1
|
Tang K, Ye T, He Y, Ba X, Xia D, Peng E, Chen Z, Ye Z, Yang X. Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167791. [PMID: 40086520 DOI: 10.1016/j.bbadis.2025.167791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Kidney stones represent a highly prevalent urological disorder worldwide, with high incidence and recurrence rates. Calcium oxalate (CaOx) crystal-induced kidney injury serves as the foundational mechanism for the formation and progression of CaOx stones. Regulated cell death (RCD) such as ferroptosis, necroptosis, and pyroptosis are essential in the pathophysiological process of kidney injury. Ferroptosis, a newly discovered RCD, is characterized by its reliance on iron-mediated lipid peroxidation. Necroptosis, a widely studied programmed necrosis, initiates with a necrotic phenotype that resembles apoptosis in appearance. Pyroptosis, a type of RCD that involves the gasdermin protein, is accompanied by inflammation and immune response. In recent years, increasing amounts of evidence has demonstrated that ferroptosis, necroptosis, and pyroptosis are significant pathophysiological processes involved in CaOx crystal-induced kidney injury. Herein, we summed up the roles of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury. Furthermore, we delved into the curative potential of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
3
|
Liu Z, Li X, Pan J, Qi D, Wang D, Huang Y, Wu D, Li L. Oxidized low-density lipoprotein induced ferroptosis in nucleus pulposus cell contributes to intervertebral disc degeneration via LOX-1/NF-κB/NOX signal. Int Immunopharmacol 2025; 153:114455. [PMID: 40112598 DOI: 10.1016/j.intimp.2025.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Oxidized low-density lipoprotein (oxLDL) activates the NF-κB signaling pathway through LOX-1, contributing to intervertebral disc degeneration (IVDD). Ferroptosis, a lipid peroxidation-driven cell death, is implicated in IVDD. This study investigates the role of ferroptosis in oxLDL-induced IVDD. Nucleus pulposus cells (NPCs) were treated with oxLDL, and ferroptosis and NF-κB p65 nuclear translocation were assessed. Bioinformatics analysis, silencing experiments, and inhibitors were used to validate the findings. In oxLDL-treated NPCs, LOX-1 and ferroptosis markers (MDA, Fe2+, lipid ROS) increased, while GSH decreased. These effects were mitigated by Liproxstatin-1 or shLOX-1. NF-κB p65 bound to LOX-1 and NOX1 promoters, forming a positive feedback loop. VAS2870 and Schisantherin A improved NPC viability and reduced ferroptosis. A mouse model showed worsening IVDD and ferroptosis over time. Clinical tissues revealed a strong correlation between LOX-1 and ferroptosis markers. oxLDL induces ferroptosis in NPCs via the LOX-1/NF-κB/NOX loop, advancing IVDD. Disrupting this loop in mice mitigated IVDD, highlighting the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Zhonghan Liu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Jie Pan
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Dongduo Qi
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Diankai Wang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Yufeng Huang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Desheng Wu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China
| | - Lijun Li
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Rd., Shanghai 200120, China.
| |
Collapse
|
4
|
Zhang N, Qin X, Liu J, Han K, Kang M, Zhu Z, Zhang D, Zhong F. Pan-cancer analysis and validation show GTF2E2's diagnostic, prognostic, and immunological roles in regulating ferroptosis in endometrial cancer. PLoS One 2025; 20:e0321983. [PMID: 40267151 DOI: 10.1371/journal.pone.0321983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Transcription initiation factor IIE subunit beta (GTF2E2) is a crucial component of the RNA polymerase II transcription initiation complex. There is a lack of more detailed research on the biological function of GTF2E2 in pan-cancer. METHODS We conducted a comprehensive pan-cancer analysis using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. Employing a multi-pronged approach with tools including R, Cytoscape, TISIDB, cBioPortal, STRING, GSCALite, and CancerSEA, we investigated GTF2E2's expression patterns, prognostic value, mutational landscape, functional enrichment, and immunological associations across 33 cancer types. Besides, we further validated the bioinformatic results through in vitro experiments in Uterine corpus endometrial carcinoma (UCEC), including western blotting (WB), cell proliferation assays and transwell. DCFH-DA, C11-BODIPY 581/591 and FeRhoNox-1 probes were performed to identify ferroptosis levels in vitro. RESULTS GTF2E2 expression was significantly elevated in most cancers compared to normal tissues, with notable diagnostic potential (AUC > 0.7) in 20 cancer types. GTF2E2 expression varied across molecular and immune subtypes and correlated with tumor stage and patient age in several cancers. Functional enrichment analyses highlighted GTF2E2's involvement in key cancer-related and immunological pathways. Notably, GTF2E2 promoted UCEC progression in vitro, and knockdown of GTF2E2 significantly inhibited the proliferation, migration and invasion of UCEC cells. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the GTF2E2-knockdown group. Knockdown of GTF2E2 also increased the intracellular levels of Fe2+, lipid peroxides (LPOs) and reactive oxygen species (ROS). CONCLUSIONS Our findings underscore GTF2E2's multifaceted roles in cancer biology, highlighting its potential as a diagnostic biomarker, prognostic indicator, and immunotherapeutic target across various malignancies. This investigation has the potential to contribute significantly to a deeper understanding of the substantial involvement of GTF2E2 in human malignancies, particularly UCEC.
Collapse
Affiliation(s)
- Nie Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
- Graduate School of Anhui Medical University, Anhui, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Anhui, China
| | - Xuejin Qin
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Jingjing Liu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Ke Han
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Manman Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Zhengchun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Di Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, China
- Graduate School of Anhui Medical University, Anhui, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Anhui, China
| |
Collapse
|
5
|
Sutanto H, Pratiwi L, Fetarayani D. Exploring Ferroptosis in Allergic Inflammatory Diseases: Emerging Mechanisms and Therapeutic Perspectives. Cell Biol Int 2025. [PMID: 40260476 DOI: 10.1002/cbin.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron accumulation and lipid peroxidation, has emerged as a critical process in various diseases. Recent evidence suggests its involvement in the pathogenesis of allergic diseases, including asthma, allergic rhinitis, and atopic dermatitis. These conditions are characterized by chronic inflammation, oxidative stress, and immune dysregulation, all of which intersect with the molecular mechanisms of ferroptosis. Key regulators, such as glutathione peroxidase 4 (GPX4), the cystine/glutamate antiporter system Xc-, and iron metabolism pathways, play pivotal roles in ferroptotic processes and their contribution to allergic disease progression. This review explores the mechanistic link between ferroptosis and allergic diseases, emphasizing how oxidative damage and iron overload exacerbate inflammation and tissue injury. We also highlight emerging diagnostic biomarkers, including lipid peroxidation products and iron regulators, which could improve disease monitoring and stratification. Therapeutic strategies targeting ferroptosis, such as GPX4 activators, iron chelators, and lipid peroxidation inhibitors, show promise in preclinical\ studies, offering potential new avenues for treating allergic diseases. However, challenges remain in translating these findings into clinical applications. By integrating current knowledge, this review underscores the need for further research into ferroptosis as both a biomarker and therapeutic target in allergic diseases.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Laras Pratiwi
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
6
|
Liu R, Dai L, Jia S, Geng S, Niu Y, Chen J, Dong C, Li C, Shi Y, Wang X, Zhang J, Zhao N, Gao Z, Yang X, Gao S. Fut8 regulated Unc5b hyperfucosylation reduces macrophage emigration and accelerates atherosclerosis development via the ferroptosis pathway. Free Radic Biol Med 2025; 235:S0891-5849(25)00235-7. [PMID: 40262667 DOI: 10.1016/j.freeradbiomed.2025.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
The accumulation of foam cells in the arterial walls is a defining characteristic of atherosclerosis. Enhancing their migration from plaques may represent a key strategy for slowing disease progression. Recent studies suggest that fucosyltransferase 8 (Fut8) impairs macrophage migration from the intima by modifying the Unc5b membrane receptor, thereby influencing the development of atherosclerosis. This study investigated the roles of Fut8 and Unc5b in foam cell migration using ApoE-/- mouse and foam cell models, employing techniques such as western blotting, mitochondrial function assays, wound healing experiments, and immunofluorescence staining. The findings indicate that Fut8 upregulation increases P53 expression and reduces SLC7A11 and GPX4 levels, leading to altered intracellular concentrations of GSH and Fe2+, impaired mitochondrial function, and reduced migration capacity, all of which promote atherosclerosis. These mechanisms are closely associated with ferroptosis. Intervention with N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) demonstrated that NAC mitigates oxidative stress and migration inhibition,induced by oxidized low-density lipoprotein (ox-LDL). Additionally, inhibiting ferroptosis slowed the progression of atherosclerosis in ApoE-/- mice. Together, these results highlight that Fut8 exacerbates atherosclerosis through a P53/SLC7A11-mediated enhancement of ferroptosis in foam cells, offering a novel perspective on the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Rujin Liu
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Lina Dai
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Sihui Jia
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China; Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| | - Shijia Geng
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yan Niu
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Jie Chen
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Chongyang Dong
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Chenlei Li
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Yuanjia Shi
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Xiaomeng Wang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Jing Zhang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Ningxia Zhao
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Zhanfeng Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Xi Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Shang Gao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
7
|
Zhang Y, Zhang S, Sun H, Xu L. The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma. Cell Death Discov 2025; 11:186. [PMID: 40253354 PMCID: PMC12009291 DOI: 10.1038/s41420-025-02479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Renal cell carcinoma (RCC), a therapeutically recalcitrant genitourinary malignancy, exemplifies the profound interplay between oncogenic signaling and metabolic adaptation. Emerging evidence positions metabolic reprogramming as a central axis of RCC pathogenesis, characterized by dynamic shifts in nutrient utilization that transcend canonical Warburg physiology to encompass lipid anabolism, glutamine auxotrophy, and microenvironment-driven metabolic plasticity. This orchestrated rewiring of cellular energetics sustains tumor proliferation under hypoxia while fostering immunosuppression through metabolite-mediated T cell exhaustion and myeloid-derived suppressor cell activation. Crucially, RCC exhibits metabolic heterogeneity across histological subtypes and intratumoral regions-a feature increasingly recognized as a determinant of therapeutic resistance. Our review systematically deciphers the molecular architecture of RCC metabolism, elucidating how VHL/HIF axis mutations, mTOR pathway dysregulation, and epigenetic modifiers converge to reshape glucose flux, lipid droplet biogenesis, and amino acid catabolism. We present novel insights into spatial metabolic zonation within RCC tumors, where pseudohypoxic niches engage in lactate shuttling and cholesterol efflux to adjacent vasculature, creating pro-angiogenic and immunosuppressive microdomains. Therapeutically, we evaluate first-in-class inhibitors targeting rate-limiting enzymes in de novo lipogenesis and glutamine metabolism, while proposing biomarker-driven strategies to overcome compensatory pathway activation. We highlight the synergy between glutaminase inhibitors and PD-1 blockade in reinvigorating CD8+ T cell function, and the role of lipid-loaded cancer-associated fibroblasts in shielding tumors from ferroptosis. Finally, we outline a translational roadmap integrating multi-omics profiling, functional metabolomics, and spatial biology to match metabolic vulnerabilities with precision therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shengli Zhang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hongbin Sun
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Lei J, Chen W, Gu Y, Lv X, Kang X, Jiang X. Ferroptosis regulation by traditional chinese medicine for ischemic stroke intervention based on network pharmacology and data mining. PLoS One 2025; 20:e0321751. [PMID: 40238820 PMCID: PMC12002469 DOI: 10.1371/journal.pone.0321751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE The aim of this study is to use network pharmacology and data mining to explore the role of traditional Chinese medicine (TCM) in ischemic stroke (IS) intervention by ferroptosis regulation. The results will provide reference for related research on ferroptosis in IS. METHODS The ferroptosis-related targets were obtained from the GeneCards, GeneCLiP3, and FerrDdb databases, while the IS targets were sourced from the GeneCards and DisGeNET databases. Venny was used to identify IS targets associated with ferroptosis. A protein-protein interaction (PPI) analysis was then conducted, and machine learning screening was used to validate these potential targets. The potential targets that met specific criteria and their related compounds allowed us to select TCMs. A mechanistic analysis of the potential targets was conducted using the DAVID database. PPI network diagrams, target-compound network diagrams, and target-compound-TCM network diagrams were then constructed. Finally, molecular docking technology was used to verify the binding activities of the TCM compounds and core components with the identified targets. In addition, the properties, flavors, meridian tropism, and therapeutic effects of the candidate TCMs were analyzed and statistically evaluated. RESULTS A total of 706 targets associated with ferroptosis in IS were obtained, and 14 potential ferroptosis targets in IS were obtained using machine learning. Furthermore, 413 compounds and 301 TCMs were screened, and the binding activities of the targets to the TCM compounds and the core prescriptions were stable. The candidate TCMs primarily exhibited cold, warm, bitter taste, pungent taste, liver meridian, heat-cleaning medicinal, and tonify deficiency properties. CONCLUSIONS This study investigated ferroptosis regulation for IS intervention using TCM. We began by investigating the targets of IS and ferroptosis, and we also analyzed the relevant mechanism of ferroptosis in IS. The results of this study provide reference for related research on ferroptosis in IS.
Collapse
Affiliation(s)
- Jun Lei
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yaodong Gu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xueyan Lv
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingyu Kang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Yang Q, Zhang H, Luo J, Yu H, Yang X, Wang C. FADS2 inhibits colorectal cancer cell proliferation by regulating ferroptosis through SLC7A11/GPX4. Mol Biol Rep 2025; 52:394. [PMID: 40232565 DOI: 10.1007/s11033-025-10395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading factor in cancer mortality globally. Ferroptosis, a regulated cell death described via lipid peroxidation, is crucial in cancer biology. This study explores the link between ferroptosis, FADS2, and CRC, focusing on the prognostic significance and therapeutic potential of targeting FADS2. METHODS The differential expression analysis of the Cancer Genome Atlas-colon adenocarcinoma (TCGA-COAD) and GSE36400 datasets was conducted to determine key ferroptosis-related genes, followed by functional enrichment analysis. Prognosis-related genes were assessed utilizing Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. Genetic variation analysis and immune analysis were employed to evaluate the clinical significance of FADS2. The impacts of FADS2 knockdown on CRC cell migration, proliferation, invasion, and ferroptosis were evaluated by in vitro cell experiments. RESULTS 64 key ferroptosis-related genes in CRC were highly enriched in pathways such as glutathione metabolism and peroxisome. Eleven prognosis-associated genes were identified, with TP53 showing the highest mutation frequency. High FADS2 expression was linked to poorer prognosis and higher immune cell infiltration. FADS2 knockdown significantly decreased glutathione (GSH) levels, SLC7A11, and GPX4 expression, increased malondialdehyde (MDA) levels, indicating the promotion of ferroptosis. Functional tests revealed knockdown FADS2 repressed CRC cell proliferation, migration, and invasion. SLC7A11 or GPX4 overexpression partially rescued the effects of FADS2 knockdown. Additionally, FADS2 knockdown enhances the chemosensitivity of CRC cells to oxaliplatin. CONCLUSION FADS2 is essential for encouraging CRC cell proliferation and tumor growth by preventing ferroptosis. Targeting FADS2 may enhance ferroptosis and suppress CRC progression, offering a possible course of treatment for CRC patients. The knockdown of FADS2 enhances the chemosensitivity of CRC cells to oxaliplatin, providing valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Qinghui Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Jing Luo
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Hongmei Yu
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Chen Wang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, No. 170 Xinsong Road, Minhang District, Shanghai, China.
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer(SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Zhou J, Lu P, He H, Zhang R, Yang D, Liu Q, Liu Q, Liu M, Zhang G. The metabolites of gut microbiota: their role in ferroptosis in inflammatory bowel disease. Eur J Med Res 2025; 30:248. [PMID: 40189555 PMCID: PMC11974165 DOI: 10.1186/s40001-025-02524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis, characterized by impaired function of the intestinal mucosal epithelial barrier. In recent years, ferroptosis, a novel form of cell death, has been confirmed to be involved in the pathological process of IBD and is related to various pathological changes, such as oxidative stress and inflammation. Recent studies have further revealed the complex interactions between the microbiome and ferroptosis, indicating that ferroptosis is an important target for the regulation of IBD by the gut microbiota and its metabolites. This article reviews the significant roles of gut microbial metabolites, such as short-chain fatty acids, tryptophan, and bile acids, in ferroptosis in IBD. These metabolites participate in the regulation of ferroptosis by influencing the intestinal microenvironment, modulating immune responses, and altering oxidative stress levels, thereby exerting an impact on the pathological development of IBD. Treatments based on the gut microbiota for IBD are gradually becoming a research hotspot. Finally, we discuss the potential of current therapeutic approaches, including antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, in modulating the gut microbiota, affecting ferroptosis, and improving IBD symptoms. With a deeper understanding of the interaction mechanisms between the gut microbiota and ferroptosis, it is expected that more precise and effective treatment strategies for IBD will be developed in the future.
Collapse
Affiliation(s)
- Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Penghui Lu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruhan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dican Yang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qiong Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Guoshan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
11
|
Lv J, Quan H, Lv J, Sui Y, Yu P, Guo S, Miao Y, Lv M. Argatroban and Menadione exert protective effects in ultraviolet-irradiated skin inflammation: A transcriptomic analysis based on identification of iron overload related biomarkers. Int Immunopharmacol 2025; 151:114334. [PMID: 40020462 DOI: 10.1016/j.intimp.2025.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
Ultraviolet light (UV) can cause serious damage to human skin. The inflammatory reaction arising from repeated UV exposure leads to severe skin lesions and even promotes photo-carcinogenesis. Iron overload is featured by excessive iron intake and deposition and will promote inflammatory response inside cells. However, the core molecules involved in UV radiation induced iron overload and related anti-inflammatory strategies remain unclear. Signature genes involved in UV-irradiated skin were filtered through integrated datasets from the Gene Expression Omnibus (GEO) database. Subsequently, immune cell infiltration analysis was carried out to examine the relationship between signature gene expression and immune cell abundance. Single cell RNA-seq matrix data implicated in UV-irradiated skin was then applied to assess the expression level of signature genes in different cell clusters and to find out the core cell type and the key signaling pathway involved in UV radiation. Finally, cytological and animal experiments were conducted to investigate the potential of signature genes as therapeutic targets. SAT1 and RBMS1 were screened and validated as signature genes of UV irradiation. Immune cell infiltration analysis demonstrated that SAT1 and RBMS1 expression were associated closely with immune cell abundance, and skin fibroblasts were identified as the central cell type to communicate with other cell clusters in UV-irradiated skin. Disturbance of SAT1 exerted observably more suppressive effects on the release of inflammatory cytokines than overexpression of RBMS1. Two small molecule drugs targeting SAT1, namely Argatroban and Menadione, were predicted. Moreover, their therapeutic potentials in the treatment of UV-irradiated skin injury were confirmed experimentally.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Organ Transplantation and Hepatobiliary, The First Hospital of China Medical University, Shenyang, China
| | - Yanan Sui
- Department of ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Panpan Yu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Yuwei Miao
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Sun X, Teng R, Xu N, Sun Y, Zhang E, Chen X, Guo Q, Li S. PFOS exposure impairs porcine oocyte maturation and embryo development via mitochondria-dependent ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126185. [PMID: 40189092 DOI: 10.1016/j.envpol.2025.126185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a widely utilized chemical known for its exceptional environmental stability over extended periods, its significant potential to bioaccumulate in living organisms, and its considerable risks to both health and the environment. Several studies have suggested that PFOS may pose reproductive risks in mammals; however, the exact mechanisms driving these effects are not well understood. In this study, we explored the possible mechanisms by which PFOS toxicity affects the maturation of mammalian oocytes and the embryonic development employing porcine oocytes as a model system. SMART-seq results suggested that PFOS may affect oocyte maturation through mechanisms involving ferroptosis, autophagy, and alterations in membrane structure. Our results suggest that PFOS exposure adversely affects mitochondrial function and structure, thereby influencing peroxisome biogenesis and contributing to oxidative stress. Most importantly, we found that exposure to PFOS significantly elevated Fe2+ levels, an indicator associated with ferroptosis in oocytes. Furthermore, malondialdehyde (MDA) levels in the PFOS group were significantly higher than those in the control group. Additionally, the mRNA expression levels of PCBP1 and PCBP2, which are related to ferroptosis, as well as the expression level of P53, were significantly reduced in the PFOS group. Overall, exposure to PFOS in vitro results in mitochondrial damage in porcine oocytes, which induces lipid peroxidation and subsequently leads to the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Ran Teng
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Ning Xu
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Yutong Sun
- Affiliated Middle School to Jilin University, Changchun, 130000, China
| | - Enbo Zhang
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xingfu Chen
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Suo Li
- Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China.
| |
Collapse
|
13
|
Zhang N, Fan Y, Chen J, Gu J, Yan X. MAPK14 drives Ferroptosis and immune dysfunction in pediatric Sepsis-induced acute lung injury. Cell Immunol 2025; 411-412:104948. [PMID: 40209319 DOI: 10.1016/j.cellimm.2025.104948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
OBJECTIVE Sepsis-induced acute lung injury (ALI) is driven by inflammation, oxidative stress, and immune suppression. MAPK14 (p38α) plays a role in ferroptosis and immune regulation, but its specific function in pediatric sepsis remains unclear. Therefore, our study aimed to explore the role and underlying mechanism of MAPK14 in pediatric sepsis. METHODS Bioinformatics analysis of GSE26440 and FerrDb identified ferroptosis-related genes in pediatric sepsis. STRING database was used to predict the proteins associated with MAPK14. MAPK14 expression in whole blood samples, LPS-treated MLE-12 cells, and a CLP mouse model was detected by qRT-PCR and western blot. Ferroptosis was assessed by measuring MDA, GSH, and Fe2+ levels, while ROS accumulation was analyzed using DCFH-DA staining and DHE staining. A cycloheximide (CHX) assay was performed to assess TTP53 protein stability. MPO immunohistochemistry and PD-L1 immunofluorescence assessed neutrophil infiltration, and flow cytometry evaluated neutrophil apoptosis. RESULTS Bioinformatics analysis of GSE26440 and FerrDb identified MAPK14 as a ferroptosis-related gene in pediatric sepsis. MAPK14 expression was upregulated in sepsis patient samples, LPS-treated MLE-12 cells and CLP mouse lung tissues. Overexpression of MAPK14 led to increased MDA and Fe2+ levels, reduced GSH, and elevated ROS fluorescence intensity, confirming its role in promoting ferroptosis. Mechanistically, MAPK14 upregulated TTP53, which in turn suppressed SLC7A11 and GPX4, further driving ferroptosis. MAPK14 overexpression stabilized TTP53 and enhanced its activity. Additionally, MAPK14 enhanced MPO and PD-L1 expression to promote neutrophil infiltration and immune suppression. Additionally, MAPK14 overexpression inhibited neutrophil apoptosis, promoted neutrophil infiltration and enhanced immune suppression. CONCLUSION MAPK14 drives ferroptosis via the TTP53/SLC7A11/GPX4 pathway and exacerbates immune suppression by promoting neutrophil infiltration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Surgery Intensive Care Unit (SICU), Children's Hospital of Soochow University, Suzhou, Jiangsu 215008, China
| | - Yuanyuan Fan
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Juan Chen
- Nanjing Kangze Medical Testing Co., Ltd., Nanjing, Jiangsu 211100, China
| | - Juan Gu
- Department of Emergency, Yinchuan Maternal and Child Health Hospital, Yinchuan, Ningxia 750000, China
| | - Xiangming Yan
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215008, China.
| |
Collapse
|
14
|
Dai Q, Wei J, Li Z, Li T, Fang Y, Li X, Shen B, Xie Q, Wang M, Wu W. Mifepristone achieves tumor suppression and ferroptosis through PR/p53/HO1/GPX4 axis in meningioma cells. J Neurooncol 2025; 172:377-386. [PMID: 39751705 DOI: 10.1007/s11060-024-04918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE This study explores the effects of mifepristone on the proliferation, motility, and invasion of malignant and benign meningioma cells, aiming to identify mifepristone-sensitive types and investigate the underlying molecular mechanisms. METHODS IOMM-Lee and HBL-52 meningioma cells were treated with 0, vehicle control (VC), 5, 10, 20, 40, and 80 μM of mifepristone for 12, 24, 48, 72, and 96 h. Proliferation was assessed via CCK8 assay, while motility and invasion were measured using wound scratch and transwell assays. RNA sequencing and RT-PCR were used to analyze gene expression changes. RESULTS Mifepristone inhibited proliferation, motility, and invasion in both IOMM-Lee and HBL-52 cells in a dose- and time-dependent manner. RNA sequencing showed up-regulated genes significantly enriched in the ferroptosis pathway in both cell lines, confirmed by increased p53 and HO1 expression, decreased GPX4 expression, lipid peroxidation, Fe2+ accumulation, and ROS release. Immunofluorescence staining and RT-PCR also revealed a corresponding decrease in mifepristone-related progesterone receptor expression. CONCLUSION Mifepristone induces ferroptosis in meningioma cells via the PR/p53/HO1/GPX4 axis, suggesting its potential as a treatment for ferroptosis-sensitive meningiomas. It also supplies new clues regarding ferroptosis as a treatment entry point for meningiomas.
Collapse
Affiliation(s)
- Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinfei Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziwei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ting Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
15
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Wang L, ChenLiu Z, Wang D, Tang D. Cross-talks of GSH, mitochondria, RNA m6A modification, NRF2, and p53 between ferroptosis and cuproptosis in HCC: A review. Int J Biol Macromol 2025; 302:140523. [PMID: 39894098 DOI: 10.1016/j.ijbiomac.2025.140523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high morbidity and mortality, as well as poor prognosis. Therefore, it is imperative to explore alternative therapeutic targets for HCC treatment. Ferroptosis and cuproptosis have recently been identified as metal-dependent cell death mechanisms that play significant roles in HCC treatment. This study identified potential cross-talk between ferroptosis and cuproptosis, including the common hub glutathione, common site of occurrence, mitochondria, shared epigenetic modification mode, RNA N6 methyladenosine modification, mutual inhibitor, nuclear factor erythroid 2-related factor 2, and dual regulator, p53. These findings provide a theoretical foundation for the joint induction of HCC cell death and effective inhibition of HCC progression. However, some immune cells are susceptible to ferroptosis or cuproptosis, which may impair or enhance anti-cancer immune function. We propose strategies to target specific targets molecules such as tripartite motif containing 25, ferroptosis suppressor protein 1, and peroxisome proliferator-activated receptor gamma or exploit the unique acidic environment surrounding cancer cells to precisely induce ferroptosis in cancer cells. This approach aims to advance the development of precision medicine for HCC treatment.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, The Yangzhou Clinical Medical College of Xuzhou Medical University, The Yangzhou School of Clinical Medicine of Dalian Medical University, The Yangzhou School of Clinical Medicine of Nanjing Medical University, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou 225000, China.
| |
Collapse
|
17
|
Yuan F, Han S, Li Y, Li S, Li D, Tian Q, Feng R, Shao Y, Liang X, Wang J, Lei H, Li X, Duan Y. miR-214-3p attenuates ferroptosis-induced cellular damage in a mouse model of diabetic retinopathy through the p53/SLC7A11/GPX4 axis. Exp Eye Res 2025; 253:110299. [PMID: 39978746 DOI: 10.1016/j.exer.2025.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Ferroptosis has been implicated in the development of diabetic retinopathy (DR). This study aimed to identify novel ferroptosis-related regulators involved in the pathophysiology of DR using an in vivo streptozotocin (STZ)-induced diabetic model in C57BL/6J mice and cultured primary human retinal vascular endothelial cells (HRECs). Transmission electron microscopy revealed mitochondrial morphological changes consistent with ferroptosis in vascular endothelial cells from STZ-treated mice. Western blot analysis showed increased levels of ferroptosis markers (4-HNE, p53, phosphorylated p53) along with decreased levels of glutathione (GSH), SLC7A11, and GPX4 in diabetic mice. In vitro experiments demonstrated that ferroptosis inhibitors, including pifithrin-α (a p53 inhibitor) and ferrostatin-1 (Fer-1), mitigated cellular damage and Fe2+ accumulation in high-glucose-treated HRECs. These inhibitors also improved mitochondrial membrane potential and restored GSH levels. Bioinformatics analysis and dual-luciferase assays identified a p53 binding site within the miR-214-3p sequence. Overexpression of miR-214-3p in high-glucose-treated HRECs resulted in downregulation of p53 and upregulation of SLC7A11 and GPX4, thereby alleviating ferroptosis-induced injury. This study demonstrates that ferroptosis contributes to retinal damage at tissue, cellular, and molecular levels in DR. Specifically, p53, regulated by miR-214-3p, promotes ferroptosis through the SLC7A11/GPX4 pathway under high-glucose conditions. These findings suggest that the miR-214-3p/p53/SLC7A11/GPX4 axis could serve as a potential therapeutic target for managing ferroptosis and retinal damage in diabetic retinopathy.
Collapse
Affiliation(s)
- Fang Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Songyu Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yahong Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dian Li
- Washington University in St. Louis, MO, USA
| | - Qingjun Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ronghua Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xing Liang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingbo Wang
- Shanxi Eye Hospital Affiliated with Shanxi Medical University, Taiyuan, 030072, China
| | - Hetian Lei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Yajian Duan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Chadha S. A transcriptomic analysis of the interplay of ferroptosis and immune filtration in endometriosis and identification of novel therapeutic targets. Comput Biol Chem 2025; 115:108343. [PMID: 39798208 DOI: 10.1016/j.compbiolchem.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Endometriosis is an inflammatory disease, involving immune cell infiltration and production of inflammatory mediators. Ferroptosis has recently been recognized as a mode of controlled cell death and the iron overload and peroxidative environment prevailing in the ectopic endometrium facilitates the occurrence of ferroptosis. In the current investigation, gene expression data was obtained from the dataset GSE7305.The variation in infiltration of immune cells amongst the samples with endometriosis and normal tissue was analysed using the CIBERSORTx tool which revealed higher infiltration of T cells gamma delta, macrophages M2, B cells naïve, T cells CD4 memory resting cells, plasma cells, T cells CD8 and mast cells activated in the tissue samples with endometriosis. An overlap of the differentially expressed genes (DEGs) and ferroptosis related genes revealed 32 ferroptosis related DEGs (FR-DEGs). GO and KEGG pathway analysis showed the FR-DEGs to be enriched in ferroptosis. The PPI network of the FR-DEGs was constructed and TP53, HMOX1, CAV1, CDKN1A, CD44, EPAS1, SLC2A1, MAP3K5, GCLC and FANCD2 were identified as the hub genes. Pearson correlation revealed significant correlation between the hub genes and infiltrating immune cells in endometriosis, thereby suggesting existence of a regulatory crosstalk between immune responses and ferroptosis in endometriosis. Hub gene- miRNA network analysis revealed that 7 of the 10 hub genes were targets of 3 miRNAs -hsa-miR-20a-5p, hsa-miR-16-5p and hsa-miR-17-5p, thereby providing further insight into the regulatory mechanisms underlying disease progression. Predictive analysis and cross validation studies revealed TP53 and CDKN1A as common targets of hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-20a-5p, thereby revealing their regulatory roles in ferroptosis and immune modulatory pathways relevant to endometriosis. The present study indicates an important role of both immune dysregulation and ferroptosis in the pathogenesis of endometriosis and identifies ferroptosis related hub genes and their miRNA regulators as favourable novel targets for further studies and therapeutic interventions.
Collapse
Affiliation(s)
- Sonia Chadha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
19
|
Xia X, Kong C, Zhao X, Zhao K, Shi N, Jiang J, Li P. The complexities of cell death mechanisms: a new perspective in systemic sclerosis therapy. Apoptosis 2025; 30:636-651. [PMID: 39924583 DOI: 10.1007/s10495-025-02082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Systemic sclerosis, also termed scleroderma, is a severe and debilitating autoimmune disease characterized by fibrosis, an aberrant immune response, and vascular dysfunction. Cell death is essential to the body's continued normal development as it removes old or damaged cells. This process is governed by several mechanisms, including programmed cell death through apoptosis, necrosis, and pyroptosis, as well as metabolic processes, such as ferroptosis and cuproptosis. This review describes the signaling pathways associated with each form of cell death, examining the linkages between these pathways, and discussing how the dysregulation of cell death processes is involved in the development of autoimmune disorders such as systemic sclerosis. Existing and promising therapeutic strategies aimed at restoring the balance of cell death in systemic sclerosis and other autoimmune disorders are also emphasized.
Collapse
Affiliation(s)
- Xue Xia
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xiaoming Zhao
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| |
Collapse
|
20
|
Ojo OA, Grant S, Nwafor-Ezeh PI, Maduakolam-Aniobi TC, Akinborode TI, Ezenabor EH, Ojo AB. Ferroptosis as the new approach to cancer therapy. Cancer Treat Res Commun 2025; 43:100913. [PMID: 40187205 DOI: 10.1016/j.ctarc.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Cancer is characterized by unregulated cell proliferation, evasion of apoptosis, and a propensity for metastasis, making it a leading cause of morbidity and mortality globally. Major challenges in cancer treatment include drug resistance and tumor heterogeneity, which hinder the clinical efficacy of existing therapies. To enhance treatment outcomes, it is essential to integrate emerging biological insights and technological advancements with conventional therapeutic strategies. Recent research has identified various forms of cell death, which can be classified as either regulated or unregulated. Regulated cell death involves specific biochemical and signaling pathways, while unregulated cell death occurs passively and uncontrollably. Apoptosis, the most extensively studied form of regulated cell death, is primarily mediated by the activation of caspase proteases. Nevertheless, the resistance of many tumors to apoptotic pathways has shifted focus towards non-apoptotic forms of cell death, such as ferroptosis. Ferroptosis is an iron-dependent form of regulated necrosis characterized by extensive membrane damage resulting from lipid peroxidation. Numerous preclinical studies have demonstrated that inducing ferroptosis can significantly reduce tumor growth across a variety of cancer types. For instance, in a study involving breast cancer models, the use of ferroptosis inducers such as erastin and RSL3 led to a marked decrease in tumor volume and weight. This review aims to explore the potential of ferroptosis as a novel therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria; Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Susan Grant
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Pearl Ifunanya Nwafor-Ezeh
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Emmanuel Henry Ezenabor
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
21
|
Jin M, Liu H, Zheng Z, Fang S, Xi Y, Liu K. CHI3L1 mediates radiation resistance in colorectal cancer by inhibiting ferroptosis via the p53/SLC7A11 pathway. J Transl Med 2025; 23:357. [PMID: 40119400 PMCID: PMC11929242 DOI: 10.1186/s12967-025-06378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Radiotherapy is a key treatment for colorectal cancer (CRC), particularly rectal cancer; however, many patients are resistant to radiation. While it has been shown that CHI3L1 is associated with CRC progression, its specific function and regulatory mechanisms in radiation resistance remain unclear. METHODS The levels of CHI3L1 in CRC and normal tissue samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. To assess the effects of CHI3L1 on CRC cell proliferative, migratory, and invasive capacities, Cell Counting Kit-8 (CCK-8) and Transwell assays were performed. Radiation resistance in CRC cells with varying CHI3L1 expression levels was evaluated through colony formation assay. Western blot and immunofluorescence analyses were conducted to explore the correlation between CHI3L1 and p53 expression levels. Ferroptosis was assessed by determining reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) concentrations in cells with different CHI3L1 expression levels, and a xenograft mouse model was used to identify the molecular mechanisms of ferroptosis in vivo. RESULTS Significant CHI3L1 upregulated was observed in CRC tissues and was associated with promotion of malignant cell behaviors. The number of colonies in CHI3L1-overexpressing groups was significantly greater than that in the control groups following radiation, indicating increased radiation resistance in the former group. Furthermore, CHI3L1 overexpression was associated with p53 downregulation and elevated p53 ubiquitination. Notably, CHI3L1 inhibited the ferroptosis of CRC cells by suppressing p53 expression through the p53/SLC7A11 signaling pathway. CONCLUSIONS CHI3L1 overexpression promotes the proliferation, migration, invasion, and radiation resistance of CRC cells. Elevated CHI3L1 expression is associated with increased p53 ubiquitination and SLC7A11 upregulation. CHI3L1 promotes radiation resistance by suppressing ferroptosis in CRC cells through the p53/SLC7A11 axis.
Collapse
Affiliation(s)
- Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hui Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
22
|
Jiao R, Long H. Ferroptosis: A New Challenge and Target in Oral Diseases. Oral Dis 2025. [PMID: 40096652 DOI: 10.1111/odi.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE Ferroptosis, an iron-dependent intracellular programmed cell death mechanism discovered in the last decade, has emerged as a novel and intriguing concept in oral diseases, distinct from apoptosis, necrosis, and pyroptosis. This process plays a critical role in the pathophysiology of inflammation, trauma, and tumors, with evidence of its presence in multiple organ systems, including the liver, kidneys, and heart. In recent years, many studies have found that ferroptosis is closely related to oral diseases, and a number of pathogenic pathways and therapeutic strategies have been reported. However, ferroptosis remains an underexplored area in oral diseases, with multiple secrets waiting to be uncovered. METHOD We collected articles related to ferroptosis and oral diseases and analyzed the mechanisms and therapeutic strategies associated with ferroptosis in different oral diseases. RESULTS In this review, we present a comprehensive analysis of ferroptosis and oral diseases, emphasizing its core mechanisms and associated therapeutic approaches. Furthermore, we give an outlook for future explorations of ferroptosis related to oral diseases. CONCLUSION This review provides dental researchers and clinicians with a current state of ferroptosis in oral diseases, thereby inspiring noval investigations and discoveries.
Collapse
Affiliation(s)
- Ruijie Jiao
- West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhou Y, Zhao Z, Jiang C, Nie C, Xiao D, Wu Z, Yu H, Zheng J, Wang X, Jiang X. LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis. Clin Transl Med 2025; 15:e70257. [PMID: 40000422 PMCID: PMC11859122 DOI: 10.1002/ctm2.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM)is a highly aggressive malignancy of the central nervous system characterized by poor survival rates. Ferroptosis, an iron-dependent cell death pathway, is a promising therapeutic target for GBM. However, current treatments targeting cell death pathways have not yielded expected results. Long noncoding RNAs (lncRNAs) have been implicated in tumour proliferation, however, their role in ferroptosis in GBM remains underexplored. This study investigated the interplay between the lncRNA LINC01088 and ferroptosis in GBM to identify novel therapeutic strategies. METHODS We conducted gain- and loss-of-function studies to assess the impact of LINC01088 on GBM tumourigenesis and ferroptosis both in vitro and in vivo. Bioinformatics, dual-luciferase reporter assays, chromatin immunoprecipitation, RNA pulldown, mass spectrometry, RNA immunoprecipitation (RIP), and transcriptome sequencing were utilized to elucidate the mechanisms underlying LINC01088 expression and its downstream effects on ferroptosis. RESULTS The transcription factor specificity protein 1 (SP1) was identified as the promoter of LINC01088 transcription, which facilitated GBM progression. LINC01088 was found to inhibit ferroptosis and promote malignancy. Mechanistically, LINC01088 stabilized HLTF by enhancing its interaction with USP7 and preventing ubiquitin-mediated degradation. The stabilization of HLTF led to the upregulation of SLC7A11, which inhibits ferroptosis in GBM. Rescue experiments confirmed that altering HLTF levels reversed the ferroptotic phenotypes associated with LINC01088 modulation. CONCLUSION This study revealed a novel SP1/LINC01088/HLTF/USP7/SLC7A11 axis that regulates ferroptosis in GBM, highlighting LINC01088 as a potential therapeutic target for ferroptosis-dependent GBM treatment. KEY POINTS LINC01088 is transcriptionally upregulated by SP1. LINC01088 acts as a scaffold platform to bind USP7 and HLTF. USP7, as a deubiquitinating enzyme of HLTF, participates in inhibiting the ubiquitin-proteasome degradation of HLTF. HLTF transcriptionally upregates the expression of downstream SLC7A11, and ferroptosis of GBM cells was inhibited.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Wu
- Department of NeurosurgeryWeifang People's HospitalWeifangShandongChina
| | - Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Wang D, Shen J, Wang Y, Cui H, Li Y, Zhou L, Li G, Wang Q, Feng X, Qin M, Dong B, Yang P, Li Y, Ma X, Ma J. Mechanisms of Ferroptosis in bone disease: A new target for osteoporosis treatment. Cell Signal 2025; 127:111598. [PMID: 39788305 DOI: 10.1016/j.cellsig.2025.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Osteoporosis (OP) is a common disease in the elderly, characterized by decreased bone strength, reduced bone density, and increased fracture risk. There are two clinical types of osteoporosis: primary osteoporosis and secondary osteoporosis. The most common form is postmenopausal osteoporosis, which is caused by decreased estrogen production after menopause. Secondary osteoporosis, on the other hand, occurs when certain medications, diabetes, or nutritional deficiencies lead to a decrease in bone density. Ferroptosis, a new iron-dependent programmed cell death process, is critical in regulating the development of osteoporosis, but the underlying molecular mechanisms are complex. In the pathologic process of osteoporosis, several studies have found that ferroptosis may occur in osteocytes, osteoblasts, and osteoclasts, cell types closely related to bone metabolism. The imbalance of iron homeostasis in osteoblasts and excessive iron accumulation can promote lipid peroxidation through the Fenton reaction, which induces ferroptosis in osteoblasts and affects their role in regulating bone metabolism. Ferroptosis in osteoblasts inhibits bone formation and reduces the amount of new bone production. Osteoclast-associated ferroptosis abnormalities, on the other hand, may alter the homeostasis of bone resorption. In this paper, we start from the molecular mechanism of ferroptosis, and introduce the ways in which ferroptosis affects the physiological and pathological processes of the body. After that, the effects of ferroptosis on osteoblasts and osteoclasts will be discussed separately to elucidate the molecular mechanism between ferroptosis and osteoporosis, which will provide a new breakthrough for the prevention and treatment of osteoporosis and a more effective and better idea for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Dong Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Jiahui Shen
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yanxin Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Liyun Zhou
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotian Feng
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Mengran Qin
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| |
Collapse
|
25
|
Özkan U, Kayıkçıoğlu M, Altay S. Ferroptosis: A novel paradigm in the pathophysiology of MINOCA. Atherosclerosis 2025; 402:119097. [PMID: 39818458 DOI: 10.1016/j.atherosclerosis.2024.119097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Uğur Özkan
- Department of Cardiology, School of Medicine, Trakya University, Turkey.
| | - Meral Kayıkçıoğlu
- Department of Cardiology, School of Medicine, Ege University, Turkey
| | - Servet Altay
- Department of Cardiology, School of Medicine, Trakya University, Turkey
| |
Collapse
|
26
|
Yang T, Zhang S, Nie K, Peng X, Huo J, Fu X, Zhang Y. WWOX-mediated p53/SAT1 and NRF2/FPN1 axis contribute to toosendanin-induced ferroptosis in hepatocellular carcinoma. Biochem Pharmacol 2025; 233:116790. [PMID: 39894307 DOI: 10.1016/j.bcp.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Although ferroptosis as an emerging way exhibits tremendous promising in the therapy of hepatocellular carcinoma (HCC), the novel therapeutic agents targeting ferroptosis are still scarce. In our previous study, we found that the natural products toosendanin (TSN) possessed significant anti-proliferative efficacy by regulating WW domain-containing oxidoreductase (WWOX) in HCC. However, there is very limited understanding about TSN-induced ferroptosis, and the role of WWOX in ferroptosis has not been studied. In present study, we investigated the effect and underlying molecular mechanisms of TSN in WWOX-mediated ferroptosis in HCC. We found that TSN induced ferroptosis in HCC cells and its effect was dependent on WWOX. RNA-seq and RT-qPCR assay identified that TSN significantly increased spermidine/spermine N1-acetyltransferase 1 (SAT1) expression while decreased solute carrier family 40 member 1 (SLC40A1) expression, which play vital roles in ferrous ion transport. Further dual-luciferase reporter assay and Co-IP assay revealed that TSN-induced WWOX activation controlled the transcriptional activity of p53 and NF-E2-related factor 2 (NRF2) by regulating their interaction. Meanwhile, IF assay and WB assay confirmed that TSN increased the nuclear distribution of p-WWOX and p-p53 dimers, but impeded the nuclear translocation of NRF2 by inducing its ubiquitination degradation, ultimately regulating the transcription of their downstream target genes. In addition, the results from cell viability assay and the tumor xenograft model verified that co-treatment of TSN, ML385 (NRF2 inhibitor), and MIRA-1 (p53 activator) could effectively inhibit HCC cells growth in the presence of Fer-1 (ferroptosis inhibitor) in vitro and in vivo. Overall, our study contributes to the necessary understanding of the molecular mechanisms of WWOX-mediated ferroptosis regulation, and identifies TSN as a potential therapeutic agent targeting ferroptosis for HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Suyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Kun Nie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China
| | - Yanmin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China.
| |
Collapse
|
27
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
28
|
Bu X, Wang L. Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). Int J Mol Med 2025; 55:39. [PMID: 39749705 PMCID: PMC11722052 DOI: 10.3892/ijmm.2024.5480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025] Open
Abstract
Iron metabolism plays a crucial role in the tumor microenvironment, influencing various aspects of cancer cell biology and tumor progression. This review discusses the regulatory mechanisms of iron metabolism within the tumor microenvironment and highlights how tumor cells and associated stromal cells manage iron uptake, accumulation and regulation. The sources of iron within tumors and the biological importance of ferroptosis in cancer were explored, focusing on its mechanisms, biological effects and, in particular, its tumor‑suppressive properties. Furthermore, the protective strategies employed by cancer cells to evade ferroptosis were examined. This review also delves into the intricate relationship between iron metabolism and immune modulation within the tumor microenvironment, detailing the impact on tumor‑associated immune cells and immune evasion. The interplay between ferroptosis and immunotherapy is discussed and potential strategies to enhance cancer immunotherapy by modulating iron metabolism are presented. Finally, the current ferroptosis‑based cancer therapeutic approaches were summarized and future directions for therapies that target iron metabolism were proposed.
Collapse
Affiliation(s)
- Xiaorui Bu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
29
|
Zhang Q, Zhang Y, Guo S, Wang H. Emerging insights into the role of microRNAs regulation of ferroptosis in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167642. [PMID: 39734007 DOI: 10.1016/j.bbadis.2024.167642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major type of liver cancer and an important cause of cancer death. It has been reported that the hepatocyte death plays an important role in HCC. Ferroptosis is an iron-dependent programmed cell death characterized by the accumulation of free iron and lipid peroxidation. A series of studies have shown that ferroptosis contributes to the occurrence and development of HCC. MicroRNAs (miRNAs) are non-coding RNAs with a length of approximately 222 nt. In recent years, miRNAs have been shown to participate in regulating ferroptosis to play a vital role in HCC, but the related mechanisms are not fully understood. This review summarized the current understanding of ferroptosis, as well as the biogenesis and function of miRNAs, and focused on the role of miRNAs regulation of ferroptosis in HCC, with the hope of providing new targets and ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingdan Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
30
|
Wu P, Zhao L, Du Y, Lu J, He Y, Shu Q, Peng H, Wang X. Melatonin protects retinal pigment epithelium cells against ferroptosis in AMD via the PI3K/AKT/MDM2/P53 pathway. Front Pharmacol 2025; 16:1543575. [PMID: 40083383 PMCID: PMC11903707 DOI: 10.3389/fphar.2025.1543575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Oxidative stress-prompted degeneration of the retinal pigment epithelium (RPE) notably contributes to the onset of age-related macular degeneration (AMD). However, the pathways leading to RPE deterioration and possible preventative strategies are not yet completely comprehended. Methods Ferroptosis was assayed through the evaluation of lipid peroxidation (C11-BODIPY and MDA), reactive oxygen species (ROS), transmission electron microscopy (TEM), iron content measurement, q-PCR, western blotting, and immunofluorescence. To assess the structure and retinal function of RPE in mice, ERG (electroretinography), OCT (optical coherence tomography), and H&E (hematoxylin and eosin) staining were employed. Network pharmacology methods were utilized to elucidate the potential mechanisms underlying melatonin's protective effects against ferroptosis in RPE cells in AMD. Genetic engineering techniques were applied to investigate the regulatory relationships among phosphatidylinositol 3-kinase (PI3K), protein kinase-B (AKT), murine double minute-2 (MDM2), protein 53 (P53), and solute carrier family 7 member 11 (SLC7A11). In vitro knockdown experiments of MDM2 were conducted to explore its regulatory role in ferroptosis within RPE cells. Results Aβ1-40 can trigger ferroptosis in RPE cells. Melatonin can inhibit the oxidative stress and ferroptosis induced by Aβ1-40 in RPE cells. Melatonin exhibits a protective effect on Aβ1-40-induced AMD, significantly improving the structure of the mouse retina and RPE layer, and facilitating the restoration of visual function. Network pharmacology methods revealed that the potential targets of melatonin in AMD are closely related to ferroptosis, and indicated that the predominant pathways are significantly associated with the PI3K/AKT/MDM2/P53 signaling pathway. Knocking down the specific expression of MDM2 can significantly weaken the inhibitory effect of melatonin on oxidative stress and ferroptosis. Discussion Melatonin can suppress cell death by ferroptosis in RPE via the PI3K/AKT/MDM2/P53 pathway, thereby preventing and decelerating the progression of AMD.
Collapse
Affiliation(s)
- Ping Wu
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing, China
| | - Long Zhao
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Du
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lu
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxia He
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinxin Shu
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Peng
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Wang
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Chen H, Shan J, Qi W, Chen L, Zeng X. p53-dependent chromatin relaxation is required for DNA double-strand break repair. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40007254 DOI: 10.3724/abbs.2025008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The tumor suppressor p53, an indispensable nuclear transcription factor, plays a central role in orchestrating cellular responses when DNA damage occurs. In this study, we demonstrate that in the initial phases of DNA double-strand break (DSB) repair, p53 is rapidly recruited to sites of damage and the surrounding chromatin, where it enhances DSB repair efficiency. This enhancement occurs through the modulation of chromatin dynamics and the promotion of a more relaxed chromatin configuration, a process influenced by p53 in response to DSB-inducing factors such as etoposide, ultraviolet radiation, and nucleases. These results underscore the pivotal function of p53 as a rapid responder to DSBs, delineating a significant departure from its traditionally recognized role as a downstream transcriptional regulator in DNA damage repair processes. This study emphasizes that the direct engagement of p53 in DNA repair through chromatin structure regulation extends beyond its established involvement in UV irradiation-induced nucleotide excision repair (NER), demonstrating analogous mechanistic attributes in the context of DSB repair. This newly illuminated perspective enhances our understanding of the multifaceted roles of p53 in genome stability and integrity.
Collapse
Affiliation(s)
- Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Shan
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Wenjing Qi
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Department of Bioscience, Changchun Normal University, Changchun 130032, China
| | - Lili Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
32
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Li Z, Chen X, Xiang W, Tang T, Gan L. m6A Demethylase FTO-Mediated Upregulation of BAP1 Induces Neuronal Ferroptosis via the p53/SLC7A11 Axis in the MPP +/MPTP-Induced Parkinson's Disease Model. ACS Chem Neurosci 2025; 16:405-416. [PMID: 39846440 DOI: 10.1021/acschemneuro.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the involvement of ferroptosis in its pathological mechanism. In this study, the effects and mechanism of BRCA1-associated protein 1 (BAP1) on neuronal ferroptosis in PD were evaluated. Methods: A PD mouse model was constructed by injecting mice with MPTP. Nissl staining, immunohistochemistry, immunofluorescence, and Prussian blue staining evaluated histopathology and iron distribution. The PD cell model was constructed by subjecting SK-N-SH cells to MPP+. The m6A level of BAP1 was assessed by MeRIP. mRNA levels of BAP1, FTO, IGF2BP1, METTL3, YTHDF2, and SLC7A11 were evaluated utilizing RT-qPCR. Protein levels of BAP1, FTO, IGF2BP1, METTL3, YTHDF2, SLC7A11, and p53 were measured by Western blot. Cell viability was assessed using CCK-8 assay, and TUNEL was used for assessing apoptosis. The levels of MDA, GSH, SOD, and Fe2+ were also measured. The interactions among molecules were verified using RIP assay, dual luciferase reporter assay, and ChIP assay. Results: SK-N-SH cells treated with MPP+ showed a decrease in overall m6A levels of BAP1. FTO facilitated m6A demethylation of BAP1, leading to an increased level of expression of BAP1. m6A-binding protein, YTHDF2 recognized and decayed methylated mRNA of BAP1, leading to the reduced BAP1 stability. The FTO/BAP1 axis promoted MPP+-induced ferroptosis by suppressing SLC7A11. BAP1, in collaboration with p53, reduced the level of expression of SLC7A11. Knocking down BAP1 mitigated ferroptosis in an MPTP mouse model. Conclusion: m6A-mediated modification of BAP1 regulates neuronal ferroptosis by cooperating with p53 to decrease the level of SLC7A11. Thus, BAP1 may be a potential therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Xin Chen
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Wenwen Xiang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ting Tang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Li Gan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
34
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Esmaeili A, Awasthi P, Tabaee S. Beyond immortality: Epstein-Barr virus and the intricate dance of programmed cell death in cancer development. Cancer Treat Res Commun 2025; 43:100880. [PMID: 39923321 DOI: 10.1016/j.ctarc.2025.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
This comprehensive review delves into the intricate role of programmed cell death in Epstein-Barr virus (EBV)-associated malignancies, focusing on the sophisticated interplay between viral mechanisms and the host's immune response. The central objective is to unravel how EBV exerts control over cell death pathways such as apoptosis, ferroptosis, and autophagy, thereby fostering its persistence and oncogenic potential. By dissecting these mechanisms, the review seeks to identify therapeutic strategies that could disrupt EBV's manipulation of these pathways, enhancing immune recognition and opening new avenues for targeted treatment. A deeper understanding of the molecular underpinnings of EBV's influence on cell death not only enriches the field of viral oncology but also pinpoints targets for drug development. Furthermore, the insights gleaned from this review could catalyze the design of vaccines aimed at preventing EBV infection or curtailing its oncogenic impact. Innovatively, the review synthesizes recent discoveries on the multifaceted roles of non-coding RNAs and cellular signaling pathways in modulating cell death within the context of EBV infection. By consolidating current knowledge and identifying areas where understanding is lacking, it lays the groundwork for future research that could lead to significant advancements in vaccine development and therapeutic interventions for EBV-related cancers. This review underscores the critical necessity for ongoing investigation into the complex interplay between EBV and host cell death mechanisms, with the ultimate goal of enhancing patient outcomes in EBV-associated diseases.
Collapse
Affiliation(s)
- Arezoo Esmaeili
- Department of biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Samira Tabaee
- Department of immunology, school of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Zhu Z, Huang Z, Zhang C, Xu B, Chen H, Pei S, Zhang B, Jie L, Shi X, Liu Y, Li Y, Shen X. Gallic acid protects intervertebral disc cells from ferroptosis and alleviates intervertebral disc degeneration by regulating key factors of oxidative stress. Front Pharmacol 2025; 16:1501725. [PMID: 39963245 PMCID: PMC11830718 DOI: 10.3389/fphar.2025.1501725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic degenerative disease and one of the main causes of low back pain (LBP). Currently, there is no effective treatment. Ferroptosis is a cell-regulated process that depends on iron deposition and lipid peroxidation. Inhibiting ferroptosis in nucleus pulposus cells is considered a potential strategy for the treatment of IDD. Gallic acid (GA) is naturally present in a variety of plants and has anti-inflammatory, antioxidant and analgesic effects. It has been shown to alleviate ferroptosis. However, the role of GA in IDD ferroptosis remains unclear. Methods This study explored the pathological mechanism of GA in IDD in relation to ferroptosis: (1) to identify ferroptosis-related targets for GA treatment of IDD using network pharmacology and molecular docking technology, (2) to evaluate the therapeutic effect of GA in an IDD rat model and changes in ferroptosis-related targets, (3) to investigate the changes of oxidative stress and lipid peroxidation products in NP cells after GA intervention, and (4) to study the changes of ferroptosis-related proteins and iron ions in cells and mitochondria after GA intervention. Results Experimental results confirmed that GA can treat IDD by reducing the degradation of extracellular matrix (ECM) and pathological changes in IDD. GA can also mitigate ferroptosis by reducing oxidative stress and lipid peroxidation in rat nucleus pulposus (NP) cells. Conclusion The alleviation of disc degeneration ferroptosis by GA may be closely associated with the key ferroptosis proteins P53 and NRF2.
Collapse
Affiliation(s)
- Zaishi Zhu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Zeling Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Chaofeng Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Bo Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Hua Chen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Shuai Pei
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Baofei Zhang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Lishi Jie
- Jiangsu Province Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Shi
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yujiang Liu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yuwei Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| | - Xiaofeng Shen
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Orthopaedic Traumatology Institute, Suzhou Academy of Wumen Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
37
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF, Pourbadie HG. Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets. Neuropharmacology 2025; 263:110210. [PMID: 39521042 DOI: 10.1016/j.neuropharm.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, share key characteristics, notably cognitive impairment and significant cell death in specific brain regions. Cognition, a complex mental process allowing individuals to perceive time and place, is disrupted in these conditions. This consistent disruption suggests the possibility of a shared underlying mechanism across all neurodegenerative diseases. One potential common factor is the activation of pathways leading to cell death. Despite significant progress in understanding cell death pathways, no definitive treatments have emerged. This has shifted focus towards less-explored mechanisms like ferroptosis, which holds potential due to its involvement in oxidative stress and iron metabolism. Unlike apoptosis or necrosis, ferroptosis offers a novel therapeutic avenue due to its distinct biochemical and genetic underpinnings, making it a promising target in neurodegenerative disease treatment. Ferroptosis is distinguished from other cellular death mechanisms, by distinctive characteristics such as an imbalance of iron hemostasis, peroxidation of lipids in the plasma membrane, and dysregulated glutathione metabolism. In this review, we discuss the potential role of ferroptosis in cognitive impairment. We then summarize the evidence linking ferroptosis biomarkers to cognitive impairment brought on by neurodegeneration while highlighting recent advancements in our understanding of the molecular and genetic mechanisms behind the condition. Finally, we discuss the prospective therapeutic implications of targeting ferroptosis for the treatment of cognitive abnormalities associated with neurodegeneration, including natural and synthetic substances that suppress ferroptosis via a variety of mechanisms. Promising therapeutic candidates, including antioxidants and iron chelators, are being explored to inhibit ferroptosis and mitigate cognitive decline.
Collapse
Affiliation(s)
- Soudabeh Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Torabi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Hamid Gholami Pourbadie
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
38
|
Huang F, Ling H, Wang J. Silencing of APEX1 triggers ferroptosis in clear cell renal cell carcinoma via APP-mediated activation of p53/xCT signaling. Exp Cell Res 2025; 445:114409. [PMID: 39778701 DOI: 10.1016/j.yexcr.2025.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in regulating the proliferation, invasion, migration, and other malignant progression of various cancer cells. However, its mechanism in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS UALCAN database was performed to predict APEX1 expression in ccRCC. CCK-8, colony formation, EdU, wound healing, transwell, and flow cytometry assays were used to assess cell proliferation, migration, invasion, and cell cycle. Expressions of cell cycle proteins and ferroptosis biomarkers were detected by Western blot. The levels of Fe2+, ROS, MDA, SOD, and GSH in cells were detected by assay kits. Fluorescent probe was used to monitor the intracellular lipid peroxidation level. The binding of APEX1 and amyloid precursor protein (APP) was validated by Co-IP. The expressions of p53/xCT pathway proteins were examined by Western blot. RESULTS The results showed that APEX1 was highly expressed in ccRCC tissues and positively correlated with poor prognosis. Silencing of APEX1 inhibited the proliferation, invasion, and migration of Caki-1 cells and induced cell cycle arrest. This silencing also led to increased levels of intracellular Fe2+, lipid peroxidation, and ROS, thereby inducing cell ferroptosis. APEX1 could bind to APP, and their expressions were negatively correlated. Silencing of APP reversed the inhibition effects of APEX1 silencing on proliferation, invasion, migration, and cell cycle in Caki-1 cells. Moreover, silencing of APEX1 up-regulated the p53/xCT signaling by binding to APP, thereby promoting ferroptosis. CONCLUSION In summary, silencing of APEX1 promotes ferroptosis and inhibits the malignant progression of ccRCC, potentially through APP-mediated activation of p53/AKT signaling, providing a novel therapeutic strategy for ccRCC treatment.
Collapse
Affiliation(s)
- Fang Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China; Baise Key Laboratory of Molecular Pathology in Tumors, China
| | - Hairui Ling
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China; Baise Key Laboratory of Molecular Pathology in Tumors, China
| | - Jie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China
| |
Collapse
|
39
|
Wang Y, Bian Z. Development of a ferroptosis-related gene prognostic model and molecular subgroups characterization in sepsis. Mol Immunol 2025; 178:1-11. [PMID: 39764891 DOI: 10.1016/j.molimm.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 02/12/2025]
Abstract
Sepsis, a common and life-threatening condition often leading to multiple organ dysfunction, currently lacks a prognostic model based on ferroptosis-related genes (FRGs) for predicting clinical outcomes. In this study, we utilized the FerrDb database and GSE65682 dataset to evaluate the prognostic significance of FRGs in sepsis. Differential expression analysis identified 27 DE-FRGs, and Consensus clustering revealed three distinct FRG molecular subtypes in sepsis with notable differences in immune infiltration landscapes. Univariate and multivariate Cox regression, along with LASSO analysis, were employed to construct an FRG-based prognostic model, which indicated significantly better clinical outcomes for the low FRG score subgroup compared to the high FRG score subgroup. Validation through nomogram prediction models and independent prognostic analysis confirmed the accuracy of FRGs in assessing sepsis prognosis. Single-cell sequencing further demonstrated the distribution of the FRG prognostic signature across cellular subpopulations in sepsis samples. Functional experiments, including siRNA transfection, malondialdehyde (MDA) assays, Western blot, and reactive oxygen species (ROS) assays, revealed that TFRC plays a critical role in sepsis by inhibiting ferroptosis. These findings suggest that the FRG prognostic scoring model is a reliable predictor of sepsis prognosis, with TFRC identified as a key regulatory factor inhibiting ferroptosis in sepsis.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhongzheng Bian
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
40
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
41
|
Lai L, Tan M, Hu M, Yue X, Tao L, Zhai Y, Li Y. Important molecular mechanisms in ferroptosis. Mol Cell Biochem 2025; 480:639-658. [PMID: 38668809 DOI: 10.1007/s11010-024-05009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/07/2024] [Indexed: 02/19/2025]
Abstract
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.
Collapse
Affiliation(s)
- Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Menglei Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Lulu Tao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yanru Zhai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
42
|
Liu X, Shi X, Zhao H, Wang C. Exploring the molecular mechanisms of comorbidity of myocardial infarction and anxiety disorders by combining multiple data sets with in vivo experimental validation. Int Immunopharmacol 2025; 146:113852. [PMID: 39733641 DOI: 10.1016/j.intimp.2024.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The incidence of comorbidity between myocardial infarction (MI) and anxiety disorders is increasing. However, the biological association between them has not been fully understood. OBJECTIVE This study aims to investigate the molecular mechanisms of comorbidity between MI and anxiety disorders and to predict their key genes and potential therapeutic drugs. METHODS We searched Gene Expression Omnibus databases and performed differential analyses using the limma package to identify the functional enrichment of differential genes. Next, we constructed regulatory networks to investigate the relationship between hub genes and autophagy, ferroptosis, and immunity. Furthermore, we predicted transcription factors by R package, constructed a miRNA network, performed the single-cell analysis of key gene expression, and predicted drug targeting of differential genes using the Connectivity Map database. RESULTS The datasets for MI and anxiety disorders were analyzed for up and down-regulated differential genes, resulting in 35 intersecting differential genes. The top 10 feature genes from each dataset were intersected using Random Forest, resulting in the identification of three intersecting genes: STK17B, AKIRIN2, and WDR77. Validation of the above key genes was carried out by in vitro experiments. We examined the gene expression of STK17B, WDR77 and AKIRIN2 in the hippocampus and myocardial infarction border zone respectively by qPCR and WB, and the results confirmed that the above are the key genes for myocardial infarction and anxiety. There is a significant correlation between the comorbidity mechanism of myocardial infarction and anxiety disorders with ferroptosis and immunity. The construction of the miRNA network revealed that miR-205 and let-7 had higher average connectivity among the three hub genes. The single-cell analysis revealed significant expression of key genes in Endothelial cells, Cardiomyocytes, Macrophages, and Fibroblasts datasets. Cd274 showed a higher correlation with key genes in myocardial infarction and anxiety disorders. CONCLUSION Validation by multiple datasets and in vitro experiments showed that STK17B, AKIRIN2, and WDR77 are the key genes in the comorbidity of myocardial infarction and anxiety disorders, and ferroptosis and immunity are the key links in the comorbidity mechanism of myocardial infarction and anxiety disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaojun Shi
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
43
|
Tian W, Su X, Hu C, Chen D, Li P. Ferroptosis in thyroid cancer: mechanisms, current status, and treatment. Front Oncol 2025; 15:1495617. [PMID: 39917169 PMCID: PMC11798778 DOI: 10.3389/fonc.2025.1495617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Thyroid cancer (TC) represents the most prevalent malignancy within the endocrine system. In recent years, there has been a marked global increase in the incidence of thyroid cancer, garnering substantial scientific interest. Comprehensive investigations into the pathogenesis of TC have identified a significant association with ferroptosis, a newly characterized form of cell death mediated by iron ions. Distinct from apoptosis, necrosis, and autophagy, ferroptosis is characterized by the accumulation of lipid peroxides and reactive oxygen species, culminating in cellular damage and death.Recent research has elucidated a connection between ferroptosis and the initiation, progression, and treatment of thyroid cancer. These findings underscore the significance of ferroptosis in thyroid cancer and offer valuable insights into the development of novel therapeutic strategies and precise predictive markers. The unique mechanisms of ferroptosis present opportunities for targeting treatment-resistant thyroid cancers. Consequently, the regulation of ferroptosis may emerge as a novel therapeutic target, potentially addressing the limitations of current treatments. Moreover, elucidating the molecular mechanisms underpinning ferroptosis in thyroid cancer may facilitate the identification of novel biomarkers for early detection and prognostication. This review endeavors to synthesize the extant knowledge regarding the role of ferroptosis in thyroid cancer, examine potential therapeutic implications, and propose future research trajectories to enhance the understanding and clinical application of ferroptosis.
Collapse
Affiliation(s)
- Wenzhi Tian
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
- Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Xi Su
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Chenchen Hu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Peng Li
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Kirkwood-Donelson KI, Jarmusch AK, Bortner CD, Merrick BA, Sinha BK. Metabolic consequences of erastin-induced ferroptosis in human ovarian cancer cells: an untargeted metabolomics study. Front Mol Biosci 2025; 11:1520876. [PMID: 39902375 PMCID: PMC11788483 DOI: 10.3389/fmolb.2024.1520876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Ovarian cancer has been difficult to cure due to acquired or intrinsic resistance and therefore, newer or more effective drugs/approaches are needed for a successful treatment in the clinic. Erastin (ER), a ferroptosis inducer, kills tumor cells by generating and accumulating reactive oxygen species (ROS) within the cell, resulting in an iron-dependent oxidative damage-mediated ferroptotic cell death. Methods We have utilized human ovarian cancer cell lines, OVCAR-8 and its adriamycin-selected, multi-drug resistance protein (MDR1)-expressing NCI/ADR-RES, both equally sensitive to ER, to identify metabolic biomarkers of ferroptosis. Results Our studies showed that ER treatment rapidly depleted cellular glutathione and cysteine and enhanced formation of ophthalamate (OPH) in both cells. Opthalalmate has been proposed to be a biomarker of oxidative stress in cells. Our study also found significant decreases in cellular taurine, a natural antioxidant in cells. Additionally, we found that ER treatment decreased cellular levels of NAD+/NADP+, carnitines and glutamine/glutamate in both cells, suggesting significant oxidative stress, decrease in energy production, and cellular and mitochondrial disfunctions, leading to cell death. Conclusion Our studies identified several potential biomarkers of ER-induced ferroptosis including OPH, taurine, NAD+, NADP+ and glutamate in ovarian cancer cells. Identifying specific metabolic biomarkers that are predictive of whether a cancer is susceptible to ferroptosis will help us devise more successful treatment modalities.
Collapse
Affiliation(s)
- Kaylie I. Kirkwood-Donelson
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Alan K. Jarmusch
- Metabolomics Core Facility, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Carl D. Bortner
- Laboratory of Signal Transduction, Research Triangle Park, NC, United States
| | - Bruce Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC, United States
| |
Collapse
|
45
|
Gupta S, Silveira DA, Mombach JCM, Hashimoto RF. DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance. Proteomes 2025; 13:6. [PMID: 39846637 PMCID: PMC11755436 DOI: 10.3390/proteomes13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms. A key target in this process is the cystine/glutamate transporter (xCT), which is essential for redox balance and ferroptosis resistance. Additionally, p53-induced miR-34c-5p suppresses cancer cell proliferation and drug resistance by modulating Myc, an oncogene further influenced by non-coding RNAs like circular RNA NOTCH1 (CricNOTCH1) and long non-coding RNA MALAT1. However, the exact role of these molecules in ferroptosis remains unclear. To address this, we introduce the first dynamic Boolean model that delineates the influence of these ncRNAs and p53 on ferroptosis, apoptosis, and senescence within the DDR context. Validated through gain- and loss-of-function perturbations, our model closely aligns with experimental observations in cancers such as oral squamous cell carcinoma, nasopharyngeal carcinoma, and osteosarcoma. The model identifies crucial positive feedback loops (CricNOTCH1/miR-34c/Myc, MALAT1/miR-34c/Myc, and Myc/xCT) and highlights the therapeutic potential of using p53 proteoforms and ncRNAs to combat drug resistance and induce cancer cell death.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | | | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| |
Collapse
|
46
|
Xiong R, Liu H, Zhang S, Wang L, Liu L, Pan S, Zhang Y, Zhu F, Liu Y, Lai X. Integrating network pharmacology and experimental verification to reveal the ferroptosis-associated mechanism of Changpu-Yizhi-Wan in the treatment of Alzheimer's disease. Metab Brain Dis 2025; 40:106. [PMID: 39820731 DOI: 10.1007/s11011-024-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
To explore the pharmacological mechanism of Changpu-Yizhi-Wan (CYW) in the treatment of Alzheimer's disease (AD) from the perspective of ferroptosis based on network pharmacology and experimental verification. The Encyclopedia of Traditional Chinese Medicine 2.0 (ETCM2.0) database was used to collect the active components of CYW, and the putative targets were predicted in ETCM2.0 and SwissTargetPrediction database. The AD related targets were collected from GeneCards, comparative toxicogenomics database (CTD), Online Mendelian Inheritance in Man (OMIM), DisGeNET and Therapeutic Target Database (TTD), the ferroptosis related targets were collected from FerrDb V2 database, and the common targets of CYW, AD and ferroptosis were calculated by Venny2.1 platform. Protein-protein interaction (PPI) analysis was performed by STRING database, and the active compounds-target network and the PPI network were constructed using Cytoscape software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway enrichment analysis were performed through DAVID database. RSL3 was used to induce HT22 cells to establish a neuronal ferroptosis cell model, and the inhibitory effect of CYW on neuronal ferroptosis was evaluated by cell viability assay, intracellular iron assay and lipid peroxidation staining. The ferroptosis-associated key protein expressions of Nrf2, SLC7A11, GPX4 and FTH1 were detected by Western blot. A total of 100 candidate compounds were identified from CYW, and 1129 putative targets were obtained. 3924 AD-related targets and 564 ferroptosis-related targets were collected, respectively. There were 78 common targets between them and CYW targets, which were potential targets for CYW to regulate ferroptosis in the treatment of AD. PPI network analysis identified 10 key targets, including TP53, IL6, STAT3, HIF1A, NFE2L2, and others. GO, KEGG and Reactome enrichment analysis showed that 78 potential targets were involved in the regulation of ferroptosis and Nrf2-mediated gene transcription. Molecular docking showed that some active components of CYW had good affinity with Nrf2. In RSL3-induced HT22 cells, CYW significantly improved cell viability, reduced intracellular iron levels and inhibited lipid peroxidation, and improved the protein expression of Nrf2, SLC7A11, GPX4 and FTH1. The pharmacological mechanism of CYW in the treatment of AD may be related to the regulation of Nrf2/SLC7A11/GPX4/FTH1 axis to inhibit neuronal ferroptosis.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Hengxu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Shipeng Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Lu Wang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Lu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Sicen Pan
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Yu Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Fengying Zhu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China.
| | - Xiaodan Lai
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (No. 958 Hospital of PLA Army), Chongqing, 400020, China.
| |
Collapse
|
47
|
Huang S, Li W, Wang D, Feng H, Wang B, Dong X, Zhao W, Liu D, Wang Y. Maternal exposure to deltamethrin during pregnancy and lactation impairs hippocampal learning and memory function of male offspring by ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117729. [PMID: 39818137 DOI: 10.1016/j.ecoenv.2025.117729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Deltamethrin (DM), a broad-spectrum insecticide, is widely used in the world. It can exert direct action on the central nervous system to produce neurotoxicity. Exposure to DM can lead to iron metabolism disorder, oxidative stress and learning and memory dysfunction. In our study, pregnant Wistar rats were randomly divided into four groups and gavaged at doses of 0, 1, 4 or 10 mg/kg/d DM from gestational day (GD) 0 to postnatal day (PND) 21. We used behavioral experiments and Nissl staining to observe the hippocampal development and learning and memory function of male offspring. In order to further confirm the regulation mechanisms of DM, we detected ferrous ion, oxidative stress, ferroptosis related proteins, phospholipase C (PL-C)/inositol triphosphate 3 receptor (IP3R) signaling pathway, intracellular Ca2+ and calcineurin (CaN) content in vivo. In vitro,we selected HT-22 cells to be exposed to DM under the intervention of ferrostatin-1 and pifithrin-α. Our results showed that maternal exposure to DM reduced T-maze correctness and the number of hippocampal neurons, and increased shuttle box passive avoidance rate. Moreover, maternal exposure to DM increased the expression of ferrous ion, malondialdehyde (MDA) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein, and decreased the glutathione (GSH) level in the hippocampus, which was contributed to ferroptosis by p53-mediated solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) axis in the male offspring. Furthermore, the ferroptosis caused by DM exposure could active PL-C/IP3R signaling pathway and increase the intracellular Ca2+ and CaN level, leading to an imbalance of calcium homeostasis in the hippocampus. Thus, maternal exposure to DM during pregnancy and lactation could impair hippocampal learning and memory function of male offspring by p53-mediated ferroptosis.
Collapse
Affiliation(s)
- Shasha Huang
- Yongchuan Center for Disease Control and Prevention, Chongqing, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Wanqi Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China; Tai'an Center for Disease Control and Prevention, Shandong, China
| | - Dengke Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Huiwen Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Bo Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Xinyu Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Wei Zhao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- NHC Key Laboratory of Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
48
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
49
|
Wei S, Li J, Zhang Y, Li Y, Wang Y. Ferroptosis in eye diseases: a systematic review. Eye (Lond) 2025; 39:18-27. [PMID: 39379520 PMCID: PMC11733247 DOI: 10.1038/s41433-024-03371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis is a type of iron-dependent cell death that differs from apoptosis, necroptosis, autophagy, and other forms of cell death. It is mainly characterized by the accumulation of intracellular lipid peroxides, redox imbalance, and reduced levels of glutathione and glutathione peroxidase 4. Studies have demonstrated that ferroptosis plays an important regulatory role in the occurrence and development of neurodegenerative diseases, stroke, traumatic brain injury, and ischemia-reperfusion injuries. Multiple mechanisms, such as iron metabolism, ferritinophagy, p53, and p62/Keap1/Nrf2, as well as the combination of FSP1/CoQ/NADPH and hepcidin/FPN-1 can alter the vulnerability to ferroptosis. Nevertheless, there has been limited research on the development and management of ferroptosis in the realm of eye disorders, with most studies focusing on retinal conditions such as age-related macular degeneration and retinitis pigmentosa. This review offers a thorough examination of the disruption of iron homeostasis in eye disorders, investigating the underlying mechanisms. We anticipate that the occurrence of ferroptotic cell death will not only establish a fresh field of study in eye diseases, but also present a promising therapeutic target for treating these diseases.
Collapse
Affiliation(s)
- Shengsheng Wei
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Jing Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yaohua Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Yan Wang
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China.
- Nankai University Eye Institute, Nankai University, Tianjin, China.
| |
Collapse
|
50
|
Li H, Wang X, Liang X, Meng M, Zhang H, Li Z, Lin Y, Li J, Ma C. Verapamil inhibits ferroptosis in septic acute lung injury by blocking L-type calcium channels. Biochem Biophys Res Commun 2025; 744:151202. [PMID: 39708394 DOI: 10.1016/j.bbrc.2024.151202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI. Elevated cytosolic calcium early in ferroptosis exacerbates lipid peroxidation and cellular damage. We investigated verapamil, a calcium channel blocker, and found it reduces calcium influx, alleviates iron overload, and decreases oxidative stress, protecting against ferroptosis-induced apoptosis in lung cells. These insights suggest targeting ferroptosis pathways, including calcium and iron homeostasis, may offer new therapeutic strategies for SALI, potentially improving outcomes in ALI/ARDS.
Collapse
Affiliation(s)
- Hongru Li
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Xuan Wang
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China; Diagnostic Center of Infections, The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
| | - Xiangyang Liang
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China; School and Hospital of Stomatology, Hebei Medical University, 383 Zhongshan East Road, Shijiazhuang, Hebei, PR China.
| | - Meiqi Meng
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Haixia Zhang
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Zixin Li
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Yushan Lin
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| | - Jihong Li
- Diagnostic Center of Infections, The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
| | - Cuiqing Ma
- Immunology Department of Hebei Medical University, Shijiazhuang, PR China.
| |
Collapse
|