1
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Yan Q, Xing J, Zou R, Sun M, Zou B, Wang Y, Niu T, Yu T, Huang H, Yang W, Shi C, Yang G, Wang C. LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice. Vet Res 2024; 55:136. [PMID: 39390593 PMCID: PMC11468851 DOI: 10.1186/s13567-024-01391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.
Collapse
Affiliation(s)
- Qingsong Yan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junhong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ruonan Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Mingjie Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Boshi Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingjie Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tianming Niu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Di Mattia M, Sallese M, Neri M, Lopetuso LR. Hypoxic Functional Regulation Pathways in the GI Tract: Focus on the HIF-1α and Microbiota's Crosstalk. Inflamm Bowel Dis 2024; 30:1406-1418. [PMID: 38484200 DOI: 10.1093/ibd/izae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 08/02/2024]
Abstract
Hypoxia is an essential gastrointestinal (GI) tract phenomenon that influences both physiologic and pathologic states. Hypoxia-inducible factors (HIFs), the primary drivers of cell adaptation to low-oxygen environments, have been identified as critical regulators of gut homeostasis: directly, through the induction of different proteins linked to intestinal barrier stabilization (ie, adherent proteins, tight junctions, mucins, integrins, intestinal trefoil factor, and adenosine); and indirectly, through the regulation of several immune cell types and the modulation of autophagy and inflammatory processes. Furthermore, hypoxia and HIF-related sensing pathways influence the delicate relationship existing between bacteria and mammalian host cells. In turn, gut commensals establish and maintain the physiologic hypoxia of the GI tract and HIF-α expression. Based on this premise, the goals of this review are to (1) highlight hypoxic molecular pathways in the GI tract, both in physiologic and pathophysiologic settings, such as inflammatory bowel disease; and (2) discuss a potential strategy for ameliorating gut-related disorders, by targeting HIF signaling, which can alleviate inflammatory processes, restore autophagy correct mechanisms, and benefit the host-microbiota equilibrium.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michele Sallese
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Loris Riccardo Lopetuso
- Department of Medicine and Ageing Sciences, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Saha MR, Dey P. Pharmacological benefits of Acacia against metabolic diseases: intestinal-level bioactivities and favorable modulation of gut microbiota. Arch Physiol Biochem 2024; 130:70-86. [PMID: 34411504 DOI: 10.1080/13813455.2021.1966475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
CONTEXT Obesity-associated chronic metabolic disease is a leading contributor to mortality globally. Plants belonging to the genera Acacia are routinely used for the treatment of diverse metabolic diseases under different ethnomedicinal practices around the globe. OBJECTIVE The current review centres around the pharmacological evidence of intestinal-level mechanisms for metabolic health benefits by Acacia spp. RESULTS Acacia spp. increase the proportions of gut commensals (Bifidobacterium and Lactobacillus) and reduces the population of opportunistic pathobionts (Escherichia coli and Clostridium). Acacia gum that is rich in fibre, can also be a source of prebiotics to improve gut health. The intestinal-level anti-inflammatory activities of Acacia are likely to contribute to improvements in gut barrier function that would prevent gut-to-systemic endotoxin translocation and limit "low-grade" inflammation associated with metabolic diseases. CONCLUSION This comprehensive review for the first time has emphasised the intestinal-level benefits of Acacia spp. which could be instrumental in limiting the burden of metabolic disease.
Collapse
Affiliation(s)
- Manas Ranjan Saha
- Department of Life Science, Vidyasagar Primary Teachers Training Institute (B.Ed.), Malda, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
5
|
Fresno Rueda A, Griffith JE, Kruse C, St-Pierre B. Effects of grain-based diets on the rumen and fecal bacterial communities of the North American bison ( Bison bison). Front Microbiol 2023; 14:1163423. [PMID: 37485522 PMCID: PMC10359189 DOI: 10.3389/fmicb.2023.1163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
To overcome the challenges of pasture-finishing of bison, producers commonly feed them with higher energy, grain-based diets to reach the desired market weight. However, decades of research on domesticated ruminants have shown that such diets can have profound effects on the composition of gut microbial communities. To gain further insight, the 16S rRNA gene-based study described in this report aimed to compare the composition of ruminal and fecal bacterial communities from two herds of bison heifers (n = 20/herd) raised on different ranches that were both transitioned from native pasture to a grain-based, free-choice diet for ~100 days prior to slaughter. Comparative analyses of operational taxonomic unit (OTU) composition, either by alpha diversity indices, principal coordinate analysis (PCoA), or on the most abundant individual OTUs, showed the dramatic effect of a diet on the composition of both rumen and fecal bacterial communities in bison. Indeed, feeding a grain-based diet resulted in a lower number of rumen and fecal bacterial OTUs, respectively, compared to grazing on pasture (p < 0.05). PCoA revealed that the composition of the rumen and fecal bacterial communities from the two herds was more similar when they were grazing on native pastures compared to when they were fed a grain-based, free-choice diet. Finally, a comparative analysis of the 20 most abundant OTUs from the rumen and fecal communities further showed that the representation of all these species-level bacterial groups differed (p < 0.05) between the two dietary treatments. Together, these results provide further insights into the rumen and fecal microbiomes of grazing bison and their response to grain-based diet regimens commonly used in intensive ruminant production systems.
Collapse
Affiliation(s)
- Anlly Fresno Rueda
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Jason Eric Griffith
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Carter Kruse
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
- Turner Institute of Ecoagriculture, Bozeman, MT, United States
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
6
|
Kaur H, Kochhar GS, Dulai PS. Role of hyperbaric oxygen therapy in patients with inflammatory bowel disease. Curr Opin Gastroenterol 2023; 39:263-267. [PMID: 37265170 PMCID: PMC10287057 DOI: 10.1097/mog.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Hypoxia is a known contributor to inflammation in inflammatory bowel diseases (IBD), and a growing interest has emerged in pharmacologically targeting hypoxia response pathways to treat IBD. The most basic form of treatment for hypoxia is delivering higher amounts of oxygen to the intestinal mucosa. In this review, we summarize the evidence in support of hyperbaric oxygen therapy (HBOT), a mechanism to deliver high amounts of oxygen to tissue, for treating IBD. RECENT FINDINGS Two phase 2 clinical trials in hospitalized ulcerative colitis patients suffering from moderate-to-severe flares have demonstrated that HBOT improves responsiveness to steroids and avoidance of rescue medical and surgical therapy. Outpatient cohort studies in perianal fistulizing Crohn's disease and fistulizing complications of the pouch have demonstrated improved healing, particularly for complex fistulae. Several systematic reviews have now been completed, and HBOT has been observed to be well tolerated with low rates of adverse events. SUMMARY HBOT may be considered as an adjunctive treatment for hospitalized ulcerative colitis flares and Crohn's disease-related fistulae. Higher quality trials are needed to confirm efficacy.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Internal Medicine, BronxCare Health System, Bronx, New York
| | - Gursimran Singh Kochhar
- Division of Gastroenterology, Hepatology & Nutrition, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Parambir S Dulai
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
7
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
8
|
Nitric oxide stimulates type IV MSHA pilus retraction in Vibrio cholerae via activation of the phosphodiesterase CdpA. Proc Natl Acad Sci U S A 2022; 119:2108349119. [PMID: 35135874 PMCID: PMC8851539 DOI: 10.1073/pnas.2108349119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
All organisms sense and respond to their environments. One way bacteria interact with their surroundings is by dynamically extending and retracting filamentous appendages from their surface called pili. While pili are critical for many functions, such as attachment, motility, and DNA uptake, the factors that regulate their dynamic activity are poorly understood. Here, we describe how an environmental signal induces a signaling pathway to promote the retraction of mannose-sensitive hemagglutinin pili in Vibrio cholerae. The retraction of these pili promotes the detachment of V. cholerae from a surface and may provide a means by which V. cholerae can respond to changes in its environment. Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)–sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.
Collapse
|
9
|
Dey P, Chaudhuri SR, Efferth T, Pal S. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges. Free Radic Biol Med 2021; 176:265-285. [PMID: 34610364 DOI: 10.1016/j.freeradbiomed.2021.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
The role of the intestine in human health and disease has historically been neglected and was mostly attributed to digestive and absorptive functions. In the past two decades, however, discoveries related to human nutrition and intestinal host-microbe reciprocal interaction have established the essential role of intestinal health in the pathogenesis of chronic diseases and the overall wellbeing. That transfer of gut microbiota could be a means of disease phenotype transfer has revolutionized our understanding of chronic disease pathogenesis. This narrative review highlights the major concepts related to intestinal microbiota, metabolism, and metabolome (3M) that have facilitated our fundamental understanding of the association between the intestine, and human health and disease. In line with increased interest of microbiota-dependent modulation of human health by dietary phytochemicals, we have also discussed the emerging concepts beyond the phytochemical bioactivities which emphasizes the integral role of microbial metabolites of parent phytochemicals at extraintestinal tissues. Finally, this review concludes with challenges and future prospects in defining the 3M interactions and has emphasized the fact that, it takes 'guts' to stay healthy.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Sirshendu Pal
- Mukherjee Hospital, Mitra's Clinic and Nursing Home, Siliguri, West Bengal, India
| |
Collapse
|
10
|
Konjar Š, Pavšič M, Veldhoen M. Regulation of Oxygen Homeostasis at the Intestinal Epithelial Barrier Site. Int J Mol Sci 2021; 22:ijms22179170. [PMID: 34502078 PMCID: PMC8431628 DOI: 10.3390/ijms22179170] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
The unique biology of the intestinal epithelial barrier is linked to a low baseline oxygen pressure (pO2), characterised by a high rate of metabolites circulating through the intestinal blood and the presence of a steep oxygen gradient across the epithelial surface. These characteristics require tight regulation of oxygen homeostasis, achieved in part by hypoxia-inducible factor (HIF)-dependent signalling. Furthermore, intestinal epithelial cells (IEC) possess metabolic identities that are reflected in changes in mitochondrial function. In recent years, it has become widely accepted that oxygen metabolism is key to homeostasis at the mucosae. In addition, the gut has a vast and diverse microbial population, the microbiota. Microbiome–gut communication represents a dynamic exchange of mediators produced by bacterial and intestinal metabolism. The microbiome contributes to the maintenance of the hypoxic environment, which is critical for nutrient absorption, intestinal barrier function, and innate and/or adaptive immune responses in the gastrointestinal tract. In this review, we focus on oxygen homeostasis at the epithelial barrier site, how it is regulated by hypoxia and the microbiome, and how oxygen homeostasis at the epithelium is regulated in health and disease.
Collapse
Affiliation(s)
- Špela Konjar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
- Correspondence:
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Marc Veldhoen
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
11
|
Knudsen JK, Bundgaard-Nielsen C, Hjerrild S, Nielsen RE, Leutscher P, Sørensen S. Gut microbiota variations in patients diagnosed with major depressive disorder-A systematic review. Brain Behav 2021; 11:e02177. [PMID: 34047485 PMCID: PMC8323045 DOI: 10.1002/brb3.2177] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/15/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The etiology of major depressive disorder (MDD) is multi-factorial and has been associated with a perturbed gut microbiota. Thus, it is therefore of great importance to determine any variations in gut microbiota in patients with MDD. METHODS A systematic literature search was conducted including original research articles based on gut microbiota studies performed in patients with MDD. Demographic and clinical characteristics, applied methodology and observed gut microbiota composition were compared between included studies. RESULTS Seventeen studies were included with a total of 738 patients with MDD and 782 healthy controls using different DNA purification methods, sequencing platforms and data analysis models. Four studies found a reduced α-diversity in patients with MDD, while gut microbiota compositions clustered separately according to β-diversity between patients and controls in twelve studies. Additionally, there was an increase in relative abundance of Eggerthella, Atopobium, and Bifidobacterium and a decreased relative abundance of Faecalibacterium in patients with MDD compared with healthy controls. CONCLUSION Gut microbiota differs significantly when comparing patients with MDD and healthy controls, though inconsistently across studies. The heterogeneity in gut microbiota compositions between the studies may be explained by variations in study design.
Collapse
Affiliation(s)
- Julie Kristine Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Simon Hjerrild
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aalborg, Denmark
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Hjoerring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Investigating the Effects of a Phytobiotics-Based Product on the Fecal Bacterial Microbiome of Weaned Pigs. Animals (Basel) 2021; 11:ani11071950. [PMID: 34208843 PMCID: PMC8300416 DOI: 10.3390/ani11071950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
The transition to a solid diet, as well as environmental and social stress, have a direct impact on swine gut physiology during weaning, affecting host gastrointestinal functions, as well as resident symbiotic microbial communities. While plant-derived bioactive products, such as phytobiotics, have shown great potential to mitigate these challenges, providing benefits such as antimicrobial, antioxidant, and anti-inflammatory activities, their mechanisms of action remain largely unexplored. To gain more insight, a 21 day trial is conducted to investigate the effects of LiveXtract, a commercial plant-based product, using fecal samples as a proxy for gut bacteria in weaned pigs. High-throughput sequencing of amplicons targeting the V1-V3 region of the 16S rRNA gene is used to determine bacterial composition at days 1 (pre-treatment), 4, 10, and 21 postweaning. Our results show that Lactobacillaceae and Peptostreptococcaceae are both higher in the supplemented group at D4 (p < 0.05), while Streptococcaceae are significantly lower in the treated group at D10 and D21. At D10, Erysipelotrichaceae are lower, and Veillonellaceae are higher in the treated samples than the control group (p < 0.05). Of the thirteen abundant Operational Taxonomic Units (OTUs) that have different representation between treated and control pigs (p < 0.05), six are predicted to be lactate producers (affiliation to Lactobacillus or Streptococcus), and one is predicted to be a lactate utilizer, based on its high identity to Megasphaera elsdenii. Together, these data suggest that phytobiotics may provide a favorable metabolic equilibrium between lactate production and utilization. Lactate is considered a critical microbial end product in gut environments, as it can inhibit pathogens or be metabolized to propionate for utilization by host cells.
Collapse
|
13
|
Dey P. Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases. Pharmacol Res 2020; 161:105135. [PMID: 32814166 DOI: 10.1016/j.phrs.2020.105135] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The intestinal epithelial layer serves as a physical and functional barrier between the microbe-rich lumen and immunologically active submucosa; it prevents systemic translocation of microbial pyrogenic products (e.g. endotoxin) that elicits immune activation upon translocation to the systemic circulation. Loss of barrier function has been associated with chronic 'low-grade' systemic inflammation which underlies pathogenesis of numerous no-communicable chronic inflammatory disease. Thus, targeting gut barrier dysfunction is an effective strategy for the prevention and/or treatment of chronic disease. This review intends to emphasize on the beneficial effects of herbal formulations, phytochemicals and traditional phytomedicines in attenuating intestinal barrier dysfunction. It also aims to provide a comprehensive understanding of intestinal-level events leading to a 'leaky-gut' and systemic complications mediated by endotoxemia. Additionally, a variety of detectable markers and diagnostic criteria utilized to evaluate barrier improving capacities of experimental therapeutics has been discussed. Collectively, this review provides rationale for targeting gut barrier dysfunction by phytotherapies for treating chronic diseases that are associated with endotoxemia-induced systemic inflammation.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
14
|
Sarangdhar M, Yacyshyn MB, Gruenzel AR, Engevik MA, Harris NL, Aronow BJ, Yacyshyn BR. Therapeutic Opportunities for Intestinal Angioectasia- Targeting PPARγ and Oxidative Stress. Clin Transl Sci 2020; 14:518-528. [PMID: 33048460 PMCID: PMC7993272 DOI: 10.1111/cts.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/30/2020] [Indexed: 01/22/2023] Open
Abstract
Recurrent and acute bleeding from intestinal tract angioectasia (AEC) presents a major challenge for clinical intervention. Current treatments are empiric, with frequent poor clinical outcomes. Improvements in understanding the pathophysiology of these lesions will help guide treatment. Using data from the US Food and Drug Administration (FDA)'s Adverse Event Reporting System (FAERS), we analyzed 12 million patient reports to identify drugs inversely correlated with gastrointestinal bleeding and potentially limiting AEC severity. FAERS analysis revealed that drugs used in patients with diabetes and those targeting PPARγ-related mechanisms were associated with decreased AEC phenotypes (P < 0.0001). Electronic health records (EHRs) at University of Cincinnati Hospital were analyzed to validate FAERS analysis. EHR data showed a 5.6% decrease in risk of AEC and associated phenotypes in patients on PPARγ agonists. Murine knockout models of AEC phenotypes were used to construct a gene-regulatory network of candidate drug targets and pathways, which revealed that wound healing, vasculature development and regulation of oxidative stress were impacted in AEC pathophysiology. Human colonic tissue was examined for expression differences across key pathway proteins, PPARγ, HIF1α, VEGF, and TGFβ1. In vitro analysis of human AEC tissues showed lower expression of PPARγ and TGFβ1 compared with controls (0.55 ± 0.07 and 0.49 ± 0.05). National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) RNA-Seq data was analyzed to substantiate human tissue findings. This integrative discovery approach showing altered expression of key genes involved in oxidative stress and injury repair mechanisms presents novel insight into AEC etiology, which will improve targeted mechanistic studies and more optimal medical therapy for AEC.
Collapse
Affiliation(s)
- Mayur Sarangdhar
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mary B Yacyshyn
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew R Gruenzel
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Melinda A Engevik
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathaniel L Harris
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bruce J Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bruce R Yacyshyn
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Bueno E, Pinedo V, Cava F. Adaptation of Vibrio cholerae to Hypoxic Environments. Front Microbiol 2020; 11:739. [PMID: 32425907 PMCID: PMC7212424 DOI: 10.3389/fmicb.2020.00739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Bacteria can colonize virtually any environment on Earth due to their remarkable capacity to detect and respond quickly and adequately to environmental stressors. Vibrio cholerae is a cosmopolitan bacterium that inhabits a vast range of environments. The V. cholerae life cycle comprises diverse environmental and infective stages. The bacterium is found in aquatic ecosystems both under free-living conditions or associated with a wide range of aquatic organisms, and some strains are also capable of causing epidemics in humans. In order to adapt between environments, V. cholerae possesses a versatile metabolism characterized by the rapid cross-regulation of energy-producing pathways. Low oxygen concentration is a key environmental factor that governs V. cholerae physiology. This article reviews the metabolic plasticity that enables V. cholerae to thrive on low oxygen concentrations and its role in environmental and host adaptation.
Collapse
Affiliation(s)
- Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Dey P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 2019; 147:104367. [PMID: 31344423 DOI: 10.1016/j.phrs.2019.104367] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
17
|
Dey P, Sasaki GY, Wei P, Li J, Wang L, Zhu J, McTigue D, Yu Z, Bruno RS. Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation. J Nutr Biochem 2019; 67:78-89. [PMID: 30856467 DOI: 10.1016/j.jnutbio.2019.01.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 01/03/2023]
Abstract
Gut-derived endotoxin translocation provokes obesity by inducing TLR4/NFκB inflammation. We hypothesized that catechin-rich green tea extract (GTE) would protect against obesity-associated TLR4/NFκB inflammation by alleviating gut dysbiosis and limiting endotoxin translocation. Male C57BL/6J mice were fed a low-fat (LF) or high-fat (HF) diet containing 0% or 2% GTE for 8 weeks. At Week 7, fluorescein isothiocyanate (FITC)-dextran was administered by oral gavage before assessing its serum concentrations as a gut permeability marker. HF-feeding increased (P<.05) adipose mass and adipose expression of genes involved in TLR4/NFκB-dependent inflammation and macrophage activation. GTE attenuated HF-induced obesity and pro-inflammatory gene expression. GTE in HF mice decreased serum FITC-dextran, and attenuated portal vein and circulating endotoxin concentrations. GTE in HF mice also prevented HF-induced decreases in the expression of intestinal tight junction proteins (TJPs) and hypoxia inducible factor-1α while preventing increases in TLR4/NFκB-dependent inflammatory genes. Gut microbial diversity was increased, and the Firmicutes:Bacteroidetes ratio was decreased, in HF mice fed GTE compared with HF controls. GTE in LF mice did not attenuate adiposity but decreased endotoxin and favorably altered several gut bacterial populations. Serum FITC-dextran was correlated with portal vein endotoxin (P<.001; rP=0.66) and inversely correlated with colonic mRNA levels of TJPs (P<.05; rP=-0.38 to -0.48). Colonic TJPs mRNA were inversely correlated with portal endotoxin (P<.05; rP=-0.33 to -0.39). These data suggest that GTE protects against diet-induced obesity consistent with a mechanism involving the gut-adipose axis that limits endotoxin translocation and consequent adipose TLR4/NFκB inflammation by improving gut barrier function.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Ping Wei
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Dana McTigue
- Department of Neuroscience and Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Leite GSF, Resende Master Student AS, West NP, Lancha AH. Probiotics and sports: A new magic bullet? Nutrition 2018; 60:152-160. [PMID: 30590242 DOI: 10.1016/j.nut.2018.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
The use of probiotics in sports has been growing in the past years focusing on the attenuation of upper respiratory tract (URS) and gastrointestinal (GI) symptoms commonly present in endurance athletes. Researches shown different results and this may related to the probiotic strain, dose, period consumption or even the form of administration (capsules, sachets or fermented milk). These four factors directly influence in the probiotic's outcome and this question still remains unclear. Thus, the goal of this review is to clarify how these factors may influence the outcomes, approaching the major differences among studies, mechanisms by which the probiotic may contribute in sports field and applied conclusions. It was used 'probiotics', 'athletes', 'sports', 'exercise', 'athletes performance', 'immune response', 'intestinal symptoms' as keywords and its combinations and 20 original articles were selected for our purpose. All the articles were performed in healthy physically active people and/or athletes. Putting together, it was observed that athletes may benefit from probiotics consumption. It seems that multi strain ingested via sachet or fermented food and a larger period of consumption may shown better results at minimizing URS and GI symptoms. Also, specific species appears to have a role in exercise recovery. Therefore, the beneficial effect of probiotics in sports field is strictly dependent on the four factors abovementioned. The molecular mechanisms behind the probiotics effectiveness have not yet been elucidated and perhaps the biological assessments performed in the studies as well the few number of studies published did not answer the question yet.
Collapse
Affiliation(s)
- Geovana S F Leite
- Laboratory of Nutrition and Metabolism Applied to Motor Activity, School of Physical Education and Sports, University of Sao Paulo, Sao Paulo, Brazil.
| | - Ayane S Resende Master Student
- Laboratory of Nutrition and Metabolism Applied to Motor Activity, School of Physical Education and Sports, University of Sao Paulo, Sao Paulo, Brazil
| | - Nicholas P West
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, Australia
| | - Antonio H Lancha
- Laboratory of Nutrition and Metabolism Applied to Motor Activity, School of Physical Education and Sports, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Wang H, Wang Y, Zhao J, Jiang J, Zhou Y, Shi P, Liu Q, Sun Y. Dietary Nondigestible Polysaccharides Ameliorate Colitis by Improving Gut Microbiota and CD4 + Differentiation, as Well as Facilitating M2 Macrophage Polarization. JPEN J Parenter Enteral Nutr 2018; 43:401-411. [PMID: 30277587 DOI: 10.1002/jpen.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/23/2018] [Accepted: 06/25/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The aim of this study was to investigate the therapeutic mechanism of a specific multifiber mix diet (MF) designed to match the fiber content of a healthy diet in interleukin-10 knockout (IL-10-/- ) mice with spontaneous chronic colitis displaying similar characteristics to those of human Crohn's disease (CD). METHODS Sixteen-week-old IL-10-/- mice were used for the experiments with MF diet for 4 weeks. Severity of colitis, the composition of the fecal microbiota, expression of Th1/Th17 cells, myeloperoxidase (MPO) concentrations, and inflammatory cytokines and chemokines (tumor necrosis factor-α [TNF-α], IL-6, macrophage inflammatory protein [MIP]-2, monocyte chemoattractant protein-1 [MCP-1], and MIP-1α), as well as arginase 1 (Arg1) and signal transducers and activators of transcription 6 (STAT6) proteins, were measured at the end of the experiment. In addition, the corresponding metabolites (short-chain fatty acids) of MF on CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) were also detected in vivo and in vitro. RESULTS MF treatment significantly ameliorated colitis associated with decreased lamina propria frequency of Th1/Th17 cells, MPO concentrations, and inflammatory cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1, and MIP-1α). An increase in gut microbial diversity was observed after MF treatment compared with IL-10-/- mice, including a significant increase in bacteria belonging to the Firmicutes phylum and a significant decrease in bacteria belonging to the Proteobacteria phylum. Moreover, MF treatment increased the differentiation of CD4+ CD25+ Foxp3+ Tregs mainly by microbial metabolites butyrate. In addition, Arg1 and STAT6 proteins were also significantly increased after MF treatment. CONCLUSIONS These results shed light on the contribution of MF treatment to the CD mouse model and suggest that MF has potential as a therapeutic strategy for enhancing efficacy in inducing remission in patients with active CD.
Collapse
Affiliation(s)
- Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yong Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jianguo Jiang
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yaxing Zhou
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing University, Nanjing, 210089, Jiangsu Province, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, Taizhou Clinical Medical College of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| |
Collapse
|
20
|
Dulai PS, Buckey JC, Raffals LE, Swoger JM, Claus PL, OʼToole K, Ptak JA, Gleeson MW, Widjaja CE, Chang JT, Adler JM, Patel N, Skinner LA, Haren SP, Goldby-Reffner K, Thompson KD, Siegel CA. Hyperbaric oxygen therapy is well tolerated and effective for ulcerative colitis patients hospitalized for moderate-severe flares: a phase 2A pilot multi-center, randomized, double-blind, sham-controlled trial. Am J Gastroenterol 2018; 113:1516-1523. [PMID: 29453383 DOI: 10.1038/s41395-018-0005-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) markedly increases tissue oxygen delivery. Case series suggest it may have a potential therapeutic benefit in ulcerative colitis (UC). We investigated the therapeutic potential of HBOT as an adjunct to steroids for UC flares requiring hospitalization. METHODS The study was terminated early due to poor recruitment with 18 of the planned 70 patients enrolled. UC patients hospitalized for moderate-severe flares (Mayo score ≥6, endoscopic sub-score ≥2) were block randomized to steroids + daily HBOT (n = 10) or steroids + daily sham hyperbaric air (n = 8). Patients were blinded to study assignment, and assessments were performed by a blinded gastroenterologist. Primary outcome was the clinical remission rate at study day 5 (partial Mayo score ≤2 with no sub-score >1). Key secondary outcomes were: clinical response (reduction in partial Mayo score ≥2, rectal bleeding sub-score of 0-1) and progression to second-line therapy (colectomy or biologic therapy) during the hospitalization. RESULTS A significantly higher proportion of HBOT-treated patients achieved clinical remission at study day 5 and 10 (50 vs. 0%, p = 0.04). HBOT-treated patients less often required progression to second-line therapy during the hospitalization (10 vs. 63%, p = 0.04). The proportion requiring in-hospital colectomy specifically as second-line therapy for medically refractory UC was lower in the HBOT group compared to sham (0 vs. 38%, p = 0.07). There were no serious adverse events. CONCLUSION In this small, proof-of-concept, phase 2A trial, the use of HBOT as an adjunctive therapy to steroids for UC patients hospitalized for moderate-severe flares resulted in higher rates of clinical remission, and a reduction in rates of progression to second-line therapy during the hospitalization. Larger well-powered trials are needed, however, to provided definitive evidence of therapeutic benefit.
Collapse
Affiliation(s)
- Parambir S Dulai
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jay C Buckey
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laura E Raffals
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jason M Swoger
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Paul L Claus
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin OʼToole
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Judy A Ptak
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael W Gleeson
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Christella E Widjaja
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John T Chang
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jeffery M Adler
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nihal Patel
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laurie A Skinner
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shawn P Haren
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kimberly Goldby-Reffner
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kimberly D Thompson
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Corey A Siegel
- University of California at San Diego, La Jolla, CA, USA. Dartmouth Hitchcock Medical Center, Lebanon, NH, USA. Mayo Clinic, Rochester, MN, USA. University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Trojova I, Kozarova M, Petrasova D, Malachovska Z, Paranicova I, Joppa P, Tkacova R. Circulating lipopolysaccharide-binding protein and carotid intima-media thickness in obstructive sleep apnea. Physiol Res 2017; 67:69-78. [PMID: 29137477 DOI: 10.33549/physiolres.933632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Circulating lipopolysaccharide-binding protein (LBP), a metabolic endotoxemia marker, was identified as an independent predictor of atherosclerosis. Although increases in carotid intima-media thickness (CIMT) were repeatedly reported in obstructive sleep apnea (OSA), neither the role of OSA in metabolic endotoxemia nor of LBP in early atherosclerosis were explored in patients with OSA. At a tertiary university hospital we investigated the relationships between OSA, LBP and CIMT in 117 men who underwent full polysomnography and CIMT assessment by B-mode ultrasound. Circulating LBP concentrations and average CIMT increased from patients without OSA to those with mild-moderate and severe OSA (from 32.1+/-10.3 to 32.3+/-10.9 to 38.1+/-10.3 microg.ml(-1), p=0.015; from 0.52+/-0.09 to 0.58+/-0.06 to 0.62+/-0.10 mm, p=0.004, respectively). Oxygen desaturation index (ODI) was a predictor of serum LBP levels independent of age, waist-to-hip ratio (WHR), smoking, hypertension, HDL cholesterol, triglycerides and fasting glucose [p (ANOVA)=0.002, r(2)=0.154], with no independent effect of the ODI*WHR interaction term on LBP. Furthermore, serum LBP predicted CIMT independently of known risk factors of atherosclerosis including obesity (p<0.001, r(2)=0.321). Our results suggest that OSA severity contributes to metabolic endotoxemia in patients with OSA independently of obesity, and that LBP might represent a contributing factor promoting early atherosclerosis in such patients.
Collapse
Affiliation(s)
- I Trojova
- Department of Respiratory Medicine, P. J. Safarik University, Medical Faculty and L. Pasteur University Hospital, Kosice, Slovakia.
| | | | | | | | | | | | | |
Collapse
|