1
|
Yi Y, Kim K, Kim H, Lim MH. Leveraging heterocycle-fused 1,4-benzoquinone to design chemical modulators for both metal-free and metal-bound amyloid-β. Chem Sci 2025; 16:6930-6942. [PMID: 40123689 PMCID: PMC11925219 DOI: 10.1039/d4sc06070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
The complex pathology of Alzheimer's disease includes various pathogenic components, such as metal-free amyloid-β (Aβ) and metal-bound Aβ (metal-Aβ). Here we report an effective strategy for developing novel heterocycle-fused 1,4-benzoquinone (BQ) compounds to control the aggregation and toxicity of both metal-free Aβ and metal-Aβ. We designed and synthesized these compounds by fusing BQ with 3-pyrazolone responsible for metal chelation. The compounds' ability to form covalent bonds with Aβ is tuned by the annulation of the BQ moiety and the type, position, and number of substituents on the 3-pyrazolone group. Furthermore, the BQ functionality on the 3-pyrazolone framework can undergo o-hydroxylation, enhancing its metal chelation in a bidentate manner. Our results demonstrate that these heterocycle-fused BQ compounds can redirect the assembly of Aβ into less toxic aggregates by binding to metal ions, modifying Aβ structures in both the absence and presence of metal ions, and promoting oxidative changes to Aβ. This study highlights the importance of structural modifications and optimizations of BQ to leverage its strength of covalently cross-linking to Aβ and overcome its limitations in metal chelation and cytotoxicity, which are critical for designing chemical modulators for metal-free Aβ and metal-Aβ. Our approach offers a novel strategy for developing chemical modulators towards metal-related peptides and proteins as well as therapeutic agents for metal-associated amyloid disorders.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Kyungmin Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University Gyeonggi-do 1732 Republic of Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University Gyeonggi-do 1732 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
2
|
Wei Y, Sun L, Gu Y, Zhuang Y, Zhang G, Fan X, Ding Y. Rapid Covalent Bonding of Walnut Protein Isolates to EGCG: Unveiling the Ultrasound-Assisted Ratio Optimization, Binding Mechanism, and Structural-Functional Transformations. Foods 2025; 14:1204. [PMID: 40238394 PMCID: PMC11988510 DOI: 10.3390/foods14071204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The application of walnut protein isolate (WPI) and polyphenols is usually limited by low solubility. To solve the above problem, the impact of the alkaline treatment method and the ultrasound-assisted alkaline treatment method on the structural and functional properties of protein-polyphenol covalent complexes (WPI-(-)-epigallocatechin-3-gallate (EGCG), UWPI-EGCG, respectively) was explored. Fourier transform infrared spectroscopy and fluorescence spectroscopy indicated that the covalent binding of EGCG to WPI altered the secondary and tertiary structures of the protein and increased its random coil content. In addition, the UWPI-EGCG samples had the lowest particle size (153.67 nm), the largest absolute zeta potential value (25.4 mV), and the highest polyphenol binding (53.37 ± 0.33 mg/g protein). Meanwhile, WPI-EGCG covalent complexes also possessed excellent solubility and emulsification properties. These findings provide a promising approach for WPI in applications such as functional foods.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.W.); (L.S.); (Y.G.); (Y.Z.); (X.F.)
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.W.); (L.S.); (Y.G.); (Y.Z.); (X.F.)
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.W.); (L.S.); (Y.G.); (Y.Z.); (X.F.)
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.W.); (L.S.); (Y.G.); (Y.Z.); (X.F.)
| | - Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.W.); (L.S.); (Y.G.); (Y.Z.); (X.F.)
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.W.); (L.S.); (Y.G.); (Y.Z.); (X.F.)
| |
Collapse
|
3
|
Wang L, Cao J, Wang P, Fu Y, Chen J, Wang Z. Hydroperoxide-Independent Generation of Spin Trapping Artifacts by Quinones and DMPO: Implications for Radical Identification in Quinone-Related Reactions. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:143-153. [PMID: 40012872 PMCID: PMC11851217 DOI: 10.1021/envhealth.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 02/28/2025]
Abstract
Quinones, as highly redox active molecules in biology, are believed to react with hydroperoxides to produce highly reactive •OH, assuming that radical adducts are exclusively formed by the addition of free radicals to the spin trap as detected by the electron paramagnetic resonance (EPR) methodology. Here, direct formation of the same DMPO adduct as that formed by genuine radical trapping of •OH is discovered, while quinones (i.e., 1,4-benzoquinone (BQ), methyl-BQ (2-Me-BQ, 2,5-Me-BQ, 2,6-Me-BQ), and chlorinated-BQ (2-Cl-BQ, 2,5-Cl-BQ, 2,6-Cl-BQ)) meet with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), independent of peroxides. According to differences in alcohol-derived adducts (e.g., DMPO-CH2OH or DMPO-OCH3) while alcohol is attacked by •OH or DMPO•+, a nonradical mechanism is proposed for the BQ/DMPO system. This is further evidenced by the mass spectrometry data in which DMPO-OCH3 has been identified in BQ (or chlorinated-BQ)/DMPO systems. 17O incorporation experiments verify that hydroxyl oxygen in DMPO-OH originates from water. The DMPO-OH adduct might be formed via direct oxidation and water substitution or one-electron oxidation and nucleophilic addition. This study provides a peroxide-independent alternative route leading to DMPO-OH adduct in quinone-based systems, which has profound implications for assessing adverse health effects and even biogeochemical impacts of quinones if EPR is applied.
Collapse
Affiliation(s)
- Lingli Wang
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinhui Cao
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Pu Wang
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jialin Chen
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai
Key Lab for Urban Ecological Processes and Eco-Restoration, School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Technology
Innovation Center for Land Spatial Eco-restoration in Metropolitan
Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China
- Shanghai
Engineering Research Center of Biotransformation of Organic Solid
Waste, Shanghai 200241, China
| |
Collapse
|
4
|
Liu M, Ning Z, Cheng Y, Zheng Z, Yang X, Zheng T, Li N, Wu JL. The key to 2,6-dichloro-1,4-benzoquinone reproductive toxicity and green tea detoxification: Covalent binding and competitive binding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117239. [PMID: 39454356 DOI: 10.1016/j.ecoenv.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Halobenzoquinones (HBQs) are ubiquitous disinfection by-products (DBPs) in chlorinated drinking water with various health risks including reproductive toxicity, while the potential mechanisms are still unclear. Although green tea exhibits common detoxifying properties, its ability to mitigate the toxicity of HBQs still needs to be further deepened and explored. This study attempted to investigate the possible mechanism of the most common HBQ, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) induced reproductive toxicity and elucidate the protective effect of green tea using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. Firstly, in vivo experiments showed that 2,6-DCBQ could induce testicular damage in male rats via significantly decreasing sperm-associated Leydig cells and seminiferous tubules. Then, in vitro incubation of 2,6-DCBQ with amino acids suggested that 2,6-DCBQ could bind to proteins via residues of cysteine or lysine and provided five additional modification patterns. Following, proteomics analysis revealed that at least 42 proteins were modified by 2,6-DCBQ, which were mainly enriched in the reproductive system. These results highlighted the significance of covalent protein modification in 2,6-DCBQ reproductive toxicity. Fortunately, we found that catechins (a class of major components of green tea) could competitively bind to 2,6-DCBQ in vivo and in vitro, reducing the amount and type of 2,6-DCBQ-protein adducts, thereby attenuating the reproductive system damage caused by 2,6-DCBQ. This study provides new insights into 2,6-DCBQ-induced reproductive system damage and reveals a new mechanism of green tea detoxification. Moreover, these findings offer potential strategies for alleviating the harmful impacts of environmental toxicants on human health.
Collapse
Affiliation(s)
- Meixian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiyuan Ning
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, China
| | - Zhiyuan Zheng
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Ting Zheng
- Multi-omics Mass Spectrometry Core, Biomedical Research Core Facilities, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| |
Collapse
|
5
|
Hao M, He Y, Song T, Guo H, Rayman MP, Zhang J. Dopamine and its precursor levodopa inactivate SARS-CoV-2 main protease by forming a quinoprotein. Free Radic Biol Med 2024; 220:167-178. [PMID: 38718952 DOI: 10.1016/j.freeradbiomed.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Many studies show either the absence, or very low levels of, SARS-CoV-2 viral RNA and/or antigen in the brain of COVID-19 patients. Reports consistently indicate an abortive infection phenomenon in nervous cells despite the fact that they contain the SARS-CoV-2 receptor, ACE2. Dopamine levels in different brain regions are in the range of micromolar to millimolar concentrations. We have shown that sub-micromolar to low micromolar concentrations of dopamine or its precursor (levodopa) time- and dose-dependently inhibit the activity of SARS-CoV-2 main protease (Mpro), which is vital for the viral life cycle, by forming a quinoprotein. Thiol detection coupled with the assessment of Mpro activity suggests that among the 12 cysteinyl thiols, the active site, Cys145-SH, is preferentially conjugated to the quinone derived from the oxidation of dopamine or levodopa. LC-MS/MS analyses show that the Cys145-SH is covalently conjugated by dopamine- or levodopa-o-quinone. These findings help explain why SARS-CoV-2 causes inefficient replication in many nerve cell lines. It is well recognized that inhaled pulmonary drug delivery is the most robust therapy pathway for lung diseases. CVT-301 (orally inhaled levodopa) was approved by the FDA as a drug for Parkinson's patients prior to the outbreak of COVID-19 in 2018. Based on the fact that SARS-CoV-2 causes inefficient replication in the CNS with abundant endogenous Mpro inhibitor in addition to the current finding that levodopa has an Mpro-inhibitory effect somewhat stronger than dopamine, we should urgently investigate the use of CVT-301 as a lung-targeting, COVID-19, Mpro inhibitor.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Tingting Song
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
8
|
Long AR, Mortara EL, Mendoza BN, Fink EC, Sacco FX, Ciesla MJ, Stack TMM. Sequence similarity network analysis of drug- and dye-modifying azoreductase enzymes found in the human gut microbiome. Arch Biochem Biophys 2024; 757:110025. [PMID: 38740275 PMCID: PMC11295148 DOI: 10.1016/j.abb.2024.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Drug metabolism by human gut microbes is often exemplified by azo bond reduction in the anticolitic prodrug sulfasalazine. Azoreductase activity is often found in incubations with cell cultures or ex vivo gut microbiome samples and contributes to the xenobiotic metabolism of drugs and food additives. Applying metagenomic studies to personalized medicine requires knowledge of the genes responsible for sulfasalazine and other drug metabolism, and candidate genes and proteins for drug modifications are understudied. A representative gut-abundant azoreductase from Anaerotignum lactatifermentan DSM 14214 efficiently reduces sulfasalazine and another drug, phenazopyridine, but could not reduce all azo-bonded drugs in this class. We used enzyme kinetics to characterize this enzyme for its NADH-dependent reduction of these drugs and food additives and performed computational docking to provide the groundwork for understanding substrate specificity in this family. We performed an analysis of the Flavodoxin-like fold InterPro family (IPR003680) by computing a sequence similarity network to classify distinct subgroups of the family and then performed chemically-guided functional profiling to identify proteins that are abundant in the NIH Human Microbiome Project dataset. This strategy aims to reduce the number of unique azoreductases needed to characterize one protein family in the diverse set of potential drug- and dye-modifying activities found in the human gut microbiome.
Collapse
Affiliation(s)
- Audrey R Long
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Emma L Mortara
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Brisa N Mendoza
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Emma C Fink
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Francis X Sacco
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Matthew J Ciesla
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States
| | - Tyler M M Stack
- Department of Chemistry and Biochemistry, Providence College, 1 Cunningham Square, Providence, RI, 02918, United States.
| |
Collapse
|
9
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
10
|
Shi W, Sun S, Liu H, Meng Y, Ren K, Wang G, Liu M, Wu J, Zhang Y, Huang H, Shi M, Xu W, Ma Q, Sun B, Xu J. Guiding bar motif of thioredoxin reductase 1 modulates enzymatic activity and inhibitor binding by communicating with the co-factor FAD and regulating the flexible C-terminal redox motif. Redox Biol 2024; 70:103050. [PMID: 38277963 PMCID: PMC10840350 DOI: 10.1016/j.redox.2024.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.
Collapse
Affiliation(s)
- Wuyang Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Kangshuai Ren
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Guoying Wang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Minghui Liu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Jiaqi Wu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yue Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Huang Huang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Meiyun Shi
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Panjin, 124221, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
11
|
Li L, Zhang C, Cao Z, Ma L, Liu C, Lan X, Qu C, Fu P, Luo R, Wang Y. Passivation protein-adhesion platform promoting stent reendothelialization using two-electron-assisted oxidation of polyphenols. Biomaterials 2024; 305:122423. [PMID: 38142470 DOI: 10.1016/j.biomaterials.2023.122423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Superhydrophilic surfaces play an important role in nature. Inspired by this, scientists have designed various superhydrophilic materials that are widely used in the field of biomaterials, such as PEG molecular brushes and zwitterionic materials. However, superhydrophilic coatings with only anti-fouling properties do not satisfy the requirements for rapid reendothelialization of cardiovascular stent surfaces. Herein, a novel polyphenol superhydrophilic surface with passivated protein-adsorption properties was developed using two-electron oxidation of dopamine and polyphenols. This coating has a multiscale effects: 1) macroscopically: anti-fouling properties of superhydrophilic; 2) microscopically: protein adhesion properties of active groups (quinone-, amino-, hydroxyphenyl groups and aromatic ring). Polyphenols not only enhance the ability of coating to passivate protein-adsorption, but also make the coating have polyphenol-related biological functions. Therefore, the polyphenol and passivated protein-adsorption platform together maintain the stability of the scaffold microenvironment. This, in turn, provides favorable conditions for the growth of endothelial cells on the scaffold surface. In vivo implantation of the coated stents into the abdominal aorta resulted in uniform and dense endothelial cells covering the surface of the neointima. Moreover, new endothelial cells secreted large amounts of functional endothelial nitric oxide synthase like healthy endothelial cells. These results indicate that the polyphenol superhydrophilic coating potentially resists intra-stent restenosis and promotes surface reendothelialization. Hence, polyphenol superhydrophilic coatings with passivated protein-adsorption properties constructed by two-electron-assisted oxidation are a highly effective and versatile surface-modification strategy for implantable cardiovascular devices.
Collapse
Affiliation(s)
- Linhua Li
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chunle Zhang
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhengjiang Cao
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chang Liu
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ping Fu
- Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
12
|
Yu N, Wu Z, Wang Y, Zongo AWS, Nie X, Lu Y, Ye Q, Meng X. Formation of adducts during digestion triggered dietary protein for alleviating cytotoxicity of 2-tert-butyl-1,4-benzoquinone. Food Chem Toxicol 2024; 183:114200. [PMID: 38029872 DOI: 10.1016/j.fct.2023.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
2-tert-butyl-1,4-benzoquinone (TBBQ), a degradation product of lipid antioxidant Tert-Butylhydroquinone (TBHQ), is a new hazardous compound in foods. This study investigated whether co-ingestion of dietary protein and TBBQ can alleviate the toxicity of TBBQ. The results indicated that soy protein isolate, whey protein isolate, and rice protein significantly reduced the residual amount of TBBQ during simulated gastrointestinal digestion. This result was attributed to the excellent elimination capacity of the released amino acids for TBBQ through formation of adducts. Among 20 amino acids, histidine, lysine, glycine, and cysteine showed better elimination capacity for TBBQ; they can eliminate 92.1%, 89.4%, 86.1%, and almost 100%, respectively, in 5 min at pH 8.0. Further study indicated that amino acids with lower ionization constant exhibited greater TBBQ elimination capacity. In addition, incubation of the cells with 50 μM TBBQ for 12 h decreased the cell viability to 28.95 ± 3.25%; while amino acids intervention was involved in the alleviation of TBBQ cytotoxicity via decreasing ROS. Particularly, cysteine showed 100 times more TBBQ detoxifying capacity than other amino acids. This work could provide a theoretical basis for the potential application of amino acids for detoxifying TBBQ in the food industry.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Zeyi Wu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yijue Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
13
|
Li X, Yang L, Hao M, Song T, He Y, Yang M, Zhang J. Chlorogenic acid as an indispensible partner of caffeic acid in coffee via selective regulation of prooxidative actions of caffeic acid. Food Res Int 2023; 173:113482. [PMID: 37803805 DOI: 10.1016/j.foodres.2023.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Chlorogenic acid (CGA) and caffeic acid (CA) are two major phenolic acids in coffee. Though the International Agency for Research on Cancer has classified CA as a Group2B carcinogen, coffee consumption seems generally safe within the usual levels of intake and is more likely to benefit health than to harm it. We thus speculated that CGA may effectively suppress the carcinogenic potential of CA. In a molar ratio achievable in vivo, this study shows that CGA can inhibit (i) copper reduction caused by CA, (ii) CA oxidation caused by copper, (iii) the formation of hydroxyl radicals by CA and copper, and (iv) DNA damage induced by CA, quercetin or (-)-epigallocatechin-3-gallate in the presence of copper. CA tends to undergo autoxidation to produce hydrogen peroxide and quinone, which further reacts with proteins to form quinoproteins. This autoxidation at a tolerable level normally induces beneficial adaptive responses. This study shows that CGA is less efficient than CA in producing hydrogen peroxide and quinoprotein; however, together they synergistically produce hydrogen peroxide and quinoprotein in vitro at a molar ratio achievable in vivo. In conclusion, CGA can selectively regulate the prooxidant activities of CA depending on whether copper is involved or not. CGA could be viewed as an indispensable partner of CA in coffee, given its dual role in suppressing the carcinogenic potential of CA and boosting CA autoxidation which is beneficial for disease prevention.
Collapse
Affiliation(s)
- Xiuli Li
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Lumin Yang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Meng Hao
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Tingting Song
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yufeng He
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Mingchuan Yang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Jinsong Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
14
|
Kato Y, Sakanishi A, Matsuda K, Hattori M, Kaneko I, Nishikawa M, Ikushiro S. Covalent adduction of serotonin-derived quinones to the SARS-CoV-2 main protease expressed in a cultured cell. Free Radic Biol Med 2023; 206:74-82. [PMID: 37391098 PMCID: PMC10300202 DOI: 10.1016/j.freeradbiomed.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
The SARS-CoV-2 main protease is an essential molecule for viral replication and is often targeted by medications to treat the infection. In this study, we investigated the possible inhibitory action of endogenous quinones on the enzyme. Recombinant SARS-CoV-2 main protease was exposed to tryptamine-4,5-dione (TD) or quinone from 5-hydroxyindoleacetic acid (Q5HIAA). As a result, the protease activity was considerably decreased in a dose-dependent manner. The IC50 values of the quinones toward the enzyme were approximately 0.28 μM (TD) and 0.49 μM (Q5HIAA). Blot analyses using specific antibodies to quinone-modified proteins revealed that quinones were adducted to the enzyme at concentrations as low as 0.12 μM. Intact mass analyses showed that one or two quinone molecules were covalently adducted onto the main protease. Chymotrypsin-digested main protease analyses revealed that the quinones bind to thiol residues at the enzyme's active site. When TD or Q5HIAA were exposed to cultured cells expressing the viral enzyme, quinone-modified enzyme was identified in the cell lysate, suggesting that even extracellularly generated quinones could react with the viral enzyme expressed in an infected cell. Thus, these endogenous quinones could act as inhibitors of the viral enzyme.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan.
| | - Asahi Sakanishi
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Kaoru Matsuda
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Mai Hattori
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Ichiro Kaneko
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, 670-0092, Japan; Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
15
|
Fuentes-Lemus E, Davies MJ. Effect of crowding, compartmentalization and nanodomains on protein modification and redox signaling - current state and future challenges. Free Radic Biol Med 2023; 196:81-92. [PMID: 36657730 DOI: 10.1016/j.freeradbiomed.2023.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Biological milieus are highly crowded and heterogeneous systems where organization of macromolecules within nanodomains (e.g. membraneless compartments) is vital to the regulation of metabolic processes. There is an increasing interest in understanding the effects that such packed environments have on different biochemical and biological processes. In this context, the redox biochemistry and redox signaling fields are moving towards investigating oxidative processes under conditions that exhibit these key features of biological systems in order to solve existing paradigms including those related to the generation and transmission of specific redox signals within and between cells in both normal physiology and under conditions of oxidative stress. This review outlines the effects that crowding, nanodomain formation and altered local viscosities can have on biochemical processes involving proteins, and then discusses some of the reactions and pathways involving proteins and oxidants that may, or are known to, be modulated by these factors. We postulate that knowledge of protein modification processes (e.g. kinetics, pathways and product formation) under conditions that mimic biological milieus, will provide a better understanding of the response of cells to endogenous and exogenous stressors, and their role in ageing, signaling, health and disease.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
16
|
Doblas L, Hägglund PM, Fuentes-Lemus E, Davies MJ. The cysteine residue in beta-lactoglobulin reacts with oxidized tyrosine residues in beta-casein to give casein-lactoglobulin dimers. Arch Biochem Biophys 2023; 733:109482. [PMID: 36457258 DOI: 10.1016/j.abb.2022.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Proteins are modified during milk processing and storage, with sidechain oxidation and crosslinking being major consequences. Despite the prevalence and importance of proteins in milk, and particularly caseins (∼80% of total content), the nature of the cross-links formed by oxidation, and their mechanisms of formation, are poorly characterized. In this study, we investigated the formation and stability of cross-links generated by the nucleophilic addition of Cys residues to quinones generated on oxidation of Tyr residues. The mechanisms and stability of these adducts was explored using ubiquitin as a model protein, and β-casein. Ubiquitin and β-casein were oxidized using a rose Bengal/visible light/O2 system, or by the enzyme tyrosinase. The oxidized proteins were incubated with glutathione or β-lactoglobulin (non-oxidized, but unfolded by treatment at 70 °C), before analysis by SDS-PAGE, immunoblotting and LC-MS. Our data indicate that Cys-quinone adducts are readily-formed, and are stable for >48 h. Thus, oxidized β-casein reacts efficiently with the thermally unfolded β-lactoglobulin, likely via Michael addition of the exposed Cys to a Tyr-derived quinone. These data provide a novel, and possibly general, mechanism of protein cross-link formation, and provides information of the stability of these species that have potential as markers of protein quality.
Collapse
Affiliation(s)
- Laura Doblas
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
17
|
Study of reactive dye/serum albumin interactions: thermodynamic parameters, protein alterations and computational analysis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Sauerland MB, Davies MJ. Electrophile versus oxidant modification of cysteine residues: Kinetics as a key driver of protein modification. Arch Biochem Biophys 2022; 727:109344. [PMID: 35777524 DOI: 10.1016/j.abb.2022.109344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023]
Abstract
Humans have widespread exposure to both oxidants, and soft electrophilic compounds such as alpha,beta-unsaturated aldehydes and quinones. Electrophilic motifs are commonly found in a drugs, industrial chemicals, pollutants and are also generated via oxidant-mediated degradation of biomolecules including lipids (e.g. formation of 4-hydroxynonenal, 4-hydroxyhexenal, prostaglandin J2). All of these classes of compounds react efficiently with Cys residues, and the particularly the thiolate anion, with this resulting in Cys modification via either oxidation or adduct formation. This can result in deleterious or beneficial effects, that are either reversible (e.g. in cell signalling) or irreversible (damaging). For example, acrolein is a well-established toxin, whereas dimethylfumarate is used in the treatment of multiple sclerosis and psoriasis. This short review discusses the targets of alpha,beta-unsaturated aldehydes, and particularly two prototypic cases, acrolein and dimethylfumarate, and the factors that control the selectivity and kinetics of reaction of these species. Comparison is made between the reactivity of oxidants versus soft electrophiles. These rate constants indicate that electrophiles can be significant thiol modifying agents in some situations, as they have rate constants similar to or greater than species such as H2O2, can be present at higher concentrations, and are less efficiently removed by protective systems when compared to H2O2. They may also induce similar or higher levels of modification than highly reactive oxidants, due to the very low concentrations of oxidants formed in most in vivo situations.
Collapse
Affiliation(s)
- Max B Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
19
|
Sunny S, Jyothidasan A, David CL, Parsawar K, Veerappan A, Jones DP, Pogwizd S, Rajasekaran NS. Tandem Mass Tagging Based Identification of Proteome Signatures for Reductive Stress Cardiomyopathy. Front Cardiovasc Med 2022; 9:848045. [PMID: 35770227 PMCID: PMC9234166 DOI: 10.3389/fcvm.2022.848045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2), a redox sensor, is vital for cellular redox homeostasis. We reported that transgenic mice expressing constitutively active Nrf2 (CaNrf2-TG) exhibit reductive stress (RS). In this study, we identified novel protein signature for RS-induced cardiomyopathy using Tandem Mass Tag (TMT) proteomic analysis in heart tissues of TG (CaNrf2-TG) mice at 6–7 months of age. A total of 1,105 proteins were extracted from 22,544 spectra. About 560 proteins were differentially expressed in TG vs. NTg hearts, indicating a global impact of RS on the myocardial proteome. Over 32 proteins were significantly altered in response to RS -20 were upregulated and 12 were downregulated in the hearts of TG vs. NTg mice, suggesting that these proteins could be putative signatures of RS. Scaffold analysis revealed a clear distinction between TG vs. NTg hearts. The majority of the differentially expressed proteins (DEPs) that were significantly altered in RS mice were found to be involved in stress related pathways such as antioxidants, NADPH, protein quality control, etc. Interestingly, proteins that were involved in mitochondrial respiration, lipophagy and cardiac rhythm were dramatically decreased in TG hearts. Of note, we identified the glutathione family of proteins as the significantly changed subset of the proteome in TG heart. Surprisingly, our comparative analysis of NGS based transcriptome and TMT-proteome indicated that ~50% of the altered proteins in TG myocardium was found to be negatively correlated with their transcript levels. In association with the altered proteome the TG mice displayed pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sini Sunny
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arun Jyothidasan
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Cynthia L David
- Analytical and Biological Mass Spectrometry Core Facility, The University of Arizona, Tuscon, AZ, United States
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, The University of Arizona, Tuscon, AZ, United States
| | - Arul Veerappan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, United States.,Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Namakkal S Rajasekaran
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Division of Cardiovascular Medicine, Department of Medicine, The University of Utah, Salt Lake City, UT, United States.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Rossi C, Fuentes-Lemus E, Davies MJ. Reaction of cysteine residues with oxidized tyrosine residues mediates cross-linking of photo-oxidized casein proteins. Food Chem 2022; 385:132667. [PMID: 35299016 DOI: 10.1016/j.foodchem.2022.132667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Photo-oxidation of casein proteins is commonplace during milk processing and storage. A major consequence of such light exposure is protein cross-linking and aggregation. Although caseins are key milk components, the nature of the cross-links and the mechanisms involved are poorly characterized, with most previous work having been focused on detecting and quantifying di-tyrosine formed on dimerization of two tyrosine-derived phenoxyl radicals. However, this is only one of a large number of possible cross-links that might be formed. In this study, we have investigated the potential involvement of secondary reactions between oxidized protein side-chains and the thiol group of cysteine (Cys) residues in casein cross-linking. Casein proteins were subjected to photo-oxidation using visible light in the presence of a sensitizer (riboflavin or rose Bengal) and O2, then incubated with a Cys-containing peptide (glutathione, GSH) or protein (κ-casein), and subsequently analyzed by SDS-PAGE, immunoblotting and LC-MS. Our data indicate that that photo-oxidized (but not parent) caseins react efficiently with the Cys-containing species, likely via Michael addition to quinones formed from tyrosine residues to give glutathionylated species or protein adducts. Thus, oxidized α-casein reacts with native κ-casein to give high molecular mass aggregates. This adduct formation was prevented by alkylation of the Cys thiol group. The cross-link site and the residues involved have been confirmed by liquid chromatography-mass spectrometry (LC-MS) proteomic analysis. Together, these data extend our knowledge of the mechanisms involved in casein oxidation and aggregation.
Collapse
Affiliation(s)
- Chiara Rossi
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | | | - Michael J Davies
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark.
| |
Collapse
|
21
|
Omar A, Arken A, Wali A, Gao Y, Aisa HA, Yili A. Effect of phenolic compound-protein covalent conjugation on the physicochemical, anti-inflammatory, and antioxidant activities of silk sericin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
23
|
Rashid MH, Babu D, Siraki AG. Interactions of the antioxidant enzymes NAD(P)H: Quinone oxidoreductase 1 (NQO1) and NRH: Quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants. Chem Biol Interact 2021; 345:109574. [PMID: 34228969 DOI: 10.1016/j.cbi.2021.109574] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023]
Abstract
NAD(P)H Quinone Oxidoreductase 1 (NQO1) is an antioxidant enzyme that catalyzes the two-electron reduction of several different classes of quinone-like compounds (quinones, quinone imines, nitroaromatics, and azo dyes). One-electron reduction of quinone or quinone-like metabolites is considered to generate semiquinones to initiate redox cycling that is responsible for the generation of reactive oxygen species and oxidative stress and may contribute to the initiation of adverse drug reactions and adverse health effects. On the other hand, the two-electron reduction of quinoid compounds appears important for drug activation (bioreductive activation) via chemical rearrangement or autoxidation. Two-electron reduction decreases quinone levels and opportunities for the generation of reactive species that can deplete intracellular thiol pools. Also, studies have shown that induction or depletion (knockout) of NQO1 were associated with decreased or increased susceptibilities to oxidative stress, respectively. Moreover, another member of the quinone reductase family, NRH: Quinone Oxidoreductase 2 (NQO2), has a significant functional and structural similarity with NQO1. The activity of both antioxidant enzymes, NQO1 and NQO2, becomes critically important when other detoxification pathways are exhausted. Therefore, this article summarizes the interactions of NQO1 and NQO2 with different pharmacological agents, endogenous biochemicals, and environmental contaminants that would be useful in the development of therapeutic approaches to reduce the adverse drug reactions as well as protection against quinone-induced oxidative damage. Also, future directions and areas of further study for NQO1 and NQO2 are discussed.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
| |
Collapse
|
24
|
Sauerland M, Mertes R, Morozzi C, Eggler AL, Gamon LF, Davies MJ. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic Biol Med 2021; 169:1-11. [PMID: 33819622 DOI: 10.1016/j.freeradbiomed.2021.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Humans have extensive adverse exposure to alpha,beta-unsaturated carbonyl compounds (ABuCs) as these are major toxins in smoke and exhaust fumes, as well as products of lipid peroxidation. In contrast, another ABuC, dimethylfumarate, is used to treat psoriasis and multiple sclerosis. ABuCs undergo Michael adduction with amine, imidazole and thiol groups, with reaction at Cys residues predominating. Here we report rate constants, k2, for ABuCs (acrolein, crotonaldehyde, dimethylfumarate, cyclohex-1-en-2-one, cyclopent-1-en-2-one) with Cys residues present on N-Ac-Cys, GSH, bovine serum albumin, creatine kinase, papain, glyceraldehyde-3-phosphate dehydrogenase, and both wild-type and the C151S mutant of Keap-1. k2 values for N-Ac-Cys and GSH vary by > 250-fold, indicating a marked ABuC structure dependence, with acrolein the most reactive. There is also considerable variation in k2 between protein Cys groups, with these significantly greater than for GSH. A linear inverse correlation for acrolein with the thiol pKa indicates that the thiolate anion is the reactive species. The modest k2 for GSH rationalizes the detection of protein adducts of ABuCs in cells. The k2 values for dimethylfumarate also vary markedly, with the Cys151 residue on Keap-1 being particularly reactive, with the C151S mutant giving a much lower k2 value. The data for crotonaldehyde, dimethylfumarate, and cyclohex-1-en-2-one show little correlation with the Cys pKa values, indicating that steric/electronic interactions, rather than Cys ionization are important. These data indicate that protein Cys residues, and particularly Cys151 on Keap-1, react readily with dimethylfumarate, and this may help rationalize the use of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Max Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ralf Mertes
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chiara Morozzi
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
25
|
Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Álvarez-González I, Camacho-Cantera S, Gómez-González P, Barrón MJR, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Madrigal-Bujaidar E. Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Sci Rep 2021; 11:6897. [PMID: 33767322 PMCID: PMC7994804 DOI: 10.1038/s41598-021-86366-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
We evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Scarlett Camacho-Cantera
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Patricia Gómez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Michael J Rendón Barrón
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - José A Morales-González
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. México-Xochimilco 289, Ciudad de México, 14389, México
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México.
| |
Collapse
|
27
|
Zhang W, Berthelet J, Michail C, Bui LC, Gou P, Liu R, Duval R, Renault J, Dupret JM, Guidez F, Chomienne C, Rodrigues Lima F. Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues. Free Radic Biol Med 2021; 162:27-37. [PMID: 33278510 DOI: 10.1016/j.freeradbiomed.2020.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Etoposide is an extensively prescribed anticancer drug that, unfortunately, causes therapy-related leukemia. The mechanisms by which etoposide induces secondary hematopoietic malignancies are poorly documented. However, etoposide-related leukemogenesis is known to depend on oxidative metabolites of etoposide, notably etoposide quinone, that can react with protein cysteine residues such as in topoisomerases II. CREBBP is a major histone acetyltransferase that functions mainly as a transcriptional co-activator. This epigenetic enzyme is considered as a tumor suppressor that plays a major role in hematopoiesis. Genetic alterations affecting CREBBP activity are highly common in hematopoietic malignancies. We report here that CREBBP is impaired by etoposide quinone. Molecular and kinetic analyses show that this inhibition occurs through the rapid and covalent (kinhib = 16.102 M-1. s-1) adduction of etoposide quinone with redox sensitive cysteine residues within the RING and PHD Zn2+-fingers of CREBBP catalytic core leading to subsequent release of Zn2+. In agreement with these findings, experiments conducted in cells and in mice treated with etoposide showed irreversible inhibition of endogenous CREBBP activity and decreased H3K18 and H3K27 acetylation. As shown for topoisomerases II, our work thus suggests that the leukemogenic metabolite etoposide quinone can impair the epigenetic CREBBP acetyltransferase through reaction with redox sensitive cysteine residues.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France; Université de Paris, CEDC, UMR 7216, CNRS, F-75013, Paris, France
| | | | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Panhong Gou
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Romain Duval
- Université de Paris, BIGR, UMRS 1134, INSERM, F-75015, Paris, France
| | - Justine Renault
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | | | - Fabien Guidez
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Christine Chomienne
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
28
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
29
|
Jongberg S, Andersen ML, Lund MN. Characterisation of protein-polyphenol interactions in beer during forced aging. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sisse Jongberg
- Department of Food Science, Faculty of Science; University of Copenhagen; Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Mogens L. Andersen
- Department of Food Science, Faculty of Science; University of Copenhagen; Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Marianne N. Lund
- Department of Food Science, Faculty of Science; University of Copenhagen; Rolighedsvej 26 Frederiksberg 1958 Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences; University of Copenhagen; Blegdamsvej 3 Copenhagen N 2200 Denmark
| |
Collapse
|
30
|
Jongberg S, Andersen ML, Lund MN. Covalent Protein-Polyphenol Bonding as Initial Steps of Haze Formation in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2019.1705045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sisse Jongberg
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mogens L. Andersen
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne N. Lund
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
31
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
32
|
Shu N, Hägglund P, Cai H, Hawkins CL, Davies MJ. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway. Redox Biol 2019; 29:101400. [PMID: 31926625 PMCID: PMC6926358 DOI: 10.1016/j.redox.2019.101400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/27/2023] Open
Abstract
Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies reported here, the interactions of a prototypic quinone compound, p-benzoquinone (BQ), with the key redox protein, thioredoxin-1 (Trx1) were examined. BQ binds covalently with isolated Trx1 forming quinoprotein adducts, resulting in a concentration-dependent loss of enzyme activity and crosslink formation. Mass spectrometry peptide mass mapping data indicate that BQ forms adducts with all of the Trx1 Cys residues. Glutathione (GSH) reacts competitively with BQ, and thereby modulates the loss of activity and crosslink formation. Exposure of macrophage-like (J774A.1) cells to BQ results in a dose-dependent loss of Trx and thioredoxin reductase (TrxR) activities, quinoprotein formation, and a decrease in GSH levels without a concomitant increase in oxidized glutathione. GSH depletion aggravates the loss of Trx and TrxR activity. These data are consistent with adduction of GSH to BQ being a primary protective pathway. Reaction of BQ with Trx in cells resulted in the activation of apoptosis signal-regulating kinase 1 (ASK1), and p38 mitogen-activated protein kinase (MAPK) leading to apoptotic cell death. These data suggest that BQ reacts covalently with Cys residues in Trx, including at the active site, leading to enzyme inactivation and protein cross-linking. Modification of the Cys residues in Trx also results in activation of the ASK1/p38-MAPK signalling pathway and promotion of apoptotic cell death. Quinone (e.g. p-benzoquinone, BQ) toxicity is linked to Michael adduction reactions. Adduction of BQ to Cys residues in proteins are rapid (≤105 M−1 s−1) and selective. BQ reaction with Cys inactivates thioredoxin (Trx) and yields quinone- and disulfide-linked dimers. GSH reacts competitively with BQ and modulates damage, without GSSG formation. BQ activates ASK1 and p38 pathways and induced apoptosis in cells via Trx damage.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
33
|
Checker R, Pal D, Patwardhan RS, Basu B, Sharma D, Sandur SK. Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, plumbagin, as a novel strategy for radioprotection. Free Radic Biol Med 2019; 143:560-572. [PMID: 31493505 DOI: 10.1016/j.freeradbiomed.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022]
Abstract
Radiation induced damage to normal cells is a major shortcoming of conventional radiotherapy, which necessitates the development of novel radio-protective drugs. An ideal radio-modulator would protect normal cells while having cytotoxic effects on cancer cells. Plumbagin is a potent anti-tumour agent and has been shown to sensitize tumour cells to radiation-induced damage. In the present study, we have evaluated the radio-protective potential of plumbagin and found that it protected normal lymphocytes against radiation-induced apoptosis, but did not protect cancer cells against radiation. Plumbagin offered radioprotection even when it was added to cells after irradiation. The ability of only thiol based antioxidants to abrogate the radio-protective effects of plumbagin suggested a pivotal role of thiol groups in the radio-protective activity of plumbagin. Further, protein interaction network (PIN) analysis was used to predict the molecular targets of plumbagin. Based on the inputs from plumbagin's PIN and in light of its well-documented ability to modulate thiol groups, we proposed that plumbagin may act via modulation of caspase enzyme which harbours a critical catalytic cysteine. Indeed, plumbagin suppressed radiation-induced increase in homogenous caspase and caspase-3 activity in lymphocytes. Plumbagin also inhibited the activity of recombinant caspase-3 and mass spectrometric analysis revealed that plumbagin covalently interacts with caspase-3. Further, the in vivo radioprotective efficacy of plumbagin (single dose of 2mg/kg body weight) was demonstrated by its ability to rescue mice against radiation (7.5 Gy; Whole Body Irradiation) induced mortality. These results indicate that plumbagin prevents radiation induced apoptosis specifically in normal cells by inhibition of caspase-3 activity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
34
|
Shu N, Cheng Q, Arnér ESJ, Davies MJ. Inhibition and crosslinking of the selenoprotein thioredoxin reductase-1 by p-benzoquinone. Redox Biol 2019; 28:101335. [PMID: 31590044 PMCID: PMC6812298 DOI: 10.1016/j.redox.2019.101335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/03/2022] Open
Abstract
Quinones are common in nature, and often cytotoxic. Their proposed toxicity mechanisms involve redox cycling with radical generation, and/or reactions with nucleophiles, such as protein cysteine (Cys) residues, forming adducts via Michael addition reactions. The selenenyl anion of selenocysteine (Sec) is a stronger nucleophile, more prevalent at physiological pH, and more reactive than the corresponding thiolate anion of Cys. We therefore hypothesized that Sec residues should be readily modified by quinones and with potential consequences for the structure and function of selenoproteins. Here, we report data on the interaction of p-benzoquinone (BQ) with the selenoprotein thioredoxin reductase-1 (TrxR1), which exposes an accessible Sec residue upon physiological reduction by NADPH. Our results reveal that BQ targets NADPH-reduced TrxR1 and inhibits its activity using 5,5′-dithiobis(2-nitrobenzoic acid) or juglone as model substrates, consistent with the targeting of both the Cys and Sec residues of TrxR1. In the absence of NADPH, BQ modified the non-catalytic Cys residues, leading to subunit crosslinking, mainly through disulfides, which also resulted in some loss of activity. This crosslinking was time-dependent and independent of the Sec residue. Addition of NADPH after BQ pre-treatment could resolve the disulfide-linked crosslinking. TrxR activity loss was also observed upon incubation of J774A.1 cells or cell lysates with BQ. These data suggest that BQ readily targets TrxR1, albeit in a rather complex manner, which results in structural changes and loss of enzyme activity. We suggest that TrxR1 targeting can explain some of the cytotoxicity of BQ, and potentially also that of other quinone compounds.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|