1
|
Chen S, Peng W, Yao H, Deng Z, Yue Z, Liu G, Xu J, Lin N, Xu W, Yue J, Zhu G. Reactive Cysteines in Proteins are the Dominant Reductants for Platinum(IV) Prodrug Activation in Live Cells. Angew Chem Int Ed Engl 2025:e202416396. [PMID: 40214085 DOI: 10.1002/anie.202416396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025]
Abstract
The intracellular reduction of Pt(IV) prodrugs is crucial for their anticancer efficacy. However, the major components responsible for the reduction of Pt(IV) complexes within live cells remain elusive. Herein, we developed an aminoluciferin-functionalized Pt(IV) complex, Pt-Luc, that can be used as a bioluminescent reporter for real-time monitoring of Pt(IV) reduction in live cancer cells by capturing immediate bioluminescent signals from the released aminoluciferin. Utilizing this powerful reporter, we found that the reduction of Pt(IV) prodrugs in live cancer cells significantly slows down when cysteine levels are reduced, while the levels of glutathione do not impact the reduction rate. Further investigation reveals that reactive cysteines in proteins, rather than small-molecule thiols, play a primary role in reducing the Pt(IV) complex. In vivo studies reveal a substantial 63% decrease in bioluminescence from Pt-Luc in thiol-blocking tumors in mice, reinforcing the pivotal role of reactive cysteines in Pt(IV) reduction. This study provides valuable insights into the activation mechanisms of Pt(IV) prodrugs in live cells and in vivo, enhancing our understanding of prodrug activation beyond buffer systems or fixed cells.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Wang Peng
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zhao Yue
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jiaqian Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Naixin Lin
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Weikang Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| |
Collapse
|
2
|
Andel D, Nouwens AJ, Klaassen S, Laoukili J, Viergever B, Verheem A, Intven MPW, Zandvliet M, Hagendoorn J, Borel Rinkes IHM, Kranenburg O. Rational design of alternative treatment options for radioresistant rectal cancer using patient-derived organoids. Br J Cancer 2025:10.1038/s41416-025-02989-4. [PMID: 40204947 DOI: 10.1038/s41416-025-02989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Resistance to radiation therapy is a common challenge in the field of oncology. Cancer cells with an increased ability to effectively repair DNA or cells with higher levels of antioxidants are more resistant to radiation. As cancer cells rely on these traits for survival, they may offer vulnerabilities that could be exploited. METHODS In the current study, rectal cancer organoids that showed different responses to radiation treatment were identified. RNA sequencing was used to compare radioresistant and radiosensitive organoids. In vitro combination drug screens were performed. The selection of drugs was guided by the RNA sequencing results. RESULTS Radioresistant organoids exhibited superior transcriptional adaptability and activated more DNA repair pathways when irradiated. Additionally, radioresistant organoids displayed enhanced antioxidant metabolism, including pathways related to the detoxification of reactive oxygen species and the synthesis of glutathione. Combinatorial drug screens identified the combination of RRx-001 (an inducer of oxidative stress) with GCLC inhibitor BSO as a highly effective and synergistic drug combination in killing radioresistant organoids. CRISPR-CAS-mediated knockout of GCLC sensitised organoids to RRx-001. CONCLUSION Combining RRx-001 with the inhibition of GCLC may be a promising alternative treatment strategy in radioresistant rectal cancer.
Collapse
Affiliation(s)
- D Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - A J Nouwens
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - S Klaassen
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - J Laoukili
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - B Viergever
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - A Verheem
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - M P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - M Zandvliet
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands
| | - I H M Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
| | - O Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, The Netherlands.
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Andal KP, Kumar AS. In Situ Electrochemical Reduction of Imidacloprid involving a Nitroso-Intermediate-Trapped DWCNT and Its Biomimetic Cellular Oxidative Stress-Related Mediated Oxidation of Thiols. Chem Asian J 2025:e202401779. [PMID: 40195815 DOI: 10.1002/asia.202401779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Imidacloprid (IMP) is a widely used pesticide and insecticide known for its effectiveness in controlling pests and increasing crop yields. Exposure of the compound to water bodies has led to environmental pollution and adverse effects on human health. One major concern is the generation of oxidative-stress in the cellular system, which is often a result of IMP exposure. Although the exact mechanism of toxicity is not fully understood, it is believed that the nitroso-intermediate of IMP (IMP-NO) binds to acetylcholine receptors, disrupting neural function. Thiol pools in the blood serum act as antioxidants to mitigate the toxicity. This study presents an in situ electrochemical conversion of IMP into its key intermediate, IMP-NO, and its subsequent entrapment on a double-walled carbon nanotube-modified glassy carbon electrode (GCE/DWCNT@IMP-NO) as a surface confined redox-peak in a physiological solution. It was characterized by SEM, FTIR, Raman, SECM, and LC-MS techniques. The system exhibited excellent mediated oxidation of the thiol group, using cysteine as a model. The findings presented in this work correlate with observations related to cellular oxidative-stress and its thiol-assisted mitigation. Employing a Michaelis-Menten-type enzyme-substrate reaction mechanism and estimated the kinetic parameters. Chronoamperometric techniques were used to demonstrate the oxidative detection of thiol.
Collapse
Affiliation(s)
- Kandavel Preethika Andal
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore, Tamil Nadu, 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, CO2 Research and Green Technologies Centre, Vellore, Tamil Nadu, 632014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
4
|
Cobley JN, Chatzinikolaou PN, Schmidt CA. The nonlinear cysteine redox dynamics in the i-space: A proteoform-centric theory of redox regulation. Redox Biol 2025; 81:103523. [PMID: 39929052 PMCID: PMC11849597 DOI: 10.1016/j.redox.2025.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The post-translational redox regulation of protein function by cysteine oxidation controls diverse biological processes, from cell division to death. However, most current site-centric paradigms fail to capture the nonlinear and emergent nature of redox regulation in proteins with multiple cysteines. Here, we present a proteoform-centric theory of redox regulation grounded in the i-space. The i-space encapsulates the theoretical landscape of all possible cysteine proteoforms. Using computational approaches, we quantify the vast size of the abstract i-space, revealing its scale-free architecture-elucidating the disproportionate influence of cysteine-rich proteins. We define mathematical rules governing cysteine proteoform dynamics. Their dynamics are inherently nonlinear, context-dependent, and fundamentally constrained by protein copy numbers. Monte Carlo simulations of the human protein PTP1B reveal extensive i-space sampling beyond site-centric models, supporting the "oxiform conjecture". This conjecture posits that highly oxidised proteoforms, molecules bearing multiple oxidised cysteines, are central to redox regulation. In support, even 90%-reduced proteomes can house vast numbers of unique, potentially functioanlly diverse, oxiforms. This framework offers a transformative lens for understanding the redox biology of proteoforms.
Collapse
|
5
|
Manna S, Firdous SM. Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review. Biometals 2025; 38:419-463. [PMID: 39987289 DOI: 10.1007/s10534-025-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
Collapse
Affiliation(s)
- Sanjib Manna
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
6
|
Han X, Tian L, Chen Q, Wang L, Mi Y, Li Q, Guo Z, Dong F. Preparation of novel thiolated chitosan with significant antioxidant activity. Int J Biol Macromol 2025; 308:142536. [PMID: 40154708 DOI: 10.1016/j.ijbiomac.2025.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The aim of this study was to synthesize thiolated chitosan derivative and evaluated its antioxidant activity. Thiol groups were introduced into chitosan and hydroxypropyl trimethylammonium chloride chitosan quaternary ammonium salt (HACC) by microwave reaction, respectively. At the same time, a series of compounds containing thiol groups were introduced at the amino site. The structure of the chitosan derivatives was identified by FTIR and 1H NMR. The thiol groups content, thermal stability, water solubility and cytotoxicity of the chitosan derivative were evaluated. The antioxidant activity of chitosan derivatives was evaluated using superoxide anion radical scavenging activity assay, DPPH radical scavenging activity assay, hydroxyl radical scavenging activity assay and reducing power assay. The results showed that the thiolated chitosan derivatives obtained in this study possessed excellent antioxidant activity, which provides a new idea for the further study of chitosan antioxidants.
Collapse
Affiliation(s)
- Xiangru Han
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Tian
- Yantai Agricultural Technology Extension Center, Yantai 264003, China
| | - Qiuhong Chen
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Ghaffari MK, Sefati N, Esmaeilpour T, Salari V, Oblak D, Simon C. The impact of ketamine and thiopental anesthesia on ultraweak photon emission and oxidative-nitrosative stress in rat brains. Front Syst Neurosci 2025; 19:1502589. [PMID: 40191280 PMCID: PMC11968709 DOI: 10.3389/fnsys.2025.1502589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Anesthetics such as ketamine and thiopental, commonly used for inducing unconsciousness, have distinct effects on neuronal activity, metabolism, and cardiovascular and respiratory systems. Ketamine increases heart rate and blood pressure while preserving respiratory function, whereas thiopental decreases both and can cause respiratory depression. This study investigates the impact of ketamine (100 mg/kg) and thiopental (45 mg/kg) on ultraweak photon emission (UPE), oxidative-nitrosative stress, and antioxidant capacity in isolated rat brains. To our knowledge, no previous study has investigated and compared UPE in the presence and absence of anesthesia. Here, we compare the effects of ketamine and thiopental anesthetics with each other and with a non-anesthetized control group. Ketamine increased UPE, lipid peroxidation, and antioxidant enzyme activity while reducing thiol levels. Conversely, thiopental decreased UPE, oxidative markers, and antioxidant enzyme activity, while increasing thiol levels. UPE was negatively correlated with thiol levels and positively correlated with oxidative stress markers. These findings suggest that the contrasting effects of ketamine and thiopental on UPE are linked to their differing impacts on brain oxidative stress and antioxidant capacity. This research suggests a potential method to monitor brain oxidative stress via UPE during anesthesia, and opens up new ways for understanding and managing anesthetic effects.
Collapse
Affiliation(s)
- Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Sefati
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Salari
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Daniel Oblak
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Giaretta E, Damato A, Zennaro L, Bonfatti V, Mislei B, Vigolo V, Falomo ME, Bertuzzo F, Gabai G, Bucci D. Metabolome and oxidative stress markers in the seminal plasma of Holstein bulls and their relationship with the characteristics of fresh and frozen/thawed sperm. Theriogenology 2025; 235:262-274. [PMID: 39889331 DOI: 10.1016/j.theriogenology.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
Seminal plasma composition has important role in sperm functionality and its freezability. The objective of this study was to test the hypothesis that seminal plasma (SP) oxidative status and metabolome are associated with fresh semen characteristics and freezability of bull sperm. To accomplish this objective, oxidative status markers and metabolome of SP of ejaculates obtained from 20 Holstein bulls (3 for each bull) were analyzed using spectrophotometry and nuclear magnetic resonance (1H NMR). The ejaculates were classified into higher motility fresh semen (HMF) and lower motility fresh semen (LMF), according to total motility (TM) and progressive motility (PM) values of fresh semen. Then the ejaculates was cryopreserved and assigned to higher motility thawed group (HMT) or lower motility thawed group (LMT) according to TM and PM at 0 h post-thawing. Multivariate analyses were performed to identify the association between the functional characteristics of fresh and thawed semen and the SP parameters, in terms of the oxidative status and the metabolomic composition. According to our results, the advanced oxidative protein products (AOPP) and thiol concentrations in SP are significantly related to some physiological characteristics of the thawed sperm, such as higher viability, TM, PM and LIN and lower mitochondrial and cytoplasmic superoxide production in viable thawed cells. In contrast, a higher amount of C in the SP was negatively related to TM and PM of thawed semen and was associated with higher mitochondrial and cytoplasmic superoxide production. In addition, partial least squares-discriminant analysis (PLS-DA) performed on the 1H NMR spectra indicated a discrete separation between HMF and LMF groups, and good discrimination between HMT and LMT groups. Higher levels of formic acid, lactate, glycerol and phosphocholine, were found in the SP of the HMF group than in the LMF group. On the other hand, alanine, phenylalanine, and tyrosine were higher in the SP of the LMF group than in the HMF group. GABA, glutamate, histidine and glycerol were found in higher concentrations in the HMT group than in the LMT group, while fructose decreased in the HMT group. Our results showed that the oxidative and metabolomic status of SP is related to the physiological properties of semen and its freezability and open new fields in research of SP biomarkers of bull semen preservation and fertility.
Collapse
Affiliation(s)
- E Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy.
| | - A Damato
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - L Zennaro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - V Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy
| | - B Mislei
- INFA-AUB, University of Bologna, Via Gandolfi 16, Cadriano, BO, Italy
| | - V Vigolo
- Department for Small Animals and Horses, Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Vienna, Austria
| | - M E Falomo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - F Bertuzzo
- Intermizoo S.p.A, Via Dossetto 1, 30021, Caorle, VE, Italy
| | - G Gabai
- Department of Comparative Biomedicine and Food Science, University of Padova, Via Dell'Università 6, 35020, Legnaro, PD, Italy
| | - D Bucci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Dell'Emilia, BO, Italy
| |
Collapse
|
9
|
Lin YJ, Hsieh PH, Mao CC, Shih YH, Chen SH, Lin CY. Interpretation of machine learning-based prediction models and functional metagenomic approach to identify critical genes in HBCD degradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136976. [PMID: 39740553 DOI: 10.1016/j.jhazmat.2024.136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Hexabromocyclododecane (HBCD) poses significant environmental risks, and identifying HBCD-degrading microbes and their enzymatic mechanisms is challenging due to the complexity of microbial interactions and metabolic pathways. This study aimed to identify critical genes involved in HBCD biodegradation through two approaches: functional annotation of metagenomes and the interpretation of machine learning-based prediction models. Our functional analysis revealed a rich metabolic potential in Chiang Chun soil (CCS) metagenomes, particularly in carbohydrate metabolism. Among the machine learning algorithms tested, random forest models outperformed others, especially when trained on datasets reflecting the degradation patterns of species like Dehalococcoides mccartyi and Pseudomonas aeruginosa. These models highlighted enzymes such as EC 1.8.3.2 (thiol oxidase) and EC 4.1.1.43 (phenylpyruvate decarboxylase) as inhibitors of degradation, while EC 2.7.1.83 (pseudouridine kinase) was linked to enhanced degradation. This dual-methodology approach not only deepens our understanding of microbial functions in HBCD degradation but also provides an unbiased view of the microbial and enzymatic interactions involved, offering a more targeted and effective bioremediation strategy.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Ping-Heng Hsieh
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chun-Chia Mao
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Shu-Hwa Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan; Institute of Fisheries Science, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Zhang H, Wang Y, Yang J, Ju Y, He J, Niu Y, Liu Y, Hou W, Qiao L, Jiang J. Water Microdroplets Promote Spontaneous Oxidation of Amino Acid- and Peptide-related Thiols to Disulfide Bonds. Chemistry 2025; 31:e202404036. [PMID: 39714933 DOI: 10.1002/chem.202404036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/24/2024]
Abstract
Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali, and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature. Water microdroplets displayed improved selectivity for disulfide bond formation, with minimal production of other oxidative species. Mechanistic investigations revealed that hydroxyl radicals (⋅OH) present on the water microdroplet surface facilitated the oxidation process. Thiols were firstly oxidized to thiyl radicals (RS⋅), which subsequently coupled to form disulfide bonds. This study highlights the potential of microdroplet chemistry as an efficient and mild approach for constructing disulfide bonds.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yanjie Wang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Jiamin Yang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yuqing Niu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Wenhao Hou
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong, 264209, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, China
| |
Collapse
|
11
|
Pop RM, Boarescu PM, Bocsan CI, Gherman ML, Chedea VS, Jianu EM, Roșian ȘH, Boarescu I, Ranga F, Tomoiagă LL, Sîrbu AD, Ungur A, Taulescu M, Pârvu AE, Buzoianu AD. Anti-Inflammatory and Antioxidant Effects of White Grape Pomace Polyphenols on Isoproterenol-Induced Myocardial Infarction. Int J Mol Sci 2025; 26:2035. [PMID: 40076654 PMCID: PMC11900020 DOI: 10.3390/ijms26052035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Grape pomace (GP), the residue left after grape pressing in winemaking, is rich in polyphenols, including flavonoids, tannins, and phenolic acids, which have antioxidant and anti-inflammatory properties. The present study aimed to evaluate the cardioprotective effects of white grape pomace (WGP) extract in two concentrations rich in polyphenols (795 mg polyphenols from WGP/kg body weight (bw) and 397.5 mg polyphenols from WGP/kg bw)), on isoproterenol (ISO)-induced myocardial infarction (MI), focusing on its anti-inflammatory and antioxidant effects. White grape pomace administration for 14 days offered a cardio-protective effect and prevented prolongation of the QT and QTc intervals on the electrocardiogram. Both concentrations of WGP prevented the elevation of nitric oxide (NO) and malondialdehyde (MDA) in the serum, with the best results being observed for the highest concentration (p < 0.05). White grape pomace administration offered a reduction in pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β) in both serum and tissue in a dose-dependent manner, with the highest WGP concentration having the best effect (p < 0.05). Moreover, WGP reduced histological changes associated with MI. The findings of the present study demonstrate that WGP extract exerts cardio protective effects by reducing MI-associated inflammation and oxidative stress.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (R.M.P.); (C.I.B.); (A.D.B.)
| | - Paul-Mihai Boarescu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Clinical Emergency County Hospital Saint John the New, 720229 Suceava, Romania
| | - Corina Ioana Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (R.M.P.); (C.I.B.); (A.D.B.)
| | - Mădălina Luciana Gherman
- Experimental Centre of “Iuliu Haţieganu”, University of Medicine and Pharmacy, Louis Pasteur, No. 6, 400349 Cluj-Napoca, Romania;
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania; (V.S.C.); (L.L.T.); (A.D.S.)
| | - Elena-Mihaela Jianu
- Histology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania;
| | - Ștefan Horia Roșian
- Niculae Stăncioiu” Heart Institute Cluj-Napoca, 19–21 Calea Moților Street, 400001 Cluj-Napoca, Romania;
- Department of Cardiology, Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Calea Moților Street No. 19–21, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Clinical Emergency County Hospital Saint John the New, 720229 Suceava, Romania
| | - Floricuța Ranga
- Food Science and Technology, Department of Food Science, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur, No. 3–5, 400372 Cluj-Napoca, Romania;
| | - Liliana Lucia Tomoiagă
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania; (V.S.C.); (L.L.T.); (A.D.S.)
| | - Alexandra Doina Sîrbu
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania; (V.S.C.); (L.L.T.); (A.D.S.)
| | - Andrei Ungur
- Department of Porcine Health Management, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Marian Taulescu
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Alina Elena Pârvu
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu” Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeș, No. 8, 400012 Cluj-Napoca, Romania; (R.M.P.); (C.I.B.); (A.D.B.)
| |
Collapse
|
12
|
Bahramikia S, Shirzadi N, Akbari V. Protective effects of Pyrogallol and Caffeic acid against Fe 2+ -Ascorbate-induced oxidative stress in the wistar rats liver: An in vitro study. Heliyon 2025; 11:e42518. [PMID: 39995939 PMCID: PMC11849609 DOI: 10.1016/j.heliyon.2025.e42518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Regarding the role of oxidative damage to various tissues in various diseases, using antioxidant compounds that protect tissues from damage is proposed as an important strategy against these diseases. Liver homogenates are frequently employed as in vitro models for investigating oxidative stress owing to the liver's high metabolic activity and susceptibility to oxidative damage. In this study, we assessed the protective effects of two phenolic compounds on Fe2+-ascorbate-induced oxidative stress in liver homogenates by analyzing various markers such as lipid peroxidation, protein carbonyl oxidation (PCO), reduced glutathione (GSH), and ROS levels. Catechin was used as a reference antioxidant to compare with the results. The DPPH radical scavenging activity of the compounds was also evaluated. Our findings demonstrated that co-incubation of liver homogenates with the Fe2+-ascorbate system and the compounds at various concentrations (10, 25, 50, and 100 μg/mL) led to a dose-dependent reduction in lipid peroxidation, PCO levels, ROS production, and GSH depletion. Furthermore, the IC50 values for DPPH free radicals for pyrogallol and caffeic acid were determined to be 76.26 μg/mL and 106.31 μg/mL, respectively. Notably, pyrogallol and caffeic acid exhibited higher antioxidant activity in all assays than catechin. In most assays (DPPH, Lipid peroxidation, and PCO) and at high concentrations (50 and 100 μg/mL), the antioxidative stress activity of pyrogallol was higher than that of caffeic acid. In conclusion, this study's results suggest that these compounds can potentially ameliorate diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Nasrin Shirzadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Vali Akbari
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
13
|
Shabbir A, Shahzad SA, Alzahrani AYA, Khan ZA, Yar M, Rauf W. A Multimode fluorescent sensor for sequential detection of Cu 2+ and cysteine as well as pH sensor with real sample Applications: Extensive experimental and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125414. [PMID: 39550819 DOI: 10.1016/j.saa.2024.125414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Highly responsive and optically selective (E)-1-((4-phenoxyphenyl) diazenyl)naphthalen-2-ol) sensor PDN with aggregation induced emission enhancement (AIEE) properties has been developed for the sequential detection of Cu2+ and L- Cysteine through fluorescence On-Off-On strategy. The selectivity of sensor depends on the presence of a diazo functional group and its appropriate cavity location in sensor molecule. Azo dye-based (E)-1-((4-phenoxyphenyl) diazenyl)naphthalen-2-ol) sensor PDN has been synthesized by utilizing a simple diazotization synthetic methodology that showed extraordinary AIEE behavior with bathochromic shift owing to the formation of J-aggregates. The morphology and size of aggregates were analyzed by SEM and DLS analysis, respectively. The calculated LOD of sensor PDN for Cu2+, and L-cysteine is 0.113 nM, and 84 nM, respectively. Fluorescence, UV-visible, LC-MS, 1H and 13C NMR titration were carried out to understand the interaction of sensor with Cu2+. The sensor was practically utilized in the sequential sensing of Cu2+ and Cys in real samples. Interestingly, sensor PDN was successfully employed for the sensing of a strong acid and base as well as the detection of Cu2+ ions in the solid state. Moreover, these experimental results were supported through DFT calculations.
Collapse
Affiliation(s)
- Alam Shabbir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| | | | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road off Raiwind Road, Lahore 54000, Pakistan
| | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| |
Collapse
|
14
|
Batyrova G, Taskozhina G, Umarova G, Umarov Y, Morenko M, Iriskulov B, Kudabayeva K, Bazargaliyev Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J Clin Med 2025; 14:1274. [PMID: 40004804 PMCID: PMC11856779 DOI: 10.3390/jcm14041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Selenium (Se) is a vital trace element for children, playing a crucial role in numerous physiological processes, including antioxidant defense, immune regulation, thyroid function, and bone metabolism. Emerging evidence highlights its potential impact on child development and growth while also underscoring the complexity of its mechanisms and the global variations in Se intake. The aim of this review is to comprehensively elucidate the significance of Se in various biological processes within the human body, with a focus on its role in child development and growth; its biochemical effects on the nervous system, thyroid function, immune system, and bone tissue; and the implications of Se deficiency and toxicity. This review integrates findings from experimental models, epidemiological studies, and clinical trials to explore Se's role in neurodevelopment, growth regulation, and immune competence in children. Selenoproteins, which regulate oxidative stress and thyroid hormone and bone metabolism, are essential for normal growth and cognitive development in children. Se deficiency and toxicity has been linked to impaired immune function, growth retardation, and decreased immune function. The findings underscore Se's influence on various biological pathways that are critical for healthy child development and its broader importance for child health. Public health strategies aimed at optimizing selenium intake may play a pivotal role in improving pediatric health outcomes worldwide.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulaim Taskozhina
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Yeskendir Umarov
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Marina Morenko
- Department of Children’s Diseases, Astana Medical University, Astana 010000, Kazakhstan;
| | - Bakhtiyar Iriskulov
- Department of Normal and Pathological Physiology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan;
| | - Khatimya Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| | - Yerlan Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| |
Collapse
|
15
|
Ye J, Bounds A, Crumpton M, Long M, McDonough H, Srikhirisawan I, Gao S. Potential Mechanisms of Lactate Dehydrogenase and Bovine Serum Albumin Proteins as Antioxidants: A Mixed Experimental-Computational Study. Biochem Res Int 2025; 2025:9638644. [PMID: 39963554 PMCID: PMC11832265 DOI: 10.1155/bri/9638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Proteins have shown varying degrees of antioxidant activity. This study examined the potential mechanisms of interactions between proteins and radicals using chemical kinetics and computational methods. The study quantified the antioxidant activity of lactate dehydrogenase (LDH) and bovine serum albumin (BSA) through Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. BSA was about seven times and LDH 12 times more potent as antioxidants for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•-) than they were for peroxyl radicals. According to the evaluation of Trolox equivalents (TE) of 20 proteinogenic amino acids, tryptophan (with a TE value of 101 μmol TE/μmol) exhibited the highest antioxidant activity for ABTS•-, followed by tyrosine (38.7 μmol TE/μmol) and cysteine (30.5 μmol TE/μmol), lysine (0.193 μmol TE/μmol), arginine (0.0325 μmol TE/μmol), valine (0.0280 μmol TE/μmol), histidine (0.00689 μmol TE/μmol), and leucine (0.00560 μmol TE/μmol). The EC50 showed a similar order with a swap between valine and histidine. The antioxidant activity of the amino acids and proteins was temperature dependent. The rate laws, activation energy, and pre-exponential factor A of these reactions provided information on the reaction mechanisms, i.e., a biomolecular elementary step for the reaction of ABTS•- with amino acids tryptophan, tyrosine, cysteine, or protein LDH, and a more complicated mechanism for BSA. The presence of -NH- or hydroxyl groups on aromatic rings enhanced the antioxidant ability of tryptophan and tyrosine. LDH's antioxidant activity did not affect its enzymatic activity, indicating that the radical reaction likely happened on the protein's surface without significantly altering its conformation. The molecular modeling and visualization showed potential reaction sites on the proteins' accessible tryptophan and tyrosine residues. However, the mere surface exposure of tryptophan and tyrosine does not guarantee their antioxidant activities.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Amy Bounds
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Madeline Crumpton
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Mallory Long
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Haley McDonough
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Isabella Srikhirisawan
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Shanzhen Gao
- Department of Computer Information Systems, Virginia State University, Petersburg, Virginia, USA
| |
Collapse
|
16
|
Zhang QF, Zhao RM, Lei Y, Tian XL, Hu Y, Zhang L, Zhang J. Cinnamaldehyde-Based ROS-Responsive Polymeric Gene Vectors for Efficient Gene Delivery and Tumor Cell Growth Inhibition. Biomacromolecules 2025; 26:1362-1371. [PMID: 39878583 DOI: 10.1021/acs.biomac.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde (CA)-based ROS-responsive cationic polymer (PCA) and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition. CA could be released from the polymer via a ROS-sensitive thioacetal bond by endogenous ROS. The released CA successively induced more ROS accumulation through GSH depletion, and the positive feedback helped PCA to achieve self-accelerating degradation. Results proved that PCA/p53 complexes were efficient in depleting GSH, upregulating ROS levels, and gene transfection. Besides, PCA was also shown to be effective in delivering the therapeutic gene p53. More importantly, PCA/p53 complexes could significantly induce tumor cell growth suppression by a synergistic effect of PCA and p53, providing valuable insights into the design of self-amplifying ROS-responsive polymeric gene vectors.
Collapse
Affiliation(s)
- Qin-Fang Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Rui-Mo Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yu Lei
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Li Tian
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yue Hu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Lan Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
17
|
Li H, Zhang H, Feng Z, Zhang X, Bi G, Du L, Zhao Y. A high biocompatible near-infrared fluorescent probe for tracking cysteine in multi-biosystem and its application in cervical cancer imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125185. [PMID: 39332175 DOI: 10.1016/j.saa.2024.125185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Cysteine (Cys) plays a crucial role in the biological system and many related diseases. However, the detection of Cys in living organisms are still hindered by shortage of small molecule fluorophores that exhibit excitation and emission in the near-infrared region. Herein, we designed and synthesized a high water-soluble Cys probe (Cy7-SS) based on heptamethine cyanine scaffold. The prepared Cy7-SS displayed an enhanced emission at near-infrared region (NIR) after the recognition of Cys. Moreover, Cy7-SS not only exhibited high selectivity and sensitivity on the detection of in vitro Cys, but also could be used for endogenous Cys in living cells and C.elegans. The prepared strategy for the design of fluorophores expands the in vivo sensing toolkit for the precise analysis in clinical diagnosis.
Collapse
Affiliation(s)
- Hualong Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong Province 255049, PR China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Huiling Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhixuan Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Gehua Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong Province 255049, PR China.
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yi Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong Province 255049, PR China.
| |
Collapse
|
18
|
Baek Y, Kim H, Lee D, Kim D, Jo E, Roh SH, Ha NC. Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation. Proc Natl Acad Sci U S A 2025; 122:e2408582122. [PMID: 39874287 PMCID: PMC11804504 DOI: 10.1073/pnas.2408582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity. The C6A/C111A mutant SOD1 formed filaments more rapidly than the WT protein. The mutant structure had a unique paired-protofilament arrangement, with a smaller filament core than that of the single-protofilament structure observed in WT SOD1. Although the single-protofilament form developed more slowly, cross-seeding experiments demonstrated the predominance of single-protofilament morphology over paired protofilaments, regardless of the presence of the Cys6 and Cys111 mutations. These findings highlight the importance of the number of amino acid residues within the filament core in determining the energy requirements for assembly. Our study provides insights into ALS pathogenesis by elucidating the initiation and propagation of filament formation, which potentially leads to deleterious amyloid filaments.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg69117, Germany
| | - Dukwon Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Doyeon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Eunbyul Jo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
19
|
Woo HY, An JM, Park MY, Han A, Kim Y, Kang J, Ahn S, Min SK, Ha J, Kim D, Min S. Cysteine as an Innovative Biomarker for Kidney Injury. Transplantation 2025; 109:309-318. [PMID: 39049125 DOI: 10.1097/tp.0000000000005138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Kidney transplantation is a widely used treatment for end-stage kidney disease. Nevertheless, the incidence of acute kidney injury (AKI) in deceased donors poses a potential hazard because it significantly increases the risk of delayed graft function and potentially exerts an influence on the kidney allograft outcome. It is crucial to develop a diagnostic model capable of assessing the existence and severity of AKI in renal grafts. However, no suitable kidney injury markers have been developed thus far. METHODS We evaluated the efficacy of the molecular probe NPO-B, which selectively responds to cysteine, as a new diagnostic tool for kidney injury. We used an in vitro model using ischemia/reperfusion injury human kidney-2 cells and an in vivo ischemia/reperfusion injury mouse model. Additionally, cysteine was investigated using urine samples from deceased donors and living donors to assess the applicability of detection techniques to humans. RESULTS This study confirmed that the NPO-B probe effectively identified and visualized the severity of kidney injury by detecting cysteine in both in vitro and in vivo models. We observed that the fluorescence intensity of urine samples measured using NPO-B from the deceased donors who are at a high risk of renal injury was significantly stronger than that of the living donors. CONCLUSIONS If implemented in clinical practice, this new diagnostic tool using NPO-B can potentially enhance the success rate of kidney transplantation by accurately determining the extent of AKI in renal grafts.
Collapse
Affiliation(s)
- Hye Young Woo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min Young Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngwoong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sanghyun Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
- UC San Diego Materials Research Science and Engineering Center, La Jolla, CA
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Pan Y, Matsunaga T, Zhang T, Akaike T. The Therapeutic Potential of Supersulfides in Oxidative Stress-Related Diseases. Biomolecules 2025; 15:172. [PMID: 40001475 PMCID: PMC11852411 DOI: 10.3390/biom15020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidation-reduction (redox) reactions are fundamental to sustaining life, with reactive oxygen and nitrogen species playing pivotal roles in cellular signaling and homeostasis. However, excessive oxidative stress disrupts redox balance, contributing to a wide range of diseases, including inflammatory and pulmonary disorders, neurodegeneration, and cancer. Although numerous antioxidant therapies have been developed and tested for oxidative stress-related diseases, their clinical efficacy remains limited. Here, we introduce the emerging concept of 'supersulfides', a class of redox molecule species with unique antioxidant and nucleophilic properties, which have recently been recognized as crucial regulators of cellular redox homeostasis. Unlike traditional antioxidants, supersulfides offer novel mechanisms of action that directly target the underlying processes of oxidative stress. This review summarizes current knowledge on supersulfides, highlighting their roles in oxidative stress and associated diseases, as well as the mechanisms underlying oxidative stress-related pathology. The therapeutic potential of synthetic supersulfides for treating oxidative stress-related diseases is also discussed. A comprehensive understanding of the molecular and cellular basis of redox biology can help to guide the development of innovative redox-based therapeutic strategies aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Grants
- 20348438 Japan Science and Technology Agency
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 23K20040 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 24H00063 Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yuexuan Pan
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Tetsuro Matsunaga
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
21
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
22
|
Yeung K, Xie L, Nair P, Peng H. Haloacetonitriles Induce Structure-Related Cellular Toxicity Through Distinct Proteome Thiol Reaction Mechanisms. ACS ENVIRONMENTAL AU 2025; 5:101-113. [PMID: 39830722 PMCID: PMC11741059 DOI: 10.1021/acsenvironau.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches. Dibromoacetonitrile (DBAN) displayed strong cytotoxicity and Nrf2 oxidative stress responses, followed by monohalogenated HANs (monoHANs) while other polyhalogenated HANs (polyHANs) exhibited little toxicity. Activity based protein profiling (ABPP) revealed that toxic HANs adduct to human proteome thiols, supporting thiol reactivity as the primary toxicity mechanism for HANs. By using glutathione (GSH) as a thiol surrogate, monoHANs reacted with GSH via SN2 while polyHANs reacted through ultrafast addition reactions. In contrast, DBAN generated an unexpected fully debrominated product and glutathione disulfide (GSSG). The unique reaction of DBAN with GSH was found to be mediated by radicals which was supported by electron paramagnetic resonance (EPR) spectroscopy and by radical trapping reagent reaction quenching. Shotgun proteomics further revealed that monoHANs and DBAN adducted to proteome thiols in live cells forming dehalogenated adducts. Multiple antioxidant proteins, SOD1, CSTB, and GAPDH, were adducted by toxic HANs at specific cysteine residues. This study highlights the structurally selective toxicity of HANs in human cells, which are attributed to their distinct reactions with proteome thiols.
Collapse
Affiliation(s)
- Kirsten Yeung
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School
of the Environment, University of Toronto, Toronto, Ontario M5S 3J1, Canada
| | - Linna Xie
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Pranav Nair
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School
of the Environment, University of Toronto, Toronto, Ontario M5S 3J1, Canada
| |
Collapse
|
23
|
Xiao X, Hu M, Gao L, Yuan H, Chong B, Liu Y, Zhang R, Gong Y, Du D, Zhang Y, Yang H, Liu X, Zhang Y, Zhang H, Xu H, Zhao Y, Meng W, Xie D, Lei P, Qi S, Peng Y, Tan T, Yu Y, Hu H, Dong B, Dai L. Low-input redoxomics facilitates global identification of metabolic regulators of oxidative stress in the gut. Signal Transduct Target Ther 2025; 10:8. [PMID: 39774148 PMCID: PMC11707242 DOI: 10.1038/s41392-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys. Notably, the proteins modified by SOH and SSG were associated primarily with cell adhesion. In contrast, SNO-modified proteins were involved in immunity. Interestingly, we observed that the Sto levels ranged from 0.97% to 99.88%, exhibiting two distinct peaks and increasing with age. Crosstalk analysis revealed numerous age-related metabolites potentially involved in modulating oxidative stress and Cys modifications. Notably, we elucidated the role of fumarate in alleviating intestinal oxidative stress in a dextran sulfate sodium (DSS)-induced colitis mouse model. Our findings showed that fumarate treatment promotes the recovery of several cell types, signaling pathways, and genes involved in oxidative stress regulation. Calorie restriction (CR) is a known strategy for alleviating oxidative stress. Two-month CR intervention led to the recovery of many antioxidative metabolites and reshaped the Cys redoxome. This work decodes the complexities of redoxomics during the gut aging of non-human primates and identifies key metabolic regulators of oxidative stress and redox signaling.
Collapse
Affiliation(s)
- Xina Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Gao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Yuan
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Baochen Chong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenbo Meng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Dan Xie
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
24
|
Vlocskó RB, Mastyugin M, Török B, Török M. Correlation of physicochemical properties with antioxidant activity in phenol and thiophenol analogues. Sci Rep 2025; 15:73. [PMID: 39747219 PMCID: PMC11697322 DOI: 10.1038/s41598-024-83982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, associated with excessive production of reactive oxygen and nitrogen species (ROS, RNS), contributes to the development and progression of many ailments, such as aging, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, diabetes, cancer, preeclampsia or multiple sclerosis. While phenols and polyphenols are the most studied antioxidants structurally similar compounds such as anilines or thiophenols are sporadically analyzed despite their radical scavenging potential. This work assesses the impact of structural features of phenols and thiophenols on their antioxidant activity. Seventeen pairs of phenol/thiophenol analogues, possessing both electron-donating and withdrawing groups were selected for this study. Several physicochemical properties of the compounds were determined by density functional theory (DFT) calculations at the (U)B3LYP/6-311++G(d,p) level of theory for gas phase calculations and at the (U)B3LYP/6-311++G(d,p) scrf = (smd, solvent = water) level for the solvated ones. Correlations between calculated properties and experimental radical scavenging activities were investigated to identify the pivotal physical characteristics contributing to antioxidant efficiency. These include S-H and O-H bond distances and bond dissociation enthalpies (BDE), dipole moments, logP values, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbital energies, and the HOMO-LUMO gap energies that were calculated at the M06-2X/6-311++G(d,p) level of theory, and Fukui functions. The experimental activity was evaluated using the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1picrylhydrazyl (DPPH) radical scavenging assays. Several compounds exhibited superior scavenging abilities, surpassing that of the reference antioxidant Trolox. The extensive DFT calculations revealed that in the gas phase, lower BDE values, compared to IP and PA, suggested that the HAT mechanism predominates in case of these compound groups. In contrast, in water, significant reductions in PA due to solvent effects suggested that the SPLET mechanism is dominant under aqueous conditions.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Maxim Mastyugin
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Marianna Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA.
| |
Collapse
|
25
|
Dzugkoev SG, Dzugkoeva FS, Gadieva VA. Total and Reduced Aminothiols in Blood Plasma as Biochemical Markers of the Effectiveness of Hemodialysis Therapy in Patients with End-Stage Renal Disease. Bull Exp Biol Med 2025; 178:315-318. [PMID: 39969685 DOI: 10.1007/s10517-025-06328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 02/20/2025]
Abstract
The redox status of aminothiols in the blood plasma of 15 patients with end-stage renal disease before and against the background of hemodialysis therapy was compared with that of relatively healthy volunteers. An increase in the plasma content of total cysteine and homocysteine in patients before dialysis was revealed. An increase in the level of oxidized forms of these compounds was also noted. The hemodialysis procedure was accompanied by a significant shift of the redox status towards an increase in the reduced forms typical of healthy people. Oxidized forms of aminothiols can be used as biomarkers of uremic conditions in patients with end-stage renal disease. At the same time, the predominance of reduced forms of compounds may be an indicator of the effectiveness of renal replacement therapy, including hemodialysis.
Collapse
Affiliation(s)
- S G Dzugkoev
- Institute of Biomedical Research - Branch of the Vladikavkaz Scientific Center, Russian Academy of Sciences, Mikhailovskoye village, Vladikavkaz, Russia
| | - F S Dzugkoeva
- Institute of Biomedical Research - Branch of the Vladikavkaz Scientific Center, Russian Academy of Sciences, Mikhailovskoye village, Vladikavkaz, Russia
| | - V A Gadieva
- North Ossetian State Medical Academy, Ministry of Health of the Russian Federation, Vladikavkaz, Russia.
| |
Collapse
|
26
|
Zouaoui Z, Ennoury A, El Asri S, Laabar A, Kabach I, Laganà Vinci R, Cacciola F, Mondello L, Taghzouti K, Nhiri M. Polyphenols from rose pepper spice: LC-MS/MS characterization and therapeutic potential in diabetes mellitus management. FOOD BIOSCI 2025; 63:105644. [DOI: 10.1016/j.fbio.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Chen A, Covitz RM, Folsom AA, Mu X, Peck RF, Noh S. Symbiotic T6SS affects horizontal transmission of Paraburkholderia bonniea among Dictyostelium discoideum amoeba hosts. ISME COMMUNICATIONS 2025; 5:ycaf005. [PMID: 40046898 PMCID: PMC11882306 DOI: 10.1093/ismeco/ycaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/09/2025]
Abstract
Three species of Paraburkholderia are able to form facultative symbiotic relationships with the amoeba, Dictyostelium discoideum. These symbiotic Paraburkholderia share a type VI secretion system (T6SS) that is absent in other close relatives. We tested the phenotypic and transcriptional effect of tssH ATPase gene disruption in P. bonniea on its symbiosis with D. discoideum. We hypothesized that the ∆tssH mutant would have a significantly reduced ability to affect host fitness or transmit itself from host to host. We found that the T6SS does not directly affect host fitness. Instead, wildtype P. bonniea had significantly higher rates of horizontal transmission compared to ∆tssH. In addition, we observed significant differences in the range of infection prevalence achieved by wildtype vs. ∆tssH symbionts over multiple host social stages in the absence of opportunities for environmental symbiont acquisition. Successful symbiont transmission significantly contributes to sustained symbiotic association. Therefore, the shared T6SS appears necessary for a long-term evolutionary relationship between D. discoideum and its Paraburkholderia symbionts. The lack of difference in host fitness outcomes was confirmed by indistinguishable host gene expression patterns between hosts infected by wildtype or ∆tssH P. bonniea in an RNA-seq time series. These data also provided insight into how Paraburkholderia symbionts may evade phagocytosis by its amoeba host. Most significantly, cellular oxidant detoxification and lysosomal hydrolase delivery appear to be subject to the push and pull of host-symbiont crosstalk.
Collapse
Affiliation(s)
- Anna Chen
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Rachel M Covitz
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
- School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, United States
| | - Abigail A Folsom
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Xiangxi Mu
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Ronald F Peck
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Suegene Noh
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| |
Collapse
|
28
|
Daraghmeh DN, Karaman R. The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants. Antioxidants (Basel) 2024; 14:36. [PMID: 39857370 PMCID: PMC11762794 DOI: 10.3390/antiox14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Red blood cells (RBCs) are a vital component of the body's oxygen supply system. In addition to being pro-oxidants, they are also essential components of the body's antioxidant defense mechanism. RBCs are susceptible to both endogenous and exogenous sources of oxidants. Oxyhemoglobin autoxidation is the primary source of endogenous RBC oxidant production, which produces superoxide radicals and hydrogen peroxide. Potent exogenous oxidants from other blood cells and the surrounding endothelium can also enter RBCs. Both enzymatic (like glutathione peroxidase) and non-enzymatic (like glutathione) mechanisms can neutralize oxidants. These systems are generally referred to as oxidant scavengers or antioxidants, and they work to neutralize these harmful molecules (i.e., oxidants). While their antioxidative capabilities are essential to their physiological functions and delivering oxygen to tissues, their pro-oxidant behavior plays a part in several human pathologies. The redox-related changes in RBCs can have an impact on their function and fate. The balance between pro-oxidants and antioxidants determines the oxidative status of cells, which affects signal transduction, differentiation, and proliferation. When pro-oxidant activity exceeds antioxidative capacity, oxidative stress occurs, leading to cytotoxicity. This type of stress has been linked to various pathologies, including hemolytic anemia. This review compiles the most recent literature investigating the connections between RBC redox biochemistry, antioxidants, and diverse disorders.
Collapse
Affiliation(s)
- Dala N. Daraghmeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine;
| | | |
Collapse
|
29
|
Wu Y, Zhao M, Li S, Liu S, Gao S, Liu R, Wu M, Yu H, Ge Q. Storage Stability Enhancement of Lactic Acid Beverage Using Anti-MDA Lactiplantibacillus plantarum NJAU-01: The Antioxidant's Role. Foods 2024; 14:52. [PMID: 39796342 PMCID: PMC11720519 DOI: 10.3390/foods14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the inhibitory efficacy of Lactiplantibacillus plantarum NJAU-01 (NJAU-01) on oxidation associated with malondialdehyde (MDA) and utilized the bacteria in a functional lactic acid beverage. The antioxidant capacity of the bacteria was measured in vitro, the production conditions (inoculum, fermentation time, and sugar addition) of the lactic acid beverage were optimized, and the effects of NJAU-01 on antioxidant, flavor profile, and storage stability of lactic acid beverages were investigated. The results revealed that NJAU-01 exhibited a high tolerance towards MDA at 40 mM, and that it also exhibited outstanding antioxidant capacity in vitro and antioxidant enzyme activity throughout its growth stage. The beverage demonstrated an elevated antioxidant capacity and efficiently eliminated MDA. Additionally, the NJAU-01 lactic acid beverage could be stored at 4 °C for 21 days, exhibiting stable sensory attributes and strong resistance against lipid peroxidation. The study yielded insights into the role of NJAU-01 in improving the storage stability of lactic acid beverages thereby contributing to a deeper understanding of the specific mechanisms by which probiotics enhance beverage quality. These findings can facilitate a more effective utilization of this knowledge in the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China (S.G.); (R.L.); (M.W.); (H.Y.)
| |
Collapse
|
30
|
But AE, Pop RM, Binsfeld GF, Ranga F, Orăsan MS, Cecan AD, Morar II, Chera EI, Bonci TI, Usatiuc LO, Țicolea M, Cătoi FA, Pârvu AE, Ghergie MCD. The Phytochemical Composition and Antioxidant Activity of Matricaria recutita Blossoms and Zingiber officinale Rhizome Ethanol Extracts. Nutrients 2024; 17:5. [PMID: 39796439 PMCID: PMC11722678 DOI: 10.3390/nu17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Inflammation-induced oxidative stress is a pathophysiological mechanism of inflammatory diseases. Treatments targeting oxidative stress can reduce inflammatory tissue damage. OBJECTIVES This study aimed to conduct phytochemical analysis and evaluate the antioxidant effects of the hydroalcoholic extract of Matricaria recutita blossoms (M. recutita) and Zingiber officinale rhizomes (Z. officinale). MATERIALS AND METHODS The phytochemical analysis was carried out by measuring the total polyphenol content, total flavonoid content, and polyphenolic compounds' HPLC-ESI MS. The antioxidant activity was evaluated in vitro through H2O2 DPPH, FRAP, and NO scavenging assays. An in vivo experiment was performed on rats with turpentine oil-induced acute inflammation. Treatments were administrated orally for 10 days, with three dilutions of each extract (100%, 50%, 25%), and compared to the CONTROL, inflammation, Diclofenac, and Trolox groups. In vivo, the antioxidant activity was evaluated by measuring the total antioxidant capacity (TAC), total oxidative status (TOS), oxidative stress index (OSI), malondialdehyde (MDA), nitric oxide (NO), advanced oxidation protein products (AOPP), and total thiols (SH). RESULTS The phytochemical analysis found a high content of phenolic compounds in both extracts, and the in vitro antioxidant activity was significant. In vivo, M. recutita and Z. officinale extracts proved to be effective in increasing TAC and lowering oxidative stress markers, respectively, the TOS, OSI, MDA, and NO levels. The effects were dose-dependent, with the lower concentrations being more efficient antioxidants. Matricaria recutita and Z. officinale extract effects were as good as those of trolox and diclofenac. CONCLUSIONS Treatment with M. recutita and Z. officinale alleviated inflammation-induced oxidative stress. These findings suggest that M. recutita and Z. officinale extracts could be a promising adjuvant antioxidant therapy in inflammatory diseases.
Collapse
Affiliation(s)
- Anca Elena But
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | | | - Floricuța Ranga
- Food Science and Technology, Department of Food Science, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăștur, No 3-5, 400372 Cluj-Napoca, Romania;
| | - Meda Sandra Orăsan
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Andra Diana Cecan
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Iulia Ioana Morar
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Elisabeta Ioana Chera
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Teodora Irina Bonci
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Lia Oxana Usatiuc
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Mădălina Țicolea
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Florinela Adriana Cătoi
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Alina Elena Pârvu
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania; (A.E.B.); (M.S.O.); (A.D.C.); (I.I.M.); (E.I.C.); (T.I.B.); (L.O.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Mircea Constantin Dinu Ghergie
- Orthodontics, Department of Conservative Odontology, Faculty of Dental Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
31
|
Hu X, Zhao N, Ranjbar E, Foruozandeh H, Nahal AS, Asadoola Y, Ahmadi I. Protective effect of oleuropein on the brain tissue in D-Galactose-induced aging in rat model. Mol Biol Rep 2024; 52:67. [PMID: 39704928 DOI: 10.1007/s11033-024-10165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Oleuropein (OLE) has the potential to reduce oxidative stress and inflammation. So, in the present investigation, we explored the protective effect of OLE on brain aging induced by d-galactose (D-Gal) in a rat model. METHODS AND RESULTS 40 Wister male adult rats were categorized into 5 groups. Group 1 received normal saline; group 2 was given 100 mg/kg of D-Gal intraperitoneally (IP). The rats in groups 3 to 5 were given D-Gal (100 mg/kg, IP) along with different doses of OLE (20, 40, and 80 mg/kg, respectively) orally. All administrations were performed daily for 8 weeks. 24 h after last treatment motor activity and memory impairment were evaluated. Then, the rats were euthanized and brain samples were collected for evaluating the levels of malondialdehyde (MDA), Brain-Derived Neurotrophic Factor (BDNF), protein carbonyl (PC), glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), Superoxide dismutase (SOD), Tumor necrosis factor alpha (TNF-α), interleukin 1 beta ( IL-1β), as well as Sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1) gene expression. The results showed that D-Gal significantly reduced motor activity and memory performance (P < 0.05). It also significantly reduced the GPX, CAT and SOD activities, GSH and BDNF levels as well as SIRT1 and PGC1 expression, and, significantly increased PC, MDA TNF-α and IL-1β levels in the brain tissue (P < 0.05). Administration of OLE restored all of the above parameters close to control group. CONCLUSION The findings demonstrated that OLE, through its antioxidant and anti-inflammatory properties, improved motor activity, memory impairment, and age-related neurological dysfunction.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Neurology, Shandong Public Health Clinical Center, Shandong University, Jinan, 250100, China
| | - Nan Zhao
- Department of Neurosurgery, The First Hospital of Kunming (Affiliated Calmette Hospital of Kunming Medical University), Kunming, 650224, China
| | - Elham Ranjbar
- Department of Biochemistry, Medicine School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hossein Foruozandeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Shiraz, Iran
| | - Ali Seidkhani Nahal
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Yousef Asadoola
- Department of Nursing, Kut University College, Wasit, 52001, Iraq
| | - Iraj Ahmadi
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
32
|
Gwozdzinski L, Pieniazek A, Gwozdzinski K. The Roles of Oxidative Stress and Red Blood Cells in the Pathology of the Varicose Vein. Int J Mol Sci 2024; 25:13400. [PMID: 39769165 PMCID: PMC11678264 DOI: 10.3390/ijms252413400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review discusses sources of reactive oxygen species, enzymatic antioxidant systems, and low molecular weight antioxidants. We present the pathology of varicose veins (VVs), including factors such as hypoxia, inflammation, dysfunctional endothelial cells, risk factors in varicose veins, the role of RBCs in venous thrombus formation, the influence of reactive oxygen species (ROS) and RBCs on VV pathology, and the role of hemoglobin in the damage of particles and macromolecules in VVs. This review discusses the production of ROS, enzymatic and nonenzymatic antioxidants, the pathogenesis of varicose veins as a pathology based on hypoxia, inflammation, and oxidative stress, as well as the participation of red blood cells in the pathology of varicose veins.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| | - Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (A.P.); (K.G.)
| |
Collapse
|
33
|
Hong L, Li W, Qi M, Dong W, Liu C, Li M, Zhong Y, Wu Z, Li C, Bai X, Wang L. Enhanced Antimicrobial Efficiency of Gold Nanoclusters via Improved Sonodynamic Activity and Out-Membrane Crossing Capacity. NANO LETTERS 2024; 24:15547-15556. [PMID: 39614416 DOI: 10.1021/acs.nanolett.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Antimicrobial sonodynamic therapy (SDT) holds great promise in clinical practice regarding its noninvasiveness, high safety profile, and absence of resistance concern. However, exploring high-efficiency sonodynamic sensitizers is slow-moving and remains a big challenge. We, herein, employed gold nanoclusters (Au NCs) as a novel class of sonodynamic sensitizers, demonstrating notable antimicrobial efficacy in treating infected wounds. Specifically, l-arginine (Arg) and 6-azido-2-thiothymidine (ATT) cocapped Au NCs featured enhanced structural rigidity, suppressing nonradiative relaxation of excited electrons and achieving a reactive oxygen species (ROS) yield exceeding 45%. Moreover, the modification of ATT-Au NCs by Arg imparted amino acid-like properties to the Au NCs, while the ultrasound (US) up-regulates the expression of OmpF porins in E. coli. This synergy resulted in a burst of ROS production within the bacterial cells, ultimately leading to a four-order-of-magnitude reduction in microbial viability.
Collapse
Affiliation(s)
- Le Hong
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun, Changchun to 130012, China
| | - Chengyu Liu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun, Changchun to 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun, Changchun to 130012, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun, Changchun to 130012, China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
34
|
Idowu OK, Oremosu AA, Dosumu OO, Mohammed AA. Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. Fly (Austin) 2024; 18:2306687. [PMID: 38286464 PMCID: PMC10826630 DOI: 10.1080/19336934.2024.2306687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups (n = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w1118) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly (p < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic Drosophila melanogaster models of Parkinsonism.
Collapse
Affiliation(s)
- Olumayowa K. Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Ademola A. Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunke O. Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A. Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
35
|
Oyaluna ZE, Abolaji AO, Bodede O, Olanlokun JO, Prinsloo G, Steenkamp P, Babalola CP. Chemical analysis of Alliin-Rich Allium sativum (Garlic) extract and its safety evaluation in Drosophila melanogaster. Toxicol Rep 2024; 13:101760. [PMID: 39484636 PMCID: PMC11525231 DOI: 10.1016/j.toxrep.2024.101760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Garlic (Allium sativum) has been traditionally valued for its medicinal properties attributed to the presence of organosulfur compounds. Despite its benefits, concerns about herbal extract toxicity have arisen, necessitating safety assessment . This study was designed to evaluate the chemical analysis and safety profile of Alliin-Rich Garlic Extract (ARGE) using Drosophila melanogaster as a model organism. The ARGE was extracted from garlic cloves (Allium sativum Linn: UIH-23262) using a microwave-assisted method and characterized using UPLC-ESI-MS, 1H NMR, HPLC and IR. Its safety evaluation was determined using D. melanogaster (Harwich strain), and various assays were conducted on 1-3-day-old flies. Toxicological markers and oxidative stress were assessed to understand the impact of ARGE on the flies. Chemical profiling of ARGE using UPLC-ESI-MS, confirmed the presence of alliin (S-ally-L-cysteine-S-oxide), L-arginine, γ-glutamylmethionine, S-(2-carboxypropyl) glutathione, N-γ-glutamyl-S-(1-propenyl) cysteine, N-γ-glutamyl-S-(2-propenyl) cysteine, N-γ-glutamylphenylalanine, S-(allylthio) cysteine, γ-glutamyl-S-allylthiocysteine and eruboside B. HPLC confirmed an alliin content of 0.073 mg/g. Toxicological assessment in D. melanogaster revealed that ARGE enhanced antioxidant defenses by increasing total thiol levels and GST activity, while reducing acetylcholinesterase activity. No significant alteration was observed in catalase activity and cellular metabolic rate. Histological examination revealed no alterations in the histoarchitecture of the brain, fat body or gut of D. melanogaster. The study demonstrated the safety of ARGE in D. melanogaster, supporting its potential as a safe herbal remedy.
Collapse
Affiliation(s)
- Zeniat Emike Oyaluna
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Drosophila Research and Training Centre, Basorun, Ibadan, Nigeria
- Drosophila Laboratory. Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos Olalekan Abolaji
- Drosophila Research and Training Centre, Basorun, Ibadan, Nigeria
- Drosophila Laboratory. Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Bodede
- Department of Chemistry, University of Pretoria, Hatfield 0028, South Africa
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg, FL 1709, South Africa
| | - Paul Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Chemistry and Centre for Drug Discovery Development & Production (CDDDP), Faculty of Pharmacy, University of Ibadan, Oyo State, Nigeria
| |
Collapse
|
36
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
37
|
Zhang W, Liu W, Wang L, Yu P, Song X, Yao Y, Liu X, Meng X. Effects of water stress on secondary metabolism of Panax ginseng fresh roots. PLoS One 2024; 19:e0312023. [PMID: 39602405 PMCID: PMC11602063 DOI: 10.1371/journal.pone.0312023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
The roots and rhizomes of Panax ginseng C.A. Mey are commonly used herbal medicine in Asian countries. These components contain a large number of secondary metabolites known as ginsenosides, which serve as primary active ingredient. Environmental factors significantly influence the production of secondary metabolites, which are crucial for enhancing plant adaptability to ecological stress. P. ginseng is a shady plant that thrives in a constantly humid and temperate environment. However, it cannot withstand excessive moisture, making soil moisture a significant ecological stress affecting P. ginseng survival. In this study, we applied a water spray to maintain a water-saturated surface on 5-year-old fresh P. ginseng roots for a duration of 5 days, to establish a short-term water stress condition. The results revealed a notable increase in superoxide anion (O2·-), hydrogen peroxide (H2O2), and NADPH oxidase (NOX) activity (p < 0.01), as well as malondialdehyde (MDA) contents (p < 0.01) in both the main root and fibrous root of P. ginseng. Additionally, superoxide dismutase (SOD), catalase (CAT), peroxides (POD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities also elevated significantly under water stress (p < 0.01). Ascorbic acid (AsA), glutathione (GSH) and oxidized glutathione (GSSG) contents also showed a marked increase (p < 0.01). The main root treated with water showed the most positive impact on the 5th day. Water stress boosted the activities of key enzymes including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase (FPS), squalene synthase (SS), squalene epoxidase (SE), and dammarenediol-II synthase (DS) involved in the ginsenoside biosynthesis pathway (p <0.01). This resulted in a significant an increase in the level of ginsenosides Rg1, Rb1, Rf, Rg2+Rh1, Rc, and Rb3, by 42.4%, 21.0%, 15.7%, 157.9%, 18.3%, and 10.6% respectively, and an increase of 40.1% in total saponins content. Similarly, the fibrous root changes in the treated sample showed the most positive impact on the 4th day. Specifically, Rg1, Re, Rb1, Rf, Rg2+Rh1, Rc, Ro, and Rb2 increased by 41.8%, 20.5%, 17.3%, 84.3%, 30.7%, 35.6%, 8.6%, and 7.6%, respectively, and an increase of 4.2% in total saponins content. Furthermore, 1,3-disphosphoglycerate (1,3-DPG) contents and phosphoenolpyruvate carboxylase (PEPC) activities, which are key intermediate of primary metabolism, were significantly elevated under water stress (p < 0.01). This indicates that the primary source of the raw materials used in the biosynthesis of secondary metabolites is sugars. Pharmacodynamic analysis demonstrated that water stress could increase the contents of ginsenosides, improve the quality of ginseng, and enhance the efficacy of ginseng root to a certain extent.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wenfei Liu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Liyang Wang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengcheng Yu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaowen Song
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yao Yao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiubo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Duong LD, West JD, Morano KA. Redox regulation of proteostasis. J Biol Chem 2024; 300:107977. [PMID: 39522946 DOI: 10.1016/j.jbc.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out the reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes the degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
Collapse
Affiliation(s)
- Long Duy Duong
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio, USA.
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
39
|
Nazari A, Osati P, Seifollahy Fakhr S, Faghihkhorasani F, Ghanaatian M, Faghihkhorasani F, Rezaei-Tazangi F, Pazhouhesh Far N, Shourideh A, Ebrahimi N, Aref AR. New Emerging Therapeutic Strategies Based on Manipulation of the Redox Regulation Against Therapy Resistance in Cancer. Antioxid Redox Signal 2024. [PMID: 39506926 DOI: 10.1089/ars.2023.0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Background: Resistance to standard therapeutic methods, including chemotherapy, immunotherapy, and targeted therapy, remains a critical challenge in effective cancer treatment. Redox homeostasis modification has emerged as a promising approach to address medication resistance. Objective: This review aims to explore the mechanisms of redox alterations and signaling pathways contributing to treatment resistance in cancer. Methods: In this study, a comprehensive review of the molecular mechanisms underlying drug resistance governed by redox signaling was conducted. Emphasis was placed on understanding how tumor cells manage increased reactive oxygen species (ROS) levels through upregulated antioxidant systems, enabling resistance across multiple therapeutic pathways. Results: Key mechanisms identified include alterations in drug efflux, target modifications, metabolic changes, enhanced DNA damage repair, stemness preservation, and tumor microenvironment remodeling. These pathways collectively facilitate tumor cells' adaptive response and resistance to various cancer treatments. Conclusion: Developing a detailed understanding of the interrelationships between these redox-regulated mechanisms and therapeutic resistance holds potential to improve treatment effectiveness, offering valuable insights for both fundamental and clinical cancer research. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Parisa Osati
- Department of Chemical Engineering, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Norway
| | - Ferdos Faghihkhorasani
- Department of Cardiology, Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, Shaanxi Province, 710061, China
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fereshteh Faghihkhorasani
- General Physician in Medicine Program,General Doctorate Degree of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Amir Shourideh
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA and Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Shen L, Kang J, Wang J, Shao S, Zhou H, Yu X, Huang M, Zeng W. Dissecting the mechanism of synergistic interactions between Aspergillus fumigatus and the microalgae Synechocystis sp. PCC6803 under Cd(II) exposure: insights from untargeted metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135354. [PMID: 39126852 DOI: 10.1016/j.jhazmat.2024.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Co-culturing fungi and microalgae may effectively remediate wastewater containing Cd and harvest microalgae. Nevertheless, a detailed study of the mechanisms underlying the synergistic interactions between fungi and microalgae under Cd(II) exposure is lacking. In this study, Cd(II) exposure resulted in a significant enhancement of antioxidants, such as glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) compared to the control group, suggesting that the cellular antioxidant defense response was activated. Extracellular proteins and extracellular polysaccharides of the symbiotic system were increased by 60.61 % and ,24.29 %, respectively, after Cd(II) exposure for 72 h. The adsorption behavior of Cd(II) was investigated using three-dimensional fluorescence excitation-emission matrix (3D-EEM), fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). Metabolomics results showed that the TCA cycle provided effective material and energy supply for the symbiotic system to resist the toxicity of Cd(II); Proline, histidine, and glutamine strengthened the synergistic adsorption capacity of the fungus and microalgae. Overall, the theoretical foundation for a deep comprehension of the beneficial interactions between fungi and microalgae under Cd(II) exposure and the role of the fungal-algal symbiotic system in the management of heavy metal pollution is provided by this combined physiological and metabolomic investigation.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China.
| |
Collapse
|
41
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
42
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
43
|
Boutin C, Clément C, Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int J Mol Sci 2024; 25:9845. [PMID: 39337338 PMCID: PMC11432348 DOI: 10.3390/ijms25189845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways.
Collapse
Affiliation(s)
- Charlie Boutin
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Camille Clément
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
44
|
Müller-Schüssele SJ. Chloroplast thiol redox dynamics through the lens of genetically encoded biosensors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5312-5324. [PMID: 38401159 DOI: 10.1093/jxb/erae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
Chloroplasts fix carbon by using light energy and have evolved a complex redox network that supports plastid functions by (i) protecting against reactive oxygen species and (ii) metabolic regulation in response to environmental conditions. In thioredoxin- and glutathione/glutaredoxin-dependent redox cascades, protein cysteinyl redox steady states are set by varying oxidation and reduction rates. The specificity and interplay of these different redox-active proteins are still under investigation, for example to understand how plants cope with adverse environmental conditions by acclimation. Genetically encoded biosensors with distinct specificity can be targeted to subcellular compartments such as the chloroplast stroma, enabling in vivo real-time measurements of physiological parameters at different scales. These data have provided unique insights into dynamic behaviours of physiological parameters and redox-responsive proteins at several levels of the known redox cascades. This review summarizes current applications of different biosensor types as well as the dynamics of distinct protein cysteinyl redox steady states, with an emphasis on light responses.
Collapse
|
45
|
Abumansour H, Abusara OH, Khalil W, Abul-Futouh H, Ibrahim AIM, Harb MK, Abulebdah DH, Ismail WH. Biological evaluation of levofloxacin and its thionated derivatives: antioxidant activity, aldehyde dehydrogenase enzyme inhibition, and cytotoxicity on A549 cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6963-6973. [PMID: 38613572 DOI: 10.1007/s00210-024-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Levofloxacin (LVX) is among the fluoroquinolones antibiotics that has also been studied in vitro and in vivo for its anticancer effects. In this study, we used LVX and novel LVX thionated derivatives; compounds 2 and 3, to evaluate their antioxidant activity, aldehyde dehydrogenase (ALDH) enzymes activity inhibition, and anticancer activity. Combination treatments with doxorubicin (DOX) were investigated as well. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to determine the antioxidant activity. The NADH fluorescence spectrophotometric activity assay was used to determine the ALDH inhibitory effects. Resazurin dye method was applied for cell viability assays. Molecular Operating Environment software was used for the molecular docking experiments. Compared to ascorbic acid, DPPH assay showed that compound 3 had the highest antioxidant activity among the tested compounds with approximately 35% scavenging activity. On ALDH enzymes, compound 3 showed a significant ALDH activity inhibition compared to compound 2 at 200 µM. The IC50 values for the tested compounds were approximately 100 µM on A549 cell line, a non-small cell lung cancer (NSCLC) cell line. However, significant enhancement of cytotoxicity and reduction of IC50 values were observed by combining DOX and synergism was achieved with LVX with a combination index value of 0.4. The molecular docking test showed a minimum binding energy with a good affinity for compound 3 towards ALDH enzymes. Thionated LVX derivatives, may be repurposed for NSCLC therapy in combination with DOX, taking into account the antioxidant activity, ALDH activity inhibition, and the molecular docking results of compound 3.
Collapse
Affiliation(s)
- Hamza Abumansour
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Wiam Khalil
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Ali I M Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Mohammad K Harb
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Dina H Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Worood H Ismail
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
46
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
47
|
Oliveira FRMB, Sousa Soares E, Pillmann Ramos H, Lättig-Tünnemann G, Harms C, Cimarosti H, Sordi R. Renal protection after hemorrhagic shock in rats: Possible involvement of SUMOylation. Biochem Pharmacol 2024; 227:116425. [PMID: 39004233 DOI: 10.1016/j.bcp.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.
Collapse
Affiliation(s)
- Filipe Rodolfo Moreira Borges Oliveira
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Ericks Sousa Soares
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Hanna Pillmann Ramos
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil
| | - Gisela Lättig-Tünnemann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Centre for Stroke Research, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany; Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena Cimarosti
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil; Graduate Program in Neuroscience, UFSC, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil.
| |
Collapse
|
48
|
Sieber PH, Steinritz D, Worek F, John H. Disulfide-adducts with cysteine residues in human serum albumin prove exposure to malodorous mercaptans in vitro. Anal Biochem 2024; 692:115568. [PMID: 38750681 DOI: 10.1016/j.ab.2024.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Malodorants are mixtures containing mercaptans, which trigger the flight instinct upon exposure and might thus be deployed in military and civilian defense scenarios. Exposure to mercaptans might lead to unconsciousness, thus representing a possible threat for health. Therefore, we developed and validated a bioanalytical procedure for the simultaneous detection and identification of corresponding biomarkers for the verification of exposure to mercaptans. Disulfide-adducts of ethyl mercaptan (SEt), n-butyl mercaptan (SnBu), tert-butyl mercaptan (StBu) and iso-amyl mercaptan (SiAm) with cysteine (Cys) residues in human serum albumin (HSA) were formed by in vitro incubation of human plasma. After pronase-catalyzed proteolysis, reaction products were identified as adducts of the single amino acid Cys and the dipeptide cysteine-proline (Cys34Pro) detected by a sensitive μLC-ESI MS/MS method working in the scheduled multiple reaction monitoring (sMRM) mode. Dose-response studies showed linearity for the yield of Cys34Pro-adducts in the range from 6 nM to 300 μM of mercaptans in plasma and limits of identification (LOI) were in the range from 60 nM to 6 μM. Cys34-adducts showed stability for at least 6 days in plasma (37 °C). The presented disulfide-biomarkers expand the spectrum for bioanalytical verification procedures and might be helpful to prove exposure to malodorants.
Collapse
Affiliation(s)
- Paula Helena Sieber
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, Goethestraße 33, 80336, Munich, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, Goethestraße 33, 80336, Munich, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
49
|
Zeng G, Mao J, Xing H, Xu Z, Cao Z, Kang Y, Liu G, Xue P. Gold Nanodots-Anchored Cobalt Ferrite Nanoflowers as Versatile Tumor Microenvironment Modulators for Reinforced Redox Dyshomeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406683. [PMID: 38984397 PMCID: PMC11529044 DOI: 10.1002/advs.202406683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Given that tumor microenvironment (TME) exerts adverse impact on the therapeutic response and clinical outcome, robust TME modulators may significantly improve the curative effect and increase survival benefits of cancer patients. Here, Au nanodots-anchored CoFe2O4 nanoflowers with PEGylation (CFAP) are developed to respond to TME cues, aiming to exacerbate redox dyshomeostasis for efficacious antineoplastic therapy under ultrasound (US) irradiation. After uptake by tumor cells, CFAP with glucose oxidase (GOx)-like activity can facilitate glucose depletion and promote the production of H2O2. Multivalent elements of Co(II)/Co(III) and Fe(II)/Fe(III) in CFAP display strong Fenton-like activity for·OH production from H2O2. On the other hand, energy band structure CFAP is superior for US-actuated 1O2 generation, relying on the enhanced separation and retarded recombination of e-/h+ pairs. In addition, catalase-mimic CFAP can react with cytosolic H2O2 to generate molecular oxygen, which may increase the product yields from O2-consuming reactions, such as glucose oxidation and sonosensitization processes. Besides the massive production of reactive oxygen species, CFAP is also capable of exhausting glutathione to devastate intracellular redox balance. Severe immunogenic cell death and effective inhibition of solid tumor by CFAP demonstrates the clinical potency of such heterogeneous structure and may inspire more relevant designs for disease therapy.
Collapse
Affiliation(s)
- Guicheng Zeng
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Haiyan Xing
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Zhigang Xu
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Zhong Cao
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Yuejun Kang
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Peng Xue
- School of Materials and EnergySouthwest UniversityChongqing400715China
| |
Collapse
|
50
|
Pálla T, Noszál B, Mirzahosseini A. Prediction of Antioxidant Capacity of Thiolate-Disulfide Systems Using Species-Specific Basicity Values. Antioxidants (Basel) 2024; 13:1053. [PMID: 39334712 PMCID: PMC11428801 DOI: 10.3390/antiox13091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The principal reactions that maintain redox homeostasis in living systems are the deprotonation of thiols, followed by the oxidative conversion of the produced thiolates into disulfides, which thus reduce the harmful oxidizing agents. The various biological thiols have different molecule-specific propensities to carry on the co-dependent deprotonation and redox processes. This study utilizes the known correlation between thiolate basicities and oxidizabilities, to quantify antioxidant or reducing capacities and pH-dependences of thiol-disulfide antioxidant systems, as a tool to find adequate molecules against oxidative stress.
Collapse
Affiliation(s)
- Tamás Pálla
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|