1
|
Li Y, Wang C, Fu X, Wu D, He C, Dai W, Yue X, Luo Z, Yang J, Wan QL. Transgenerational inheritance of mitochondrial hormetic oxidative stress mediated by histone H3K4me3 and H3K27me3 modifications. Redox Biol 2025; 82:103598. [PMID: 40112613 PMCID: PMC11979432 DOI: 10.1016/j.redox.2025.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Mitochondrial hormetic oxidative stress (mtHOS) is crucial in physiology and disease; however, its effects on epigenetic inheritance and organism fitness across generations remains elusive. Utilizing the C. elegans as a model, we elucidate that parental exposure to mtHOS not only elicits a lifespan extension in the exposed individuals but also confers this longevity advantage to the progeny through the transgenerational epigenetic inheritance (TEI) mechanism. This transgenerational transmission of lifespan prolongation depends on the activation of the UPRmt and the synergistic action of the transcription factors DAF-16/FOXO and SKN-1/Nrf2. Additionally, the H3K4me3 and H3K27me3 serve as epigenetic mediators, selectively marking and regulating the expression of genes associated with oxidative stress response and longevity determination. Our findings illuminate the mechanisms underlying the implementation and transmission of mtHOS, revealing a sophisticated interplay among oxidative stress response genes and chromatin remodeling that collectively enhances the progeny's adaptive resilience to future challenges.
Collapse
Affiliation(s)
- Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongyang Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoxia Fu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Dan Wu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenyang He
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenyu Dai
- The First Affiliated Hospital, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoyang Yue
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhuan Luo
- The First Affiliated Hospital, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Yang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Wei H, Rui J, Yan X, Xu R, Chen S, Zhang B, Wang L, Zhang Z, Zhu C, Ma M, Xiao H. Plant polyphenols as natural bioactives for alleviating lipid metabolism disorder: Mechanisms and application challenges. Food Res Int 2025; 203:115682. [PMID: 40022310 DOI: 10.1016/j.foodres.2025.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 03/03/2025]
Abstract
Lipid metabolism disorders will trigger various chronic diseases, which posing a serious threat to human health. Therefore, maintaining lipid metabolism balance is a key preventive and therapeutic strategy against various chronic and metabolic diseases. Various researches have proved that plant polyphenols play a significantly important role in regulating lipid metabolism. However, the mechanisms and application challenges of polyphenols in lipid metabolism disorders have rarely been elucidated. This review elucidates the definition, classification and function of plant polyphenols, summarize the kinds of polyphenols that can be used to regulate lipid metabolism, paying particular attention to the mechanisms for regulating lipid metabolism by plant polyphenols. Moreover, the limitations of polyphenols in the regulation of lipid metabolism are described and the trend of their development is prospective. This review will provide guidance to polyphenols in regulating metabolic diseases.
Collapse
Affiliation(s)
- Haiying Wei
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Jinsheng Rui
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Xinke Yan
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Ruyan Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Simeng Chen
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Baiming Zhang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Lei Wang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Zhisong Zhang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China
| | - Chengwen Zhu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019 China.
| | - Mengtao Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
3
|
Ma Y, Wang J, Fan J, Jia H, Li J. Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy. Molecules 2024; 30:20. [PMID: 39795078 PMCID: PMC11722366 DOI: 10.3390/molecules30010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation. Although it is known that DN can be alleviated by mechanisms linked to antioxidants, reducing inflammation and improving autophagy, how to improve DN by reducing fibrosis using natural polyphenols needs to be studied further. Nowadays, natural polyphenolic compounds with excellent safety and efficacy are playing an increasingly important role in drug discovery. Therefore, this review reveals the multiple mechanisms associated with fibrosis in DN, as well as the different signaling pathways (including TGF-β/SMAD, mTORC1/p70S6K, JAK/STAT/SOCS and Wnt/β-catenin) and the potential role in the fibrotic niche. In parallel, we summarize the types of polyphenolic compounds and their pharmacodynamic effects, and finally evaluate the use of polyphenols to modulate relevant targets and pathways, providing potential research directions for polyphenols to improve DN. In summary, the problem of long-term monotherapy resistance can be reduced with natural polyphenols, while reducing the incidence of toxic side effects. In addition, potential targets and their inhibitors can be identified through these pathways, offering potential avenues of research for natural polyphenols in the pharmacological treatment of multisite fibrosis.
Collapse
Affiliation(s)
- Ye Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiakun Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Juyue Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Huiyang Jia
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
4
|
Luo Y, Gao H, Zhao J, Chen L, Shao J, Ju L. The mechanism of PDE7B inhibiting the development of hepatocellular carcinoma through oxidative stress. Front Immunol 2024; 15:1469740. [PMID: 39640266 PMCID: PMC11617559 DOI: 10.3389/fimmu.2024.1469740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Background Liver cancer presents a significant challenge to global health and is currently ranked as the sixth most common form of cancer worldwide. Recent research indicates that phosphodiesterases play a role in various physiological and pathological processes, with a specific focus on their impact on cancer advancement. There is a scarcity of studies investigating the function and mechanisms of phosphodiesterases in the development and progression of hepatocellular carcinoma (HCC). Methods Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and Western blotting were employed to analyze the expression of PDE7B in hepatocellular carcinoma tissues and cells. The biological role of PDE7B in HCC was investigated by both overexpressing and knocking down PDE7B in liver cancer cell lines. Furthermore, potential target proteins of PDE7B were identified through transcriptome sequencing. Results PDE7B is conspicuously reduced in tissues and cells of hepatocellular carcinoma, showing a connection with an unfavorable prognosis. Inhibiting PDE7B boosts the growth, movement, and infiltration of liver cancer cells, while its increased expression has the reverse impact. According to our trials relating to oxidative stress, PDE7B appears to control cell death in liver cancer cells by impacting the production of reactive oxygen species. Therefore, we propose that PDE7B could hinder the initiation and advancement of HCC through an oxidative stress pathway. Conclusion The research we conducted reveals that PDE7B, a gene with minimal levels of activity in hepatocellular carcinoma, possesses the capacity to inhibit the proliferation, invasion, and migration of HCC cells. PDE7B can impact the development of hepatocellular carcinoma by adjusting mechanisms related to oxidative stress.
Collapse
Affiliation(s)
- Yunfeng Luo
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
- Medical College of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Huaide Gao
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
- Medical College of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Jianghua Zhao
- Medical College of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Lin Chen
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
| | - Jianguo Shao
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
- School of Health Medicine, Nantong Institute of Technology, Nantong, Jiangsu, China
| | - Linling Ju
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People’s Hospital, Nantong, Jiangsu, China
- Medical College of Nantong University, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
5
|
Lou H, Yao J, Zhang Y, Wu X, Sun L, Wang Y, Cong D. Potential effect of acupuncture on mitochondrial biogenesis, energy metabolism and oxidation stress in MCAO rat via PGC-1α/NRF1/TFAM pathway. J Stroke Cerebrovasc Dis 2024; 33:107636. [PMID: 38346661 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 09/08/2024] Open
Abstract
PURPOSE To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.
Collapse
Affiliation(s)
- Huijuan Lou
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Junjie Yao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun, Jilin Province 130117, PR China
| | - Yuxin Zhang
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Xingquan Wu
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Liwei Sun
- Research center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Yufeng Wang
- Department of Science and Technology, Changchun University of Chinese Medicine,1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Street, Changchun, Jilin Province 130021, PR China.
| |
Collapse
|
6
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Fan L, Luan X, Jia Y, Ma L, Wang Z, Yang Y, Chen Q, Cui X, Luo D. Protective effect and mechanism of lycium barbarum polysaccharide against UVB-induced skin photoaging. Photochem Photobiol Sci 2024; 23:1931-1943. [PMID: 39379645 DOI: 10.1007/s43630-024-00642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cellular senescence can be categorized into two main types, including exogenous and endogenous aging. Photoaging, which is aging induced by ultraviolet (UV) radiation, significantly contributes to exogenous aging, accounting for approximately 80% of such cases. Superoxide Dismutase (SOD) is a class of antioxidant enzymes, with SOD2 being predominantly localized in the mitochondrial matrix. Ultraviolet radiation (UVR) inhibits SOD2 activity by acetylating the key lysine residues on SOD2. Sirtuin3 (SIRT3), the principal mitochondrial deacetylase, enhances the anti-oxidant capacity of SOD2 by deacetylating. Lycium barbarum polysaccharide (LBP) is the main bioactive component extracted from Lycium barbarum (LB). It has been reported to have numerous potential health benefits, such as anti-oxidation, anti-aging, anti-inflammatory and anti-apoptotic properties. Furthermore, LBP has been shown to regulate hepatic oxidative stress via the SIRT3-SOD2 pathway. The aim of this study was to construct a UVB-Stress-induced Premature Senescence (UVB-SIPS) model to investigate the protective effects and underlying mechanisms of LBP against UVB-induced skin photoaging. METHODS Irradiated with different UVB doses to select the suitable dose for constructing the UVB-SIPS model. Cell morphology was observed using a microscope. The proportion of senescent cells was assessed by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was studied using the Cell Counting Kit-8 (CCK-8). Intracellular levels of reactive oxygen species (ROS) were observed using flow cytometry and an inverted fluorescence microscope. Expression of γ-H2AX was investigated using flow cytometry. Western blot (WB) was used to verify the expression of senescence-associated proteins (p21, p53, MMP-1, and MMP-3). Enzyme-Linked Immunosorbnent Assay (ELISA) was used to measure pro-inflammatory cytokines levels (IL-6, TNF-α). WB was also used to analyze the expression of SIRT3, SOD2, and Ac-SOD2, and a specific kit was employed to detect SOD2 activity. RESULTS Our results suggested that the UVB-SIPS group pre-treated with LBP exhibited a reduced proportion of cells positive for SA-β-gal staining, mitigated production of intracellular ROS, an amelioration in γ-H2AX expression, and down-regulated expression of senescence-associated proteins and pro-inflammatory cytokines as compared to the UVB-SIPS group. Moreover, in contrast to the control group, the UVB-SIPS group showed regulated SIRT3 expression and SOD activity, elevated Ac-SOD2 expression and an increased ratio of Ac-SOD2/SOD2. However, the UVB-SIPS group pre-treated with LBP showed an upregulation of SIRT3 expression and enhanced SOD activity, a reduction in AC-SOD2 expression, and a decreased ratio of AC-SOD2/SOD2, compared to the untreated UVB-SIPS group. Additionally, the photo-protective effect of LBP was diminished following treatment with 3-TYP, a SIRT3-specific inhibitor. This study suggested that LBP, a natural component, exhibits anti-oxidant and anti-photoaging properties, potentially mediated through the SIRT3-SOD2 pathway.
Collapse
Affiliation(s)
- Lipan Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Chinese Academy of Sciences Zhong Guan Cun Hospital, Beijing, China
| | - Xingbao Luan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Jia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liwen Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Dermatology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Zhaopeng Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuting Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qian Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaomei Cui
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2024:10.1007/s12035-024-04474-0. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
9
|
Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci 2024; 18:1434459. [PMID: 39157755 PMCID: PMC11327144 DOI: 10.3389/fncel.2024.1434459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria are responsible for maintaining cellular energy levels, and play a major role in regulating homeostasis, which ensures physiological function from the molecular to whole animal. Sirtuin 3 (SIRT3) is the major protein deacetylase of mitochondria. SIRT3 serves as a nutrient sensor; under conditions of mild metabolic stress, SIRT3 activity is increased. Within the mitochondria, SIRT3 regulates every complex of the electron transport chain, the tricarboxylic acid (TCA) and urea cycles, as well as the mitochondria membrane potential, and other free radical scavengers. This article reviews the role of SIRT3 in regulating homeostasis, and thus physiological function. We discuss the role of SIRT3 in regulating reactive oxygen species (ROS), ATP, immunological function and mitochondria dynamics.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Marie Kametani
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Joanne E. Nash
- Department of Biological Sciences, University of Toronto Scarborough Graduate Department of Cells Systems Biology, University of Toronto Cross-Appointment with Department of Psychology, University of Toronto Scarborough Scientist – KITE, Toronto, ON, Canada
| |
Collapse
|
10
|
Abu-Risha SE, Sokar SS, Elzorkany KE, Elsisi AE. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades. Int Immunopharmacol 2024; 134:112240. [PMID: 38744177 DOI: 10.1016/j.intimp.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The mounting evidence of valproate-induced testicular damage in clinical settings is alarming, especially for men taking valproate (VPA) for long-term or at high doses. Both donepezil (DON) and quercetin (QUE) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, this study aimed to determine whether DON, QUE, and their combination could mitigate VPA-induced testicular toxicity and unravel the mechanisms underlying their protective effect. In this study, male albino rats were randomly categorized into six equal groups: control, VPA (500 mg/kg, I.P., for 14 days), DON (3 and 5 mg/kg), QUE (50 mg/kg), and DON 3 + QUE combination groups. The DON and QUE treatments were administered orally for 7 consecutive days before VPA administration and then concomitantly with VPA for 14 days. VPA administration disrupted testicular function by altering testicular architecture, ultrastructure, reducing sperm count, viability, and serum testosterone levels. Additionally, VPA triggered oxidative damage, inflammatory, and apoptotic processes and suppressed the AMPK/SIRT1/PGC-1α signaling cascade. Pretreatment with DON, QUE, and their combination significantly alleviated histological and ultrastructure damage caused by VPA and increased the serum testosterone level, sperm count, and viability. They also suppressed the oxidative stress by reducing testicular MDA content and elevating SOD activity. In addition, they reduced the inflammatory response by suppressing IL-1β level, NF-κB, and the p38-MAPK expression as well as inhibiting apoptosis by diminishing caspase-3 and increasing Bcl-2 expression. These novel protective effects were mediated by upregulating AMPK/SIRT1/PGC-1α signaling cascade. In conclusion, these findings suggest that DON, QUE, and their combination possess potent protective effects against VPA-induced testicular toxicity.
Collapse
Affiliation(s)
- Sally E Abu-Risha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Kawthar E Elzorkany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
11
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Osiewacz HD. Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System. Antioxid Redox Signal 2024; 40:948-967. [PMID: 38019044 DOI: 10.1089/ars.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: Mitochondria are eukaryotic organelles with various essential functions. They are both the source and the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), such as ROS balancing, degradation of damaged proteins, or whole mitochondria, can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the health span, rely on the precise knowledge of mitochondrial functions. Experimental models such as Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal. Recent Advances: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging. Critical Issues: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments that do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions. Future Directions: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.
Collapse
|
13
|
Regina-Ferreira L, Valdivieso-Rivera F, Angelim MKSC, Menezes Dos Reis L, Furino VO, Morari J, Maia de Sousa L, Consonni SR, Sponton CH, Moraes-Vieira PM, Velloso LA. Inhibition of Crif1 protects fatty acid-induced POMC neuron-like cell-line damage by increasing CPT-1 function. Am J Physiol Endocrinol Metab 2024; 326:E681-E695. [PMID: 38597829 DOI: 10.1152/ajpendo.00420.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons are sensors of signals that reflect the energy stored in the body. Inducing mild stress in proopiomelanocortin neurons protects them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift toward greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.NEW & NOTEWORTHY Saturated fats can damage hypothalamic neurons resulting in positive energy balance, and this is mitigated by mild cellular stress; however, the mechanisms behind this protective effect are unknown. Using a proopiomelanocortin cell line, we show that under exposure to a high concentration of palmitate, the partial inhibition of the mitochondrial protein Crif1 results in protection due to a metabolic shift warranted by the increased expression and activity of the mitochondrial fatty acid transporter CPT-1.
Collapse
Affiliation(s)
| | - Fernando Valdivieso-Rivera
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Monara K S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | - Larissa Menezes Dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | | | - Joseane Morari
- Obesity and Comorbidities Research Center, São Paulo, Brazil
| | - Lizandra Maia de Sousa
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Sílvio Roberto Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Carlos H Sponton
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, São Paulo, Brazil
| |
Collapse
|
14
|
Polidori MC. Aging hallmarks, biomarkers, and clocks for personalized medicine: (re)positioning the limelight. Free Radic Biol Med 2024; 215:48-55. [PMID: 38395089 DOI: 10.1016/j.freeradbiomed.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
The rapidly increasing aging prevalence, complexity, and heterogeneity pose the scientific and medical communities in front of challenges. These are delivered by gaps between basic and translational research, as well as between clinical practice guidelines to improve survival and absence of evidence on personalized strategies to improve functions, wellbeing and quality of life. The triumphs of aging science sheding more and more light on mechanisms of aging as well as those of medical and technological progress to prolong life expectancy are clear. Currently, and in the next two to three decades, all efforts must be put in a closer interdisciplinary dialogue between biogerontologists and geriatricians to enable real-life measures of aging phenotypes to be used to uncover the physiological - and therefore translational - relevance of newly discovered aging clocks, biomarkers, and hallmarks.
Collapse
Affiliation(s)
- M Cristina Polidori
- Aging Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Herderstraße 52, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress- Responses in Aging- Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
16
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
17
|
da Rocha GL, Guimarães DSPSF, da Cruz MV, Mizobuti DS, da Silva HNM, Pereira ECL, Silveira LR, Minatel E. Antioxidant effects of LEDT in dystrophic muscle cells: involvement of PGC-1α and UCP-3 pathways. Photochem Photobiol Sci 2024; 23:107-118. [PMID: 38057632 DOI: 10.1007/s43630-023-00506-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.
Collapse
Affiliation(s)
- Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Marcos Vinicius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil.
| |
Collapse
|
18
|
Lin F, Zhang S, Zhu X, Lv Z. Autophagy-related 7 proteindependent autophagy mediates resveratrol-caused upregulation of mitochondrial biogenesis and steroidogenesis in aged Leydig cell. Mol Biol Rep 2023; 51:28. [PMID: 38133746 DOI: 10.1007/s11033-023-08935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Mitochondrial dysfunction may contribute to decreased testosterone synthesis in aged Leydig cells. Resveratrol (RSV) as an antioxidant has been shown to exhibit multiple positive effects on mitochondrion, where steroidogenesis takes place. Whether RSV can improve steroidogenesis in aged testis is still unknown. This study investigates the effect of RSV on testosterone production during aging and corresponding changes in mitochondrial biogenesis and autophagy activity, which are closely associated with steroidogenesis. Whether ATG7, an important autophagy-related protein, functions in RSV-treated aged Leydig cells will also be explored. METHODS AND RESULTS Two-month-old male C57BL/6 mice were fed for 16 months by customized regular diet with or without RSV as diet supplement. Leydig cell line TM3 cells were treated with D-galactose to induce senescence, followed with or without RSV treatment. Results found that RSV supplement increased testosterone production in both aged mice and D-galactose-induced senescent Leydig cells. Western blot results revealed that RSV treatment elevated levels of steroidogenic rate-limiting enzymes StAR and 3β-HSD, as well as autophagy-related proteins LC3II, Beclin1, ATG5 and ATG7 and mitochondrial function-related proteins mtTFA and COXIV. However, after Atg7 was knocked down in senescent Leydig cells, even though RSV was added, levels of these proteins declined significantly, accompanied by decreased levels of mitochondrial transcript factors PGC-1α, mtTFA and NRF-1 and more fragmented mitochondria, demonstrating that Atg7 knockdown wrecked the protective effects of RSV on steroidogenesis in senescent Leydig cells. CONCLUSION ATG7-dependent autophagy plays a key role in RSV-brought testosterone production increase through regulating mitochondrial biogenesis in senescent Leydig cells.
Collapse
Affiliation(s)
- Fanhong Lin
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Histology & Embryology, Clinical College of Anhui Medical University, Hefei, 230601, China
| | - Shoubing Zhang
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaomei Zhu
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhengmei Lv
- Department of Histology & Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Liang J, Cui J, Cheng J, Pan Y, Zhang R, Yang S, Zou L. SIRT6 Knockdown in Buffalo Fetal Fibroblasts Exacerbates Premature Senescence Caused by DNA and Telomere Damage. Cell Reprogram 2023; 25:277-287. [PMID: 37725013 DOI: 10.1089/cell.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
As a gene with antiaging functions, sirtuin6 (SIRT6) belonging to the sirtuin family plays a vital role in DNA repair, telomerase function, and cellular senescence, as well as maintains epigenomic stability and promotes longevity. However, its role in cell senescence in large animals, such as buffaloes, remains unknown. Fibroblasts are commonly used for somatic reprogramming, and their physiological characteristics affect the efficiency of this process. We aimed to elucidate the role of SIRT6 in cellular senescence and proliferation and analyze its effect on the biological function of buffalo fibroblasts to help improve the efficiency of buffalo somatic cell reprogramming. The expression of SIRT6 and related DNA damage was measured in buffalo fibroblasts obtained at different developmental stages (in the fetus and at 3 and 10 years of age), and the effect of SIRT6 knockdown on the senescence of buffalo fetal fibroblast was investigated. An inverse relationship was observed between SIRT6 expression and senescence in buffalo fibroblasts obtained from animals of various ages. This was accompanied by decreased cell growth, viability, and increased DNA damage. Short hairpin RNA-mediated SIRT6 knockdown accelerated the senescence of buffalo fetal fibroblasts. It blocked the cell cycle during in vitro cell culture, which further enhanced DNA damage, particularly with respect to the telomeres. Collectively, our findings suggest that SIRT6 expression was closely associated with buffalo senescence in fibroblasts. These findings serve as a foundation to better understand the cellular functions of SIRT6 and also aid in selecting donor cells for buffalo somatic cell reprogramming.
Collapse
Affiliation(s)
- Jingyuan Liang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Jiayu Cui
- International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, PR China
| | - Juanru Cheng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yu Pan
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Sufang Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
- International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, PR China
| | - Lingxiu Zou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| |
Collapse
|
20
|
Zhang A, Li H, Song Q, Cui Y, Zhang Y, Wang X, Li Z, Hou Y. High-fat stimulation induces atrial neural remodeling by reducing NO production via the CRIF1/eNOS/P21 axi. Lipids Health Dis 2023; 22:189. [PMID: 37932729 PMCID: PMC10629039 DOI: 10.1186/s12944-023-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Autonomic remodeling of the atria plays a pivotal role in the development of atrial fibrillation (AF) and exerts a substantial influence on the progression of this condition. Hyperlipidemia is a predisposing factor for AF, but its effect on atrial nerve remodeling is unclear. The primary goal of this study was to explore the possible mechanisms through which the consumption of a high-fat diet (HFD) induces remodeling of atrial nerves, and to identify novel targets for clinical intervention. METHODS Cell models were created in vitro by subjecting cells to palmitic acid (PA), while rat models were established by feeding them a high-fat diet. To investigate the interplay between cardiomyocytes and nerve cells in a co-culture system, we utilized Transwell cell culture plates featuring a pore size of 0.4 μm. The CCK-8 assay was employed to determine cell viability, fluorescent probe DCFH-DA and flow cytometry were utilized for measuring ROS levels, JC-1 was used to assess the mitochondrial membrane potential, the Griess method was employed to measure the nitric oxide (NO) level in the supernatant, a fluorescence-based method was used to measure ATP levels, and MitoTracker was utilized for assessing mitochondrial morphology. The expression of pertinent proteins was evaluated using western blotting (WB) and immunohistochemistry techniques. SNAP was used to treat nerve cells in order to replicate a high-NO atmosphere, and the level of nitroso was assessed using the iodoTMT reagent labeling method. RESULTS The study found that cardiomyocytes' mitochondrial morphology and function were impaired under high-fat stimulation, affecting nitric oxide (NO) production through the CRIF1/SIRT1/eNOS axis. In a coculture model, overexpression of eNOS in cardiomyocytes increased NO expression. Moreover, the increased Keap1 nitrosylation within neuronal cells facilitated the entry of Nrf2 into the nucleus, resulting in an augmentation of P21 transcription and a suppression of proliferation. Atrial neural remodeling occurred in the HFD rat model and was ameliorated by increasing myocardial tissue eNOS protein expression with trimetazidine (TMZ). CONCLUSIONS Neural remodeling is triggered by high-fat stimulation, which decreases the production of NO through the CRIF1/eNOS/P21 axis. Additionally, TMZ prevents neural remodeling and reduces the occurrence of AF by enhancing eNOS expression.
Collapse
Affiliation(s)
- An Zhang
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Huilin Li
- Department of Emergency Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, China
| | - Qiyuan Song
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Yansong Cui
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Ximin Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Zhan Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University, Shandong, China.
- Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
21
|
Doenyas-Barak K, Kutz I, Lang E, Merzbach R, Lev Wiesel R, Boussi-Gross R, Efrati S. The use of hyperbaric oxygen for veterans with PTSD: basic physiology and current available clinical data. Front Neurosci 2023; 17:1259473. [PMID: 38027524 PMCID: PMC10630921 DOI: 10.3389/fnins.2023.1259473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) affects up to 30% of veterans returning from the combat zone. Unfortunately, a substantial proportion of them do not remit with the current available treatments and thus continue to experience long-term social, behavioral, and occupational dysfunction. Accumulating data implies that the long-standing unremitting symptoms are related to changes in brain activity and structure, mainly disruption in the frontolimbic circuit. Hence, repair of brain structure and restoration of function could be a potential aim of effective treatment. Hyperbaric oxygen therapy (HBOT) has been effective in treating disruptions of brain structure and functions such as stroke, traumatic brain injury, and fibromyalgia even years after the acute insult. These favorable HBOT brain effects may be related to recent protocols that emphasize frequent fluctuations in oxygen concentrations, which in turn contribute to gene expression alterations and metabolic changes that induce neuronal stem cell proliferation, mitochondrial multiplication, angiogenesis, and regulation of the inflammatory cascade. Recently, clinical findings have also demonstrated the beneficial effect of HBOT on veterans with treatment-resistant PTSD. Moderation of intrusive symptoms, avoidance, mood and cognitive symptoms, and hyperarousal were correlated with improved brain function and with diffusion tensor imaging-defined structural changes. This article reviews the current data on the regenerative biological effects of HBOT, and the ongoing research of its use for veterans with PTSD.
Collapse
Affiliation(s)
- Keren Doenyas-Barak
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilan Kutz
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Erez Lang
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Merzbach
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- The Louis and Gabi Weisfeld School of Social Work, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Lev Wiesel
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- The Emili Sagol Creative Arts Therapies Research Center, University of Haifa, Haifa, Israel
| | - Rahav Boussi-Gross
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
23
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
24
|
Paoli A, Bianco A, Moro T, Mota JF, Coelho-Ravagnani CF. The Effects of Ketogenic Diet on Insulin Sensitivity and Weight Loss, Which Came First: The Chicken or the Egg? Nutrients 2023; 15:3120. [PMID: 37513538 PMCID: PMC10385501 DOI: 10.3390/nu15143120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The ketogenic diet (KD) is, nowadays, considered an interesting nutritional approach for weight loss and improvement in insulin resistance. Nevertheless, most of the studies available in the literature do not allow a clear distinction between its effects on insulin sensitivity per se, and the effects of weight loss induced by KDs on insulin sensitivity. In this review, we discuss the scientific evidence on the direct and weight loss mediated effects of KDs on glycemic status in humans, describing the KD's biochemical background and the underlying mechanisms.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
- Research Center for High Performance Sport, UCAM, Catholic University of Murcia, 30107 Murcia, Spain
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, 90144 Palermo, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35127 Padua, Italy
| | - Joao Felipe Mota
- School of Nutrition, Federal University of Goiás, Goiânia 74605-080, Brazil
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Christianne F Coelho-Ravagnani
- Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Post-Graduate Program in Movement Sciences, Institute of Health (INISA), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
25
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
26
|
Deng K, Du D, Fan D, Pei Z, Zhang S, Xu C. Growth Hormone Promotes Oocyte Maturation In Vitro by Protecting Mitochondrial Function and Reducing Apoptosis. Reprod Sci 2023; 30:2219-2230. [PMID: 36694082 DOI: 10.1007/s43032-022-01147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023]
Abstract
Some studies have been conducted to explore the influence of growth hormone (GH) on oocytes in in vitro maturation (IVM); however, previous studies reporting showed different results, and the specific mechanisms were not clear. In the present study, GH supplementation improved oocyte maturation rate. The rate of germinal vesicle breakdown (GVBD) in the GH group was 83.9%, which was significantly higher than that (72.1%) in the control group (p = 0.001). The maturation rate of the GH group (79.2%) was significantly higher than that (65.4%) of the control group (p = 0.000). The fertilization (68.6 vs. 59.3%) and blastocyst (30 vs. 25.3%) rates showed an increasing trend in the GH group compared to those in controls. The dynamic parameters of nuclear maturation of oocytes were recorded by time-lapse monitoring system; oocytes in the GH group completed nuclear maturation earlier than did those in the control group. GH reduced cAMP levels to promote oocyte maturation. Single-cell RNA sequencing analysis revealed that the majority of differentially expressed genes (DEGs) involved in mitochondrial oxidative phosphorylation was upregulated in the GH group. Furthermore, the mitochondrial membrane potential of oocytes significantly increased, and the levels of intracellular reactive oxygen species (ROS) and Ca2+ largely decreased in the GH group. Finally, single-oocyte transcriptome analysis indicated that GH decreased the expression of apoptosis-related genes in oocytes. GH treatment reduced the expression of γH2AX and caspase-3. Therefore, GH improves the developmental potential of immature oocytes by reducing cAMP levels more rapidly within 0.5 h, protecting mitochondrial function, and reducing DNA damage and apoptosis.
Collapse
Affiliation(s)
- Ke Deng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Danfeng Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Dengxuan Fan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhenle Pei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Shuo Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Congjian Xu
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Vardar Acar N, Özgül RK. The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI JOURNAL 2023; 22:520-555. [PMID: 37534225 PMCID: PMC10390897 DOI: 10.17179/excli2023-6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
As a requirement of aerobic metabolism, regulation of redox homeostasis is indispensable for the continuity of living homeostasis and life. Since the stability of the redox state is necessary for the maintenance of the biological functions of the cells, the balance between the pro-oxidants, especially ROS and the antioxidant capacity is kept in balance in the cells through antioxidant defense systems. The pleiotropic transcription factor, Nrf2, is the master regulator of the antioxidant defense system. Disruption of redox homeostasis leads to oxidative and reductive stress, bringing about multiple pathophysiological conditions. Oxidative stress characterized by high ROS levels causes oxidative damage to biomolecules and cell death, while reductive stress characterized by low ROS levels disrupt physiological cell functions. The fact that ROS, which were initially attributed as harmful products of aerobic metabolism, at the same time function as signal molecules at non-toxic levels and play a role in the adaptive response called mithormesis points out that ROS have a dose-dependent effect on cell fate determination. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Nese Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Riza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
28
|
Ahmadi A, Begue G, Valencia AP, Norman JE, Lidgard B, Bennett BJ, Van Doren MP, Marcinek DJ, Fan S, Prince DK, Gamboa J, Himmelfarb J, de Boer IH, Kestenbaum BR, Roshanravan B. Randomized crossover clinical trial of coenzyme Q10 and nicotinamide riboside in chronic kidney disease. JCI Insight 2023; 8:e167274. [PMID: 37159264 PMCID: PMC10393227 DOI: 10.1172/jci.insight.167274] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BackgroundCurrent studies suggest mitochondrial dysfunction is a major contributor to impaired physical performance and exercise intolerance in chronic kidney disease (CKD). We conducted a clinical trial of coenzyme Q10 (CoQ10) and nicotinamide riboside (NR) to determine their impact on exercise tolerance and metabolic profile in patients with CKD.MethodsWe conducted a randomized, placebo-controlled, double-blind, crossover trial comparing CoQ10, NR, and placebo in 25 patients with an estimated glomerular filtration rate (eGFR) of less than 60mL/min/1.73 m2. Participants received NR (1,000 mg/day), CoQ10 (1,200 mg/day), or placebo for 6 weeks each. The primary outcomes were aerobic capacity measured by peak rate of oxygen consumption (VO2 peak) and work efficiency measured using graded cycle ergometry testing. We performed semitargeted plasma metabolomics and lipidomics.ResultsParticipant mean age was 61.0 ± 11.6 years and mean eGFR was 36.9 ± 9.2 mL/min/1.73 m2. Compared with placebo, we found no differences in VO2 peak (P = 0.30, 0.17), total work (P = 0.47, 0.77), and total work efficiency (P = 0.46, 0.55) after NR or CoQ10 supplementation. NR decreased submaximal VO2 at 30 W (P = 0.03) and VO2 at 60 W (P = 0.07) compared with placebo. No changes in eGFR were observed after NR or CoQ10 treatment (P = 0.14, 0.88). CoQ10 increased free fatty acids and decreased complex medium- and long-chain triglycerides. NR supplementation significantly altered TCA cycle intermediates and glutamate that were involved in reactions that exclusively use NAD+ and NADP+ as cofactors. NR decreased a broad range of lipid groups including triglycerides and ceramides.ConclusionsSix weeks of treatment with NR or CoQ10 improved markers of systemic mitochondrial metabolism and lipid profiles but did not improve VO2 peak or total work efficiency.Trial registrationClinicalTrials.gov NCT03579693.FundingNational Institutes of Diabetes and Digestive and Kidney Diseases (grants R01 DK101509, R03 DK114502, R01 DK125794, and R01 DK101509).
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Medicine, Division of Nephrology, UCD, Davis, California, USA
| | - Gwenaelle Begue
- Kinesiology Department, California State University, Sacramento, California, USA
| | - Ana P. Valencia
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Benjamin Lidgard
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Brian J. Bennett
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA, ARS, Davis, California, USA
| | | | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Sili Fan
- Department of Biostatistics, UCD, Davis, California, USA
| | - David K. Prince
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Jorge Gamboa
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Bryan R. Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology, UCD, Davis, California, USA
| |
Collapse
|
29
|
Machado IF, Miranda RG, Dorta DJ, Rolo AP, Palmeira CM. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants (Basel) 2023; 12:1212. [PMID: 37371941 DOI: 10.3390/antiox12061212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Therefore, controlling ROS production is an attractive therapeutic strategy in relation to their treatment. In recent years, increasing evidence has supported the therapeutic effects of polyphenols on liver injury via the regulation of ROS levels. In the current review, we summarize the effects of polyphenols, such as quercetin, resveratrol, and curcumin, on oxidative damage during conditions that induce liver injury, such as LIRI, NAFLD, and HCC.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Raul G Miranda
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo 14040, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040, Brazil
| | - Anabela P Rolo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
30
|
Amorim R, Magalhães CC, Borges F, Oliveira PJ, Teixeira J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. BIOLOGY 2023; 12:biology12040595. [PMID: 37106795 PMCID: PMC10135755 DOI: 10.3390/biology12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carina C Magalhães
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
31
|
Kesidou E, Theotokis P, Damianidou O, Boziki M, Konstantinidou N, Taloumtzis C, Sintila SA, Grigoriadis P, Evangelopoulos ME, Bakirtzis C, Simeonidou C. CNS Ageing in Health and Neurodegenerative Disorders. J Clin Med 2023; 12:2255. [PMID: 36983254 PMCID: PMC10054919 DOI: 10.3390/jcm12062255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The process of ageing is characteristic of multicellular organisms associated with late stages of the lifecycle and is manifested through a plethora of phenotypes. Its underlying mechanisms are correlated with age-dependent diseases, especially neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) that are accompanied by social and financial difficulties for patients. Over time, people not only become more prone to neurodegeneration but they also lose the ability to trigger pivotal restorative mechanisms. In this review, we attempt to present the already known molecular and cellular hallmarks that characterize ageing in association with their impact on the central nervous system (CNS)'s structure and function intensifying possible preexisting pathogenetic conditions. A thorough and elucidative study of the underlying mechanisms of ageing will be able to contribute further to the development of new therapeutic interventions to effectively treat age-dependent manifestations of neurodegenerative diseases.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Olympia Damianidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Natalia Konstantinidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Charilaos Taloumtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Styliani-Aggeliki Sintila
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Panagiotis Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Constantina Simeonidou
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
32
|
Suárez-Rivero JM, López-Pérez J, Muela-Zarzuela I, Pastor-Maldonado C, Cilleros-Holgado P, Gómez-Fernández D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Piñero-Pérez R, Reche-López D, Romero-Domínguez JM, Sánchez-Alcázar JA. Neurodegeneration, Mitochondria, and Antibiotics. Metabolites 2023; 13:metabo13030416. [PMID: 36984858 PMCID: PMC10056573 DOI: 10.3390/metabo13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Juan López-Pérez
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Inés Muela-Zarzuela
- Institute for Biomedical Researching and Innovation of Cádiz (INiBICA) University Hospital Puerta del Mar, 11009 Cádiz, Spain
| | - Carmen Pastor-Maldonado
- Department of Molecular Biology Interfaculty Institute for Cell Biology, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José M. Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide-University), 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-954978071
| |
Collapse
|
33
|
Cui J, Tang W, Wang W, Yi L, Teng F, Xu F, Li M, Ma M, Dong J. Acteoside alleviates asthma by modulating ROS-responsive NF-κB/MAPK signaling pathway. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
34
|
Guan F, Zhang S, Fan L, Sun Y, Ma Y, Cao C, Zhang Y, He M, Du H. Kunling Wan improves oocyte quality by regulating the PKC/Keap1/Nrf2 pathway to inhibit oxidative damage caused by repeated controlled ovarian hyperstimulation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115777. [PMID: 36191663 DOI: 10.1016/j.jep.2022.115777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kunling Wan (KW) is a traditional Chinese medicine that is principally used for kidney deficiency, qi stagnation, and blood stasis, which are basic syndromes of infertility in China. KW can improve ovarian follicular development, ovarian function, and endometrial receptivity, which lead to improving pregnancy outcomes. Repeated controlled ovarian hyperstimulation (COH) reduces oocyte quality and results in a lower pregnancy rate. Whether KW has the potential to improve oocyte quality reduced by repeated COH has yet to be determined. AIMS OF THE STUDY The aim of this study wwas to evaluate the effect of KW on oocyte quality after damage due to repeated COH, and to investigate the mechanism(s) underlying the antioxidative protection of oocytes by mitochondria. MATERIALS AND METHODS Female Kunming mice were randomly divided into four groups: normal group, model (repeated COH) group, KW group, and N-acetylcysteine (NAC) group. We observed the morphology and quality of mitochondria, level of reactive oxygen species (ROS), and antioxidant enzymes activity of each group. Oocytes were treated with H2O2 and KW-containing serum, and we determined the antioxidant effects of KW on H2O2-treated oocytes and the mechanism involved in the regulation of Nrf2 in reducing oxidative damage. RESULTS Our results revealed that repeated COH caused oxidative damage and impaired oocyte mitochondrial function and structure, resulting in poor oocyte quality. KW pretreatment reduced oxidative damage by inhibiting ROS production and improving mitochondrial structure and function, thereby enhancing overall oocyte quality. In response to H2O2, KW activated the PKC/Keap1/Nrf2-signaling pathway and promoted the translocation of Nrf2 from the cytoplasm to the nucleus, which activated the expression of SOD and GSH-Px, and removed the excess ROS that caused the initial mitochondrial damage. CONCLUSIONS KW improved oocyte quality perturbed by repeated COH via reducing oxidative effects and improving mitochondrial function. The mechanism may be related to regulation of the PKC/Keap1/Nrf2 pathway in removing excess ROS.
Collapse
Affiliation(s)
- Fengli Guan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Shuancheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Lijie Fan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ying Sun
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Can Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yu Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| | - Hulan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| |
Collapse
|
35
|
Development of a Mitochondrial Targeting Lipid Nanoparticle Encapsulating Berberine. Int J Mol Sci 2023; 24:ijms24020903. [PMID: 36674418 PMCID: PMC9863876 DOI: 10.3390/ijms24020903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Delivering drugs to mitochondria, the main source of energy in neurons, can be a useful therapeutic strategy for the treatment of neurodegenerative diseases. Berberine (BBR), an isoquinoline alkaloid, acts on mitochondria and is involved in mechanisms associated with the normalization and regulation of intracellular metabolism. Therefore, BBR has attracted considerable interest as a possible therapeutic drug for neurodegenerative diseases. While BBR has been reported to act on mitochondria, there are few reports on the efficient delivery of BBR into mitochondria. This paper reports on the mitochondrial delivery of BBR using a lipid nanoparticle (LNP), a "MITO-Porter" that targets mitochondria, and its pharmacological action in Neuro2a cells, a model neuroblastoma. A MITO-Porter containing encapsulated BBR (MITO-Porter (BBR)) was prepared. Treatment with MITO-Porter (BBR) increased the amount of BBR that accumulated in mitochondria compared with a treatment with naked BBR. Treatment with MITO-Porter (BBR) resulted in increased ATP production in Neuro2a cells, which are important for maintaining life phenomena, compared with treatment with naked BBR. Treatment with MITO-Porter (BBR) also increased the level of expression of mitochondrial ubiquitin ligase (MITOL), which is involved in mitochondrial quality control. Our findings indicate that increasing the accumulation of BBR into mitochondria is important for inducing enhanced pharmacological actions. The use of this system has the potential for being important in terms of the regulation of the metabolic mechanism of mitochondria in nerve cells.
Collapse
|
36
|
Lu J, Li H, Yu D, Zhao P, Liu Y. Heat stress inhibits the proliferation and differentiation of myoblasts and is associated with damage to mitochondria. Front Cell Dev Biol 2023; 11:1171506. [PMID: 37113771 PMCID: PMC10126414 DOI: 10.3389/fcell.2023.1171506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Heat stress is harmful to the health of humans and animals, more and more common, as a consequence of global warming, while the mechanism that heat stress modulates skeletal development remains unknown. Hence, we conducted a model of heat stress in vitro. Methods: We used Hu sheep myoblasts as the research object, real-time quantitative PCR (RT-qPCR) and western blot (WB) were conducted to detect the expression of mRNA and protein in heat-stressed myoblasts. The would-healing assay was used to detect the migration of myoblasts. The mitochondria were observed by a transmission electron microscope. Results: mRNA and protein expression of HSP60 was significantly enriched in the heat-stressed myoblasts during proliferation and differentiation (p < 0.05). In our study, we indicated that heat stress enriched the intracellular ROS of the myoblasts (p < 0.001), leading to an increase in autophagy in the myoblasts to induce apoptosis. The results demonstrated that the protein expression of LC3B-1 and BCL-2 was significantly increased in myoblasts under heat stress during proliferation and differentiation (p < 0.05). Additionally, heat stress inhibited mitochondrial biogenesis and function and reduced the mitochondrial membrane potential and downregulated the expression of mtCo2, mtNd1 and DNM1L (p < 0.05) in myoblasts during proliferation and differentiation. Consequently, heat stress inhibited the proliferation and differentiation of the myoblasts, in accordance with the downregulation of the expression of PAX7, MYOD, MYF5, MYOG and MYHC (p < 0.05). Moreover, heat stress also inhibited the cell migration of the myoblasts. Discussion: This work demonstrates that heat stress inhibits proliferation and differentiation, and accelerates apoptosis by impairing mitochondrial function and promoting autophagy, which provides a mechanism to understand heat stress affects the development of the skeletal muscle.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Xizang, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Mitochondrial Unfolded Protein Response and Integrated Stress Response as Promising Therapeutic Targets for Mitochondrial Diseases. Cells 2022; 12:cells12010020. [PMID: 36611815 PMCID: PMC9818186 DOI: 10.3390/cells12010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development and application of high-throughput omics technologies have enabled a more in-depth understanding of mitochondrial biosynthesis metabolism and the pathogenesis of mitochondrial diseases. In accordance with this, a host of new treatments for mitochondrial disease are emerging. As an essential pathway in maintaining mitochondrial proteostasis, the mitochondrial unfolded protein response (UPRmt) is not only of considerable significance for mitochondrial substance metabolism but also plays a fundamental role in the development of mitochondrial diseases. Furthermore, in mammals, the integrated stress response (ISR) and UPRmt are strongly coupled, functioning together to maintain mitochondrial function. Therefore, ISR and UPRmt show great application prospects in the treatment of mitochondrial diseases. In this review, we provide an overview of the molecular mechanisms of ISR and UPRmt and focus on them as potential targets for mitochondrial disease therapy.
Collapse
|
38
|
Ning L, Rui X, Guorui L, Tinglv F, Donghang L, Chenzhen X, Xiaojing W, Qing G. A novel mechanism for the protection against acute lung injury by melatonin: mitochondrial quality control of lung epithelial cells is preserved through SIRT3-dependent deacetylation of SOD2. Cell Mol Life Sci 2022; 79:610. [PMID: 36449070 PMCID: PMC11803069 DOI: 10.1007/s00018-022-04628-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
The mitochondrial quality control of lung epithelial cells is disturbed during sepsis, which contributes to abnormal mitochondrial function and acute lung injury. Melatonin is one of the primary hormones secreted by the pineal gland, displaying favorable antioxidative actions in sepsis and cardiopulmonary disease. However, the potential roles and molecular basis of melatonin in lipopolysaccharide (LPS)-treated lung epithelial cells have not been explored and reported. Herein, we investigated whether melatonin could protect against sepsis-induced acute lung injury (ALI) and LPS-treated lung epithelial cells through the mitochondrial quality control as well as its possible molecular targets. Wild type and Sirt3 knockout mice were intratracheally instilled with LPS for 12 h to construct an in vivo acute lung injury model. Both A549 lung epithelial cells and primary alveolar type II (AT-II) cells were used to explore the possible roles of melatonin in vitro by incubating with small interfering RNA against Sirt3. To determine the involvement of the melatonin receptor, cells and mice were treated with si Mtnr1b and luzindole. Melatonin pretreatment significantly inhibited pathological injury, inflammatory response, oxidative stress, and apoptosis in LPS-treated lung tissues and LPS-treated lung epithelial cells. Furthermore, melatonin also shifted the dynamic course of mitochondria from fission to fusion, inhibited mitophagy and fatty acid oxidation in LPS-treated lung epithelial cells in vitro and in vivo. However, SIRT3 inhibition abolished the protective roles of melatonin in acute lung injury. Mechanistically, we found that melatonin increased the activity and expression of SIRT3, which further promoted the deacetylation of SOD2 at K122 and K68. More importantly, melatonin exerted pulmonary protection by activating MTNR1B but not MTNR1A during ALI. Collectively, melatonin could preserve the mitochondrial quality control of lung epithelial cells through the deacetylation of SOD2 in a SIRT3-dependent manner, which eventually alleviated sepsis-induced injury, inflammation, oxidative stress, and apoptosis. Thus, melatonin may serve as a promising candidate against ALI in the future.
Collapse
Affiliation(s)
- Li Ning
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Xiong Rui
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Li Guorui
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Fu Tinglv
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Li Donghang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Xu Chenzhen
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Wu Xiaojing
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Geng Qing
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
39
|
Bevere M, Di Cola G, Santangelo C, Grazioli E, Marramiero L, Pignatelli P, Bondi D, Mrakic-Sposta S. Redox-based Disruption of Cellular Hormesis and Promotion of Degenerative Pathways: Perspectives on Aging Processes. J Gerontol A Biol Sci Med Sci 2022; 77:2195-2206. [PMID: 35973816 DOI: 10.1093/gerona/glac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The present work aims to link the redox and cell-centric theories of chronic processes in human biology, focusing on aging. A synthetic overview of cellular redox pathways will be integrated by the concept of hormesis, which disruption leads to several physiopathological processes. The onset of age-related diseases due to the restriction of homeodynamic capacity will be herein considered in a redox fashion. Up-to-date arguments on hormetic agents, such as geroprotectors, dietary interventions, and physical exercise are refining the presented theoretical framework, integrated by insights from extracellular vesicles, microbiota, pollutants, and timing mechanisms. The broad concepts of exposome encompass the redox-based alteration of cellular hormesis for providing meaningful perspectives on redox biogerontology.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Laboratory of Functional Biotechnologies, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Di Cola
- Cancer Genetics Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Elisa Grazioli
- Department of Experimental and Clinical Medicine, "Magna Graecia" University, Catanzaro, Italy
- Department of Human, Movement Sciences and Health, University of Rome "Foro Italico", Roma, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Roma, Italy
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology National Research Council (ICF-CNR), Milano, Italy
| |
Collapse
|
40
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
41
|
HAIBO X, ALBATTAT A, PHUOC JC, BAOGUI W. Explore the role of irisin in mitohormesis by PGC-1α. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.22.04790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Akan OD, Qin D, Guo T, Lin Q, Luo F. Sirtfoods: New Concept Foods, Functions, and Mechanisms. Foods 2022; 11:foods11192955. [PMID: 36230032 PMCID: PMC9563801 DOI: 10.3390/foods11192955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtfood is a new concept food that compounds diets that can target sirtuins (SIRTs). SIRTs are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases and ADP-ribosyltransferases (enzymes). SIRTs are mediators of calorie restriction (CR) and their activation can achieve some effects similar to CR. SIRTs play essential roles in ameliorating obesity and age-related metabolic diseases. Food ingredients such as resveratrol, piceatannol, anthocyanidin, and quinine are potential modulators of SIRTs. SIRT modulators are involved in autophagy, apoptosis, aging, inflammation, and energy homeostasis. Sirtfood proponents believe that natural Sirtfood recipes exert significant health effects.
Collapse
Affiliation(s)
- Otobong Donald Akan
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Microbiology Department, Faculty of Biological Science, Akwa-Ibom State University, Ikot Akpaden, Uyo 1167, Nigeria
| | - Dandan Qin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-731-85623240
| |
Collapse
|
43
|
Arya JK, Kumar R, Tripathi SS, Rizvi SI. 3-Bromopyruvate, a caloric restriction mimetic, exerts a mitohormetic effect to provide neuroprotection through activation of autophagy in rats during aging. Biogerontology 2022; 23:641-652. [PMID: 36048311 DOI: 10.1007/s10522-022-09988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
In the present study, attempts have been made to evaluate the potential role of 3 Bromopyruvate (3-BP) a glycolytic inhibitor and a caloric restriction mimetic (CRM), to exert neuroprotection in rats during aging through modulation of autophagy. Young male rats (4 months), and naturally aged (22 months) male rats were supplemented with 3-BP (30 mg/kg b.w., orally) for 28 days. Our results demonstrate a significant increase in the antioxidant biomarkers (ferric reducing antioxidant potential level, total thiol, superoxide dismutase, and catalase activities) and a decrease in the level of pro-oxidant biomarkers such as protein carbonyl after 3-BP supplementation in brain tissues. A significant increase in reactive oxygen species (ROS) was observed due to the mitohormetic effect of 3-BP supplementation in the treated rats. Furthermore, the 3-BP treatment also enhanced the activities of electron transport chain complexes I and IV in aged brain mitochondria thus proving its antioxidant potential at the level of mitochondria. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuroprotective and aging marker genes. RT-PCR data revealed that 3-BP up-regulated the expression of autophagy markers genes (Beclin-1 and LC3 β), sirtuin-1, and neuronal marker gene (NSE), respectively in the aging brain. The results suggest that 3-BP induces a mitohormetic effect through the elevation of ROS which reinforces defensive mechanism(s) targeted at regulating autophagy. These findings suggest that consistently low-dose 3-BP may be beneficial for neuroprotection during aging and age-related disorders.
Collapse
Affiliation(s)
- Jitendra Kumar Arya
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | - Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India
| | | | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, 211002, India.
| |
Collapse
|
44
|
Chandran K, Shane DI, Zochedh A, Sultan AB, Kathiresan T. Docking simulation and ADMET prediction based investigation on the phytochemical constituents of Noni ( Morinda citrifolia) fruit as a potential anticancer drug. In Silico Pharmacol 2022; 10:14. [PMID: 36034317 PMCID: PMC9411403 DOI: 10.1007/s40203-022-00130-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/05/2022] [Indexed: 02/02/2023] Open
Abstract
Morinda citrifolia is a traditional plant used in Asian and African countries for its wide nutraceutical and therapeutic effects for the treatment of various ailments. The fruit of M. citrifolia has various biological properties such as anti-bacterial, anti-oxidant, anti-cancer. Using the molecular docking based investigation; we explored around twenty three bioactive phytochemicals in M. citrifolia fruit against human cancer. MAPK6 (mitogen-activated protein kinase 6) was selected as target protein and these twenty three phytochemicals along with a known MAPK6 inhibitor were docked against the target protein. The docking scores of the bioactive phytochemicals against MAPK6 protein range between - 4.5 kcal/mol to - 7.9 kcal/mol and the docking score of the standard drug (CID: 447077) was - 7.3 kcal/mol. Based on the binding affinity five phytochemicals asperuloside (- 6.7 kcal/mol), asperulosidic acid (- 7.2 kcal/mol), deacetylasperulosidic acid (- 7.0 kcal/mol), eugenol (- 6.8 kcal/mol) and rutin (- 7.9 kcal/mol) were chosen for further evaluation. These five compounds were further investigated through RC plot analysis, density function theory and ADMET properties. Stable linkage of protein-ligand interaction was observed through RC plot, density function theory showed the structural stability and reactivity of bioactive compounds through the energy gap between HOMO and LUMO and the ADMET (adsorption, distribution, metabolism, excretion and toxicity) studies showed the safety profile of the bioactive compounds. These in silico results support the utilization of M. citrifolia fruit in the traditional medication and the initiation for the development of new drug against human cancer through in vivo and in vitro evaluation. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00130-4.
Collapse
Affiliation(s)
- Kaliraj Chandran
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu India
| | - Drose Ignatious Shane
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu India
| | - Azar Zochedh
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu India
| | - Asath Bahadur Sultan
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu India
| | - Thandavarayan Kathiresan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu India
| |
Collapse
|
45
|
Nagy L, Rauch B, Szerafin T, Uray K, Tóth A, Bai P. Nicotinamide-riboside shifts the differentiation of human primary white adipocytes to beige adipocytes impacting substrate preference and uncoupling respiration through SIRT1 activation and mitochondria-derived reactive species production. Front Cell Dev Biol 2022; 10:979330. [PMID: 36072335 PMCID: PMC9441796 DOI: 10.3389/fcell.2022.979330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Beige adipocytes play key roles in organismal energy and metabolic balance. In this study, we assessed whether the supplementation of human white adipocytes, differentiated from human adipose tissue-derived stem cells, with nicotinamide riboside (NR), a potent NAD + precursor, can shift differentiation to beige adipocytes (beiging). NR induced mitochondrial biogenesis and the expression of beige markers (TBX1 and UCP1) in white adipocytes demonstrating that NR can declutch beiging. NR did not induce PARP activity but supported SIRT1 induction, which plays a key role in beiging. NR induced etomoxir-resistant respiration, suggesting increases in the oxidation of carbohydrates, carbohydrate breakdown products, or amino acids. Furthermore, NR boosted oligomycin-resistant respiration corresponding to uncoupled respiration. Enhanced etomoxir and oligomycin-resistant respiration were dependent on mitochondrial reactive-species production. Taken together, NR supplementation can induce beiging and uncoupled respiration, which are beneficial for combatting metabolic diseases.
Collapse
Affiliation(s)
- Lilla Nagy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Boglárka Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Szerafin
- Department of Cardiology and Heart Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Section of Clinical Physiology, Department of Cardiology and Heart Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
- Correspondence: Péter Bai,
| |
Collapse
|
46
|
Macrophage Polarization Mediated by Mitochondrial Dysfunction Induces Adipose Tissue Inflammation in Obesity. Int J Mol Sci 2022; 23:ijms23169252. [PMID: 36012516 PMCID: PMC9409464 DOI: 10.3390/ijms23169252] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/06/2022] Open
Abstract
Obesity is one of the prominent global health issues, contributing to the growing prevalence of insulin resistance and type 2 diabetes. Chronic inflammation in adipose tissue is considered as a key risk factor for the development of insulin resistance and type 2 diabetes in obese individuals. Macrophages are the most abundant immune cells in adipose tissue and play an important role in adipose tissue inflammation. Mitochondria are critical for regulating macrophage polarization, differentiation, and survival. Changes to mitochondrial metabolism and physiology induced by extracellular signals may underlie the corresponding state of macrophage activation. Macrophage mitochondrial dysfunction is a key mediator of obesity-induced macrophage inflammatory response and subsequent systemic insulin resistance. Mitochondrial dysfunction drives the activation of the NLRP3 inflammasome, which induces the release of IL-1β. IL-1β leads to decreased insulin sensitivity of insulin target cells via paracrine signaling or infiltration into the systemic circulation. In this review, we discuss the new findings on how obesity induces macrophage mitochondrial dysfunction and how mitochondrial dysfunction induces NLRP3 inflammasome activation. We also summarize therapeutic approaches targeting mitochondria for the treatment of diabetes.
Collapse
|
47
|
Zhi D, Zhao C, Dong J, Ma W, Xu S, Yue J, Wang D. cep-1 mediated the mitohormesis effect of Shengmai formula in regulating Caenorhabditis elegans lifespan. Biomed Pharmacother 2022; 152:113246. [PMID: 35687906 DOI: 10.1016/j.biopha.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Ageing is one of the major causes of many diseases such as cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. It has been found that mitochondrion acts as a crucial regulator of healthy lifespan. In this work, traditional Chinese medicine Shengmai formula (SMH) was used to treat mitochondrial mutants of Caenorhabditis elegans. The results showed that SMH shortened the lifespan of short-lived mev-1 mutant, but lengthened the lifespan of long-lived isp-1 mutant. Acute SMH treatment has benefit effect by increasing resistance capacity and motion activity in both ETC mutants and wild type N2. Compared with N2, the genome-wide transcriptome profile of ETC mutants showed on a similar pattern after SMH treatment. GO and KEGG enrichment analysis addressed that SMH-induced genes mainly enriched in metabolic process and oxidation-reduction process. The ROS levels in ETC mutants and N2 firstly rose then fell after SMH treatment, in company with the elevation of SOD-1, SOD-3 and GST-4, the increment of HSP-16.2 combined with heat shock. SMH increased oxygen consumption and ATP content, improved the restoration of mitochondrial homeostasis. SMH-induced opposed lifespan outcomes were markedly counteracted by cep-1 RNAi, together with the mitochondrial dynamics. Western blot assay also demonstrated a SMH-induced CEP-1 expression. Collectively, SMH acts as a prooxidant to regulate mitochondrial homeostasis and causes mitohormesis to exert therapeutic effect based on the redox background of the recipients, and cep-1 was required for the mitochondrial hormetic responses. The results shed a light on the rational clinical anti-ageing applications of SMH in the future.
Collapse
Affiliation(s)
- Dejuan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Chengmu Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Juan Dong
- Qinghai University Affiliated Hospital, Tongren Road No. 29th, Chengxi District, Xining, Qinghai, PR China
| | - Wenjuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Shuaishuai Xu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Dongsheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| |
Collapse
|
48
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
49
|
Peng JF, Salami OM, Lei C, Ni D, Habimana O, Yi GH. Targeted mitochondrial drugs for treatment of Myocardial ischemia-reperfusion injury. J Drug Target 2022; 30:833-844. [PMID: 35652502 DOI: 10.1080/1061186x.2022.2085728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) refers to the further damage done to ischemic cardiomyocytes when restoring blood flow. A large body of evidence shows that MI/RI is closely associated with excessive production of mitochondrial reactive oxygen species, mitochondrial calcium overload, disordered mitochondrial energy metabolism, mitophagy, mitochondrial fission, and mitochondrial fusion. According to the way it affects mitochondria, it can be divided into mitochondrial quality abnormalities and mitochondrial quantity abnormalities. Abnormal mitochondrial quality refers to the dysfunction caused by the severe destruction of mitochondria, which then affects the balance of mitochondrial density and number, causing an abnormal mitochondrial quantity. In the past, most of the reports were limited to the study of the mechanism of myocardial ischemia-reperfusion injury, some of which involved mitochondria, but no specific countermeasures were proposed. In this review, we outline the mechanisms for treating myocardial ischemia-reperfusion injury from the direction of mitochondria and focus on targeted interventions and drugs to restore mitochondrial health during abnormal mitochondrial quality control and abnormal mitochondrial quantity control. This is an update in the field of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jin-Fu Peng
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China.,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | | | - Cai Lei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Dan Ni
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Olive Habimana
- International College, University of South China, 28 W Changsheng Road, Hengyang, Hunan 421001, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, 421001, China.,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
50
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|