1
|
Li H, Cheng Z, Li H, Yin Y, Li Y, Chen T, Dong X, Hu Q, Wu D. A novel genetically encoded indicator for deciphering cytosolic and mitochondrial nitric oxide in live cells. Biochem Biophys Res Commun 2025; 749:151345. [PMID: 39862720 DOI: 10.1016/j.bbrc.2025.151345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles. In the study, we described the protein detection capabilities and subcellular spatiotemporal localization of GefiNO sensors. By analyzing NO metabolic responses in macrophages of different subtypes, we provide a comprehensive view of NO dynamics at the cellular level. The GefiNO sensor represents a valuable tool for monitoring extensive NO dynamics in living cells and offers potential for uncovering new insights into cellular metabolic mechanisms.
Collapse
Affiliation(s)
- Haoqi Li
- Shanghai Engineering Research Center of Organ Repair, Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zijie Cheng
- Shanghai Engineering Research Center of Organ Repair, Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Huimin Li
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yun Yin
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yuqing Li
- Shanghai Engineering Research Center of Organ Repair, Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tao Chen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Xin Dong
- Shanghai Engineering Research Center of Organ Repair, Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qingxun Hu
- Shanghai Engineering Research Center of Organ Repair, Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Li H, Cheng Z, Wu D, Hu Q. Nitric oxide and mitochondrial function in cardiovascular diseases. Nitric Oxide 2025; 154:42-50. [PMID: 39577487 DOI: 10.1016/j.niox.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Nitric oxide (NO) has been highlighted as an important factor in cardiovascular system. As a signaling molecule in the cardiovascular system, NO can relax blood vessels, lower blood pressure, and prevent platelet aggregation. Mitochondria serve as a central hub for cellular metabolism and intracellular signaling, and their dysfunction can lead to a variety of diseases. Accumulating evidence suggests that NO can act as a regulator of mitochondria, affecting mitochondrial function and cellular activity, which in turn mediates the onset and progression of disease. However, there is a lack of comprehensive understanding of how NO regulates mitochondrial function in the cardiovascular system. This review aims to summarize the regulation of mitochondrial function by nitric oxide in cardiovascular related diseases, as well as the multifaceted and complex roles of NO in the cardiovascular system. Understanding the mechanism of NO mediated mitochondrial function can provide new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Haoqi Li
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zijie Cheng
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Wu J, Du Y, Wang Z, Lu L, Wang X, Guo G. Mesoporous PtIr alloy single-particle: A novel SECM-tip for in situ monitoring NO of single-cell. Biosens Bioelectron 2025; 267:116744. [PMID: 39305820 DOI: 10.1016/j.bios.2024.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
As a vital factor in cell metabolism, nitric oxide (NO) is associated with nitrosative stress and subsequent inflammations and diseases. In situ, real-time NO monitoring is challenging due to its relative trace concentration and fast diffusion in cell. Scanning electrochemical microscopy (SECM) is suited uniquely for single-cell analysis, and its electrochemical response to targets can be further enhanced by improving the interfacial properties of its tip. Here, an ultramicroelectrodes (UMEs) modification strategy based on bimetallic single-particle was proposed for the first time. This mesoporous platinum/iridium alloy single-particle (mPtIr SP) interface using micelle-assisted electrodeposition was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). And the nucleation kinetic progress which can be defined as "oil-in-water-like" electrodeposition was discussed in detail. The high sensitivity (203.86 μA/μM·cm2) and good selectivity for NO detection benefits from the high catalysis of the PtIr alloy and the high mass transfer properties of the porous interface. In particular, this novel UME can real-time monitor NO release from a single MCF-7 cell stimulated by perfluorooctanoic acid (PFOA), providing new ideas for contaminant toxicity assessment, health diagnostics, and disease treatment.
Collapse
Affiliation(s)
- Jiening Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Yuying Du
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Ziqi Wang
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China; Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, PR China.
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
4
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Speigel I, Patel K, Osman V, Hemmings HC. Volatile anesthetics inhibit presynaptic cGMP signaling to depress presynaptic excitability in rat hippocampal neurons. Neuropharmacology 2023; 240:109705. [PMID: 37683886 PMCID: PMC10772825 DOI: 10.1016/j.neuropharm.2023.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Volatile anesthetics alter presynaptic function through effects on Ca2+ influx and neurotransmitter release. These actions are proposed to play important roles in their pleiotropic neurophysiological effects including immobility, unconsciousness and amnesia. Nitric oxide and cyclic guanosine monophosphate (NO/cGMP) signaling has been implicated in presynaptic mechanisms, and disruption of NO/cGMP signaling has been shown to alter sensitivity to volatile anesthetics in vivo. We investigated volatile anesthetic actions NO/cGMP signaling in relation to presynaptic function in cultured rat hippocampal neurons using pharmacological tools and genetically encoded biosensors and sequestering probes of cGMP levels. Using the fluorescent cGMP biosensor cGull, we found that electrical stimulation-evoked NMDA-type glutamate receptor-independent presynaptic cGMP transients were inhibited 33.2% by isoflurane (0.51 mM) and 26.4% by sevoflurane (0.57 mM) (p < 0.0001) compared to control stimulation without anesthetic. Stimulation-evoked cGMP transients were blocked by the nonselective inhibitor of nitric oxide synthase N-ω-nitro-l-arginine, but not by the selective neuronal nitric oxide synthase inhibitor N5-(1-imino-3-butenyl)-l-ornithine. Isoflurane and sevoflurane inhibition of stimulation-evoked increases in presynaptic Ca2+ concentration, measured with synaptophysin-GCaMP6f, and of synaptic vesicle exocytosis, measured with synaptophysin-pHlourin, was attenuated in neurons expressing the cGMP scavenger protein sponge (inhibition of exocytosis reduced by 54% for isoflurane and by 53% for sevoflurane). The anesthetic-induced reduction in presynaptic excitability was partially occluded by inhibition of HCN channels, a cGMP-modulated excitatory ion channel that can facilitate glutamate release. We propose that volatile anesthetics depress presynaptic cGMP signaling and downstream effectors like HCN channels that are essential to presynaptic function and excitability. These findings identify novel mechanisms by which volatile anesthetics depress synaptic transmission via second messenger signaling involving the NO/cGMP pathway in hippocampal neurons.
Collapse
Affiliation(s)
- Iris Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kishan Patel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Vanessa Osman
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hugh C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
7
|
Arnau Del Valle C, Thomas P, Galindo F, Muñoz MP, Marín MJ. Gold nanoparticle-based two-photon fluorescent nanoprobe for monitoring intracellular nitric oxide levels. J Mater Chem B 2023; 11:3387-3396. [PMID: 36919860 DOI: 10.1039/d3tb00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nitric oxide (NO) plays an important role in the regulation of the immune, cardiovascular and nervous systems. Consequently, being able to monitor and quantify intracellular NO levels would provide a greater understanding of the implications of this molecule in the different biological processes, including, for example, in cancer. Here, we report a broadly applicable two-photon excitable fluorescent nanoprobe able to detect and potentially quantify NO levels in an extensive range of cellular environments. The nanoprobe consists of a thiolated photoinduced electron transfer-based two=photon fluorescent probe attached onto the surface of 2.4 ± 0.7 nm gold nanoparticles (DANPY-NO@AuNPs). The nanoprobe, which can be synthesised in a reproducible manner and exhibits great stability when stored at room temperature, is able to selectively detect NO in solution, with a dynamic range up to 150 μM, and at pH values of biological relevance. DANPY-NO@AuNPs were able to selectively detect endogenous NO in RAW264.7γ NO- macrophages and THP-1 human leukemic cells; and endogenous and exogenous NO in endothelial cells. The nanoprobe accumulated in the acidic organelles of the tested cell lines showing negligible toxicity. Importantly, DANPY-NO@AuNPs showed potential to quantify intracellular NO concentrations in MDA-MB-231 breast cancer cells. The biological evaluation of the nanoprobe was undertaken using confocal laser scanning (images and intracellular emission spectra) and multiphoton microscopies, and flow cytometry. Based on their excellent sensitivity and stability, and outstanding versatility, DANPY-NO@AuNPs can be applied for the spatiotemporal monitoring of in vitro and in vivo NO levels.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Paul Thomas
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana, 12071, Spain
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. .,Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
8
|
Wu J, Gao Y, Pan N, Lu L, Wang X. An isolated single-particle-based SECM tip interface for single-cell NO sensing. Biosens Bioelectron 2023; 223:115048. [PMID: 36587444 DOI: 10.1016/j.bios.2022.115048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
As a key factor in cellular metabolic processes, nitric oxide (NO) is a challenging target for in situ real-time monitoring due to its transient property and short diffusion distance. Scanning electrochemical microscopy (SECM) has unique advantages in single-cell analysis, which can obtain the electrochemical current by scanning the cell surface with a tip microelectrode. In particular, it can further improved the electrochemical response by enhancing the interface properties of its tip. Here, an interface design strategy based on platinum single nanoparticle (Pt NP) was developed, and fluorinated self-assembled monolayers (SAMs) were used to further improve its performance. This modified tip was used as an SECM probe for NO concentration monitoring and morphological imaging of single MCF-7 cells. It has the high sensitivity (164.7 μA/μM·cm2) and good selectivity for NO detection, which benefits from the efficient catalytic properties of Pt NPs and high mass transport and hydrophobic antifouling properties of the interface. Notably, it shows a superior performance in detecting the fluctuation of NO released by a single MCF-7-cell under the stimulation of cadmium (Cd), which demonstrates a promising method for using a single-particle-based tip in SECM applications.
Collapse
Affiliation(s)
- Jiening Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Yafang Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China; Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
9
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
10
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Montali C, Abbruzzetti S, Franzen A, Casini G, Bruno S, Delcanale P, Burgstaller S, Ramadani-Muja J, Malli R, Gensch T, Viappiani C. Nitric Oxide Sensing by a Blue Fluorescent Protein. Antioxidants (Basel) 2022; 11:2229. [PMID: 36421416 PMCID: PMC9686608 DOI: 10.3390/antiox11112229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
S-Nitrosylation of cysteine residues is an important molecular mechanism for dynamic, post-translational regulation of several proteins, providing a ubiquitous redox regulation. Cys residues are present in several fluorescent proteins (FP), including members of the family of Aequorea victoria Green Fluorescent Protein (GFP)-derived FPs, where two highly conserved cysteine residues contribute to a favorable environment for the autocatalytic chromophore formation reaction. The effect of nitric oxide on the fluorescence properties of FPs has not been investigated thus far, despite the tremendous role FPs have played for 25 years as tools in cell biology. We have examined the response to nitric oxide of fluorescence emission by the blue-emitting fluorescent protein mTagBFP2. To our surprise, upon exposure to micromolar concentrations of nitric oxide, we observed a roughly 30% reduction in fluorescence quantum yield and lifetime. Recovery of fluorescence emission is observed after treatment with Na-dithionite. Experiments on related fluorescent proteins from different families show similar nitric oxide sensitivity of their fluorescence. We correlate the effect with S-nitrosylation of Cys residues. Mutation of Cys residues in mTagBFP2 removes its nitric oxide sensitivity. Similarly, fluorescent proteins devoid of Cys residues are insensitive to nitric oxide. We finally show that mTagBFP2 can sense exogenously generated nitric oxide when expressed in a living mammalian cell. We propose mTagBFP2 as the starting point for a new class of genetically encoded nitric oxide sensors based on fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Chiara Montali
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Giorgia Casini
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, Leo-Brandt-Straße, D-52428 Jülich, Germany
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
12
|
Sevimli G, Alston AE, Funk F, Flühmann B, Malli R, Graier WF, Eroglu E. Probing Subcellular Iron Availability with Genetically Encoded Nitric Oxide Biosensors. BIOSENSORS 2022; 12:903. [PMID: 36291039 PMCID: PMC9599561 DOI: 10.3390/bios12100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cellular iron supply is required for various biochemical processes. Measuring bioavailable iron in cells aids in obtaining a better understanding of its biochemical activities but is technically challenging. Existing techniques have several constraints that make precise localization difficult, and the lack of a functional readout makes it unclear whether the tested labile iron is available for metalloproteins. Here, we use geNOps; a ferrous iron-dependent genetically encoded fluorescent nitric oxide (NO) biosensor, to measure available iron in cellular locales. We exploited the nitrosylation-dependent fluorescence quenching of geNOps as a direct readout for cellular iron absorption, distribution, and availability. Our findings show that, in addition to ferrous iron salts, the complex of iron (III) with N,N'-bis (2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) can activate the iron (II)-dependent NO probe within intact cells. Cell treatment for only 20 min with iron sucrose was also sufficient to activate the biosensor in the cytosol and mitochondria significantly; however, ferric carboxymaltose failed to functionalize the probe, even after 2 h of cell treatment. Our findings show that the geNOps approach detects available iron (II) in cultured cells and can be applied to assay functional iron (II) at the (sub)cellular level.
Collapse
Affiliation(s)
- Gulsah Sevimli
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | | | - Felix Funk
- CSL Vifor Ltd., Flughofstrasse 61, CH-8152 Glattbrugg, Switzerland
| | - Beat Flühmann
- CSL Vifor Ltd., Flughofstrasse 61, CH-8152 Glattbrugg, Switzerland
| | - Roland Malli
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Next Generation Fluorescence Imaging Inc., 8010 Graz, Austria
| | - Wolfgang F. Graier
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Next Generation Fluorescence Imaging Inc., 8010 Graz, Austria
| | - Emrah Eroglu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Department of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| |
Collapse
|
13
|
Arnau Del Valle C, Williams L, Thomas P, Johnson R, Raveenthiraraj S, Warren D, Sobolewski A, Muñoz MP, Galindo F, Marín MJ. A highly photostable and versatile two-photon fluorescent probe for the detection of a wide range of intracellular nitric oxide concentrations in macrophages and endothelial cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112512. [PMID: 35850002 DOI: 10.1016/j.jphotobiol.2022.112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is involved in many biological processes affecting the cardiovascular, nervous and immune systems. Intracellular NO can be monitored using fluorescent probes in combination with fluorescence imaging techniques. Most of the currently available NO fluorescent molecular probes are excited via one-photon excitation using UV or Vis light, which results in poor penetration and high photodamage to living tissues. Here, we report a two-photon fluorescent molecular probe, DANPY-NO, able to detect NO in live cells. The probe consists of an o-phenylenediamine linked to a naphthalimide core; and operates via photoinduced electron transfer. DANPY-NO exhibits good sensitivity (LOD of 77.8 nM) and high selectivity towards NO, and is stable over a broad range of pHs. The probe targeted acidic organelles within macrophages and endothelial cells, and demonstrated enhanced photostability over a commercially available NO probe. DANPY-NO was used to selectively detect endogenous NO in RAW264.7ϒ NO- macrophages, THP-1 human leukemic cells, primary mouse (bone marrow-derived) macrophages and endothelial cells. The probe was also able to detect exogenous NO in endothelial cells and distinguish between increasing concentrations of NO. The NO detection was evidenced using confocal laser scanning and two-photon microscopies, and flow cytometry. Further evidence was obtained by recording the changes in the intracellular fluorescence emission spectrum of the probe. Importantly, the probe displayed negligible toxicity to the analysed biological samples. The excellent sensitivity, selectivity, stability and versatility of DANPY-NO confirm its potential for in vitro and in vivo imaging of NO.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Lewis Williams
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Paul Thomas
- Faculty of Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert Johnson
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Anastasia Sobolewski
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
14
|
Nitric oxide biosensor uncovers diminished ferrous iron-dependency of cultured cells adapted to physiological oxygen levels. Redox Biol 2022; 53:102319. [PMID: 35525027 PMCID: PMC9079701 DOI: 10.1016/j.redox.2022.102319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023] Open
|
15
|
Chemogenetic approaches to dissect the role of H2O2 in redox-dependent pathways using genetically encoded biosensors. Biochem Soc Trans 2022; 50:335-345. [PMID: 35015078 DOI: 10.1042/bst20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Chemogenetic tools are recombinant enzymes that can be targeted to specific organelles and tissues. The provision or removal of the enzyme substrate permits control of its biochemical activities. Yeast-derived enzyme D-amino acid oxidase (DAAO) represents the first of its kind for a substrate-based chemogenetic approach to modulate H2O2 concentrations within cells. Combining these powerful enzymes with multiparametric imaging methods exploiting genetically encoded biosensors has opened new lines of investigations in life sciences. In recent years, the chemogenetic DAAO approach has proven beneficial to establish a new role for (patho)physiological oxidative stress on redox-dependent signaling and metabolic pathways in cultured cells and animal model systems. This mini-review covers established or emerging methods and assesses newer approaches exploiting chemogenetic tools combined with genetically encoded biosensors.
Collapse
|
16
|
Targeting PSD95/nNOS by ZL006 alleviates social isolation-induced heightened attack behavior in mice. Psychopharmacology (Berl) 2022; 239:267-276. [PMID: 34661719 PMCID: PMC8521491 DOI: 10.1007/s00213-021-06000-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/10/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE Deregulated attack behaviors have devastating social consequences; however, satisfactory clinical management for the behavior is still an unmet need so far. Social isolation (SI) has been common during the COVID-19 pandemic and may have detrimental effects on mental health, including eliciting heightened attack behavior. OBJECTIVES This study aims to explore whether injection of ZL006 can alleviate SI-induced escalation of attack behavior in mice. METHODS Pharmacological tools, biochemical methods, and behavioral tests were used to explore the potential therapeutic effects of ZL006 targeting postsynaptic density 95 (PSD95)/neuronal nitric oxide synthase (nNOS) pathway on escalation of attack behavior induced by SI in mice. RESULTS ZL006 mitigated SI-induced escalated attack behaviors and elevated nitric oxide (NO) level in the cortex of the SI mice. The beneficial effects of ZL006 lasted for at least 72 h after a single injection of ZL006. Potentiation of NO levels by L-arginine blocked the effects of ZL006. Moreover, a sub-effective dose of 7-NI in combination with a sub-effective dose of ZL006 decreased both SI-induced escalated attack behaviors and NO levels in mice subjected to SI. CONCLUSIONS Our study highlights the importance of the PSD95/nNOS pathway in mediating SI-induced escalation of attack behavior. ZL006 may be a promising therapeutic strategy for treating aggressive behaviors.
Collapse
|
17
|
Erdogan YC, Altun HY, Secilmis M, Ata BN, Sevimli G, Cokluk Z, Zaki AG, Sezen S, Akgul Caglar T, Sevgen İ, Steinhorn B, Ai H, Öztürk G, Belousov VV, Michel T, Eroglu E. Complexities of the chemogenetic toolkit: Differential mDAAO activation by d-amino substrates and subcellular targeting. Free Radic Biol Med 2021; 177:132-142. [PMID: 34687864 PMCID: PMC8639799 DOI: 10.1016/j.freeradbiomed.2021.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
A common approach to investigate oxidant-regulated intracellular pathways is to add exogenous H2O2 to living cells or tissues. However, the addition of H2O2 to the culture medium of cells or tissues approach does not accurately replicate intracellular redox-mediated cell responses. d-amino acid oxidase (DAAO)-based chemogenetic tools represent informative methodological advances that permit the generation of H2O2 on demand with a high spatiotemporal resolution by providing or withdrawing the DAAO substrate d-amino acids. Much has been learned about the intracellular transport of H2O2 through studies using DAAO, yet these valuable tools remain incompletely characterized in many cultured cells. In this study, we describe and characterize in detail the features of a new modified variant of DAAO (termed mDAAO) with improved catalytic activities. We tested mDAAO functionality in several cultured cell lines employing live-cell imaging techniques. Our imaging experiments show that mDAAO is suitable for the generation of H2O2 under hypoxic conditions imaged with the novel ultrasensitive H2O2 sensor (HyPer7). Moreover, this approach was suitable for generating H2O2 in a reversible and concentration-dependent manner in subcellular locales. Furthermore, we show that the choice of d-amino acids differentially affects mDAAO-dependent intracellular H2O2 generation. When paired with the hydrogen sulfide (H2S) sensor hsGFP, administration of the sulfur-containing amino acid d-cysteine to cells expressing mDAAO generates robust H2S signals. We also show that chemogenetic H2O2 generation in different cell types yields distinct HyPer7 profiles. These studies fully characterize the new mDAAO as a novel chemogenetic tool and provide multiparametric approaches for cell manipulation that may open new lines of investigations for redox biochemists to dissect the role of ROS signaling pathways with high spatial and temporal precision.
Collapse
Affiliation(s)
- Yusuf C Erdogan
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hamza Y Altun
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Melike Secilmis
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Busra N Ata
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Gulsah Sevimli
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Zeynep Cokluk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Serap Sezen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Tuba Akgul Caglar
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - İlker Sevgen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Benjamin Steinhorn
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gürkan Öztürk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Physiology Department, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Vsevelod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Institute of Cardiovascular Physiology, Universitätsmedizin Göttingen, 37073, Göttingen, Germany
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Emrah Eroglu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria; Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.
| |
Collapse
|
18
|
Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells. Int J Mol Sci 2021; 22:ijms221910876. [PMID: 34639217 PMCID: PMC8509583 DOI: 10.3390/ijms221910876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) play an important role in the pathophysiology of skeletal muscle and are involved in the regulation of intracellular signaling pathways, which drive metabolism, regeneration, and adaptation in skeletal muscle. However, the molecular mechanisms underlying these processes are unknown or partially uncovered. We implemented a combination of methodological approaches that are funded for the use of genetically encoded biosensors associated with quantitative fluorescence microscopy imaging to study redox biology in skeletal muscle. Therefore, it was possible to detect and monitor RONS and glutathione redox potential with high specificity and spatio-temporal resolution in two models, isolated skeletal muscle fibers and C2C12 myoblasts/myotubes. Biosensors HyPer3 and roGFP2-Orp1 were examined for the detection of cytosolic hydrogen peroxide; HyPer-mito and HyPer-nuc for the detection of mitochondrial and nuclear hydrogen peroxide; Mito-Grx1-roGFP2 and cyto-Grx1-roGFP2 were used for registration of the glutathione redox potential in mitochondria and cytosol. G-geNOp was proven to detect cytosolic nitric oxide. The fluorescence emitted by the biosensors is affected by pH, and this might have masked the results; therefore, environmental CO2 must be controlled to avoid pH fluctuations. In conclusion, genetically encoded biosensors and quantitative fluorescence microscopy provide a robust methodology to investigate the pathophysiological processes associated with the redox biology of skeletal muscle.
Collapse
|
19
|
Safavi-Rizi V. Towards genetically encoded sensors for nitric oxide bioimaging in planta. PLANT PHYSIOLOGY 2021; 187:477-479. [PMID: 34608950 PMCID: PMC8491015 DOI: 10.1093/plphys/kiab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/09/2021] [Indexed: 05/20/2023]
Abstract
Towards genetically encoded sensors for nitric oxide bioimaging in planta
Collapse
Affiliation(s)
- Vajiheh Safavi-Rizi
- Department of Plant Physiology, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487 Greifswald, Germany
- Author for communication:
| |
Collapse
|
20
|
Secilmis M, Altun HY, Pilic J, Erdogan YC, Cokluk Z, Ata BN, Sevimli G, Zaki AG, Yigit EN, Öztürk G, Malli R, Eroglu E. A Co-Culture-Based Multiparametric Imaging Technique to Dissect Local H 2O 2 Signals with Targeted HyPer7. BIOSENSORS 2021; 11:338. [PMID: 34562927 PMCID: PMC8466187 DOI: 10.3390/bios11090338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023]
Abstract
Multispectral live-cell imaging is an informative approach that permits detecting biological processes simultaneously in the spatial and temporal domain by exploiting spectrally distinct biosensors. However, the combination of fluorescent biosensors with distinct spectral properties such as different sensitivities, and dynamic ranges can undermine accurate co-imaging of the same analyte in different subcellular locales. We advanced a single-color multiparametric imaging method, which allows simultaneous detection of hydrogen peroxide (H2O2) in multiple cell locales (nucleus, cytosol, mitochondria) using the H2O2 biosensor HyPer7. Co-culturing of endothelial cells stably expressing differentially targeted HyPer7 biosensors paved the way for co-imaging compartmentalized H2O2 signals simultaneously in neighboring cells in a single experimental setup. We termed this approach COMPARE IT, which is an acronym for co-culture-based multiparametric imaging technique. Employing this approach, we detected lower H2O2 levels in mitochondria of endothelial cells compared to the cell nucleus and cytosol under basal conditions. Upon administering exogenous H2O2, the cytosolic and nuclear-targeted probes displayed similarly slow and moderate HyPer7 responses, whereas the mitochondria-targeted HyPer7 signal plateaued faster and reached higher amplitudes. Our results indicate striking differences in mitochondrial H2O2 accumulation of endothelial cells. Here, we present the method's potential as a practicable and informative multiparametric live-cell imaging technique.
Collapse
Affiliation(s)
- Melike Secilmis
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Hamza Yusuf Altun
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Johannes Pilic
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Yusuf Ceyhun Erdogan
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Zeynep Cokluk
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Busra Nur Ata
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Gulsah Sevimli
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
| | - Esra Nur Yigit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; (E.N.Y.); (G.Ö.)
- Department of Biotechnology, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Gürkan Öztürk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; (E.N.Y.); (G.Ö.)
- Physiology Department, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Emrah Eroglu
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Istanbul, Turkey; (M.S.); (H.Y.A.); (Y.C.E.); (Z.C.); (B.N.A.); (G.S.); (A.G.Z.)
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey; (E.N.Y.); (G.Ö.)
- Nanotechnology Research and Application Center, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
21
|
Daiber A, Hahad O, Andreadou I, Steven S, Daub S, Münzel T. Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond. Redox Biol 2021; 42:101875. [PMID: 33541847 PMCID: PMC8113038 DOI: 10.1016/j.redox.2021.101875] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Global epidemiological studies show that chronic non-communicable diseases such as atherosclerosis and metabolic disorders represent the leading cause of premature mortality and morbidity. Cardiovascular disease such as ischemic heart disease is a major contributor to the global burden of disease and the socioeconomic health costs. Clinical and epidemiological data show an association of typical oxidative stress markers such as lipid peroxidation products, 3-nitrotyrosine or oxidized DNA/RNA bases with all major cardiovascular diseases. This supports the concept that the formation of reactive oxygen and nitrogen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial respiratory chain) represents a hallmark of the leading cardiovascular comorbidities such as hyperlipidemia, hypertension and diabetes. These reactive oxygen and nitrogen species can lead to oxidative damage but also adverse redox signaling at the level of kinases, calcium handling, inflammation, epigenetic control, circadian clock and proteasomal system. The in vivo footprints of these adverse processes (redox biomarkers) are discussed in the present review with focus on their clinical relevance, whereas the details of their mechanisms of formation and technical aspects of their detection are only briefly mentioned. The major categories of redox biomarkers are summarized and explained on the basis of suitable examples. Also the potential prognostic value of redox biomarkers is critically discussed to understand what kind of information they can provide but also what they cannot achieve.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Omar Hahad
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
22
|
Almeida B, Rogers KE, Nag OK, Delehanty JB. Sensing Nitric Oxide in Cells: Historical Technologies and Future Outlook. ACS Sens 2021; 6:1695-1703. [PMID: 33871990 DOI: 10.1021/acssensors.1c00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a critical cell signaling molecule with important roles in both normal cellular physiology and pathology. Over the past 20 years, multiple sensing modalities have been developed for the intracellular synthesis (endogenous) and release (exogenous) of NO. In this review, we survey the historical progression of NO sensing platforms, highlight the current state of the art, and offer a forward-looking view of how we expect the field of NO sensing to develop in the context of recent advances in bio-nanotechnology and nanoscale cellular biosensors.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, D.C. 20036, United States
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- Fischell Department of Bioengineering, University of Maryland, 2330 Kim Engineering Building, College Park, Maryland 20742, United States
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
23
|
Tummanapalli SS, Kuppusamy R, Yeo JH, Kumar N, New EJ, Willcox MDP. The role of nitric oxide in ocular surface physiology and pathophysiology. Ocul Surf 2021; 21:37-51. [PMID: 33940170 DOI: 10.1016/j.jtos.2021.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) has a wide array of biological functions including the regulation of vascular tone, neurotransmission, immunomodulation, stimulation of proinflammatory cytokine expression and antimicrobial action. These functions may depend on the type of isoform that is responsible for the synthesis of NO. NO is found in various ocular tissues playing a pivotal role in physiological mechanisms, namely regulating vascular tone in the uvea, retinal blood circulation, aqueous humor dynamics, neurotransmission and phototransduction in retinal layers. Unregulated production of NO in ocular tissues may result in production of toxic superoxide free radicals that participate in ocular diseases such as endotoxin-induced uveitis, ischemic proliferative retinopathy and neurotoxicity of optic nerve head in glaucoma. However, the role of NO on the ocular surface in mediating physiology and pathophysiological processes is not fully understood. Moreover, methods used to measure levels of NO in the biological samples of the ocular surface are not well established due to its rapid oxidation. The purpose of this review is to highlight the role of NO in the physiology and pathophysiology of ocular surface and propose suitable techniques to measure NO levels in ocular surface tissues and tears. This will improve the understanding of NO's role in ocular surface biology and the development of new NO-based therapies to treat various ocular surface diseases. Further, this review summarizes the biochemistry underpinning NO's antimicrobial action.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- School of Optometry & Vision Science, University of New South Wales, Australia; School of Chemistry, University of New South Wales, Australia
| | - Jia Hao Yeo
- The University of Sydney, School of Chemistry, NSW, 2006, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| | - Mark D P Willcox
- School of Optometry & Vision Science, University of New South Wales, Australia
| |
Collapse
|
24
|
Feil R, Lehners M, Stehle D, Feil S. Visualising and understanding cGMP signals in the cardiovascular system. Br J Pharmacol 2021; 179:2394-2412. [PMID: 33880767 DOI: 10.1111/bph.15500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
cGMP is an important signalling molecule in humans. Fluorescent cGMP biosensors have emerged as powerful tools for the sensitive analysis of cGMP pathways at the single-cell level. Here, we briefly outline cGMP's multifaceted role in (patho)physiology and pharmacotherapy. Then we summarise what new insights cGMP imaging has provided into endogenous cGMP signalling and drug action, with a focus on the cardiovascular system. Indeed, the use of cGMP biosensors has led to several conceptual advances, such as the discovery of local, intercellular and mechanosensitive cGMP signals. Importantly, single-cell imaging can provide valuable information about the heterogeneity of cGMP signals within and between individual cells of an isolated cell population or tissue. We also discuss current challenges and future directions of cGMP imaging, such as the direct visualisation of cGMP microdomains, simultaneous monitoring of cGMP and other signalling molecules and, ultimately, cGMP imaging in tissues and animals under close-to-native conditions.
Collapse
Affiliation(s)
- Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Lehners
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Daniel Stehle
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Isoda R, Yoshinari A, Ishikawa Y, Sadoine M, Simon R, Frommer WB, Nakamura M. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:542-557. [PMID: 33231903 PMCID: PMC7898640 DOI: 10.1111/tpj.15096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 05/13/2023]
Abstract
Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.
Collapse
Affiliation(s)
- Reika Isoda
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| | - Akira Yoshinari
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| | - Yuuma Ishikawa
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Mayuri Sadoine
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Rüdiger Simon
- Developmental GeneticsHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Wolf B. Frommer
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Masayoshi Nakamura
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| |
Collapse
|
26
|
Ledo A, Lourenço CF, Cadenas E, Barbosa RM, Laranjinha J. The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: Switching signaling to degeneration. Free Radic Biol Med 2021; 162:500-513. [PMID: 33186742 DOI: 10.1016/j.freeradbiomed.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
The small and diffusible free radical nitric oxide (•NO) has fascinated biological and medical scientists since it was promoted from atmospheric air pollutant to biological ubiquitous signaling molecule. Its unique physical chemical properties expand beyond its radical nature to include fast diffusion in aqueous and lipid environments and selective reactivity in a biological setting determined by bioavailability and reaction rate constants with biomolecules. In the brain, •NO is recognized as a key player in numerous physiological processes ranging from neurotransmission/neuromodulation to neurovascular coupling and immune response. Furthermore, changes in its bioactivity are central to the molecular pathways associated with brain aging and neurodegeneration. The understanding of •NO bioactivity in the brain, however, requires the knowledge of its concentration dynamics with high spatial and temporal resolution upon stimulation of its synthesis. Here we revise our current understanding of the role of neuronal-derived •NO in brain physiology, aging and degeneration, focused on changes in the extracellular concentration dynamics of this free radical and the regulation of bioenergetic metabolism and neurovascular coupling.
Collapse
Affiliation(s)
- A Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - C F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - E Cadenas
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, CA, USA
| | - R M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - J Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
27
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Guerra DD, Hurt KJ. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod 2020; 101:4-25. [PMID: 30848786 DOI: 10.1093/biolre/ioz038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Gasotransmitters are endogenous small gaseous messengers exemplified by nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S or sulfide). Gasotransmitters are implicated in myriad physiologic functions including many aspects of reproduction. Our objective was to comprehensively review basic mechanisms and functions of gasotransmitters during pregnancy from conception to uterine involution and highlight future research opportunities. We searched PubMed and Web of Science databases using combinations of keywords nitric oxide, carbon monoxide, sulfide, placenta, uterus, labor, and pregnancy. We included English language publications on human and animal studies from any date through August 2018 and retained basic and translational articles with relevant original findings. All gasotransmitters activate cGMP signaling. NO and sulfide also covalently modify target protein cysteines. Protein kinases and ion channels transduce gasotransmitter signals, and co-expressed gasotransmitters can be synergistic or antagonistic depending on cell type. Gasotransmitters influence tubal transit, placentation, cervical remodeling, and myometrial contractility. NO, CO, and sulfide dilate resistance vessels, suppress inflammation, and relax myometrium to promote uterine quiescence and normal placentation. Cervical remodeling and rupture of fetal membranes coincide with enhanced oxidation and altered gasotransmitter metabolism. Mechanisms mediating cellular and organismal changes in pregnancy due to gasotransmitters are largely unknown. Altered gasotransmitter signaling has been reported for preeclampsia, intrauterine growth restriction, premature rupture of membranes, and preterm labor. However, in most cases specific molecular changes are not yet characterized. Nonclassical signaling pathways and the crosstalk among gasotransmitters are emerging investigation topics.
Collapse
Affiliation(s)
- Damian D Guerra
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
29
|
Chen Y. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide 2020; 98:1-19. [DOI: 10.1016/j.niox.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
|
30
|
Escamilla PR, Shen Y, Zhang Q, Hernandez DS, Howard CJ, Qian X, Filonov DY, Kinev AV, Shear JB, Anslyn EV, Yang Y. 2-Amino-3'-dialkylaminobiphenyl-based fluorescent intracellular probes for nitric oxide surrogate N 2O 3. Chem Sci 2020; 11:1394-1403. [PMID: 34123264 PMCID: PMC8148321 DOI: 10.1039/c9sc04304g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Fluorescent probes for nitric oxide (NO), or more frequently for its oxidized surrogate dinitrogen trioxide (N2O3), have enabled scientists to study the contributions of this signaling molecule to many physiological processes. Seeking to improve upon limitations of other probes, we have developed a family of fluorescent probes based on a 2-amino-3'-dialkylaminobiphenyl core. This core condenses with N2O3 to form benzo[c]cinnoline structures, incorporating the analyte into the newly formed fluorophore, which results in product fluorescence with virtually no background contribution from the initial probe. We varied the substituents in the core in order to optimize both the reactivity of the probes with N2O3 and their cinnoline products' fluorescence wavelengths and brightness. The top candidates were then applied to cultured cells to verify that they could respond to NO within cellular milieus, and the top performer, NO530, was compared with a "gold standard" commercial probe, DAF-FM, in a macrophage-derived cell line, RAW 264.7, stimulated to produce NO. NO530 demonstrated similar or better sensitivity and higher selectivity for NO than DAF, making it an attractive potential alternative for NO tracking in various applications.
Collapse
Affiliation(s)
| | - Yanming Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Quanjuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Derek S Hernandez
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Cecil J Howard
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | | | | | - Jason B Shear
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin Austin Texas USA
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
31
|
Zhang X, Fu Y, Qian G, Zhang R, Xu ZP. An artificial protein-probe hybrid as a responsive probe for ratiometric detection and imaging of hydrogen peroxide in cells. J Mater Chem B 2020; 8:5420-5424. [DOI: 10.1039/d0tb00856g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent protein-probe hybrid was devised for ratiometric detection and imaging of intracellular H2O2 with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Xing Zhang
- School of Environmental Science and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
- Australian Institute for Bioengineering and Nanotechnology
| | - Youxin Fu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Guangren Qian
- School of Environmental Science and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
| |
Collapse
|
32
|
Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods. Proc Natl Acad Sci U S A 2019; 116:20210-20217. [PMID: 31527268 DOI: 10.1073/pnas.1910942116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) synthesized by the endothelial isoform of nitric oxide synthase (eNOS) is a critical determinant of vascular homeostasis. However, the real-time detection of intracellular NO-a free radical gas-has been difficult, and surrogate markers for eNOS activation are widely utilized. eNOS phosphorylation can be easily measured in cells by probing immunoblots with phosphospecific antibodies. Here, we pursued multispectral imaging approaches using biosensors to visualize intracellular NO and Ca2+ and exploited chemogenetic approaches to define the relationships between NO synthesis and eNOS phosphorylation in cultured endothelial cells. We found that the G protein-coupled receptor agonists adenosine triphosphate (ATP) and histamine promoted rapid increases in eNOS phosphorylation, as did the receptor tyrosine kinase agonists insulin and Vascular Endothelial Growth Factor (VEGF). Histamine and ATP also promoted robust NO formation and increased intracellular Ca2+ By contrast, neither insulin nor VEGF caused any increase whatsoever in intracellular NO or Ca2+-despite eliciting strong eNOS phosphorylation responses. Our findings demonstrate an unexpected and striking discordance between receptor-modulated eNOS phosphorylation and NO formation in endothelial cells. Previous reports in which phosphorylation of eNOS has been studied as a surrogate for enzyme activation may need to be reassessed.
Collapse
|
33
|
Visualizing Nitric oxide in mitochondria and lysosomes of living cells with N-Nitrosation of BODIPY-based fluorescent probes. Anal Chim Acta 2019; 1067:88-97. [DOI: 10.1016/j.aca.2019.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
|
34
|
Han Q, Liu J, Meng Q, Wang YL, Feng H, Zhang Z, Xu ZP, Zhang R. Turn-On Fluorescence Probe for Nitric Oxide Detection and Bioimaging in Live Cells and Zebrafish. ACS Sens 2019; 4:309-316. [PMID: 30387591 DOI: 10.1021/acssensors.8b00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An effective bioanalytical method for rapid, sensitive, specific, and in situ sensing of nitric oxide (NO) is the key for further unveiling the biological functions of this gasotransmitter molecule in vitro and in vivo. In this contribution, a new fluorescence probe for sensing and imaging of NO in live systems was developed. The probe, FP-NO, was designed by exploring a novel sensing mechanism, i.e., the rotation of the N-N single bond of a coumarin derivative. FP-NO was prepared by incorporating a recognition unit, thiosemicarbazide moiety into a coumarin fluorophore. The weakly fluorescent FP-NO quickly and selectively reacts with NO to form a highly fluorescent product, FP-P. Such an enhancement of fluorescence emission allows NO detection with high sensitivity. The detection limit was 47.6 nM. The reaction mechanism was validated by HRMS titration analysis and the "OFF-ON" fluorescence response mechanism was rationalized by theoretical computation. FP-NO is biocompatible and live cell membrane permeable. The feasibility of FP-NO as the fluorescence probe for imaging and flow cytometry analysis of exogenous NO in MCF-7 cells and exogenous NO production in inflamed J774A.1 macrophage cells was then evaluated. Visualization of exogenous and endogenous NO production in live zebrafish was then achieved, implying the potential application of FP-NO in the studies of the NO roles in live organisms.
Collapse
Affiliation(s)
- Qian Han
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Yong-Lei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
35
|
Radi R, Denicola A, Morgan B, Zielonka J. Foreword to the Free Radical Biology and Medicine Special Issue on ¨Current fluorescence and chemiluminescence approaches in free radical and redox biology¨. Free Radic Biol Med 2018; 128:1-2. [PMID: 30293645 DOI: 10.1016/j.freeradbiomed.2018.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|