.2022.955735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Age-related neurological disorders [AND] include neurodegenerative diseases [NDDs] such as Alzheimer's disease [AD] and Parkinson's disease [PD], which are the most prevalent types of dementia in the elderly. It also includes other illnesses such as migraine and epilepsy. ANDs are multifactorial, but aging is their major risk factor. The most frequent and vital pathological features of AND are oxidative stress, inflammation, and accumulation of misfolded proteins. As AND brain damage is a significant public health burden and its incidence is increasing, much has been done to overcome it. Pomegranate (Punica granatum L.) is one of the polyphenol-rich fruits that is widely mentioned in medical folklore. Pomegranate is commonly used to treat common disorders such as diarrhea, abdominal pain, wound healing, bleeding, dysentery, acidosis, microbial infections, infectious and noninfectious respiratory diseases, and neurological disorders. In the current review article, we aimed to summarize the data on the pharmacotherapeutic potentials of pomegranate in ANDs.
Collapse
Affiliation(s)
| | - Sara Asgari Toni
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanieh Amani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Akhavan Rezayat
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Zahra Sheikh
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mohammadi
- Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnoosh Alimohammadi
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Honari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
The Intestinal and Biliary Metabolites of Ibuprofen in the Rat with Experimental Hyperglycemia. Molecules 2022; 27:molecules27134000. [PMID: 35807248 PMCID: PMC9268267 DOI: 10.3390/molecules27134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia is reported to be associated with oxidative stress. It can result in changes in the activities of drug-metabolizing enzymes and membrane-integrated transporters, which can modify the fate of drugs and other xenobiotics; furthermore, it can result in the formation of non-enzyme catalyzed oxidative metabolites. The present work aimed to investigate how experimental hyperglycemia affects the intestinal and biliary appearance of the oxidative and Phase II metabolites of ibuprofen in rats. In vivo studies were performed by luminal perfusion of 250 μM racemic ibuprofen solution in control and streptozotocin-treated (hyperglycemic) rats. Analysis of the collected intestinal perfusate and bile samples was performed by HPLC-UV and HPLC-MS. No oxidative metabolites could be detected in the perfusate samples. The biliary appearance of ibuprofen, 2-hydroxyibuprofen, ibuprofen glucuronide, hydroxylated ibuprofen glucuronide, and ibuprofen taurate was depressed in the hyperglycemic animals. However, no specific non-enzymatic (hydroxyl radical initiated) hydroxylation product could be detected. Instead, the depression of biliary excretion of ibuprofen and ibuprofen metabolites turned out to be the indicative marker of hyperglycemia. The observed changes impact the pharmacokinetics of drugs administered in hyperglycemic individuals.
Collapse
|
39
|
Abstract
Arsenic intoxication represents a worldwide health problem and occurs mainly through drinking water. Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth’s crust, whose toxicity depends on the reduction state. The trivalent arsenicals are more toxic than the pentavalent arsenicals. In the trivalent state, inorganic and organic arsenic may react with thiol groups in proteins inhibiting their activity, whereas inorganic arsenic in the pentavalent state may replace phosphate ions in several reactions. Arsenic induces various epigenetic changes in mammalian cells, both in vivo and in vitro, often leading to the development of various types of cancers, including skin, lung, liver, urinary tract, prostate, and hematopoietic cancers. Potential mechanisms of arsenic toxicity in cancer include genotoxicity, altered DNA methylation and cell proliferation, co-carcinogenesis, tumor promotion, and oxidative stress. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. Detoxification from arsenic includes chelation therapy. Recently, investigations of the capability of some plants, such as Eucalyptus camadulensis L., Terminalia arjuna L. and Salix tetrasperma L., to remove arsenic from polluted soil and water have been studied. Moreover, nanophytoremediation is a green technology including the nanoscale materials used for absorption and degradation of organic and inorganic pollutants, such as arsenic compounds. This brief review represents an overview of arsenic uses, toxicity, epigenetics, and detoxification therapies.
Collapse
|
40
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
41
|
Tsukanov VV, Smirnova OV, Kasparov EV, Sinyakov AA, Vasyutin AV, Tonkikh JL, Cherepnin MA. Dynamics of Oxidative Stress in Helicobacter pylori-Positive Patients with Atrophic Body Gastritis and Various Stages of Gastric Cancer. Diagnostics (Basel) 2022; 12:1203. [PMID: 35626358 PMCID: PMC9141138 DOI: 10.3390/diagnostics12051203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a global health problem. The pathogenesis of this disease remains unclear. This study included 198 H. pylori (+) men aged 45 to 60 years old. Group A included 63 practically healthy men, group B included 45 men with severe atrophic body gastritis, group C included 37 men with epithelial gastric cancer stages I-II according to TNM, and group D included 54 men with epithelial gastric cancer stages III-IV according to the TNM scale. The content of malondialdehyde (MDA), diene conjugates (DCs), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPO) was detected using an enzyme immunoassay (ELISA) or spectrophotometric methods in the blood plasma. The concentrations of MDA and DC were increased in the patients of group B compared with group A, and in patients of groups C and D compared with groups A and B. The ratio of MDA/SOD and MDA/CAT was decreased in the patients in group D compared with the patients in group C, and was significantly higher compared with group A. The ratios of MDA/GPO and MDA/GST increased linearly and were at a maximum in groups C and D. Our work determined that indicators of oxidative stress may be the biochemical substrate, which brings together the various stages of the Correa cascade, and may explain disease progression. The dynamics of changes in the content of SOD and CAT in the plasma in patients with gastric cancer may be a target of future investigations.
Collapse
Affiliation(s)
- Vladislav Vladimirovich Tsukanov
- Scientific Research Institute of Medical Problems of the North, Federal Research Centre “Krasnoyarsk Science Centre” of the Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia; (O.V.S.); (E.V.K.); (A.A.S.); (A.V.V.); (J.L.T.); (M.A.C.)
| | | | | | | | | | | | | |
Collapse
|
42
|
Pan X, Xie K, Chen K, He Z, Sakao K, Hou DX. Involvement of AMP-activated Protein Kinase α/Nuclear Factor (Erythroid-derived 2) Like 2-iniatived Signaling Pathway in Cytoprotective Effects of Wasabi 6-(Methylsulfinyl) Hexyl Isothiocyanate. J Cancer Prev 2022; 27:58-67. [PMID: 35419303 PMCID: PMC8984653 DOI: 10.15430/jcp.2022.27.1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) is an active ingredient present in Wasabi, which is a popular pungent spice used in Japanese cuisine. Our previous studies suggested that the primary antioxidant activity of 6-MSITC may link to other biological activity. This study aimed to clarify how the antioxidant activity of 6-MSITC contributes to preventing overloaded lipid stress in hepatic cell model. HepG2 cells were treated with 6-MSITC at defined concentrations and times in normal medium or in combined fatty acids (CFA) medium, and the targeted proteins were detected by Western blotting. The kinetic data revealed that 6-MSITC activated AMP-activated protein kinase α (AMPKα) and nuclear factor (erythroid-derived 2) like 2 (Nrf2), and then enhanced the protein expression of Forkhead box protein O1 (FOXO1) and Sirtuin1 as well as that of the Nrf2 target proteins, NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase (HO-1). Furthermore, lipid metabolic stress was mimicked in HepG2 cells by overloading CFA. 6-MSITC significantly alleviated CFA-induced formation of thiobarbituric acid reactive substances and fat accumulation. Signaling analysis data revealed that 6-MSITC enhanced phosphorylation of AMPKα, upregulated the expression of Nrf2, NQO1, heme oxygenase 1, FOXO1, and Siruin1, and downregulated the expression of PPARα. Taken together, our results suggested that the AMPKα/Nrf2-mediated signaling pathways might be involved in the cytoprotective effects of Wasabi 6-MSITC against metabolic lipid stress.
Collapse
Affiliation(s)
- Xuchi Pan
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kun Xie
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Keyu Chen
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Ziyu He
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Kozue Sakao
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - De-Xing Hou
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
43
|
Lemos CN, da Silva LECM, Faustino JF, Fantucci MZ, Murashima ADAB, Adriano L, Alves M, Rocha EM. Oxidative Stress in the Protection and Injury of the Lacrimal Gland and the Ocular Surface: are There Perspectives for Therapeutics? Front Cell Dev Biol 2022; 10:824726. [PMID: 35359431 PMCID: PMC8963457 DOI: 10.3389/fcell.2022.824726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress (OS) is a major disruption in the physiology of the lacrimal functional unit (LFU). Antioxidant enzymes have dual protective activities: antioxidant and antimicrobial activities. Peroxidases have been indistinctly used as markers of the secretory activity of the LFU and implicated in the pathophysiology, diagnosis and treatment of dry eye disease (DED), even though they comprise a large family of enzymes that includes lactoperoxidase (LPO) and glutathione peroxidase (GPO), among others. Assays to measure and correlate OS with other local LFU phenomena have methodological limitations. Studies implicate molecules and reactions involved in OS as markers of homeostasis, and other studies identify them as part of the physiopathology of diseases. Despite these conflicting concepts and observations, it is clear that OS is influential in the development of DED. Moreover, many antioxidant strategies have been proposed for its treatment, including calorie restriction to nutritional supplementation. This review offers a critical analysis of the biological mechanisms, diagnostic outcomes, drug use, dietary supplements, and life habits that implicate the influence of OS on DED.
Collapse
Affiliation(s)
- Camila Nunes Lemos
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- *Correspondence: Camila Nunes Lemos,
| | - Lilian Eslaine Costa Mendes da Silva
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jacqueline Ferreira Faustino
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Adriana de Andrade Batista Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leidiane Adriano
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Monica Alves
- Department of Ophthalmology and Otorhinolaryngology, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
44
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
45
|
Positive ROS (Reactive Oxygen Species) Modulator Engineered Device Support Skin Treatment in Locally Advanced Breast Cancer (LABC) Enhancing Patient Quality of Life. J Clin Med 2021; 11:jcm11010126. [PMID: 35011865 PMCID: PMC8745501 DOI: 10.3390/jcm11010126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
The development of research in genetic and biochemical fields has made it possible to investigate certain metabolic aspects of the microenvironment of chronic skin lesions, including altered cell signalling, highlighting its importance in determining the blockage of repair processes. The purpose of this prospective observational study is to evaluate the efficacy of a medical device consisting of a polyester scaffold enriched with an oleic matrix with controlled release of ROS in the management of LABC skin lesions. During the period from October 2018 to March 2020, 20 patients with locally advanced breast cancer were enrolled and ten were treated with the devices abovementioned. After 30 days of treatment all patients treated reported a general improvement in local conditions with reduction in ulceration area, exudate and odour. The results suggest that the application of these devices even in particular conditions (healthy and neoplastic tissue) does not lead to the onset of negative effects due to the release of ROS, though their role in tissue repair requires further study to fully understand their potential and increase the fields of application of the device by exploiting its modulation capabilities.
Collapse
|
46
|
Pillay CS, John N. Can thiol-based redox systems be utilized as parts for synthetic biology applications? Redox Rep 2021; 26:147-159. [PMID: 34378494 PMCID: PMC8366655 DOI: 10.1080/13510002.2021.1966183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. METHODS We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. RESULTS The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. DISCUSSION Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.
Collapse
Affiliation(s)
- Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
47
|
Silaghi CN, Farcaș M, Crăciun AM. Sirtuin 3 (SIRT3) Pathways in Age-Related Cardiovascular and Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9111574. [PMID: 34829803 PMCID: PMC8615405 DOI: 10.3390/biomedicines9111574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Age-associated cardiovascular and neurodegenerative diseases lead to high morbidity and mortality around the world. Sirtuins are vital enzymes for metabolic adaptation and provide protective effects against a wide spectrum of pathologies. Among sirtuins, mitochondrial sirtuin 3 (SIRT3) is an essential player in preserving the habitual metabolic profile. SIRT3 activity declines as a result of aging-induced changes in cellular metabolism, leading to increased susceptibility to endothelial dysfunction, hypertension, heart failure and neurodegenerative diseases. Stimulating SIRT3 activity via lifestyle, pharmacological or genetic interventions could protect against a plethora of pathologies and could improve health and lifespan. Thus, understanding how SIRT3 operates and how its protective effects could be amplified, will aid in treating age-associated diseases and ultimately, in enhancing the quality of life in elders.
Collapse
|
48
|
Thakur M, Rachamalla M, Niyogi S, Datusalia AK, Flora SJS. Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. Int J Mol Sci 2021; 22:10077. [PMID: 34576240 PMCID: PMC8471829 DOI: 10.3390/ijms221810077] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a key environmental toxicant having significant impacts on human health. Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are affected by arsenic contamination through groundwater. Environmental contamination of arsenic leads to leads to various types of cancers, coronary and neurological ailments in human. There are several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for its management from water, community and household premises. The review also provides a critical analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
- Toxicology Centre, Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| |
Collapse
|
49
|
Jabůrek M, Průchová P, Holendová B, Galkin A, Ježek P. Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters. Antioxidants (Basel) 2021; 10:678. [PMID: 33926059 PMCID: PMC8146845 DOI: 10.3390/antiox10050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Pavla Průchová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Alexander Galkin
- Department of Pediatrics, Division of Neonatology, Columbia University William Black Building, New York, NY 10032, USA;
| | - Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| |
Collapse
|
50
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|