1
|
De La Reé-Rodríguez SC, González MJ, Fernández I, Garrido JL, Silva-Campa E, Parra-Vergara NV, López-Saiz CM, Medina I. Chemical Characterization of Bioactive Compounds in Extracts and Fractions from Litopenaeus vannamei Muscle. Mar Drugs 2025; 23:59. [PMID: 39997183 PMCID: PMC11857617 DOI: 10.3390/md23020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms are a vital source of biologically active compounds. Organic extracts from the muscle of the Pacific white shrimp (L. vannamei) have shown antiproliferative effects on tumor cells, including breast adenocarcinoma. This study aimed to analyze these extracts' composition and confirm their specificity for breast adenocarcinoma cells without harming normal cells. An organic chloroform extract from L. vannamei muscle was divided using a solvent partition procedure with methanol and hexane. The methanolic partition was fractionated through an open preparative liquid chromatography column to isolate compounds with biological activity, that were later tested on MDA-MB-231 (breast adenocarcinoma), and recently tested on MCF10-A (non-cancerous breast epithelial cells). Cells incubated with these fractions were assessed for viability and morphological changes using fluorescence confocal microscopy. Fractions F#13 and F#14 reduced MDA-MB-231 cancer cell viability at 100 µg/mL without affecting non-cancerous MCF-10A cells, inducing apoptosis-related changes in cancer cells. These fractions contained EPA and DHA free fatty acids, specifically F#13 contained free and esterified astaxanthin as well. The high levels of free linoleic acid 18:2 ω-6, EPA, and DHA (in a 2:1 ratio, EPA:DHA), along with free and esterified astaxanthin in F#13, significantly reduced breast adenocarcinoma cell viability, nearly to that achieved by cisplatin, a chemotherapy drug.
Collapse
Affiliation(s)
- Sandra Carolina De La Reé-Rodríguez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (S.C.D.L.R.-R.); (N.V.P.-V.)
| | - María Jesús González
- Química de Productos Marinos, Instituto de Investigaciones Marinas, 36208 Vigo, Pontevedra, Spain; (M.J.G.); (I.F.); (J.L.G.)
| | - Ingrid Fernández
- Química de Productos Marinos, Instituto de Investigaciones Marinas, 36208 Vigo, Pontevedra, Spain; (M.J.G.); (I.F.); (J.L.G.)
| | - José Luis Garrido
- Química de Productos Marinos, Instituto de Investigaciones Marinas, 36208 Vigo, Pontevedra, Spain; (M.J.G.); (I.F.); (J.L.G.)
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Norma Violeta Parra-Vergara
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (S.C.D.L.R.-R.); (N.V.P.-V.)
| | - Carmen María López-Saiz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (S.C.D.L.R.-R.); (N.V.P.-V.)
| | - Isabel Medina
- Química de Productos Marinos, Instituto de Investigaciones Marinas, 36208 Vigo, Pontevedra, Spain; (M.J.G.); (I.F.); (J.L.G.)
| |
Collapse
|
2
|
Wu Z, Wang Z, Wang P, Cheng L, Li J, Luo Y, Yang L, Li L, Zeng J, Hu B. Integrative analysis of proteomics and lipidomic profiles reveal the fat deposition and meat quality in Duroc × Guangdong small spotted pig. Front Vet Sci 2024; 11:1361441. [PMID: 38659450 PMCID: PMC11041638 DOI: 10.3389/fvets.2024.1361441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction This study aims to explore the important factors affecting the characteristics of different parts of pork. Methods Lipidomics and proteomics methods were used to analyze DAL (differential lipids) and DAPs (differential proteins) in five different parts (longissimus dorsi, belly meat, loin, forelegs and buttocks) of Duhua pig (Duroc × Guangdong small spotted pig), to identify potential pathways affecting meat quality, investigating fat deposition in pork and its lipid-protein interactions. Results The results show that TG (triglyceride) is the lipid subclass with the highest proportion in muscle, and the pathway with the most significantly enriched lipids is GP. DAP clustered on several GO terms closely related to lipid metabolism and lipogenesis (lipid binding, lipid metabolism, lipid transport, and lipid regulation). In KEGG analysis, there are two main DAP aggregation pathways related to lipid metabolism, namely Fatty acid degradation and oxidative phosphorylation. In PPI analysis, we screened out 31 core proteins, among which NDUFA6, NDUFA9 and ACO2 are the most critical. Discussion PC (phosphatidylcholine) is regulated by SNX5, THBS1, ANXA7, TPP1, CAVIN2, and VDAC2 in the phospholipid binding pathway. TG is regulated by AUH/HADH/ACADM/ACADL/HADHA in the lipid oxidation and lipid modification pathways. Potential biomarkers are rich in SFA, MUFA and PUFA respectively, the amounts of SFA, MUFA and PUFA in the lipid measurement results are consistent with the up- and down-regulation of potential biomarker lipids. This study clarified the differences in protein and lipid compositions in different parts of Duhua pigs and provided data support for revealing the interactions between pork lipids and proteins. These findings provide contributions to the study of intramuscular fat deposition in pork from a genetic and nutritional perspective.
Collapse
Affiliation(s)
- Zhuosui Wu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhonggang Wang
- Guangdong Guanghong Agriculture and Animal Husbandry Development Co, Ltd., Huizhou, China
| | - Pan Wang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Leiyan Cheng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianhao Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanfeng Luo
- Guangdong Yihao Foodstuff Co, Ltd., Guangzhou, China
| | - Linfang Yang
- Guangdong Yihao Foodstuff Co, Ltd., Guangzhou, China
| | - Linfeng Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianhua Zeng
- Guangdong Yihao Foodstuff Co, Ltd., Guangzhou, China
| | - Bin Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Dietary Marine Oils Selectively Decrease Obesogenic Diet-Derived Carbonylation in Proteins Involved in ATP Homeostasis and Glutamate Metabolism in the Rat Cerebellum. Antioxidants (Basel) 2024; 13:103. [PMID: 38247527 PMCID: PMC10812471 DOI: 10.3390/antiox13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
The regular intake of diets high in saturated fat and sugars increases oxidative stress and has been linked to cognitive decline and premature brain aging. The cerebellum is highly vulnerable to oxidative stress and thus, obesogenic diets might be particularly detrimental to this tissue. However, the precise molecular mechanisms behind obesity-related brain damage are still not clear. Since protein carbonylation, a biomarker of oxidative stress, influences protein functions and is involved in metabolic control, the current investigation addressed the effect of long-term high-fat and high-sucrose diet intake on the cerebellum of Sprague-Dawley rats by deciphering the changes caused in the carbonylated proteome. The antioxidant effects of fish oil supplementation on cerebellar carbonylated proteins were also investigated. Lipid peroxidation products and carbonylated proteins were identified and quantified using immunoassays and 2D-LC-MS/MS in the cerebellum. After 21 weeks of nutritional intervention, the obesogenic diet selectively increased carbonylation of the proteins that participate in ATP homeostasis and glutamate metabolism in the cerebellum. Moreover, the data demonstrated that fish oil supplementation restrained carbonylation of the main protein targets oxidatively damaged by the obesogenic diet, and additionally protected against carbonylation of several other proteins involved in amino acid biosynthesis and neurotransmission. Therefore, dietary interventions with fish oils could help the cerebellum to be more resilient to oxidative damage. The results could shed some light on the effect of high-fat and high-sucrose diets on redox homeostasis in the cerebellum and boost the development of antioxidant-based nutritional interventions to improve cerebellum health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
- Universidad de Vigo, Circunvalación ao Campus Universitario, E-36310 Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
| | - Ana Raner
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (M.R.)
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain; (B.M.-P.); (M.R.)
| | - Sara Ramos-Romero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain;
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma de Gramenet, Spain;
- Instituto de Química Avanzada de Catalunya—Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma de Gramenet, Spain;
- Instituto de Química Avanzada de Catalunya—Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas—Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (F.M.); (A.R.); (I.M.)
| |
Collapse
|
4
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomed Pharmacother 2023; 168:115708. [PMID: 37857255 DOI: 10.1016/j.biopha.2023.115708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain; Universidad de Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain.
| | - Ana Raner
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Sara Ramos-Romero
- Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Av Diagonal 643, E-08028 Barcelona, Spain; Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| |
Collapse
|
5
|
Afonso-Alí A, Porrini E, Teixido-Trujillo S, Pérez-Pérez JA, Luis-Lima S, Acosta-González NG, Sosa-Paz I, Díaz-Martín L, Rodríguez-González C, Rodríguez-Rodríguez AE. The Role of Gender Differences and Menopause in Obesity-Related Renal Disease, Renal Inflammation and Lipotoxicity. Int J Mol Sci 2023; 24:12984. [PMID: 37629165 PMCID: PMC10455320 DOI: 10.3390/ijms241612984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The pathogenesis of obesity-related-renal disease is unknown. Menopause can promote renal disease in obese women, but this interaction is unclear. In a previous study, we observed that obese male and female mice developed albuminuria, hyperfiltration, and glomerulomegaly, and these changes were more severe in those obese ovariectomized females. In this study, we also evaluated renal inflammation and lipotoxicity in that animal model. For six months, 43 males and 36 females C57BL6/J mice were randomized to standard diet (SD) or high fat diet (HFD). A group of female animals on SD or HFD was ovariectomized to simulate menopause. We evaluated cytokines: NF-κβ p65, IL-1β, MCP-1, TNF-α, total lipid content, lipid classes, and fatty acid profile in total lipid and individual lipid classes in renal tissue and urine. We found that obese males and females showed higher NF-kβ p-65, TNF-α and MCP-1 in renal tissue, and obese females ovariectomized had higher IL-1β and TNF-α compared with not-ovariectomized. Also, obese animals showed lower proinflammatory and higher anti-inflammatory fatty acids in kidney total lipids, while obese females ovariectomized had a more exacerbated pattern. In brief, obesity induces inflammation and an unbalanced lipidic profile in renal tissue. This pattern seems to be enhanced in obesity after menopause.
Collapse
Affiliation(s)
- Aaron Afonso-Alí
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
| | - Esteban Porrini
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| | - Silvia Teixido-Trujillo
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| | - José Antonio Pérez-Pérez
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Sergio Luis-Lima
- Department of Laboratory Medicine, Complejo Hospitalario Universitario de Canarias, 38200 San Cristóbal de La Laguna, Spain;
| | - Nieves Guadalupe Acosta-González
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Irene Sosa-Paz
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Laura Díaz-Martín
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| | - Covadonga Rodríguez-González
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Department of Animal Biology, Edaphology and Geology, Faculty of Biology, University of La Laguna, 38204 Tenerife, Spain; (J.A.P.-P.); (N.G.A.-G.); (I.S.-P.)
| | - Ana Elena Rodríguez-Rodríguez
- ITB (Instituto Tecnologías Biomédicas), University of La Laguna, 38200 Tenerife, Spain; (A.A.-A.); (S.T.-T.); (L.D.-M.); (C.R.-G.); (A.E.R.-R.)
- Research Unit, Hospital Universitario de Canarias, 38200 Tenerife, Spain
| |
Collapse
|
6
|
Chen L, Dai J, Fei Z, Liu X, Zhu Y, Rahman ML, Lu R, Mitro SD, Yang J, Hinkle SN, Chen Z, Song Y, Zhang C. Metabolomic biomarkers of the mediterranean diet in pregnant individuals: A prospective study. Clin Nutr 2023; 42:384-393. [PMID: 36753781 PMCID: PMC10029322 DOI: 10.1016/j.clnu.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Metabolomic profiling is a systematic approach to identifying biomarkers for dietary patterns. Yet, metabolomic markers for dietary patterns in pregnant individuals have not been investigated. The aim of this study was to identify plasma metabolomic markers and metabolite panels that are associated with the Mediterranean diet in pregnant individuals. METHODS This is a prospective study of 186 pregnant individuals who had both dietary intake and metabolomic profiles measured from the Fetal Growth Studies-Singletons cohort. Dietary intakes during the peri-conception/1st trimester and the second trimester were accessed at 8-13 and 16-22 weeks of gestation, respectively. Adherence to the Mediterranean diet was measured by the alternate Mediterranean Diet (aMED) score. Fasting plasma samples were collected at 16-22 weeks and untargeted metabolomics profiling was performed using the mass spectrometry-based platforms. Metabolites individually or jointly associated with aMED scores were identified using linear regression and least absolute shrinkage and selection operator (LASSO) regression models with adjustment for potential confounders, respectively. RESULTS Among 459 annotated metabolites, 64 and 41 were individually associated with the aMED scores of the diet during the peri-conception/1st trimester and during the second trimester, respectively. Fourteen metabolites were associated with the Mediterranean diet in both time windows. Most Mediterranean diet-related metabolites were lipids (e.g., acylcarnitine, cholesteryl esters (CEs), linoleic acid, long-chain triglycerides (TGs), and phosphatidylcholines (PCs), amino acids, and sugar alcohols. LASSO regressions also identified a 10 metabolite-panel that were jointly associated with aMED score of the diet during the peri-conception/1st trimester (AUC: 0.74; 95% CI: 0.57, 0.91) and a 3 metabolites-panel in the 2nd trimester (AUC: 0.68; 95% CI: 0.50, 0.86). CONCLUSION We identified plasma metabolomic markers for the Mediterranean diet among pregnant individuals. Some of them have also been reported in previous studies among non-pregnant populations, whereas others are novel. The results from our study warrant replication in pregnant individuals by future studies. CLINICAL TRIAL REGISTRATION NUMBER This study was registered at ClinicalTrials.gov.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jin Dai
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xinyue Liu
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, 94612, USA.
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Ruijin Lu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA.
| | - Susanna D Mitro
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA.
| | - Jiaxi Yang
- Global Center for Asian Women's Health, and Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, 117549, Singapore; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| | - Stefanie N Hinkle
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zhen Chen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, USA.
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA.
| | - Cuilin Zhang
- Global Center for Asian Women's Health, and Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, 117549, Singapore; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
7
|
Chen L, Xue S, Dai B, Zhao H. Effects of Coix Seed Oil on High Fat Diet-Induced Obesity and Dyslipidemia. Foods 2022. [PMCID: PMC9601554 DOI: 10.3390/foods11203267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dietary intervention is becoming more popular as a way to improve lipid metabolism and reduce the prevalence of diet-related chronic disorders. We evaluated the effects of several dietary oils on body weight, fat mass, liver weight, and tumor necrosis factor in obese mice given a high-fat diet (HFD) to discover if coix seed oil (CSO) had an anti-obesity impact. As compared to other dietary fats, CSO treatment considerably lowered body weight and liver index, successfully sup-pressed total cholesterol and triglyceride content, and raised liver lipid deposition and lipid metabolism problem induced by high fat intake. Furthermore, gas chromatography research revealed that CSO extracted by supercritical fluid, with 64% being CSO extracted by supercritical fluid, and the greatest amounts of capric acids and lauric acids being 35.28% and 22.21%, respectively. CSO contained a high content of medium-chain fatty acids and was able to modify hepatic fatty acid metabolism and lipid levels in HFD-induced obese mice. According to the results, CSO has the potential to replace dietary lipids as a promising functional lipid in the prevention of met-abolish disorders.
Collapse
Affiliation(s)
- Lichun Chen
- Correspondence: ; Tel.: +86-137-7757-7107; Fax: +86-571-2800-8902
| | | | | | | |
Collapse
|
8
|
Cao H, Chen SF, Wang ZC, Dong XJ, Wang RR, Lin H, Wang Q, Zhao XJ. Intervention of 4% salmon phospholipid on metabolic syndrome in mice based on colonic lipidomics analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3088-3098. [PMID: 34775620 DOI: 10.1002/jsfa.11649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The incidence of metabolic syndrome (MetS) is increasing, and n-3 polyunsaturated fatty acids (PUFAs) in salmon (Oncorhynchus) phospholipids can effectively reduce the risk of MetS. RESULTS Under the intervention of 4% salmon phospholipid, the levels of fasting blood glucose (FBG), insulin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly reduced in the plasma of MetS mice, whereas adiponectin was significantly increased. By screening, we found that the 18 differential metabolites, consisting of seven triglycerides (TGs), six diglycerides (DGs), one phosphatidylethanolamine (PE), three sphingomyelins (SMs) and one eicosanoid, could be the key differential metabolites, and two metabolic pathways were significantly affected: glycerolipid metabolism and glycerophospholipid metabolism. CONCLUSION 4% salmon phospholipids could affect MetS by inhibiting insulin resistance, reducing inflammatory factors and promoting the synthesis of PE, yet the mechanism required further study. Our results could help in the treatment of MetS. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Cao
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Shu-Fen Chen
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | | | - Xin-Jie Dong
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Ran-Ran Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Hong Lin
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Qi Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiu-Ju Zhao
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| |
Collapse
|
9
|
Wang T, Hu L, Lu J, Xiao M, Liu J, Xia H, Lu H. Functional metabolomics revealed functional metabolic-characteristics of chronic hepatitis that is significantly differentiated from acute hepatitis in mice. Pharmacol Res 2022; 180:106248. [DOI: 10.1016/j.phrs.2022.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
|
10
|
Slutsky Smith EA, Khatib S, Szuchman-Sapir A. Fishing for lipid lactones using selective reaction and characteristic fragmentation pattern. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1197:123201. [PMID: 35306351 DOI: 10.1016/j.jchromb.2022.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Extensive research has been invested in developing sensitive methods to identify lipid mediators (LMs) from multiple biological matrices. Previous studies point to the existence of a potential family of lactone-containing metabolites generated from eicosanoid families, isoprostanes, and prostanoid-like compounds that may function as LMs. However, targeted lipidomic studies do not routinely include lactone-containing lipids due to their low ionizability and instability under some common sample preparation conditions. Thus, the discovery of lactone-containing LM is limited. Herein we describe a method for selective identification of lipid lactones from within biological matrices. This method is based on a selective reaction of lactones with 1-(3-aminopropyl)imidazole, followed by cation exchange solid phase extraction and the identification of characteristic fragmentation patterns unique to reaction products of lactones in LC/MS/MS. NMR and LC/MS results indicated that saturated and unsaturated aliphatic ɣ and δ lactone model compounds mixed with human serum were successfully detected. MS/MS analyses of the reaction products revealed a unique pattern for the lactones, resulting from common neutral losses and fragmentation. When applied to esters and free fatty acids, some reaction products were observed. However, these reaction products' MS/MS fragmentation did not match the specific fragmentation of the lactones' reaction products. Confirming that lactones can be detected in a highly selective manner from within complex biological matrices when using the presented method. Thus, the presented method can selectively analyze lactones and may further complement existing lipidomic approaches to discover new LMs.
Collapse
Affiliation(s)
- Elana A Slutsky Smith
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Soliman Khatib
- Laboratory of Natural Products and Analytical Chemistry, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Andrea Szuchman-Sapir
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
11
|
Ruiz A, Romero-García AS, Mancilla-Jiménez R, Juárez E. Los ácidos grasos poliinsaturados y sus derivados regulan infecciones respiratorias. NCT NEUMOLOGÍA Y CIRUGÍA DE TÓRAX 2022; 81:41-51. [DOI: 10.35366/105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Stefano T, Alberto E, William M, Giulia B, Louise SM, Chiara T, Carlo A, Giovanni M. Adherence to the Mediterranean Diet Improves Fatty Acids Profile in Pediatric Patients with Idiopathic Nephrotic Syndrome. Nutrients 2021; 13:nu13114110. [PMID: 34836363 PMCID: PMC8625245 DOI: 10.3390/nu13114110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The fatty acid profiles of patients with idiopathic nephrotic syndrome (INS) are different from that of healthy controls, even during remission, revealing an increase of the pro-inflammatory omega 6 series. It is still unknown whether the concomitance of nephrotic syndrome affects the potential positive effects of the Mediterranean diet on the levels of omega 3 and 6 fatty acids. We performed a cross-sectional study to evaluate the association between the adherence to the Mediterranean diet and fatty acid profile in 54 children with INS. The dietary habits were assessed through the validated Kidmed questionnaire. Patients with higher adherence had lower levels of linoleic acid and total omega-6. Moreover, a negative correlation between proteinuria and the anti-inflammatory omega-3 series was found. In conclusion, patients with INS with proteinuria and low adherence to the Mediterranean diet have an imbalance in the omega-6/omega-3 ratio that may benefit from following the Mediterranean diet.
Collapse
Affiliation(s)
- Turolo Stefano
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via della Commenda 9, 20122 Milan, Italy; (E.A.); (M.W.); (B.G.); (T.C.); (M.G.)
- Correspondence:
| | - Edefonti Alberto
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via della Commenda 9, 20122 Milan, Italy; (E.A.); (M.W.); (B.G.); (T.C.); (M.G.)
| | - Morello William
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via della Commenda 9, 20122 Milan, Italy; (E.A.); (M.W.); (B.G.); (T.C.); (M.G.)
| | - Bolzan Giulia
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via della Commenda 9, 20122 Milan, Italy; (E.A.); (M.W.); (B.G.); (T.C.); (M.G.)
| | - Syren M. Louise
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.M.L.); (A.C.)
| | - Tamburello Chiara
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via della Commenda 9, 20122 Milan, Italy; (E.A.); (M.W.); (B.G.); (T.C.); (M.G.)
| | - Agostoni Carlo
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.M.L.); (A.C.)
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Montini Giovanni
- Pediatric Nephrology Dialysis and Transplant Unit, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via della Commenda 9, 20122 Milan, Italy; (E.A.); (M.W.); (B.G.); (T.C.); (M.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (S.M.L.); (A.C.)
| |
Collapse
|
13
|
Li M, Zhu M, Chai W, Wang Y, Fan D, Lv M, Jiang X, Liu Y, Wei Q, Wang C. Determination of lipid profiles of Dezhou donkey meat using an LC-MS-based lipidomics method. J Food Sci 2021; 86:4511-4521. [PMID: 34535907 DOI: 10.1111/1750-3841.15917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022]
Abstract
Intramuscular fat (IMF) is an important factor affecting meat quality, but lipid and metabolic profiles of donkey meat remain unclear. The present study was conducted to investigate lipid characteristics in different parts of Dezhou donkey using lipidomics. The results show that IMF was more abundant in longissimus dorsi muscle (LDM) than rump muscle (RM) and hamstring muscle (HM), and mainly composed of triglycerides (TGs) rich in saturated fatty acid (SFAs) and monounsaturated fatty acid (MUFAs). A total of 1143 lipids belonging to 14 subclasses were identified in donkey meat, of which 73 lipids (23 upregulated and 50 downregulated) including glycerolipids (GLs), glycerophospholipids (GPs) and sphingolipids (SPs) were significantly different and are therefore potential biomarkers in LDM versus RM versus HM analyses (variable importance in projection >1, p < 0.05). Notably, 21 TGs upregulated in LDM were rich in MUFAs at sn-1 and SFAs at 2 and 3 positions of TG. Donkey muscle accumulated far more SFAs at the sn-3 position of TG, while more SFAs were present at the sn-1 positions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and the percentages of SFAs at the three positions in TG, PC, and PE in the LDM group were much higher. The abundance of MUFAs at the sn-2 positions of TG, PC, and PE was significantly greater than in sn-1 or 3 positions, and the percentages of 18:1n-9 at the sn-1 and 2 position of TGs in LDM were significantly higher than in RM and HM groups. Polyunsaturated fatty acids (e.g.,18:2n-6, 18:3n-3, and 20:4n-6) tended to occur at the sn-1 position in TG, but at the sn-2 position in PC and PE. Significantly differential lipids were mainly enriched in GP, GL, and SP pathways, all considered key pathways for regulating IMF. The results reveal the components, structures and metabolic pathways of lipid molecules in donkey meat, and provide novel insight into the development of donkey meat products and accurate regulation of IMF. PRACTICAL APPLICATION: Intramuscular fat (IMF) is an important factor affecting meat quality, which is directly related to meat flavor, juiciness, and tenderness, but lipid and metabolic profiles of IMF remain unclear. The current results provide basic information for the development of donkey meat products, and broaden our understanding of the regulation of IMF.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenqiong Chai
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Dongmei Fan
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Mengqing Lv
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaojing Jiang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yongxiang Liu
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qingxin Wei
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
14
|
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, Neves B, Domingues P, Domingues MR. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int J Mol Sci 2021; 22:9825. [PMID: 34576003 PMCID: PMC8471354 DOI: 10.3390/ijms22189825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.
Collapse
Affiliation(s)
- Tiago Alexandre Conde
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain;
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Bruno Neves
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
15
|
Liu Q, Zhang Y, Zhao H, Yao X. Increased Epoxyeicosatrienoic Acids and Hydroxyeicosatetraenoic Acids After Treatment of Iodide Intake Adjustment and 1,25-Dihydroxy-Vitamin D 3 Supplementation in High Iodide Intake-Induced Hypothyroid Offspring Rats. Front Physiol 2021; 12:669652. [PMID: 34381374 PMCID: PMC8352438 DOI: 10.3389/fphys.2021.669652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Aim: This study aimed to investigate the potential role of fatty acids in high iodide intake-induced hypothyroidism and its complications and also in the intervention of iodide intake adjustment and 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] supplementation. Methods: Pregnant rats were allocated to two groups, namely, normal iodide (NI, 7.5 μg/day) intake and 100 times higher-than-normal iodide (100 HI, 750 μg/day) intake. The offspring were continuously administered potassium iodide from weaning [i.e., postnatal day 21 (PN21)] to PN90. After PN90, the offspring were either administered iodide intake adjustment (7.5 μg/day) or 1,25(OH)2D3 supplementation (5 μg·kg-1·day-1), or both, for 4 weeks. Thyroid function tests (free triiodothyronine, free thyroxine, thyrotropin, thyroid peroxidase antibody, and thyroglobulin antibody), blood lipids (triglyceride, total cholesterol, free fatty acid, and low-density lipoprotein cholesterol), and vitamin D3 (VD3) levels were detected by ELISA. Cardiac function was measured by echocardiography. Blood pressure was measured using a non-invasive tail-cuff system. The serum fatty acids profile was analyzed by liquid chromatography-mass spectrometry. Results: In the offspring rats with continued 100 HI administration, the levels of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET) and thromboxane B2 (TXB2) were decreased, while those of prostaglandin J2 (PGJ2), prostaglandin B2 (PGB2), 4-hydroxydocosahexaenoic acid (4-HDoHE), 7-HDoHE, 8-HDoHE, and 20-HDoHE were increased. Significant correlations were found between PGB2, 8,9-DHET, 7-HDoHE levels and thyroid dysfunction, between PGJ2, 20-HDoHE, PGB2, 8,9-DHET levels and cardiac dysfunction, between PGJ2, 20-HDoHE levels and hypertension, between 4-HDoHE, 8-HDoHE, TXB2 levels and dyslipidemia, and between PGB2 and decreased VD3 level. After the treatment of iodide intake adjustment and 1,25(OH)2D3 supplementation, the levels of 16-hydroxyeicosatetraenoic acids (16-HETE), 18-HETE, 5,6-epoxyeicosatrienoic acid (5,6-EET), 8,9-EET, 11,12-EET, 14,15-EET, PGE2, 5-oxo-ETE, and 15-oxo-ETE were increased. The significant associations between PGE2, 16-HETE, 18-HETE and improved thyroid function and also between 5,6-EET, 11,12-EET, 14,15-EET, 16-HETE, 15-oxo-ETE and attenuated dyslipidemia were detected. Conclusion: Increased levels of prostaglandins (PGs) and HDoHEs and decreased levels of 8,9-DHET and TXB2 might occur in the progression of cardiac dysfunction, hypertension, and dyslipidemia in high iodide intake-induced hypothyroidism. The increased levels of EETs and HETEs might help to ameliorate these complications after iodide intake adjustment and 1,25(OH)2D3 supplementation.
Collapse
Affiliation(s)
- Qing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaomei Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Matthiesen R, Lauber C, Sampaio JL, Domingues N, Alves L, Gerl MJ, Almeida MS, Rodrigues G, Araújo Gonçalves P, Ferreira J, Borbinha C, Pedro Marto J, Neves M, Batista F, Viana-Baptista M, Alves J, Simons K, Vaz WLC, Vieira OV. Shotgun mass spectrometry-based lipid profiling identifies and distinguishes between chronic inflammatory diseases. EBioMedicine 2021; 70:103504. [PMID: 34311325 PMCID: PMC8330692 DOI: 10.1016/j.ebiom.2021.103504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/12/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. Methods Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. Findings Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control – Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. Interpretation Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. Funding Full list of funding sources at the end of the manuscript.
Collapse
Affiliation(s)
- Rune Matthiesen
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Chris Lauber
- Lipotype GmbH, Tatzberg 47, 01307 Dresden, Germany
| | | | - Neuza Domingues
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Liliana Alves
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | | | - Manuel S Almeida
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Gustavo Rodrigues
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Pedro Araújo Gonçalves
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Jorge Ferreira
- Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Cláudia Borbinha
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - João Pedro Marto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Marisa Neves
- Hospital Dr. Fernando da Fonseca, IC 19, 2720-276 Amadora, Portugal
| | | | - Miguel Viana-Baptista
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126 1349-019 Lisboa, Portugal
| | - Jose Alves
- Hospital Dr. Fernando da Fonseca, IC 19, 2720-276 Amadora, Portugal
| | - Kai Simons
- Lipotype GmbH, Tatzberg 47, 01307 Dresden, Germany
| | - Winchil L C Vaz
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Otilia V Vieira
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
17
|
Polyphenols and Fish Oils for Improving Metabolic Health: A Revision of the Recent Evidence for Their Combined Nutraceutical Effects. Molecules 2021; 26:molecules26092438. [PMID: 33922113 PMCID: PMC8122614 DOI: 10.3390/molecules26092438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Polyphenols and omega-3 polyunsaturated fatty acids from fish oils, i.e., eicosapentaenoic and docosahexaenoic acids, are well-recognized nutraceuticals, and their single antioxidant and anti-inflammatory properties have been demonstrated in several studies found in the literature. It has been reported that the combination of these nutraceuticals can lead to three-fold increases in glutathione peroxidase activity, two-fold increases in plasma antioxidant capacity, decreases of 50-100% in lipid peroxidation, protein carbonylation, and urinary 8-isoprotanes, as well as 50-200% attenuation of common inflammation biomarkers, among other effects, as compared to their individual capacities. Therefore, the adequate combination of those bioactive food compounds and their single properties should offer a powerful tool for the design of successfully nutritional interventions for the prevention and palliation of a plethora of human metabolic diseases, frequently diet-induced, whose etiology and progression are characterized by redox homeostasis disturbances and a low-grade of chronic inflammation. However, the certain mechanisms behind their biological activities, in vivo interaction (both between them and other food compounds), and their optimal doses and consumption are not well-known yet. Therefore, we review here the recent evidence accumulated during the last decade about the cooperative action between polyphenols and fish oils against diet-related metabolic alterations, focusing on the mechanisms and pathways described and the effects reported. The final objective is to provide useful information for strategies for personalized nutrition based on these nutraceuticals.
Collapse
|
18
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
19
|
Sun T, Wang X, Cong P, Xu J, Xue C. Mass spectrometry-based lipidomics in food science and nutritional health: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:2530-2558. [PMID: 33336980 DOI: 10.1111/1541-4337.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
With the advance in science and technology as well as the improvement of living standards, the function of food is no longer just to meet the needs of survival. Food science and its associated nutritional health issues have been increasingly debated. Lipids, as complex metabolites, play a key role both in food and human health. Taking advantages of mass spectrometry (MS) by combining its high sensitivity and accuracy with extensive selective determination of all lipid classes, MS-based lipidomics has been employed to resolve the conundrum of addressing both qualitative and quantitative aspects of high-abundance and low-abundance lipids in complex food matrices. In this review, we systematically summarize current applications of MS-based lipidomics in food field. First, common MS-based lipidomics procedures are described. Second, the applications of MS-based lipidomics in food science, including lipid composition characterization, adulteration, traceability, and other issues, are discussed. Third, the application of MS-based lipidomics for nutritional health covering the influence of food on health and disease is introduced. Finally, future research trends and challenges are proposed. MS-based lipidomics plays an important role in the field of food science, promoting continuous development of food science and integration of food knowledge with other disciplines. New methods of MS-based lipidomics have been developed to improve accuracy and sensitivity of lipid analysis in food samples. These developments offer the possibility to fully characterize lipids in food samples, identify novel functional lipids, and better understand the role of food in promoting healt.
Collapse
Affiliation(s)
- Tong Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs & Biological Products, Qingdao, China
| |
Collapse
|
20
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
21
|
Comparative Transcriptomic Analysis Uncovers Genes Responsible for the DHA Enhancement in the Mutant Aurantiochytrium sp. Microorganisms 2020; 8:microorganisms8040529. [PMID: 32272666 PMCID: PMC7232246 DOI: 10.3390/microorganisms8040529] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022] Open
Abstract
Docosahexaenoic acid (DHA), a n-3 long-chain polyunsaturated fatty acid, is critical for physiological activities of the human body. Marine eukaryote Aurantiochytrium sp. is considered a promising source for DHA production. Mutational studies have shown that ultraviolet (UV) irradiation (50 W, 30 s) could be utilized as a breeding strategy for obtaining high-yield DHA-producing Aurantiochytrium sp. After UV irradiation (50 W, 30 s), the mutant strain X2 which shows enhanced lipid (1.79-fold, 1417.37 mg/L) and DHA (1.90-fold, 624.93 mg/L) production, was selected from the wild Aurantiochytrium sp. Instead of eicosapentaenoic acid (EPA), 9.07% of docosapentaenoic acid (DPA) was observed in the mutant strain X2. The comparative transcriptomic analysis showed that in both wild type and mutant strain, the fatty acid synthesis (FAS) pathway was incomplete with key desaturases, but genes related to the polyketide synthase (PKS) pathway were observed. Results presented that mRNA expression levels of CoAT, AT, ER, DH, and MT down-regulated in wild type but up-regulated in mutant strain X2, corresponding to the increased intercellular DHA accumulation. These findings indicated that CoAT, AT, ER, DH, and MT can be exploited for high DHA yields in Aurantiochytrium.
Collapse
|
22
|
Henson J, Edwardson CL, Davies MJ, Gill JMR, Heaney LM, Khunti K, Ng L, Sattar N, Zaccardi F, Yates T. Physical activity and lipidomics in a population at high risk of type 2 diabetes mellitus. J Sports Sci 2020; 38:1150-1160. [PMID: 32228122 DOI: 10.1080/02640414.2020.1744836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim was to investigate how measurements of the lipidome differ according to the level and intensity of physical activity in a population at high risk of type 2 diabetes (T2DM). A targeted metabolomics platform provided quantitative molecular data on lipid species. Linear regression examined the associations between plasma lipid concentrations, particle size and time spent in objectively measured physical activity intensity domains, in increments of 500 counts per minute (cpm) (up to >4500 cpm (~>5.6METs)). Results are presented as % difference in the concentration (lower/higher) or particle size (smaller/larger) per 10 min of activity within each intensity. Five hundred and nine participants were included. Time spent in the lowest physical activity intensity domain (<500 cpm) was unfavourably associated with VLDL (2%), HDL (-2%) and Apolipoprotein A-1 particle concentrations (-2%) and HDL diameter (-2%). Conversely, time spent in intensities ≥1000 cpm were favourably associated with HDL subclass concentrations; with stronger associations seen at moderate intensities (2000-3999 cpm (~4.5METs)). For Apolipoprotein-B concentration and VLDL particle concentration and size, a negative association was consistently observed at the highest physical activity intensity only. If these associations are causal, HDL subclasses appear sensitive to light-intensities whereas only the high category of physical activity intensity was consistently associated with VLDL subclasses.
Collapse
Affiliation(s)
- Joseph Henson
- NIHR Leicester Biomedical Research Centre, UK and Diabetes Research Centre, College of Life Sciences, University of Leicester , Leicester, UK
| | - Charlotte L Edwardson
- NIHR Leicester Biomedical Research Centre, UK and Diabetes Research Centre, College of Life Sciences, University of Leicester , Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, UK and Diabetes Research Centre, College of Life Sciences, University of Leicester , Leicester, UK
| | - Jason M R Gill
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , Glasgow, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University , Loughborough, UK
| | - Kamlesh Khunti
- NIHR Applied Research Collaboration (ARC) East Midlands, UK and Diabetes Research Centre, College of Life Sciences, University of Leicester , Leicester, UK
| | - Leong Ng
- NIHR Leicester Biomedical Research Centre, UK and Department of Cardiovascular Sciences, University of Leicester , Leicester, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow , Glasgow, UK
| | - Francesco Zaccardi
- NIHR Leicester Biomedical Research Centre, UK and Diabetes Research Centre, College of Life Sciences, University of Leicester , Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, UK and Diabetes Research Centre, College of Life Sciences, University of Leicester , Leicester, UK
| |
Collapse
|
23
|
Davinelli S, Intrieri M, Corbi G, Scapagnini G. Metabolic indices of polyunsaturated fatty acids: current evidence, research controversies, and clinical utility. Crit Rev Food Sci Nutr 2020; 61:259-274. [PMID: 32056443 DOI: 10.1080/10408398.2020.1724871] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The n-3 and n-6 polyunsaturated fatty acids (PUFA) are among the most studied nutrients in human metabolism. In the past few decades, prospective studies and controlled trials have supported the view that the effects of these essential fatty acids are clinically relevant. PUFA profiles in different blood compartments are reflections of both diet and metabolism, and their levels may be related to disease risk. Despite widespread interest, there is no consensus regarding which biomarkers best reflect PUFA status in the body. The measurement of PUFA levels is not straight-forward, and a wide variety of indices have been used in clinical studies, producing conflicting results. A major source of heterogeneity among studies is associated with research design, sampling, and laboratory analyses. To date, the n-3 index, n-6/n-3 ratio, and arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio are the most promising biomarkers associated with PUFA metabolism. Although hotly debated, these indices may be considered at least markers, if not risk factors, for several diseases, especially cardiovascular events and brain disorders. Here, we summarize the most updated evidence of n-3 and n-6 PUFA effects on human health, reviewing current controversies on the aforementioned indices and whether they can be considered valuable predictors of clinical outcomes.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
24
|
Effect of Dietary n-3 Source on Rabbit Male Reproduction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3279670. [PMID: 32082475 PMCID: PMC7011472 DOI: 10.1155/2019/3279670] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
In the last two decades, the human sperm count linearly decreased in Western countries. Health problems, lifestyle, pollutants, and dietary behaviours are considered as the main risk factors, and the unbalance of dietary n‐6/n‐3 fatty acids is one of the most relevant. The aim of the present research is to study the effect of different dietary sources of n‐3 polyunsaturated fatty acids (PUFA) on reproductive traits using rabbit buck as the animal model. Fifteen rabbit bucks were assigned to three experimental groups: the control group, the FLAX group fed 10% extruded flaxseed, and the FISH group fed 3.5% fish oil for 110 days (50-day adaptation and 60-day experimental periods). Semen samples were collected weekly, whereas blood was collected every two weeks for the analytical determination of semen traits, oxidative status, fatty acid profiles, isoprostanes, neuroprostanes, and the immunocytochemistry of docosahexaenoic acid (DHA) and eicosapentaenoic (EPA) acid. At the end of the trial, the rabbits were killed and the testes were removed and stored for the analysis of fatty acid profile and immunocytochemistry. Results showed that dietary administration of n‐3 PUFA improved the track speed of the sperm and increased the n‐3 long-chain PUFA mainly confined in the sperm tail. Seminal plasma increased the thiobarbituric reactive substances (TBARs) by three times in the groups fed supplemental n‐3, whereas the F2-isoprotanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were lower and higher, respectively, in both supplemented groups than in the control. The testes and sperm showed a higher DHA and EPA distribution in rabbits from the n‐3 supplemented groups compared with the control. In conclusion, supplemental dietary n‐3 PUFA improved sperm motion traits and resulted in an enrichment of membrane fatty acid in the sperm and testes of the rabbits. However, such an increased amount of PUFA negatively affected the sperm oxidative status, which was mainly correlated with the generation of F4-NeuroPs with respect to F2-IsoPs. Accordingly, the latter cannot be considered a good marker of oxidation when diets rich in n‐3 PUFA are provided.
Collapse
|
25
|
Cruciani G, Domingues P, Fedorova M, Galli F, Spickett CM. Redox lipidomics and adductomics - Advanced analytical strategies to study oxidized lipids and lipid-protein adducts. Free Radic Biol Med 2019; 144:1-5. [PMID: 31369839 DOI: 10.1016/j.freeradbiomed.2019.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, Italy.
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA/LAQV, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Germany.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia, Italy.
| | - Corinne M Spickett
- Department of Biosciences, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
26
|
Rodríguez M, G Rebollar P, Mattioli S, Castellini C. n-3 PUFA Sources (Precursor/Products): A Review of Current Knowledge on Rabbit. Animals (Basel) 2019; 9:ani9100806. [PMID: 31618904 PMCID: PMC6827073 DOI: 10.3390/ani9100806] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
This review compares the effects of different n-3 polyunsaturated fatty acid (PUFA) sources on biological activity, physiological/reproductive endpoints, and health implications with a special emphasis on a rabbit case study. Linoleic acid (LA) and α-linolenic acid (ALA) are members of two classes of PUFAs, namely the n-6 and n-3 series, which are required for normal human health. Both are considered precursors of a cascade of molecules (eicosanoids), which take part in many biological processes (inflammation, vasoconstriction/vasodilation, thromboregulation, etc.). However, their biological functions are opposite and are mainly related to the form (precursor or long-chain products) in which they were administered and to the enzyme-substrate preference. ALA is widely present in common vegetable oils and foods, marine algae, and natural herbs, whereas its long-chain PUFA derivatives are available mainly in fish and animal product origins. Recent studies have shown that the accumulation of n-3 PUFAs seems mostly to be tissue-dependent and acts in a tissue-selective manner. Furthermore, dietary n-3 PUFAs widely affect the lipid oxidation susceptibility of all tissues. In conclusion, sustainable sources of n-3 PUFAs are limited and exert a different effect about (1) the form in which they are administered, precursor or derivatives; (2) their antioxidant protections; and (3) the purpose to be achieved (health improvement, physiological and reproductive traits, metabolic pathways, etc.).
Collapse
Affiliation(s)
- María Rodríguez
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar G Rebollar
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| |
Collapse
|