1
|
Aslan M, Gokce IK, Turgut H, Tekin S, Cetin Taslidere A, Deveci MF, Kaya H, Tanbek K, Gul CC, Ozdemir R. Molsidomine decreases hyperoxia-induced lung injury in neonatal rats. Pediatr Res 2023; 94:1341-1348. [PMID: 37179436 DOI: 10.1038/s41390-023-02643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The study's objective is to evaluate if Molsidomine (MOL), an anti-oxidant, anti-inflammatory, and anti-apoptotic drug, is effective in treating hyperoxic lung injury (HLI). METHODS The study consisted of four groups of neonatal rats characterized as the Control, Control+MOL, HLI, HLI + MOL groups. Near the end of the study, the lung tissue of the rats were evaluated with respect to apoptosis, histopathological damage, anti-oxidant and oxidant capacity as well as degree of inflammation. RESULTS Compared to the HLI group, malondialdehyde and total oxidant status levels in lung tissue were notably reduced in the HLI + MOL group. Furthermore, mean superoxide dismutase, glutathione peroxidase, and glutathione activities/levels in lung tissue were significantly higher in the HLI + MOL group as compared to the HLI group. Tumor necrosis factor-α and interleukin-1β elevations associated with hyperoxia were significantly reduced following MOL treatment. Median histopathological damage and mean alveolar macrophage numbers were found to be higher in the HLI and HLI + MOL groups when compared to the Control and Control+MOL groups. Both values were increased in the HLI group when compared to the HLI + MOL group. CONCLUSIONS Our research is the first to demonstrate that bronchopulmonary dysplasia may be prevented through the protective characteristics of MOL, an anti-inflammatory, anti-oxidant, and anti-apoptotic drug. IMPACT Molsidomine prophylaxis significantly decreased the level of oxidative stress markers. Molsidomine administration restored the activities of antioxidant enzymes. Molsidomine prophylaxis significantly reduced the levels of inflammatory cytokines. Molsidomine may provide a new and promising therapy for BPD in the future. Molsidomine prophylaxis decreased lung damage and macrophage infiltration in the tissue.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Huseyin Kaya
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey.
| |
Collapse
|
2
|
Marcelino M, Cai CL, Wadowski S, Aranda JV, Beharry KD. Biomarkers of lung alveolarization and microvascular maturation in response to intermittent hypoxia and/or early antioxidant/fish oil supplementation in neonatal rats. Pediatr Pulmonol 2023; 58:2352-2363. [PMID: 37265429 PMCID: PMC10463793 DOI: 10.1002/ppul.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Extremely preterm infants experience frequent intermittent hypoxia (IH) episodes during oxygen therapy which causes significant damage to the lungs and curtails important signaling pathways that regulate normal lung alveolarization and microvascular maturation. We tested the hypothesis that early supplementation with fish oil and/or antioxidants in rats exposed to neonatal IH improves expression of lung biomarkers of alveolarization and microvascular maturation, and reduces IH-induced lung injury. STUDY DESIGN/METHODS From birth (P0) to P14, rat pups were exposed to room air (RA) or neonatal IH during which they received daily oral supplementation with either: (1) olive oil (OO) (control); (2) Coenzyme Q10 (CoQ10) in OO; (3) fish oil; (4) glutathione nanoparticles (nGSH); or (5) fish oil +CoQ10. At P14 pups were placed in RA until P21 with no further treatment. RA controls were similarly treated. Lung growth and alveolarization, histopathology, apoptosis, oxidative stress and biomarkers of alveolarization and microvascular maturation were determined. RESULTS Neonatal IH was associated with reduced lung weights and severe histopathological outcomes. These effects were curtailed with fish oil and nGSH. nGSH was also protective against apoptosis, while CoQ10 prevented IH-induced ROS production. Of all treatments, nGSH and CoQ10 + fish oil-induced vascular endothelial growth factor165 and CD31 (Platelet endothelial cell adhesion molecule-1), which are associated with angiogenesis. CoQ10 + fish oil improved alveolarization in RA and IH despite evidence of hemorrhage. CONCLUSIONS The benefits of nGSH and CoQ10 + fish oil suggest an antioxidant effect which may be required to curtail IH-induced lung injury. Further clinical assessment of the effectiveness of nGSH is warranted.
Collapse
Affiliation(s)
- Matthew Marcelino
- State University of New York Downstate Health Sciences University, College of Medicine, Brooklyn, NY 11203
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Stephen Wadowski
- Department of Pediatrics, Division of Pediatric Pulmonology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| |
Collapse
|
3
|
Verd S, Porta R, Ginovart G, Avila-Alvarez A, García-Muñoz Rodrigo F, Izquierdo Renau M, Ventura PS. Human Milk Feeding Is Associated with Decreased Incidence of Moderate-Severe Bronchopulmonary Dysplasia in Extremely Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1267. [PMID: 37508764 PMCID: PMC10378323 DOI: 10.3390/children10071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND An increased rate of bronchopulmonary dysplasia (BPD) is reported in extremely preterm infants. A potential role of human milk feeding in protecting against this condition has been suggested. METHODS A retrospective descriptive study was conducted based on data about morbidity in the population of infants born between 22+0 and 26+6 weeks of gestation, included in the Spanish network SEN1500 during the period 2004-2019 and discharged alive. The primary outcome was moderate-severe BPD. Associated conditions were studied, including human milk feeding at discharge. The temporal trends of BPD and human milk feeding rates at discharge were also studied. RESULTS In the study population of 4341 infants, the rate of moderate-severe BPD was 43.7% and it increased to >50% in the last three years. The factors significantly associated with a higher risk of moderate-severe BPD were birth weight, male sex, high-frequency oscillatory ventilation, duration of invasive mechanical ventilation, inhaled nitric oxide, patent ductus arteriosus, and late-onset sepsis. Exclusive human milk feeding and any amount of human milk at discharge were associated with a lower incidence of moderate-severe BPD (OR 0.752, 95% CI 0.629-0.901 and OR 0.714, 95% CI 0.602-0.847, respectively). During the study period, the proportion of infants with moderate-severe BPD fed any amount of human milk at discharge increased more than twofold. And the proportion of infants with moderate-severe BPD who were exclusively fed human milk at discharge increased at the same rate. CONCLUSIONS Our work shows an inverse relationship between human milk feeding at discharge from the neonatal unit and the occurrence of BPD.
Collapse
Affiliation(s)
- Sergio Verd
- Department of Pediatric Care Primary Unit, La Vileta Surgery, Health Sciences Research Institute (IUNICS), Balearic University, 07122 Palma, Spain
| | - Roser Porta
- Department of Pediatrics, Division of Neonatology, Hospital Universitari Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Gemma Ginovart
- Department of Pediatrics, Division of Neonatology, Hospital Universitari Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alejandro Avila-Alvarez
- Division of Neonatology, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, 15006 A Coruña, Spain
| | - Fermín García-Muñoz Rodrigo
- Division of Neonatology, Complejo Hospitalario Universitario Insular Materno-Infantil, 35016 Las Palmas, Spain
| | | | - Paula Sol Ventura
- Department of Pediatrics, Division of Neonatology, Hospital Universitari Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Saugstad OD. Oxygenation of the newborn. The impact of one molecule on newborn lives. J Perinat Med 2023; 51:20-26. [PMID: 35848535 DOI: 10.1515/jpm-2022-0259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023]
Abstract
Hypoxanthine is a purine metabolite which increases during hypoxia and therefore is an indicator of this condition. Further, when hypoxanthine is oxidized to uric acid in the presence of xanthine oxidase, oxygen radicals are generated. This was the theoretical basis for suggesting and studying, beginning in the 1990s, resuscitation of newborn infants with air instead of the traditional 100% O2. These studies demonstrated a 30% reduction in mortality when resuscitation of term and near term infants was carried out with air compared to pure oxygen. The mechanism for this is not fully understood, however the hypoxanthine -xanthine oxidase system increases oxidative stress and plays a role in regulation of the perinatal circulation. Further, hyperoxic resuscitation inhibits mitochondrial function, and one reason may be that genes involved in ATP production are down-regulated. Thus, the study of one single molecule, hypoxanthine, has contributed to the global prevention of an estimated 2-500,000 annual infant deaths.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, University of Oslo and Oslo University hospital, Oslo, Norway
- Anne and Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ailing Chen
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Renqiang Yu
| |
Collapse
|
6
|
McCulley DJ, Jensen EA, Sucre JMS, McKenna S, Sherlock LG, Dobrinskikh E, Wright CJ. Racing against time: leveraging preclinical models to understand pulmonary susceptibility to perinatal acetaminophen exposures. Am J Physiol Lung Cell Mol Physiol 2022; 323:L1-L13. [PMID: 35503238 PMCID: PMC9208439 DOI: 10.1152/ajplung.00080.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Over the past decade, clinicians have increasingly prescribed acetaminophen (APAP) for patients in the neonatal intensive care unit (NICU). Acetaminophen has been shown to reduce postoperative opiate burden, and may provide similar efficacy for closure of the patent ductus arteriosus (PDA) as nonsteroidal anti-inflammatory drugs (NSAIDs). Despite these potential benefits, APAP exposures have spread to increasingly less mature infants, a highly vulnerable population for whom robust pharmacokinetic and pharmacodynamic data for APAP are lacking. Concerningly, preclinical studies suggest that perinatal APAP exposures may result in unanticipated adverse effects that are unique to the developing lung. In this review, we discuss the clinical observations linking APAP exposures to adverse respiratory outcomes and the preclinical data demonstrating a developmental susceptibility to APAP-induced lung injury. We show how clinical observations linking perinatal APAP exposures to pulmonary injury have been taken to the bench to produce important insights into the potential mechanisms underlying these findings. We argue that the available data support a more cautious approach to APAP use in the NICU until large randomized controlled trials provide appropriate safety and efficacy data.
Collapse
Affiliation(s)
- David J McCulley
- Division of Neonatology, Department of Pediatrics, University of California, San Diego, California
| | - Erik A Jensen
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
7
|
Ferrante G, Montante C, Notarbartolo V, Giuffrè M. Antioxidants: Role the in prevention and treatment of bronchopulmonary dysplasia. Paediatr Respir Rev 2022; 42:53-58. [PMID: 35177319 DOI: 10.1016/j.prrv.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is one of the major causes of chronic respiratory diseases among infants. Both pharmacological and nonpharmacological approaches have been proposed for its management. Since oxidative stress is known to play a pivotal role in the pathogenesis of BPD, it is reasonable to consider the potential of antioxidant strategies in the prevention and treatment of this condition. Indeed, antioxidants can prevent or inhibit substrate oxidation. Some studies have evaluated the efficacy of the exogenous administration of vitamins and micronutrients in reducing the propagation of free radicals through their scavenging capacity. Nonetheless, encouraging preclinical results did not translate into effective preventive and/or therapeutic interventions. This narrative review evaluates the current evidence about the antioxidants that are potentially useful for preventing and treating BPD and explores the most relevant issues affecting their implementation in clinical practice, as well as their associated evidence gaps and research limitations.
Collapse
Affiliation(s)
- Giuliana Ferrante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Claudio Montante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Veronica Notarbartolo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Boldrini GG, Martín Molinero G, Pérez Chaca MV, Ciminari ME, Moyano F, Córdoba ME, Pennacchio G, Fanelli M, Álvarez SM, Gómez NN. Glycine max (soy) based diet improves antioxidant defenses and prevents cell death in cadmium intoxicated lungs. Biometals 2022; 35:229-244. [PMID: 35038064 DOI: 10.1007/s10534-022-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is a toxic metal and an important environmental contaminant. We analyzed its effects on oligoelements, oxidative stress, cell death, Hsp expression and the histoarchitecture of rat lung under different diets, using animal models of subchronic cadmium intoxication. We found that Cd lung content augmented in intoxicated groups: Zn, Mn and Se levels showed modifications among the different diets, while Cu showed no differences. Lipoperoxidation was higher in both intoxicated groups. Expression of Nrf-2 and SOD-2 increased only in SoCd. GPx levels showed a trend to increase in Cd groups. CAT activity was higher in intoxicated groups, and it was higher in Soy groups vs. Casein. LDH activity in BAL increased in CasCd and decreased in both soy-fed groups. BAX/Bcl-2 semiquantitative ratio showed similar results than LDH activity, confirmed by Caspase 3 immunofluorescence. The histological analysis revealed an infiltration process in CasCd lungs, with increased connective tissue, fused alveoli and capillary fragility. Histoarchitectural changes were less severe in soy groups. Hsp27 expression increased in both intoxicated groups, while Hsp70 only augmented in SoCd. This show that a soy-diet has a positive impact upon oxidative unbalance, cell death and morphological changes induced by Cd and it could be a good alternative strategy against Cd exposure.
Collapse
Affiliation(s)
- Gabriel Giezi Boldrini
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Glenda Martín Molinero
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - María Eugenia Ciminari
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | - Mariel Fanelli
- Laboratory of Oncology, IMBECU (CCT), CONICET, Mendoza, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina.
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
| |
Collapse
|
9
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
10
|
Mathias M, Chang J, Perez M, Saugstad O. Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends. Antioxidants (Basel) 2021; 10:1879. [PMID: 34942982 PMCID: PMC8698336 DOI: 10.3390/antiox10121879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Oxygen is the final electron acceptor in aerobic respiration, and a lack of oxygen can result in bioenergetic failure and cell death. Thus, administration of supplemental concentrations of oxygen to overcome barriers to tissue oxygen delivery (e.g., heart failure, lung disease, ischemia), can rescue dying cells where cellular oxygen content is low. However, the balance of oxygen delivery and oxygen consumption relies on tightly controlled oxygen gradients and compartmentalized redox potential. While therapeutic oxygen delivery can be life-saving, it can disrupt growth and development, impair bioenergetic function, and induce inflammation. Newborns, and premature newborns especially, have features that confer particular susceptibility to hyperoxic injury due to oxidative stress. In this review, we will describe the unique features of newborn redox physiology and antioxidant defenses, the history of therapeutic oxygen use in this population and its role in disease, and clinical trends in the use of therapeutic oxygen and mitigation of neonatal oxidative injury.
Collapse
Affiliation(s)
- Maxwell Mathias
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jill Chang
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (J.C.); (M.P.); (O.S.)
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Marta Perez
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (J.C.); (M.P.); (O.S.)
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Ola Saugstad
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (J.C.); (M.P.); (O.S.)
- Department of Pediatric Research, University of Oslo, N-0424 Oslo, Norway
| |
Collapse
|
11
|
Ozdemir R, Gokce IK, Taslidere AC, Tanbek K, Gul CC, Sandal S, Turgut H, Kaya H, Aslan M. Does Chrysin prevent severe lung damage in Hyperoxia-Induced lung injury Model? Int Immunopharmacol 2021; 99:108033. [PMID: 34343938 DOI: 10.1016/j.intimp.2021.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress and inflammation play a critical role in the etiopathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study was to evaluate the preventive effect of Chrysin (CH), an antioxidant, antiinflammatory, antiapoptotic and antifibrotic drug, on hyperoxia-induced lung injury in a neonatal rat model. METHODS Forty infant rats were divided into four groups labeled the Control, CH, BPD, and BPD + CH. The control and CH groups were kept in a normal room environment, while the BPD and BPD + CH groups were kept in a hyperoxic (90-95%) environment. At the end of the study, lung tissue was evaluated with respect to apoptosis, histopathological damage and alveolar macrophage score as well as oxidant capacity, antioxidant capacity, and inflammation. RESULTS Compared to the BPD + CH and control groups, the lung tissues of the BPD group displayed substantially higher levels of MDA, TOS, TNF-α, and IL-1β (p < 0.05). While the BPD + CH group showed similar levels of TNF-α and IL-1β as the control group, MDA and TOS levels were higher than the control group, and significantly lower than the BPD group (p < 0.05). The BPD group exhibited considerably lower levels of TAS, SOD, GSH, and GSH-Px in comparison to the control group (p < 0.05). The BPD and BPD + CH groups exhibited higher mean scores of histopathological damage and alveolar macrophage when compared to the control and CH groups (p ≤ 0.0001). Both scores were found to be lower in the BPD + CH group in comparison to the BPD group (p ≤ 0.0001). The BPD + CH group demonstrated a significantly lower average of TUNEL and caspase-3 positive cells than the BPD group. CONCLUSION We found that prophylaxis with CH results in lower histopathological damage score and reduces apoptotic cell count, inflammation and oxidative stress while increasing anti-oxidant capacity.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey.
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Suleyman Sandal
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Huseyin Kaya
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
12
|
Neonatal Extracellular Superoxide Dismutase Knockout Mice Increase Total Superoxide Dismutase Activity and VEGF Expression after Chronic Hyperoxia. Antioxidants (Basel) 2021; 10:antiox10081236. [PMID: 34439484 PMCID: PMC8388997 DOI: 10.3390/antiox10081236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common lung disease affecting premature infants that develops after exposure to supplemental oxygen and reactive oxygen intermediates. Extracellular superoxide dismutase (SOD3) is an enzyme that processes superoxide radicals and has been shown to facilitate vascular endothelial growth factor (VEGF) and nitric oxide (NO) signaling in vascular endothelium. We utilized a mouse model of neonatal hyperoxic lung injury and SOD3 knockout (KO) mice to evaluate its function during chronic hyperoxia exposure. Wild-type age-matched neonatal C57Bl/6 (WT) and SOD3−/− (KO) mice were placed in normoxia (21% FiO2, RA) or chronic hyperoxia (75% FiO2, O2) within 24 h of birth for 14 days continuously and then euthanized. Lungs were harvested for histologic evaluation, as well as comparison of antioxidant enzyme expression, SOD activity, VEGF expression, and portions of the NO signaling pathway. Surprisingly, KO-O2 mice survived without additional alveolar simplification, microvascular remodeling, or nuclear oxidation when compared to WT-O2 mice. KO-O2 mice had increased total SOD activity and increased VEGF expression when compared to WT-O2 mice. No genotype differences were noted in intracellular antioxidant enzyme expression or the NO signaling pathway. These results demonstrate that SOD3 KO mice can survive prolonged hyperoxia without exacerbation of alveolar or vascular phenotype.
Collapse
|
13
|
Dobrinskikh E, Sherlock LG, Orlicky DJ, Zheng L, De Dios R, Balasubramaniyan D, Sizemore T, Butler B, Wright CJ. The developing murine lung is susceptible to acetaminophen toxicity. Am J Physiol Lung Cell Mol Physiol 2021; 320:L969-L978. [PMID: 33759579 DOI: 10.1152/ajplung.00072.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (n-acetyl-p-aminophenol, APAP) use in the neonatal intensive care unit is rapidly increasing. Although APAP-related hepatotoxicity is rarely reported in the neonatal literature, other end-organ toxicity can occur with toxic exposures. APAP-induced lung injury has been reported with toxic exposures in adults, but whether this occurs in the developing lung is unknown. Therefore, we tested whether toxic APAP exposures would injure the developing lung. Neonatal C57BL/6 mice (PN7, early alveolar stage of lung development) were exposed to a dose of APAP known to cause hepatotoxicity in adult mice (280 mg/kg, IP). This exposure induced significant lung injury in the absence of identifiable hepatic toxicity. This injury was associated with increased pulmonary expression of Cyp2e1, the xenobiotic enzyme responsible for the toxic conversion of APAP. Exposure was associated with increased pulmonary expression of antioxidant response genes and decreased pulmonary glutathione peroxidase activity level. Furthermore, we observed an increase in pulmonary expression of proinflammatory cytokines and chemokines. Lastly, we were able to demonstrate that this toxic APAP exposure was associated with a shift in pulmonary metabolism away from glycolysis with increased oxidative phosphorylation, a finding consistent with increased mitochondrial workload, potentially leading to mitochondrial toxicity. This previously unrecognized injury and metabolic implications highlight the need to look beyond the liver and evaluate both the acute and long-term pulmonary implications of APAP exposure in the perinatal period.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Durga Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Thom Sizemore
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Brittany Butler
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
14
|
Ganguly A, Ofman G, Vitiello PF. Hydrogen Sulfide-Clues from Evolution and Implication for Neonatal Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2021; 8:213. [PMID: 33799529 PMCID: PMC7999351 DOI: 10.3390/children8030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.
Collapse
Affiliation(s)
- Abhrajit Ganguly
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.O.); (P.F.V.)
| | | | | |
Collapse
|
15
|
Neonatal Selenoenzyme Expression Is Variably Susceptible to Duration of Maternal Selenium Deficiency. Antioxidants (Basel) 2021; 10:antiox10020288. [PMID: 33672905 PMCID: PMC7917816 DOI: 10.3390/antiox10020288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Maternal selenium (Se) deficiency is associated with decreased neonatal Se levels, which increases the risk for neonatal morbidities. There is a hierarchy to selenoprotein expression after Se deficiency in adult rodents, depending on the particular protein and organ evaluated. However, it is unknown how limited Se supply during pregnancy impacts neonatal selenoprotein expression. We used an Se-deficient diet to induce perinatal Se deficiency (SeD), initiated 2–4 weeks before onset of breeding and continuing through gestation. Neonatal plasma, liver, heart, kidney, and lung were collected on the day of birth and assessed for selenoproteins, factors required for Se processing, and non-Se containing antioxidant enzymes (AOE). Maternal SeD reduced neonatal circulating and hepatic glutathione peroxidase (GPx) activity, as well as hepatic expression of Gpx1 and selenophosphate synthetase 2 (Sps2). In contrast, the impact of maternal SeD on hepatic thioredoxin reductase 1, hepatic non-Se containing AOEs, as well as cardiac, renal, and pulmonary GPx activity, varied based on duration of maternal exposure to SeD diet. We conclude that the neonatal liver and circulation demonstrate earlier depletion in selenoenzyme activity after maternal SeD. Our data indicate that prolonged maternal SeD may escalate risk to the neonate by progressively diminishing Se-containing AOE across multiple organs.
Collapse
|
16
|
Harer MW, Charlton JR, Tipple TE, Reidy KJ. Preterm birth and neonatal acute kidney injury: implications on adolescent and adult outcomes. J Perinatol 2020; 40:1286-1295. [PMID: 32277164 DOI: 10.1038/s41372-020-0656-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
As a result of preterm birth, immature kidneys are exposed to interventions in the NICU that promote survival, but are nephrotoxic. Furthermore, the duration of renal development may be truncated in these vulnerable neonates. Immaturity and nephrotoxic exposures predispose preterm newborns to acute kidney injury (AKI), particularly in the low birth weight and extremely preterm gestational age groups. Several studies have associated preterm birth as a risk factor for future chronic kidney disease (CKD). However, only a few publications have investigated the impact of neonatal AKI on CKD development. Here, we will review the evidence linking preterm birth and AKI in the NICU to CKD and highlight the knowledge gaps and opportunities for future research. For neonatal intensive care studies, we propose the inclusion of AKI as an important short-term morbidity outcome and CKD findings such as a reduced glomerular filtration rate in the assessment of long-term outcomes.
Collapse
Affiliation(s)
- Matthew W Harer
- Department of Pediatrics, Division of Neonatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia Children's Hospital, Box 800386, Charlottesville, VA, USA.
| | - Trent E Tipple
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Kimberly J Reidy
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|