1
|
Renaudin X, Campalans A. Modulation of OGG1 enzymatic activities by small molecules, promising tools and current challenges. DNA Repair (Amst) 2025; 149:103827. [PMID: 40120404 DOI: 10.1016/j.dnarep.2025.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Oxidative DNA damage, resulting from endogenous cellular processes and external sources plays a significant role in mutagenesis, cancer progression, and the pathogenesis of neurological disorders. Base Excision Repair (BER) is involved in the repair of base modifications such as oxidations or alkylations as well as single strand breaks. The DNA glycosylase OGG1, initiates the BER pathway by the recognition and excision of 8oxoG, the most common oxidative DNA lesion, in both nuclear and mitochondrial DNA. Beyond DNA repair, OGG1 modulates transcription, particularly pro-inflammatory genes, linking oxidative DNA damage to broader biological processes like inflammation and aging. In cancer therapy, BER inhibition has emerged as a promising strategy to enhance treatment efficacy. Targeting OGG1 sensitizes cells to chemotherapies, radiotherapies, and PARP inhibitors, presenting opportunities to overcome therapy resistance. Additionally, OGG1 activators hold potential in mitigating oxidative damage associated with aging and neurological disorders. This review presents the development of several inhibitors and activators of OGG1 and how they have contributed to advance our knowledge in the fundamental functions of OGG1. We also discuss the new opportunities they provide for clinical applications in treating cancer, inflammation and neurological disorders. Finally, we also highlight the challenges in targeting OGG1, particularly regarding the off-target effects recently reported for some inhibitors and how we can overcome these limitations.
Collapse
Affiliation(s)
- Xavier Renaudin
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France
| | - Anna Campalans
- Université Paris-Saclay, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France; Université Paris Cité, iRCM/IBFJ, CEA, Genetic Stability, Stem Cells and Radiation, Fontenay-aux-Roses F-92260, France.
| |
Collapse
|
2
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
3
|
Gao Y, McPherson L, Adimoolam S, Suresh S, Wilson DL, Das I, Park ER, Ng CSC, Jun YW, Ford JM, Kool ET. Small-molecule activator of SMUG1 enhances repair of pyrimidine lesions in DNA. DNA Repair (Amst) 2025; 146:103809. [PMID: 39879855 PMCID: PMC11846699 DOI: 10.1016/j.dnarep.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
A potentially promising approach to targeted cancer prevention in genetically at-risk populations is the pharmacological upregulation of DNA repair pathways. SMUG1 is a base excision repair enzyme that ameliorates adverse genotoxic and mutagenic effects of hydrolytic and oxidative damage to pyrimidines. Here we describe the discovery and initial cellular activity of a small-molecule activator of SMUG1. Screening of a kinase inhibitor library and iterative rounds of structure-activity relationship studies produced compound 40 (SU0547), which activates SMUG1 by as much as 350 ± 60 % in vitro at 100 nM, with an AC50 of 4.3 ± 1.1 µM. To investigate the effect of compound 40 on endogenous SMUG1, we performed in vitro cell-based experiments with 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), a pyrimidine oxidation product that is selectively removed by SMUG1. In several human cell lines, compound 40 at 3-5 µM significantly reduces the cytotoxicity of 5-hmdU and decreases levels of double-strand breaks induced by the damaged nucleoside. We conclude that the SMUG1 activator compound 40 is a useful tool to study the mechanisms of 5-hmdU toxicity and the potentially beneficial effects of suppressing damage to pyrimidines in cellular DNA.
Collapse
Affiliation(s)
- Yixuan Gao
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Samyuktha Suresh
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - David L Wilson
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Elizabeth R Park
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Christine S C Ng
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - Yong Woong Jun
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States
| | - James M Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T Kool
- Department of Chemistry and Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
Piscone A, Gorini F, Ambrosio S, Noviello A, Scala G, Majello B, Amente S. Targeting the 8-oxodG Base Excision Repair Pathway for Cancer Therapy. Cells 2025; 14:112. [PMID: 39851540 PMCID: PMC11764161 DOI: 10.3390/cells14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Genomic integrity is critical for cellular homeostasis, preventing the accumulation of mutations that can drive diseases such as cancer. Among the mechanisms safeguarding genomic stability, the Base Excision Repair (BER) pathway plays a pivotal role in counteracting oxidative DNA damage caused by reactive oxygen species. Central to this pathway are enzymes like 8-oxoguanine glycosylase 1 (OGG1), which recognize and excise 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) lesions, thereby initiating a series of repair processes that restore DNA integrity. BER inhibitors have recently been identified as a promising approach in cancer therapy, increasing the sensitivity of cancer cells to radiotherapy and chemotherapy. By exploiting tumor-specific DNA repair dependencies and synthetic lethal interactions, these inhibitors could be used to selectively target cancer cells while sparing normal cells. This review provides a robust reference for scientific researchers, offering an updated perspective on small-molecule inhibitors targeting the 8-oxodG-BER pathway and highlighting their potential role in expanding cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Piscone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, 80131 Naples, Italy
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, 80131 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Anna Noviello
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples ‘Federico II’, 80131 Naples, Italy
| |
Collapse
|
5
|
Zhong Y, Zhang X, Feng R, Fan Y, Zhang Z, Zhang QW, Wan JB, Wang Y, Yu H, Li G. OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage. Med Res Rev 2024; 44:2825-2848. [PMID: 39119702 DOI: 10.1002/med.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.
Collapse
Affiliation(s)
- Yunxiao Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Ruibing Feng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, China
- Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Qing-Wen Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| |
Collapse
|
6
|
Song J, Park C, Cabanting FEB, Jun YW. Therapeutic upregulation of DNA repair pathways: strategies and small molecule activators. RSC Med Chem 2024; 15:d4md00673a. [PMID: 39430950 PMCID: PMC11487406 DOI: 10.1039/d4md00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
DNA repair activity diminishes with age and genetic mutations, leading to a significantly increased risk of cancer and other diseases. Upregulating the DNA repair system has emerged as a potential strategy to mitigate disease susceptibility while minimizing cytotoxic side effects. However, enhancing DNA repair activity presents significant challenges due to the inherent inefficiency in activator screening processes. Additionally, pinpointing a critical target that can effectively upregulate overall repair processes is complicated as the available information is somewhat sporadic. In this review, we discuss potential therapeutic targets for upregulating DNA repair pathways, along with the chemical structures and properties of reported small-molecule activators. We also elaborate on the diverse mechanisms by which these targets modulate repair activity, highlighting the critical need for a comprehensive understanding to guide the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Juhyung Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Cheoljun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Francis E B Cabanting
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Yong Woong Jun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| |
Collapse
|
7
|
You Q, Feng X, Cai Y, Baylin SB, Li H. Human 8-oxoguanine glycosylase OGG1 binds nucleosome at the dsDNA ends and the super-helical locations. Commun Biol 2024; 7:1202. [PMID: 39341999 PMCID: PMC11438860 DOI: 10.1038/s42003-024-06919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The human glycosylase OGG1 extrudes and excises the oxidized DNA base 8-oxoguanine (8-oxoG) to initiate base excision repair and plays important roles in many pathological conditions such as cancer, inflammation, and neurodegenerative diseases. Previous structural studies have used a truncated protein and short linear DNA, so it has been unclear how full-length OGG1 operates on longer DNA or on nucleosomes. Here we report cryo-EM structures of human OGG1 bound to a 35-bp long DNA containing an 8-oxoG within an unmethylated Cp-8-oxoG dinucleotide as well as to a nucleosome with an 8-oxoG at super-helical location (SHL)-5. The 8-oxoG in the linear DNA is flipped out by OGG1, consistent with previous crystallographic findings with a 15-bp DNA. OGG1 preferentially binds near dsDNA ends at the nucleosomal entry/exit sites. Such preference may underlie the enzyme's function in DNA double-strand break repair. Unexpectedly, we find that OGG1 bends the nucleosomal entry DNA, flips an undamaged guanine, and binds to internal nucleosomal DNA sites such as SHL-5 and SHL+6. We suggest that the DNA base search mechanism by OGG1 may be chromatin context-dependent and that OGG1 may partner with chromatin remodelers to excise 8-oxoG at the nucleosomal internal sites.
Collapse
Affiliation(s)
- Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Yi Cai
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
8
|
Dow LF, Case AM, Paustian MP, Pinkerton BR, Simeon P, Trippier PC. The evolution of small molecule enzyme activators. RSC Med Chem 2023; 14:2206-2230. [PMID: 37974956 PMCID: PMC10650962 DOI: 10.1039/d3md00399j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
There is a myriad of enzymes within the body responsible for maintaining homeostasis by providing the means to convert substrates to products as and when required. Physiological enzymes are tightly controlled by many signaling pathways and their products subsequently control other pathways. Traditionally, most drug discovery efforts focus on identifying enzyme inhibitors, due to upregulation being prevalent in many diseases and the existence of endogenous substrates that can be modified to afford inhibitor compounds. As enzyme downregulation and reduction of endogenous activators are observed in multiple diseases, the identification of small molecules with the ability to activate enzymes has recently entered the medicinal chemistry toolbox to afford chemical probes and potential therapeutics as an alternative means to intervene in diseases. In this review we highlight the progress made in the identification and advancement of non-kinase enzyme activators and their potential in treating various disease states.
Collapse
Affiliation(s)
- Louise F Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Alfie M Case
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Megan P Paustian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Braeden R Pinkerton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Princess Simeon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68106 USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center Omaha NE 68106 USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center Omaha NE 68106 USA
| |
Collapse
|
9
|
Dancik GM, Varisli L, Tolan V, Vlahopoulos S. Aldehyde Dehydrogenase Genes as Prospective Actionable Targets in Acute Myeloid Leukemia. Genes (Basel) 2023; 14:1807. [PMID: 37761947 PMCID: PMC10531322 DOI: 10.3390/genes14091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
It has been previously shown that the aldehyde dehydrogenase (ALDH) family member ALDH1A1 has a significant association with acute myeloid leukemia (AML) patient risk group classification and that AML cells lacking ALDH1A1 expression can be readily killed via chemotherapy. In the past, however, a redundancy between the activities of subgroup members of the ALDH family has hampered the search for conclusive evidence to address the role of specific ALDH genes. Here, we describe the bioinformatics evaluation of all nineteen member genes of the ALDH family as prospective actionable targets for the development of methods aimed to improve AML treatment. We implicate ALDH1A1 in the development of recurrent AML, and we show that from the nineteen members of the ALDH family, ALDH1A1 and ALDH2 have the strongest association with AML patient risk group classification. Furthermore, we discover that the sum of the expression values for RNA from the genes, ALDH1A1 and ALDH2, has a stronger association with AML patient risk group classification and survival than either one gene alone does. In conclusion, we identify ALDH1A1 and ALDH2 as prospective actionable targets for the treatment of AML in high-risk patients. Substances that inhibit both enzymatic activities constitute potentially effective pharmaceutics.
Collapse
Affiliation(s)
- Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey; (L.V.); (V.T.)
| | - Veysel Tolan
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey; (L.V.); (V.T.)
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
10
|
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the Causal Relationship Between Telomere Biology and Alzheimer's Disease. Mol Neurobiol 2023; 60:4169-4183. [PMID: 37046137 PMCID: PMC10293431 DOI: 10.1007/s12035-023-03337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).
Collapse
Affiliation(s)
- Xi-Yuen Kuan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nurul Syahira Ahmad Fauzi
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
11
|
Callahan BP, Xu Z. There's more to enzyme antagonism than inhibition. Bioorg Med Chem 2023; 82:117231. [PMID: 36893527 PMCID: PMC10228466 DOI: 10.1016/j.bmc.2023.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
A native enzyme's usual assurance in recognizing their physiological substrate(s) at the ground state and on going to the transition state can be undermined by interactions with selected small molecule antagonists, leading to the generation of abnormal products. We classify this mode of enzyme antagonism resulting in the gain-of-nonnative-function as paracatalytic induction. Enzymes bound by paracatalytic inducers exhibit new or enhanced activity toward transformations that appear aberrant or erroneous. The enzyme/ paracatalytic inducer complex may take up native substrate but then bring about a transformation that is chemically distinct from the normal reaction. Alternatively, the enzyme / paracatalytic inducer complex may exhibit abnormal ground state selectivity, preferentially interacting with and transforming a molecule outside the physiological substrate scope. Paracatalytic inducers can be cytotoxic, while in other cases they divert enzyme activity toward transformations that appear adaptive and even therapeutically useful. In this perspective, we highlight two noteworthy examples from recent literature.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, NY 13902, United States.
| | - Zihan Xu
- Chemistry Department, Binghamton University, Binghamton, NY 13902, United States
| |
Collapse
|
12
|
Abstract
DNA repair enzymes continuously provide surveillance throughout our cells, protecting the enclosed DNA from the damage that is constantly arising from oxidation, alkylating species, and radiation. Members of this enzyme class are intimately linked to pathways controlling cancer and inflammation and are promising targets for diagnostics and future therapies. Their study is benefiting widely from the development of new tools and methods aimed at measuring their activities. Here, we provide an Account of our laboratory's work on developing chemical tools to study DNA repair processes in vitro, as well as in cells and tissues, and what we have learned by applying them.We first outline early work probing how DNA repair enzymes recognize specific forms of damage by use of chemical analogs of the damage with altered shapes and H-bonding abilities. One outcome of this was the development of an unnatural DNA base that is incorporated selectively by polymerase enzymes opposite sites of missing bases (abasic sites) in DNA, a very common form of damage.We then describe strategies for design of fluorescent probes targeted to base excision repair (BER) enzymes; these were built from small synthetic DNAs incorporating fluorescent moieties to engender light-up signals as the enzymatic reaction proceeds. Examples of targets for these DNA probes include UDG, SMUG1, Fpg, OGG1, MutYH, ALKBH2, ALKBH3, MTH1, and NTH1. Several such strategies were successful and were applied both in vitro and in cellular settings; moreover, some were used to discover small-molecule modulators of specific repair enzymes. One of these is the compound SU0268, a potent OGG1 inhibitor that is under investigation in animal models for inhibiting hyperinflammatory responses.To investigate cellular nucleotide sanitation pathways, we designed a series of "two-headed" nucleotides containing a damaged DNA nucleotide at one end and ATP at the other; these were applied to studying the three human sanitation enzymes MTH1, dUTPase, and dITPase, some of which are therapeutic targets. The MTH1 probe (ARGO) was used in collaboration with oncologists to measure the enzyme in tumors as a disease marker and also to develop the first small-molecule activators of the enzyme.We proceed to discuss the development of a "universal" probe of base excision repair processes (UBER), which reacts covalently with abasic site intermediates of base excision repair. UBER probes light up in real time as the reaction occurs, enabling the observation of base excision repair as it occurs in live cells and tissues. UBER probes can also be used in efficient and simple methods for fluorescent labeling of DNA. Finally, we suggest interesting directions for the future of this field in biomedicine and human health.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, 369 North-South Axis, Stauffer I, Stanford, California 94305, United States
| |
Collapse
|
13
|
Ait-Aissa K, Koval OM, Lindsey NR, Grumbach IM. Mitochondrial Ca 2+ Uptake Drives Endothelial Injury By Radiation Therapy. Arterioscler Thromb Vasc Biol 2022; 42:1121-1136. [PMID: 35899616 PMCID: PMC9394506 DOI: 10.1161/atvbaha.122.317869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation therapy strongly increases the risk of atherosclerotic vascular disease, such as carotid stenosis. Radiation induces DNA damage, in particular in mitochondria, but the upstream and downstream signaling events are poorly understood. The objective of this study was to define such mechanisms. METHODS Endothelial-specific MCU (mitochondrial Ca2+ uniporter) knockout and C57Bl6/J mice with or without a preinfusion of a mitoTEMPO (mitochondrial reactive oxygen species [ROS] scavenger) were exposed to a single dose of cranial irradiation. 24, and 240 hours postirradiation, vascular reactivity, endothelial function, and mitochondrial integrity were assessed ex vivo and in vitro. RESULTS In cultured human endothelial cells, irradiation with 4 Gy increased cytosolic Ca2+ transients and the mitochondrial Ca2+ concentration ([Ca2+]mt) and activated MCU. These outcomes correlated with increases in mitochondrial ROS (mtROS), loss of NO production, and sustained damage to mitochondrial but not nuclear DNA. Moreover, irradiation impaired activity of the ETC (electron transport chain) and the transcription of ETC subunits encoded by mitochondrial DNA (mtDNA). Knockdown or pharmacological inhibition of MCU blocked irradiation-induced mtROS production, mtDNA damage, loss of NO production, and impairment of ETC activity. Similarly, the pretreatment with mitoTEMPO, a scavenger of mtROS, reduced irradiation-induced Ca2+ entry, and preserved both the integrity of the mtDNA and the production of NO, suggesting a feed-forward loop involving [Ca2+]m and mtROS. Enhancement of DNA repair in mitochondria, but not in the nucleus, was sufficient to block prolonged mtROS elevations and maintain NO production. Consistent with the findings from cultured cells, in C57BL/6J mice, head and neck irradiation decreased endothelium-dependent vasodilation, and mtDNA integrity in the carotid artery after irradiation. These effects were prevented by endothelial knockout of MCU or infusion with mitoTEMPO. CONCLUSIONS Irradiation-induced damage to mtDNA is driven by MCU-dependent Ca2+ influx and the generation of mtROS. Such damage leads to reduced transcription of mitochondrial genes and activity of the ETC, promoting sustained mtROS production that induces endothelial dysfunction. Our findings suggest that targeting MCU and mtROS might be sufficient to mitigate irradiation-induced vascular disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Nathanial R. Lindsey
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (I.M.G.), Carver College of Medicine, University of Iowa
- Iowa City VA Healthcare System, Iowa City (I.M.G.)
| |
Collapse
|
14
|
Small molecule-mediated allosteric activation of the base excision repair enzyme 8-oxoguanine DNA glycosylase and its impact on mitochondrial function. Sci Rep 2022; 12:14685. [PMID: 36038587 PMCID: PMC9424235 DOI: 10.1038/s41598-022-18878-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 02/07/2023] Open
Abstract
8-Oxoguanine DNA glycosylase (OGG1) initiates base excision repair of the oxidative DNA damage product 8-oxoguanine. OGG1 is bifunctional; catalyzing glycosyl bond cleavage, followed by phosphodiester backbone incision via a β-elimination apurinic lyase reaction. The product from the glycosylase reaction, 8-oxoguanine, and its analogues, 8-bromoguanine and 8-aminoguanine, trigger the rate-limiting AP lyase reaction. The precise activation mechanism remains unclear. The product-assisted catalysis hypothesis suggests that 8-oxoguanine and analogues bind at the product recognition (PR) pocket to enhance strand cleavage as catalytic bases. Alternatively, they may allosterically activate OGG1 by binding outside of the PR pocket to induce an active-site conformational change to accelerate apurinic lyase. Herein, steady-state kinetic analyses demonstrated random binding of substrate and activator. 9-Deazaguanine, which can't function as a substrate-competent base, activated OGG1, albeit with a lower Emax value than 8-bromoguanine and 8-aminoguanine. Random compound screening identified small molecules with Emax values similar to 8-bromoguanine. Paraquat-induced mitochondrial dysfunction was attenuated by several small molecule OGG1 activators; benefits included enhanced mitochondrial membrane and DNA integrity, less cytochrome c translocation, ATP preservation, and mitochondrial membrane dynamics. Our results support an allosteric mechanism of OGG1 and not product-assisted catalysis. OGG1 small molecule activators may improve mitochondrial function in oxidative stress-related diseases.
Collapse
|
15
|
Lee Y, Onishi Y, McPherson L, Kietrys AM, Hebenbrock M, Jun YW, Das I, Adimoolam S, Ji D, Mohsen MG, Ford JM, Kool ET. Enhancing Repair of Oxidative DNA Damage with Small-Molecule Activators of MTH1. ACS Chem Biol 2022; 17:2074-2087. [PMID: 35830623 PMCID: PMC11163517 DOI: 10.1021/acschembio.2c00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Impaired DNA repair activity has been shown to greatly increase rates of cancer clinically. It has been hypothesized that upregulating repair activity in susceptible individuals may be a useful strategy for inhibiting tumorigenesis. Here, we report that selected tyrosine kinase (TK) inhibitors including nilotinib, employed clinically in the treatment of chronic myeloid leukemia, are activators of the repair enzyme Human MutT Homolog 1 (MTH1). MTH1 cleanses the oxidatively damaged cellular nucleotide pool by hydrolyzing the oxidized nucleotide 8-oxo-2'-deoxyguanosine (8-oxo-dG)TP, which is a highly mutagenic lesion when incorporated into DNA. Structural optimization of analogues of TK inhibitors resulted in compounds such as SU0448, which induces 1000 ± 100% activation of MTH1 at 10 μM and 410 ± 60% at 5 μM. The compounds are found to increase the activity of the endogenous enzyme, and at least one (SU0448) decreases levels of 8-oxo-dG in cellular DNA. The results suggest the possibility of using MTH1 activators to decrease the frequency of mutagenic nucleotides entering DNA, which may be a promising strategy to suppress tumorigenesis in individuals with elevated cancer risks.
Collapse
Affiliation(s)
- Yujeong Lee
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Yoshiyuki Onishi
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Lisa McPherson
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Anna M. Kietrys
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Marian Hebenbrock
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Yong Woong Jun
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Ishani Das
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Shanthi Adimoolam
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Debin Ji
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - Michael G. Mohsen
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| | - James M. Ford
- Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Eric T. Kool
- Departmeut of Chemistry, Stanford University, Stanford. CA 94305, United States
| |
Collapse
|
16
|
Michel M, Benítez-Buelga C, Calvo PA, Hanna BMF, Mortusewicz O, Masuyer G, Davies J, Wallner O, Sanjiv K, Albers JJ, Castañeda-Zegarra S, Jemth AS, Visnes T, Sastre-Perona A, Danda AN, Homan EJ, Marimuthu K, Zhenjun Z, Chi CN, Sarno A, Wiita E, von Nicolai C, Komor AJ, Rajagopal V, Müller S, Hank EC, Varga M, Scaletti ER, Pandey M, Karsten S, Haslene-Hox H, Loevenich S, Marttila P, Rasti A, Mamonov K, Ortis F, Schömberg F, Loseva O, Stewart J, D'Arcy-Evans N, Koolmeister T, Henriksson M, Michel D, de Ory A, Acero L, Calvete O, Scobie M, Hertweck C, Vilotijevic I, Kalderén C, Osorio A, Perona R, Stolz A, Stenmark P, Berglund UW, de Vega M, Helleday T. Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science 2022; 376:1471-1476. [PMID: 35737787 DOI: 10.1126/science.abf8980] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed β,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.
Collapse
Affiliation(s)
- Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Carlos Benítez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.,Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029 Madrid, Spain
| | - Patricia A Calvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK.,Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Jonathan Davies
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Julian J Albers
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Sergio Castañeda-Zegarra
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.,Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim, Norway
| | - Ana Sastre-Perona
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Akhilesh N Danda
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Karthick Marimuthu
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Zhao Zhenjun
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Celestine N Chi
- Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Antonio Sarno
- Department of Environment and New Resources, SINTEF Ocean, N-7496 Trondheim, Norway
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Catharina von Nicolai
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anna J Komor
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Department of Biomolecular Chemistry, 07745 Jena, Germany
| | - Varshni Rajagopal
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Sarah Müller
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Emily C Hank
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Marek Varga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Emma R Scaletti
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.,Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Monica Pandey
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.,Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Stella Karsten
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim, Norway
| | - Simon Loevenich
- Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim, Norway
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Kirill Mamonov
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Florian Ortis
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Fritz Schömberg
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Josephine Stewart
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Nicholas D'Arcy-Evans
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Dana Michel
- Chemical Processes and Pharmaceutical Development, Unit Process Chemistry I, Research Institutes of Sweden - RISE, 151 36 Södertälje, Sweden
| | - Ana de Ory
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lucia Acero
- Experimental Therapies and Novel Biomarkers in Cancer, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Oriol Calvete
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Department of Biomolecular Chemistry, 07745 Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Ivan Vilotijevic
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christina Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Ana Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), 28029 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alexandra Stolz
- Institute of Biochemistry II and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden.,Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Miguel de Vega
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden.,Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
17
|
Wen KK, Roy S, Grumbach IM, Wu M. A "Failed" Assay Development for the Discovery of Rescuing Small Molecules from the Radiation Damage. SLAS DISCOVERY 2021; 26:1315-1325. [PMID: 34151632 DOI: 10.1177/24725552211020678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With improving survival rates for cancer patients, the side effects of radiation therapy, especially for pediatric or more sensitive adult patients, have raised interest in preventive or rescue treatment to overcome the detrimental effects of efficient radiation therapies. For the discovery of rescuing small molecules for radiation damage to the endothelium, we have been developing a 96-well microplate-based in vitro assay for high-throughput compatible measurement of radiation-induced cell damage and its rescue by phenotypic high-content imaging. In contrast to traditional radiation assays with detached cells for clonogenic formation, we observed cells with live-cell imaging in two different kinds of endothelial cells, up to three different cell densities, two gamma-infrared radiation dose rates, more than four different radiation doses, and acute (within 24 h with one to two h intervals) and chronic (up to 7 days) responses by phenotypic changes (digital phase contrast) and functional assays (nuclear, live-cell, and dead-cell staining) at the end of the assay. Multiple potential small molecules, which have been reported for rescuing radiation damage, have been tested as assay controls with dose responses. At the end, we did not move ahead with the pilot screening. The lessons learned from this "failed" assay development are shared.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- University of Iowa High Throughput Screening (UIHTS) Core, University of Iowa, Iowa City, IA, USA
| | - Stephen Roy
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Isabella M Grumbach
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Meng Wu
- University of Iowa High Throughput Screening (UIHTS) Core, University of Iowa, Iowa City, IA, USA.,Department of Biochemistry, Carver College of Medicine, University of Iowa Iowa City, IA, USA.,Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
18
|
Leu M, Riebeling T, Dröge LH, Hubert L, Guhlich M, Wolff HA, Brockmöller J, Gaedcke J, Rieken S, Schirmer MA. 8-Oxoguanine DNA Glycosylase (OGG1) Cys326 Variant: Increased Risk for Worse Outcome of Patients with Locally Advanced Rectal Cancer after Multimodal Therapy. Cancers (Basel) 2021; 13:cancers13112805. [PMID: 34199885 PMCID: PMC8200071 DOI: 10.3390/cancers13112805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Despite excellent loco-regional control by multimodal treatment of locally advanced rectal cancer, a substantial portion of patients succumb to this disease. As many treatment effects are mediated via reactive oxygen species (ROS), we evaluated the effect of single nucleotide polymorphisms (SNPs) in ROS-related genes on clinical outcome. Based on the literature, eight SNPs in seven ROS-related genes were assayed. Eligible patients (n = 287) diagnosed with UICC stage II/III rectal cancer were treated multimodally starting with neoadjuvant radiochemotherapy (N-RCT) according to the clinical trial protocols of CAO/ARO/AIO-94, CAO/ARO/AIO-04, TransValid-A, and TransValid-B. The median follow-up was 64.4 months. The Ser326Cys polymorphism in the human OGG1 gene affected clinical outcome, in particular cancer-specific survival (CSS). This effect was comparable in extent to the ypN status, an already established strong prognosticator for patient outcome. Homozygous and heterozygous carriers of the Cys326 variant (n = 105) encountered a significantly worse CSS (p = 0.0004 according to the log-rank test, p = 0.01 upon multiple testing adjustment). Cox regression elicited a hazard ratio for CSS of 3.64 (95% confidence interval 1.70-7.78) for patients harboring the Cys326 allele. In a multivariable analysis, the effect of Cys326 on CSS was preserved. We propose the genetic polymorphism Ser326Cys as a promising biomarker for outcome in rectal cancer.
Collapse
Affiliation(s)
- Martin Leu
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
| | - Theresa Riebeling
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Leif Hendrik Dröge
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
| | - Laura Hubert
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
| | - Manuel Guhlich
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
| | - Hendrik Andreas Wolff
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
- Medical Center, Department of Radiation Oncology, University of Regensburg, 93053 Regensburg, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Jochen Gaedcke
- Clinic of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Stefan Rieken
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
| | - Markus Anton Schirmer
- Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (M.L.); (T.R.); (L.H.D.); (L.H.); (M.G.); (H.A.W.); (S.R.)
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- Correspondence: ; Tel.: +49-551-39-8866
| |
Collapse
|
19
|
Raper AT, Maxwell BA, Suo Z. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway. J Mol Biol 2021; 433:166811. [PMID: 33450252 DOI: 10.1016/j.jmb.2021.166811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 01/25/2023]
Abstract
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein-protein interactions with APE1 to ensure timely repair of damaged DNA.
Collapse
Affiliation(s)
- Austin T Raper
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Schniertshauer D, Gebhard D, van Beek H, Nöth V, Schon J, Bergemann J. The activity of the DNA repair enzyme hOGG1 can be directly modulated by ubiquinol. DNA Repair (Amst) 2020; 87:102784. [DOI: 10.1016/j.dnarep.2019.102784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
21
|
Abstract
Cellular damage produced by conditions generating oxidative stress have far-reaching implications in human disease that encompass, but are not restricted to aging, cardiovascular disease, type 2 diabetes, airway inflammation/asthma, cancer, and metabolic syndrome including visceral obesity, insulin resistance, fatty liver disease, and dyslipidemia. Although there are numerous sources and cellular targets of oxidative stress, this review will highlight literature that has investigated downstream consequences of oxidatively-induced DNA damage in both nuclear and mitochondrial genomes. The presence of such damage can in turn, directly and indirectly modulate cellular transcriptional and repair responses to such stressors. As such, the persistence of base damage can serve as a key regulator in coordinated gene-response cascades. Conversely, repair of these DNA lesions serves as both a suppressor of mutagenesis and by inference carcinogenesis, and as a signal for the cessation of ongoing oxidative stress. A key enzyme in all these processes is 8-oxoguanine DNA glycosylase (OGG1), which, via non-catalytic binding to oxidatively-induced DNA damage in promoter regions, serves as a nucleation site around which changes in large-scale regulation of inflammation-associated gene expression can occur. Further, the catalytic function of OGG1 can alter the three-dimensional structure of specialized DNA sequences, leading to changes in transcriptional profiles. This review will concentrate on adverse deleterious health effects that are associated with both the diminution of OGG1 activity via population-specific polymorphic variants and the complete loss of OGG1 in murine models. This mouse model displays diet- and age-related induction of metabolic syndrome, highlighting a key role for OGG1 in protecting against these phenotypes. Conversely, recent investigations using murine models having enhanced global expression of a mitochondrial-targeted OGG1 demonstrate that they are highly resistant to diet-induced disease. These data suggest strategies through which therapeutic interventions could be designed for reducing or limiting adverse human health consequences to these ubiquitous stressors.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, United States.
| | - R Stephen Lloyd
- Oregon Institute for Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, Oregon, 97239, United States.
| |
Collapse
|
22
|
Michel M, Visnes T, Homan EJ, Seashore-Ludlow B, Hedenström M, Wiita E, Vallin K, Paulin CBJ, Zhang J, Wallner O, Scobie M, Schmidt A, Jenmalm-Jensen A, Warpman Berglund U, Helleday T. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS OMEGA 2019; 4:11642-11656. [PMID: 31460271 PMCID: PMC6682003 DOI: 10.1021/acsomega.9b00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
Collapse
Affiliation(s)
- Maurice Michel
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Torkild Visnes
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Department
of Biotechnology and Nanomedicine, SINTEF
Industry, N-7465 Trondheim, Norway
| | - Evert J. Homan
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | | | - Elisée Wiita
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Karl Vallin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Cynthia B. J. Paulin
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Jiaxi Zhang
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Olov Wallner
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Martin Scobie
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Andreas Schmidt
- Institute
of Organic Chemistry, Clausthal University
of Technology, Leibnizstrasse
6, D-38678 Clausthal-Zellerfeld, Germany
| | - Annika Jenmalm-Jensen
- Chemical
Biology Consortium Sweden, Science for Life Laboratory, Division of
Translational Medicine and Chemical Biology, Department of Medical
Biochemistry and Biophysics, Karolinska
Institutet, S-171 21 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Thomas Helleday
- Science
for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Sheffield
Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, S10 2RX Sheffield, U.K.
| |
Collapse
|
23
|
Serra-Majem L, Román-Viñas B, Sanchez-Villegas A, Guasch-Ferré M, Corella D, La Vecchia C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67:1-55. [PMID: 31254553 DOI: 10.1016/j.mam.2019.06.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
More than 50 years after the Seven Countries Study, a large number of epidemiological studies have explored the relationship between the Mediterranean diet (MD) and health, through observational, case-control, some longitudinal and a few experimental studies. The overall results show strong evidence suggesting a protective effect of the MD mainly on the risk of cardiovascular disease (CVD) and certain types of cancer. The beneficial effects have been attributed to the types of food consumed, total dietary pattern, components in the food, cooking techniques, eating behaviors and lifestyle behaviors, among others. The aim of this article is to review and summarize the knowledge derived from the literature focusing on the benefits of the MD on health, including those that have been extensively investigated (CVD, cancer) along with more recent issues such as mental health, immunity, quality of life, etc. The review begins with a brief description of the MD and its components. Then we present a review of studies evaluating metabolic biomarkers and genotypes in relation to the MD. Other sections are dedicated to observation and intervention studies for various pathologies. Finally, some insights into the relationship between the MD and sustainability are explored. In conclusion, the research undertaken on metabolomics approaches has identified potential markers for certain MD components and patterns, but more investigation is needed to obtain valid measures. Further evaluation of gene-MD interactions are also required to better understand the mechanisms by which the MD diet exerts its beneficial effects on health. Observation and intervention studies, particularly PREDIMED, have provided invaluable data on the benefits of the MD for a wide range of chronic diseases. However further research is needed to explore the effects of other lifestyle components associated with Mediterranean populations, its environmental impact, as well as the MD extrapolation to non-Mediterranean contexts.
Collapse
Affiliation(s)
- Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain.
| | - Blanca Román-Viñas
- Nutrition Research Foundation, University of Barcelona Science Park, Barcelona, Spain; School of Health and Sport Sciences (EUSES), Universitat de Girona, Salt, Spain; Department of Physical Activity and Sport Sciences, Blanquerna, Universitat Ramon Llull, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Almudena Sanchez-Villegas
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H.Chan School of Public Health, Boston, MA, USA; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dolores Corella
- Genetic and Molecular Epidemiology Unit. Department of Preventive Medicine. University of Valencia, Valencia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|