1
|
Wei B, Huang J, Zhang Y, Hu X, Ma C, Li Y, Chen P. Restoration of RECK expression attenuates liver fibrosis induced by carbon tetrachloride through the Nrf2-MMP9 axis. Int Immunopharmacol 2024; 143:113475. [PMID: 39476567 DOI: 10.1016/j.intimp.2024.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Liver fibrosis is a reversible process that can be delayed or even reversed through appropriate intervention during its development. The protein RECK, encoded by the Reck gene, regulates matrix metalloproteinase (MMP) activity and plays a crucial role in extracellular matrix (ECM) degradation and remodeling. Reduced RECK expression is found in various fibrotic tissues. However, the impact of restoring RECK expression on the development and progression of liver fibrosis has not yet been determined. This study found that the restoration of RECK expression attenuated TGF-β1-induced hepatic stellate cell (HSC) activation and mitigated carbon tetrachloride (CCl4)-induced acute liver injury. In a mouse model of liver fibrosis induced by CCl4, restoration of RECK expression reduced the degree of fibrosis, collagen deposition, and level of oxidative stress. RECK competes with Nrf2 for binding to Keap1, resulting in a decrease in the degradation of Nrf2 by Keap1 and an increase in the accumulation of Nrf2 in the cytoplasm. Under oxidative stress conditions, Nrf2 can be translocated to the nucleus for expression, initiating an antioxidant stress response, furthermore, Nrf2 can also activate MMP-9 and degrade the over-deposited collagen, thereby achieving the effect of alleviating liver fibrosis. Our study reveals a novel mechanism by which restoration of RECK expression ameliorates liver fibrosis, providing a promising target for combating liver fibrosis.
Collapse
Affiliation(s)
- Bizhen Wei
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Jing Huang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Xiuxiu Hu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Cao Ma
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China.
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Akram W, Najmi AK, Haque SE. Levocabastine ameliorates cyclophosphamide-induced hepatotoxicity in Swiss albino mice: modulation of Nrf2, NF-κB p65, cleaved caspase-3 and TGF-β signaling molecules. J Mol Histol 2024; 56:3. [PMID: 39602021 DOI: 10.1007/s10735-024-10286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Cyclophosphamide (CP)-induced hepatotoxicity is a significant problem in clinical settings. This study aimed to evaluate the protective effect of levocabastine (LEV) on CP-induced hepatotoxicity in Swiss albino mice. METHODS AND RESULTS Mice were given CP (toxic drug) 200 mg/kg, i.p., once on the 7th day, and LEV 50 and 100 µg/kg, i.p., and fenofibrate (FF) 80 mg/kg, p.o., daily for 14 days. On the 15th day, blood and liver samples were collected to assess biological parameters. CP 200 mg/kg caused hepatotoxicity due to oxidative stress, inflammation, apoptosis, and fibrosis as manifested by a reduction in catalase, reduced glutathione (GSH), superoxide dismutase (SOD), and an increase in thiobarbituric acid reactive substance (TBARS), nitrite, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), transforming growth factor-beta 1 (TGF-β1), interleukin-1β (IL-1β), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT) levels. Cleaved caspase-3 and nuclear factor kappa-B (NF-κB) expression was also increased and nuclear factor erythroid 2-related factor (Nrf2) expression was decreased as confirmed by Immunohistochemical analysis. It also caused histopathological abnormalities and fibrosis as manifested by Hematoxylin-Eosin (H&E) and Masson's trichrome (MT) staining. These alterations were returned to almost normal when treated with LEV 100 µg/kg and FF 80 mg/kg. Thus, LEV protected CP-induced hepatotoxicity by reversing inflammation, apoptosis, fibrosis, oxidative stress, hepatic injury, and histopathological damages. CONCLUSION LEV can be helpful as an adjuvant in cancer patients who are on CP treatment, to minimize toxicity. However, its role in in-vivo cancer model is further needed to be confirmed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Guo Q, Wu Z, Wang K, Shi J, Wei M, Lu B, Huang Z, Ji L. Forsythiaside-A improved bile-duct-ligation-induced liver fibrosis in mice: The involvement of alleviating mitochondrial damage and ferroptosis in hepatocytes via activating Nrf2. Free Radic Biol Med 2024; 222:27-40. [PMID: 38815774 DOI: 10.1016/j.freeradbiomed.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Liver fibrosis is a key and reversible stage in the progression of many chronic liver diseases to cirrhosis or hepatocellular carcinoma. Forsythiaside-A (FTA), a main compound isolated from Forsythiae Fructus, has an excellent liver protective activity. This study aims to investigate the efficacy of FTA in improving cholestatic liver fibrosis. Bile-duct-ligation (BDL) was conducted to induce liver fibrosis in mice. Hepatic collagen deposition was evaluated by Masson and Sirus red staining. The bile acid spectrum in the liver and serum was analyzed by mass spectrometry. Liver oxidative stress injury and mitochondria damage were observed by using Mito-Tracker Red fluorescence staining, transmission electron microscopy, etc. The level of ferrous iron (Fe2+) and the expression of ferroptosis-associated molecules were detected. The binding between FTA and its target protein was confirmed by Co-immunoprecipitation (Co-IP), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR). Our results demonstrated that FTA alleviated BDL-induced liver fibrosis in mice. FTA did not decrease the elevated amount of bile acids in BDL-treated mice, but reduced the bile acid-induced mitochondrial damage, oxidative stress and ferroptosis in hepatocytes, and also induced nuclear factor erythroid 2-related factor-2 (Nrf2) activation. In Nrf2 knock-out mice, the FTA-provided protection against BDL-induced liver fibrosis was disappeared, and FTA's inhibition on mitochondrial damage, oxidative stress and ferroptosis were lowered. Further results displayed that FTA could directly bind to Kelch-like ECH-associated protein-1 (Keap1), thereby activating Nrf2. Moreover, the BDL-induced liver fibrosis was markedly weakened in liver-specific Keap1 knockout mice. Hence, this study suggests that FTA alleviated the BDL-induced liver fibrosis through attenuating mitochondrial damage and ferroptosis in hepatocytes by activating Nrf2 via directly binding to Keap1.
Collapse
Affiliation(s)
- Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jionghua Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Zhang T, Wang C, Song A, Lei X, Li G, Sun H, Wang X, Geng Z, Shu G, Deng X. Water extract of earthworms mitigates mouse liver fibrosis by potentiating hepatic LKB1/Nrf2 axis to inhibit HSC activation and hepatocyte death. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117495. [PMID: 38016572 DOI: 10.1016/j.jep.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFβ1 were used as in vitro models. RESULTS WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFβ1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3β is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3β levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFβ1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3β/Nrf2 cascade and eliminated its protective effects against TGFβ1. CONCLUSIONS Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3β/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
5
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
6
|
Kawara RS, Moawed FS, Elsenosi Y, Elmaksoud HA, Ahmed ESA, Abo-Zaid OA. Melissa officinalis extract palliates redox imbalance and inflammation associated with hyperthyroidism-induced liver damage by regulating Nrf-2/ Keap-1 gene expression in γ-irradiated rats. BMC Complement Med Ther 2024; 24:71. [PMID: 38303002 PMCID: PMC10832092 DOI: 10.1186/s12906-024-04370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-β1) were determined. RESULTS MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-β1/Smad pathway. CONCLUSION Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.
Collapse
Affiliation(s)
- Ragaa Sm Kawara
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Fatma Sm Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt
| | - Yakout Elsenosi
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Hussein Abd Elmaksoud
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt.
| | - Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| |
Collapse
|
7
|
Shu G, Sun H, Zhang T, Zhu A, Lei X, Wang C, Song A, Deng X. Theaflavine inhibits hepatic stellate cell activation by modulating the PKA/LKB1/AMPK/GSK3β cascade and subsequently enhancing Nrf2 signaling. Eur J Pharmacol 2023; 956:175964. [PMID: 37549726 DOI: 10.1016/j.ejphar.2023.175964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Activation of hepatic stellate cells (HSCs) constitutes a crucial etiological factor leading to liver fibrosis. Theaflavine (TF) is a characteristic bioactive compound in fermented tea. Here, we found that TF attenuated the activation of LX-2 HSCs induced by transforming growth factor-β1 (TGF-β1). TF potentiated nuclear factor erythroid 2-related Factor 2 (Nrf2) signaling. Knockdown of Nrf2 abrogated TF-mediated resistance to TGF-β1. Liver kinase B1 (LKB1), AMP-activated kinase (AMPK), and glycogen synthase kinase-3β (GSK3β) are upstream regulators of Nrf2. TF modulated the LKB1/AMPK/GSK3β axis. Inhibition of AMPK or knockdown of LKB1 crippled TF-mediated potentiation of Nrf2. Protein kinase A (PKA) catalyzes LKB1 phosphorylation. In LX-2 cells, TF increased the LKB1/PKA interaction without affecting their contents. Inhibition of PKA abolished TF-mediated potentiation of LKB1/Nrf2 and abrogated the inhibitory effects of TF on their activation. TF also enhanced direct binding between purified catalytic subunit α of PKA (PKA-Cα) and LKB1 proteins in vitro. Molecular docking indicated that TF showed binding activity with both LKB1 and PKA-Cα proteins. In mouse primary HSCs, TF elevated LKB1/PKA-Cα binding, boosted LKB1 phosphorylation, potentiated Nrf2 and suppressed their spontaneous activation. PKA inhibition or LKB1 knockdown eliminated TF-mediated induction of Nrf2 and suppression of HSC activation. Furthermore, TF considerably alleviated CCl4-induced mouse liver fibrosis. In mouse livers, TF increased the LKB1/PKA-Cα interaction, upregulated LKB1 phosphorylation and modulated its downstream AMPK/GSK3β/Nrf2 cascade. Our findings collectively indicated that TF suppresses HSC activation. Mechanistically, TF elevated the LKB1/PKA interaction in HSCs, which increased LKB1 phosphorylation and subsequently modulated the downstream AMPK/GSK3β/Nrf2 axis.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Anqi Zhu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
To K, Okada K, Watahiki T, Suzuki H, Tsuchiya K, Tokushige K, Yamamoto M, Ariizumi S, Shoda J. Immunohistochemical expression of NRF2 is correlated with the magnitude of inflammation and fibrosis in chronic liver disease. Cancer Med 2023; 12:19423-19437. [PMID: 37732511 PMCID: PMC10587934 DOI: 10.1002/cam4.6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The nuclear factor E2-related factor 2-Kelch-like Ech-associated protein (NRF2-KEAP1) pathway is a major cellular defense mechanism against oxidative stress. However, the role of NRF2-KEAP1 signaling in the development of chronic liver disease remains unclear. METHODS Clinical liver specimens from 50 hepatocellular carcinoma (HCC) developed from non-alcoholic steatohepatitis (NASH), 49 HCCs developed from chronic viral hepatitis C (CHc), and 48 liver metastases of colorectal cancer (CRC) from both tumorous and non-tumorous areas were collected during hepatic resection surgery. They were evaluated by immunohistochemical analyses of hematoxylin-eosin, Masson's trichrome, NRF2, and KEAP1, and compared with clinicopathological information. RESULTS Hepatic inflammation and fibrosis were more severe in the low-intensity NRF2 group than in the high-intensity NRF2 group both between CRC and NASH (Low vs. High: inflammation; p = 0.003, fibrosis; p = 0.014), and between CRC and CHc (Low vs. High: inflammation; p = 0.031, fibrosis; p = 0.011), which could indicate that NRF2 expression in cytosol of hepatocytes was inversely correlated with liver inflammation and fibrosis in non-tumorous areas. The dense staining of NRF2 in the nuclei of non-tumor hepatocytes positively correlated with liver inflammation (CRC and NASH; R = 0.451, p < 0.001, CRC and CHc; R = 0.502, p < 0.001) and fibrosis (CRC and NASH; R = 0.566, p < 0.001, CRC and CHc; R = 0.548, p < 0.001) in both NASH and CHc, and was inversely correlated with hepatic spare ability features such as platelet count (R = -0.253, p = 0.002) and prothrombin time (R = -0.206, p = 0.012). However, KEAP1 expression was not correlated with NRF2 expression levels and nuclear staining intensity. CONCLUSIONS Nuclear translocation of NRF2 was correlated with the magnitude of liver inflammation and fibrosis in chronic liver disease. These results suggest that NRF2 plays a protective role in the development of chronic liver diseases such as NASH and CHc.
Collapse
Affiliation(s)
- Keii To
- Department of Gastroenterology, Institute of MedicineUniversity of TsukubaIbarakiJapan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human SciencesUniversity of TsukubaIbarakiJapan
| | - Kosuke Okada
- Department of Gastroenterology, Institute of MedicineUniversity of TsukubaIbarakiJapan
- Division of Medical Sciences, Institute of MedicineUniversity of TsukubaIbarakiJapan
| | - Takahisa Watahiki
- Department of Gastroenterology, Institute of MedicineUniversity of TsukubaIbarakiJapan
| | - Hideo Suzuki
- Department of Gastroenterology, Institute of MedicineUniversity of TsukubaIbarakiJapan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology, Institute of MedicineUniversity of TsukubaIbarakiJapan
| | - Katsutoshi Tokushige
- Institute of Gastroenterology and Internal MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of GastroenterologyTokyo Women's Medical UniversityTokyoJapan
| | - Shun‐ichi Ariizumi
- Department of Surgery, Institute of GastroenterologyTokyo Women's Medical UniversityTokyoJapan
| | - Junichi Shoda
- Division of Medical Sciences, Institute of MedicineUniversity of TsukubaIbarakiJapan
| |
Collapse
|
9
|
Chen C, Zhou Z, Yu S, Ma Y, Wang G, Han X, Jiao C, Luan J, Liu Z, Xu Y, Wang H, Zhang Q, Fu J, Zhou H, Pi J. Nrf2 protects against renal fibrosis induced by chronic cadmium exposure in mice. Food Chem Toxicol 2023; 178:113875. [PMID: 37286028 DOI: 10.1016/j.fct.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Environmental cadmium (Cd) exposure is a serious public health concern, as the kidney is the primary target for Cd exposure. The present study aimed to investigate the role and underlying mechanisms of nuclear factor erythroid-derived 2-like 2 (Nrf2) in renal fibrosis induced by chronic Cd exposure. Nrf2 knockout (Nrf2-KO) mice and their wild-type littermates (Nrf2-WT) were exposed to 100 or 200 ppm Cd in drinking water for up to 16 or 24 weeks. Following the Cd exposures, Nrf2-KO mice showed elevated urinary neutrophil gelatinase-associated lipocalin (NGAL) and BUN levels compared to Nrf2-WT mice. Masson's trichrome staining and expression of fibrosis-associated proteins revealed that more severe renal fibrosis occurred in Nrf2-KO than that in Nrf2-WT mice. Renal Cd content in the Nrf2-KO mice exposed to 200 ppm Cd was lower than that in Nrf2-WT mice, which might be a consequence of the severe renal fibrosis in the Nrf2-KO mice. Mechanistic studies showed that Nrf2-KO mice exhibited higher levels of oxidative damage, lower antioxidant levels, and more regulated cell death, apoptosis in particular, than those in Nrf2-WT mice caused by Cd exposure. In conclusion, Nrf2-KO mice were more prone to develop renal fibrosis induced by chronic Cd exposure, partially due to a weakened antioxidant, detoxification capacity and increased oxidative damage.
Collapse
Affiliation(s)
- Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Siqi Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yawei Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Gang Wang
- Experimental and Teaching Center, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Xue Han
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Congcong Jiao
- Department of Nephrology, The Affiliated Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China
| | - Junjun Luan
- Department of Nephrology, The Affiliated Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China
| | - Zhiyuan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China
| | - Hua Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Department of Nephrology, The Affiliated Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China.
| |
Collapse
|
10
|
Fan K, Chen K, Zan X, Zhi Y, Zhang X, Zhang X, Qiu J, Liu G, Li L, Tang L, Hu K, Wan J, Gong X, Yang Y, Zhang L. Negative regulation of pro-apoptotic AMPK/JNK pathway by itaconate in mice with fulminant liver injury. Cell Death Dis 2023; 14:486. [PMID: 37524706 PMCID: PMC10390640 DOI: 10.1038/s41419-023-06001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Accumulating evidence indicates that metabolic responses are deeply integrated into signal transduction, which provides novel opportunities for the metabolic control of various disorders. Recent studies suggest that itaconate, a highly concerned bioactive metabolite catalyzed by immune responsive gene 1 (IRG1), is profoundly involved in the regulation of apoptosis, but the underlying mechanisms have not been fully understood. In the present study, the molecular mechanisms responsible for the apoptosis-modulatory activities of IRG1/itaconate have been investigated in mice with lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced apoptotic liver injury. The results indicated that LPS/D-Gal exposure upregulated the level of IRG1 and itaconate. Deletion of IRG1 resulted in exacerbated hepatocytes apoptosis and liver injury. The phospho-antibody microarray analysis and immunoblot analysis indicated that IRG1 deletion enhanced the activation of AMP-activated protein kinase (AMPK)/c-jun-N-terminal kinase (JNK) pathway in LPS/D-Gal exposed mice. Mechanistically, IRG1 deficiency impaired the anti-oxidative nuclear factor erythroid-2 related factor 2 (Nrf2) signaling and then enhanced the activation of the redox-sensitive AMPK/JNK pathway that promotes hepatocytes apoptosis. Importantly, post-insult supplementation with 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, resulted in beneficial outcomes in fulminant liver injury. Therefore, IRG1/itaconate might function as a negative regulator that controls AMPK-induced hepatocyte apoptosis in LPS/D-Gal-induced fulminant liver injury.
Collapse
Affiliation(s)
- Kerui Fan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xinyan Zan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ying Zhi
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Xinyue Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jinghuan Qiu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 401331, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Fuertes-Agudo M, Luque-Tévar M, Cucarella C, Martín-Sanz P, Casado M. Advances in Understanding the Role of NRF2 in Liver Pathophysiology and Its Relationship with Hepatic-Specific Cyclooxygenase-2 Expression. Antioxidants (Basel) 2023; 12:1491. [PMID: 37627486 PMCID: PMC10451723 DOI: 10.3390/antiox12081491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress and inflammation play an important role in the pathophysiological changes of liver diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes, thus playing a key role in protecting against oxidative damage. Cyclooxygenase-2 (COX-2) is a key enzyme in prostaglandin biosynthesis. Its expression has always been associated with the induction of inflammation, but we have shown that, in addition to possessing other benefits, the constitutive expression of COX-2 in hepatocytes is beneficial in reducing inflammation and oxidative stress in multiple liver diseases. In this review, we summarized the role of NRF2 as a main agent in the resolution of oxidative stress, the crucial role of NRF2 signaling pathways during the development of chronic liver diseases, and, finally we related its action to that of COX-2, where it appears to operate as its partner in providing a hepatoprotective effect.
Collapse
Affiliation(s)
- Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Luque-Tévar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB) “Alberto Sols”, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
12
|
Wang Z, Sun P, Zhao T, Cao J, Liu Y, Khan A, Zhou W, Cheng G. E Se tea extract ameliorates CCl 4 induced liver fibrosis via regulating Nrf2/NF-κB/TGF-β1/Smad pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154854. [PMID: 37156058 DOI: 10.1016/j.phymed.2023.154854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Liver fibrosis is a crucial progress to deteriorate liver disease. E Se tea (ES) is an ethnic herbal tea in China that has various biological activities for human beings. However, the traditional application on the treatment of liver disease is not studied. PURPOSE This study is firstly performed to explore the chemical constituents of ES extract together with its anti-hepatic fibrosis effect and potential mechanism on CCl4 treated mice. STUDY DESIGN AND METHODS The chemical constituents of ethanol-aqueous extract from ES (ESE) were analyzed by UPLC-ESI-MS/MS. The anti-hepatic fibrosis effect of ESE was determined by measuring ALT and AST activities, antioxidative indexes, inflammatory cytokines and collagen protein levels on CCl4 treated mice. Moreover, H&E, Masson staining and immunohistochemical analysis were performed for evaluating the protective effect of ESE on histopathological changes of liver tissues. RESULTS UHPLCHRESI-MS/MS analysis showed that the ESE was rich in flavonoids such as phlorizin, phloretin, quercetin and hyperoside. ESE could significantly reduce the plasma AST and ALT activities. The cytokines (IL-6, TNF-α, IL-1β) expressions were inhibited after ESE administration via suppressing NF-κB pathway. In addition, ESE could decrease MDA accumulation for alleviating CCl4 induced liver oxidative stress via regulating Nrf2 pathway to promote the expressions of antioxidant enzymes (SOD, HO-1, CAT and NQO1). Moreover, ESE could inhibit the expressions of TGF-β1, Smad2, α-SMA, and collagens Ⅰ and III proteins, thereby effectively alleviate the liver fibrosis. CONCLUSION This study demonstrated that ESE could alleviate liver fibrosis through enhancing antioxidant and anti-inflammatory abilities by Nrf2/NF-κB pathway and reducing deposition of liver fibrosis via suppressing TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Pengzhen Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Wenbing Zhou
- Yunnan Tobacco Company, Yuxi Branch, Yuxi, 653100, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Chen L, Li Z, Wei W, An B, Tian Y, Liu W, Niu S, Wang Y, Wang L, Li W, Hao J, Wu J. Human embryonic stem cell-derived immunity-and-matrix regulatory cells promote intrahepatic cell renewal to rescue acute liver failure. Biochem Biophys Res Commun 2023; 662:104-113. [PMID: 37104880 DOI: 10.1016/j.bbrc.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Acute liver failure (ALF) is a clinical syndrome characterized by the accelerated development of hepatocyte necrosis and significant mortality. Given that liver transplantation is now the only curative treatment available for ALF, there is an urgent need to explore innovative therapies. Mesenchymal stem cells (MSCs) have been applied in preclinical studies for ALF. It had been demonstrated that human embryonic stem cell-derived immunity-and-matrix regulatory cells (IMRCs) met the properties of MSCs and had been employed in a wide range of conditions. In this study, we conducted a preclinical evaluation of IMRCs in the treatment of ALF and investigated the mechanism involved. ALF was induced in C57BL/6 mice via intraperitoneal administration of 50% CCl4 (6 mL/kg) mixed with corn oil, followed by intravenous injection of IMRCs (3 × 106 cells/each). IMRCs improved histopathological changes in the liver and reduced alanine transaminase (ALT) or aspartate transaminase (AST) levels in serum. IMRCs also promoted cell renewal in the liver and protected it from CCl4 damage. Furthermore, our data indicated that IMRCs protected against CCl4-induced ALF by regulating the IGFBP2-mTOR-PTEN signaling pathway, which is associated with the repopulation of intrahepatic cells. Overall, IMRCs offered protection against CCl4-induced ALF and were capable of preventing apoptosis and necrosis in hepatocytes, which provided a new perspective for treating and improving the prognosis of ALF.
Collapse
Affiliation(s)
- Ling Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wumei Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yukai Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jie Hao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
14
|
Gomphrena globosa L. extract alleviates carbon tetrachoride-induced liver injury in mice by activating antioxidant signaling pathways and promoting autophagy. Mol Biol Rep 2023; 50:97-106. [PMID: 36308582 DOI: 10.1007/s11033-022-07942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Carbon tetrachloride (CCl4) is highly toxic to animal liver and is a major contributor to liver injury. Gomphrena globosa L. (GgL) is an edible plant with anti-inflammation and antioxidation properties. The aim of this study was to investigate the potential therapeutic effects of GgL on liver injury. METHODS AND RESULTS A model of chronic liver injury in mice was established by intraperitoneal injection of CCl4 (0.4 mL/kg) for 3 weeks, and the mice were treated intraperitoneally with different concentrations of GgL crude extract (GgCE; 100, 200, 300 mg/kg) or Bifendatatum (Bif; 20 mg/kg) in the last 2 weeks. The results showed that GgCE treatment alleviated the liver injury, improved the pathological changes caused by CCl4 on the mice liver, and enhance the antioxidant capacity. We also found that GgCE increased the expression of antioxidant stress related proteins, decreased the phosphorylation levels of autophagy related proteins PI3K and mTOR, and decreased the expression of LC3 II and P62 proteins. CONCLUSION These results suggest that GgCE alleviated CCl4-induced chronic liver injury in mice by activating antioxidant signaling pathways and promoting autophagy, indicating a potential therapeutic effect of GgCE on liver injury.
Collapse
|
15
|
Dodson M, Shakya A, Chen J, Chen WT, McKee NW, Zhang DD. The NRF2-anti-ferroptosis Axis in Health and Disease. FERROPTOSIS IN HEALTH AND DISEASE 2023:213-239. [DOI: 10.1007/978-3-031-39171-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Song L, Wang J, Gong M, Zhang Y, Li Y, Wu X, Qin L, Duan Y. Detoxification technology and mechanism of processing with Angelicae sinensis radix in reducing the hepatotoxicity induced by rhizoma Dioscoreae bulbiferae in vivo. Front Pharmacol 2022; 13:984858. [PMID: 36249801 PMCID: PMC9554241 DOI: 10.3389/fphar.2022.984858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizoma Dioscoreae Bulbiferae (RDB) was effective on relieving cough and expectorant but accompanied by severe toxicity, especially in hepatotoxicity. A previous study found that processing with Angelicae Sinensis Radix (ASR) reduced RDB-induced hepatotoxicity. However, up to now, the optimized processing process of ASR-processed RDB has not been explored or optimized, and the detoxification mechanism is still unknown. This study evaluated the detoxification technology and possible mechanism of processing with ASR on RDB-induced hepatotoxicity. The optimized processing process of ASR-processed RDB was optimized by the content of diosbulbin B (DB), the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and histopathological analysis. The processing detoxification mechanism was evaluated by detecting the antioxidant levels of nuclear factor E2 related factor 2 (Nrf2) and its downstream heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1), glutamylcysteine ligase catalytic subunit (GCLM), and the levels of downstream antioxidant factors of Nrf2. Besides, the antitussive and expectorant efficacy of RDB was also investigated. This work found that processing with ASR attenuated RDB-induced hepatotoxicity, which can be verified by reducing the levels of ALT, AST, and ALP, and reversing the pathological changes of liver histomorphology. And the optimized processing process of ASR-processed RDB is “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min.” Further results corroborated that the intervention of processed products of ASR-processed RDB remarkably upregulated the Nrf2/HO-1/NQO1/GCLM protein expression levels in liver, and conserved antitussive and expectorant efficacy of RDB. The above findings comprehensively indicated that the optimized processing process of ASR-processed RDB was “processing at a mass ratio of 100:20 (RDB:ASR) and a temperature of 140°C for 10 min,” and the processing detoxification mechanism involved enhancing the level of Nrf2-mediated antioxidant defense in liver as a key target organ.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junming Wang,
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yaqian Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
17
|
Fan K, Zan X, Zhi Y, Yang Y, Hu K, Zhang X, Zhang X, Zhao S, Chen K, Gong X, Tian R, Zhang L. Immune response gene 1 deficiency impairs Nrf2 activation and aggravates liver fibrosis in mice. Biochem Biophys Res Commun 2022; 607:103-109. [PMID: 35367821 DOI: 10.1016/j.bbrc.2022.03.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
A growing body of evidence suggests that metabolic events play essential roles in the development of liver fibrosis. Immune response gene 1 (IRG1) catalyzes the generation of itaconate, which function as a metabolic checkpoint under several pathological circumstances. In the present study, the hepatic level of IRG1 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis. And then the pathological significance of IRG1 and the pharmacological potential of 4-octyl itaconate (4-OI), a cell-permeable derivate of itaconate, in liver fibrosis were investigated in mice. The results indicated that the hepatic level of IRG1 was upregulated in mice with liver fibrosis. CCl4-induced formation of fibrotic septa and deposition of collagen was aggravated in IRG1 KO mice. IRG1 deletion also resulted in increased expression of transforming growth factor beta 1 (TGF-β1), enhanced phosphorylation of Smad3, elevated level of alpha smooth muscle actin (α-SMA) and hydroxyproline, which were associated with compromised activation of nuclear erythroid 2-related factor 2 (Nrf2)-mediated antioxidant system and exacerbated oxidative stress. Interestingly, supplementation with 4-OI activated Nrf2 pathway, suppressed TGF-β1 signaling and attenuated fibrogenesis. Our data indicated that upregulation of IRG1 might function as a protective response during the development of liver fibrosis, and 4-OI might have potential value for the pharmacological intervention of liver fibrosis.
Collapse
Affiliation(s)
- Kerui Fan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xinyan Zan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Ying Zhi
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xinyue Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xue Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kun Chen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022; 13:889792. [PMID: 35721561 PMCID: PMC9203969 DOI: 10.3389/fphys.2022.889792] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrosis is a persistent inflammatory response that causes scarring and tissue sclerosis by stimulating myofibroblasts to create significant quantities of extracellular matrix protein deposits in the tissue. Oxidative stress has also been linked to the development of fibrosis in several studies. The nuclear erythroid 2-related factor 2 (NRF2) transcription factor controls the expression of several detoxification and antioxidant genes. By binding to antioxidant response elements, NRF2 is activated by oxidative or electrophilic stress and promotes its target genes, resulting in a protective effect on cells. NRF2 is essential for cell survival under oxidative stress conditions. This review describes Kelch-like epichlorohydrin-associated protein 1 (KEAP1)/NRF2 signaling mechanisms and presents recent research advances regarding NRF2 and its involvement in primary fibrotic lesions such as pulmonary fibrosis, hepatic fibrosis, myocardial fibrosis, and renal fibrosis. The related antioxidant substances and drugs are described, along with the mechanisms by which KEAP1/NRF2 regulation positively affects the therapeutic response. Finally, the therapeutic prospects and potential value of NRF2 in fibrosis are summarized. Further studies on NRF2 may provide novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Wenlong Hao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Minghao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingmin Cai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiying Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangyao Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quanyu He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Basic Medical School, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongbin Hu,
| |
Collapse
|
19
|
Ge C, Tan J, Lou D, Zhu L, Zhong Z, Dai X, Sun Y, Kuang Q, Zhao J, Wang L, Liu J, Wang B, Xu M. Mulberrin confers protection against hepatic fibrosis by Trim31/Nrf2 signaling. Redox Biol 2022; 51:102274. [PMID: 35240537 PMCID: PMC8891817 DOI: 10.1016/j.redox.2022.102274] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with various biological functions. However, the effects of Mul on liver fibrosis have not been addressed, and thus were investigated in our present study, as well as the underlying mechanisms. Here, we found that Mul administration significantly ameliorated carbon tetrachloride (CCl4)-induced liver injury and dysfunction in mice. Furthermore, CCl4-triggerd collagen deposition and liver fibrosis were remarkably attenuated in mice with Mul supplementation through suppressing transforming growth factor β1 (TGF-β1)/SMAD2/3 signaling pathway. Additionally, Mul treatments strongly restrained the hepatic inflammation in CCl4-challenged mice via blocking nuclear factor-κB (NF-κB) signaling. Importantly, we found that Mul markedly increased liver TRIM31 expression in CCl4-treated mice, accompanied with the inactivation of NOD-like receptor protein 3 (NLRP3) inflammasome. CCl4-triggered hepatic oxidative stress was also efficiently mitigated by Mul consumption via improving nuclear factor E2-related factor 2 (Nrf2) activation. Our in vitro studies confirmed that Mul reduced the activation of human and mouse primary hepatic stellate cells (HSCs) stimulated by TGF-β1. Consistently, Mul remarkably retarded the inflammatory response and reactive oxygen species (ROS) accumulation both in human and murine hepatocytes. More importantly, by using hepatocyte-specific TRIM31 knockout mice (TRIM31Hep-cKO) and mouse primary hepatocytes with Nrf2-knockout (Nrf2KO), we identified that the anti-fibrotic and hepatic protective effects of Mul were TRIM31/Nrf2 signaling-dependent, relieving HSCs activation and liver fibrosis. Therefore, Mul-ameliorated hepatocyte injury contributed to the suppression of HSCs activation by improving TRIM31/Nrf2 axis, thus providing a novel therapeutic strategy for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Junjie Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Longyan Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Jin Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| |
Collapse
|
20
|
Lyu H, Tang H, Liang Y, Huang S, Wang Y, Huang W, Zhou Y. Alcohol Consumption and Risk of Liver Fibrosis in People Living With HIV: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:841314. [PMID: 35371091 PMCID: PMC8971654 DOI: 10.3389/fimmu.2022.841314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives It is unclear if a high level of alcohol consumption is a risk factor for liver fibrosis for people living with HIV (PLWH). This study systematically summarizes the risk relationship between different alcohol consumption and the incidence of liver fibrosis among PLWH. Methods We identified potential studies by searching the PubMed, Embase, Web of Science Library, and CNKI databases up to September 26th, 2021. Observation studies in PLWH that evaluated the relationship between alcohol consumption and the risk of liver fibrosis and estimated the effect of alcohol with pooled odds ratios (pooled ORs) and 95% confidence intervals (CIs) were included. Results There were total 15 studies included in data analysis. Three studies were set up as cohort studies and the other twelve were cross-sectional studies. Our study was based on 22,676 individuals and 2,729 liver fibrosis cases from 15 studies. Alcohol abuse is a significant risk factor of liver fibrosis (pooled OR = 2.25, 95% CI: 1.59-3.17, p < 0.05) among PLWH. Daily alcohol consumption > 50 g can elevate the risk of liver fibrosis (pooled OR = 3.10, 95% CI: 2.02-4.73, p < 0.05) among PLWH. However, high-risk alcohol consumption determined by AUDIT-C (AUDIT-C ≥ 4) had little or no effect on subsequent liver fibrosis risk. Further, alcohol consumption > 50 g is also a risk factor to liver fibrosis in PLWH co-infected with HCV (pooled OR = 2.48, 95% CI: 1.62-3.80, p < 0.05) and in HIV mono-infected (pooled OR = 1.85, 95% CI: 1.00-3.43, p < 0.05). Conclusion Alcohol consumption is associated with an increased risk of liver fibrosis in PLWH. HCV co-infection with alcohol abuse could possibly induce a higher risk of liver fibrosis than HIV mono-infected patients. Systematic Review Registration PROSPERO, identifier (CRD42021272604).
Collapse
Affiliation(s)
- Hang Lyu
- Department of HIV Prevention, Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Haotong Tang
- Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yizhi Liang
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Shaoli Huang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Jiaxing, China
| | - Yuyu Wang
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenyan Huang
- Department of HIV Prevention, Zhuhai Center for Disease Control and Prevention, Zhuhai, China
- *Correspondence: Wenyan Huang , ; Yi Zhou,
| | - Yi Zhou
- Department of HIV Prevention, Zhuhai Center for Disease Control and Prevention, Zhuhai, China
- *Correspondence: Wenyan Huang , ; Yi Zhou,
| |
Collapse
|
21
|
Li Y, Hu H, Yang H, Lin A, Xia H, Cheng X, Kong M, Liu H. Vine Tea (
Ampelopsis grossedentata
) extract attenuates CCl
4
‐induced liver injury by restoring gut microbiota dysbiosis in mice. Mol Nutr Food Res 2022; 66:e2100892. [PMID: 35188709 DOI: 10.1002/mnfr.202100892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Li
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Haiming Hu
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Huabing Yang
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine Wuhan 430061 P.R. China
- Hubei Province Academy of Traditional Chinese Medicine Wuhan 430074 P.R. China
| | - Hui Xia
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Xue Cheng
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Mingwang Kong
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| | - Hongtao Liu
- College of Basic Medical Sciences Hubei University of Chinese Medicine Huangjiahu West Road 16 Wuhan 430065 PR China
| |
Collapse
|
22
|
Yan W, Shen Y, Huang J, Lu L, Zhang Q. MCC950 Ameliorates Acute Liver Injury Through Modulating Macrophage Polarization and Myeloid-Derived Suppressor Cells Function. Front Med (Lausanne) 2021; 8:752223. [PMID: 34869447 PMCID: PMC8640184 DOI: 10.3389/fmed.2021.752223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Acute liver injury (ALI) raises high mortality rates due to a rapid pathological process. MCC950, a highly selective nod-like receptor family pyrin domain containing 3 (NLRP3) inhibitor, has already been reported to show strong hepatoprotective effects in many different liver diseases. In this study, we unveiled the role of MCC950 in carbon tetrachloride (CCl4)-induced ALI and its underlying molecular mechanisms on days 1, 2, and 3. MCC950 could significantly inhibit liver injury, evidenced by decreased serum alamine aminotransferase (ALT) and aspartate aminotransferase (AST) levels on days 1 and 2, increased Albumin (ALB) level on day 3, and decreased histological score during the whole period. Moreover, lower M1 macrophage related to pro-inflammatory genes expression was observed in MCC950-treated ALI mice on day 1, while MCC950 pretreatment also polarized macrophage to M2 phenotype indicating anti-inflammatory response on days 2 and 3. Additionally, MDSC was significantly increased in blood, liver, and spleen in ALI mice at different time courses. Specifically, upregulated myeloid-derived suppressor cell (MDSC) proportions were found in blood and spleen on days 1 and 2, but showed decreased trend on day 3. However, liver MDSC numbers were increased on days 2 and 3, but no significance on day 1. In conclusion, MCC950 pretreatment alleviates CCl4-induced ALI through enhanced M2 macrophage and MDSC function at different time points of ALI. Further understanding of MCC950 in ALI may be a new potential therapeutic strategy.
Collapse
Affiliation(s)
- Wei Yan
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jinny Huang
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Dai C, Yusuf A, Sun H, Shu G, Deng X. A characterized saponin extract of Panax japonicus suppresses hepatocyte EMT and HSC activation in vitro and CCl 4-provoked liver fibrosis in mice: Roles of its modulatory effects on the Akt/GSK3β/Nrf2 cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153746. [PMID: 34634746 DOI: 10.1016/j.phymed.2021.153746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis constitutes a pathologic condition resulting in a series of advanced liver diseases. Oleanane-type saponins are distinctive active constituents in the medicinal plant Panax japonicus C. A. Mey (P. japonicus). Herein, we assessed protective effects of a characterized saponin extract of rhizomes of P. japonicus (SEPJ) on hepatocyte EMT and HSC activation in vitro and liver fibrosis in mice. We also investigated molecular mechanisms underlying the hepatoprotective activity of SEPJ. METHODS EMT of AML-12 hepatocytes was evaluated by observing morphology of cells and quantifying EMT marker proteins. Activation of LX-2 HSCs was assessed via scratch assay, transwell assay, and EdU-incorporation assay, and by quantifying activation marker proteins. Liver fibrosis in mice was evaluated by HE, SR, and Masson staining, and by measuring related serum indicators. Immunoblotting and RT-PCR were performed to study mechanisms underlying the action of SEPJ. RESULTS SEPJ inhibited TGF-β-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. SEPJ elevated Akt phosphorylation at Ser473 and GSK3β phosphorylation at Ser9 in these cells, giving rise to a descent of the catalytic activity of GSK3β. These events increased levels of both total and nuclear Nrf2 protein and upregulated expressions of Nrf2-responsive antioxidative genes. In addition, enhanced phosphorylation of Akt and GSK3β acted upstream of SEPJ-mediated activation of Nrf2. Knockdown of Nrf2 or inhibition of Akt diminished the protective activity of SEPJ against TGF-β in both AML-12 and LX-2 cells. Our further in vivo experiments revealed that SEPJ imposed a considerable alleviation on CCl4-provoked mouse liver fibrosis. Moreover, hepatic Akt/GSK3β/Nrf2 cascade were potentiated by SEPJ. Taken together, our results unveiled that SEPJ exerted protective effects against fibrogenic cytokine TGF-β in vitro and ameliorated liver fibrosis in mice. Mechanistically, SEPJ regulated the Akt/GSK3β/Nrf2 signaling which subsequently enhanced intracellular antioxidative capacity. CONCLUSIONS SEPJ inhibits hepatocyte EMT and HSC activation in vitro and alleviates liver fibrosis in mice. Modulation of the Akt/GSK3β/Nrf2 cascade attributes to its hepatoprotective effects. Our findings support a possible application of SEPJ in the control of liver fibrosis.
Collapse
Affiliation(s)
- Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of combination of monoammonium glycyrrhizinate and cysteine hydrochloride induced by CCl 4. Eur J Pharmacol 2021; 913:174628. [PMID: 34774851 DOI: 10.1016/j.ejphar.2021.174628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Combination of monoammonium glycyrrhizinate and cysteine hydrochloride (MG-CH) has been used in the treatment of chronic liver disease for decades, however, its mechanism is still unclear. Our previous studies showed that MG-CH confers the optimal therapeutic effect at the ratio of 2:1 to against acute liver damage. In this study, it was used to investigate the anti-fibrotic effect induced by CCl4. The results showed that injection of MG-CH produced anti-fibrotic effect ranged from 30 mg/kg to 60 mg/kg, evidenced by decreased the collagens deposition and inhibited the production of hydroxyproline. Mechanism study found that Nrf2/ARE signaling pathway was activated by MG-CH, whereas loss of hepatocytic Nrf2 abolished its anti-fibrotic effect significantly. Furthermore, it was demonstrated that MG-CH is a non-canonical NRF2 inducer, which promoted the autophagy activity and release the Nrf2 from keap 1 by promoting the phosphorylation of p62 at Ser351. Knockdown of p62 abolished the enhancement of nuclear accumulation of Nrf2 by MG-CH. All of these results suggested that up-regulation of Nrf2/P62/Keap1 involves in the anti-fibrotic effect of MG-CH, which provide a rational explanation for the usage of MG-CH in the treatment of fibrosis.
Collapse
|
25
|
Liu Z, Wang H, Hou Y, Yang Y, Jia J, Wu J, Zuo Z, Gao T, Ren S, Bian Y, Liu S, Fu J, Sun Y, Li J, Yamamoto M, Zhang Q, Xu Y, Pi J. CNC-bZIP protein NFE2L1 regulates osteoclast differentiation in antioxidant-dependent and independent manners. Redox Biol 2021; 48:102180. [PMID: 34763297 PMCID: PMC8591424 DOI: 10.1016/j.redox.2021.102180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
Fine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms' accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yang Yang
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jingkun Jia
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jinzhi Wu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Tianchang Gao
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yongxin Sun
- The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, IN, 46202, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
26
|
Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, Wang Y, Wang D, Wang H, Huang W. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol 2021; 12:724514. [PMID: 34531748 PMCID: PMC8438129 DOI: 10.3389/fphar.2021.724514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a highly fatal acute inflammation and is often accompanied by multiple organ dysfunction syndrome (MODS). The liver, one of the most vulnerable extrapancreatic organs in AP, is the major organ involved in the evolution of the disease and correlates strongly with the occurrence of MODS. However, the etiology of pancreatitis-associated liver injury (PALI) has not been clarified and currently lacks an effective treatment. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is a cell permeable nucleoside with pleiotropic effects on anti-inflammatory and antioxidant stress that binds with adenosine monophosphate protein kinase (AMPK) and induces AMPK activation. However, the role of AICAR in PALI remains elusive. Here, we show that activation of AMPK by AICAR, a direct AMPK agonist, significantly ameliorates sodium taurocholate-induced PALI in rats, whereas treatment of PALI rats with the AMPK antagonist Compound C profoundly exacerbates the degree of liver injury, suggesting that hepatic AMPK activation exerts an essential protective role in PALI. Mechanistically, AICAR induces AMPK activation, which in turn activates nuclear factor erythroid 2-related factor 2(Nrf2) -regulated hepatic antioxidant capacity and inhibits NLRP3 inflammasome-mediated pyrolysis, protecting rats from sodium taurocholate-induced PALI. In addition, Nrf2 deficiency strikingly weakens the beneficial effects of AICAR on alleviation of liver injury, oxidative stress and NLRP3 inflammasome activation in L-arginine-induced PALI mice. Thus, AICAR protects against PALI in rodents by triggering AMPK, which is mediated at least in part by Nrf2-modulated antioxidant effects and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Department of Nutrition, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Zeng D, Wang Y, Chen Y, Li D, Li G, Xiao H, Hou J, Wang Z, Hu L, Wang L, Li J. Angelica Polysaccharide Antagonizes 5-FU-Induced Oxidative Stress Injury to Reduce Apoptosis in the Liver Through Nrf2 Pathway. Front Oncol 2021; 11:720620. [PMID: 34485154 PMCID: PMC8415481 DOI: 10.3389/fonc.2021.720620] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress induced by chemotherapeutic agents causes hepatotoxicity. 5-Fluorouracil (5-FU) has been found to have a variety of side effects, but its toxic effect on the liver and the mechanism are still unclear. Angelica polysaccharide (ASP), the main active ingredient of Dang Gui, has antioxidative stress effects. In this study, we investigated the antagonistic effects of ASP on 5-FU-induced injury in the mouse liver and human normal liver cell line MIHA and the possible mechanism. Our results show that ASP inhibited 5-FU-induced the decrease in Bcl-2 protein and the increase in Bax protein. ASP alleviated 5-FU-induced the increase in alanine aminotransferase (ALT), triglyceride (TG), and aspartate aminotransferase (AST) content; hepatic steatosis; and liver fibrosis. ASP restored 5-FU-induced swelling of mitochondria and the endoplasmic reticulum. 5-FU promoted the expression of Keap1 and increased the binding to NF-E2-related factor 2 (Nrf2) to reduce the nuclear translocation of Nrf2, thereby weakening the transcriptional activity of Nrf2 to inhibit the expression of HO-1; reducing the activity of GSH, SOD, and CAT to increase ROS content; and aggravating DNA damage (indicated by the increase in 8-OHdG). However, ASP reversed these reactions. In conclusion, ASP attenuated the 5-FU-induced Nrf2 pathway barrier to reduce oxidative stress injury and thereby inhibit the disorder of lipid anabolism and apoptosis. The study provides a new protectant for reducing the hepatic toxicity caused by 5-FU and a novel target for treating the liver injury.
Collapse
Affiliation(s)
- Di Zeng
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Danyang Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Guoli Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Hanxianzhi Xiao
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Jiyin Hou
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Ling Hu
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Wan XM, Chen J, Wang M, Zheng C, Zhou XL. Puerarin attenuates cadmium-induced hepatic lipid metabolism disorder by inhibiting oxidative stress and inflammation in mice. J Inorg Biochem 2021; 222:111521. [PMID: 34171769 DOI: 10.1016/j.jinorgbio.2021.111521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is a common environmental pollutant with known toxic effects on the liver. Puerarin (PU), a natural flavonoid, has been shown to exert protective effect in numerous pathological processes. However, whether PU affords protection in Cd-induced liver damage is still equivocal. Therefore, 40 mice were treated with Cd and/or PU by gavage for 9 weeks, then the serum and liver samples were collected to verify this issue. In this study, Cd exposure triggered hepatic lipid metabolism disorders and resultant liver damage as evidenced by Oil Red O staining and total cholesterol (TC) and triglyceride (TG) levels in serum and liver, aspartate transaminase (AST) and alanine transaminase (ALT) levels in serum, and histopathology, which were significantly improved by PU. Moreover, PU also normalized the expression of Cd-disturbed lipid metabolism-related proteins to improve lipid accumulation, contributing to the alleviation of liver injury. Moreover, Cd-decreased antioxidative indices superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) as well as glutathione (GSH) in hepatic tissues were significantly attenuated by PU administration, while Cd-elevated hepatic malondialdehyde (MDA) and reactive oxygen species (ROS) levels were markedly down-regulated by PU treatment, demonstrating the antioxidant effect of PU against Cd exposure. In addition, PU supplementation increased the anti-inflammatory potential, and normalized the levels of proinflammatory cytokines during Cd exposure. In conclusion, these observations demonstrate that PU treatment decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced lipid metabolism disorder and consequent liver damage.
Collapse
Affiliation(s)
- Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Jing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China.
| |
Collapse
|
29
|
Zhu Z, Hu R, Li J, Xing X, Chen J, Zhou Q, Sun J. Alpinetin exerts anti-inflammatory, anti-oxidative and anti-angiogenic effects through activating the Nrf2 pathway and inhibiting NLRP3 pathway in carbon tetrachloride-induced liver fibrosis. Int Immunopharmacol 2021; 96:107660. [PMID: 33862553 DOI: 10.1016/j.intimp.2021.107660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
Alpinetin is the major active ingredient of Alpiniakatsumadai Hayata. As a kind of novel plant-derived flavonoid, alpinetin has shown potent hepatoprotective effect against many liver diseases such as non-alcoholic fatty liver and lipopolysaccharide/d-Galactosamine-induced liver injury. However, its roles in liver fibrosis remain to be determined. The aim of the current study was to investigate the effect of alpinetin in mice with carbon tetrachloride (CCl4)-induced liver fibrosis, and to elucidate the underlying mechanisms of action. Alpinetin ameliorated the CCl4-induced liver injury and fibrosis in mice, as shown by decreased collagen deposition and the decreased expression of liver fibrosis marker proteins. Alpinetin suppressed the inflammation and oxidative stress in fibrotic livers of mice, as evidenced by decreased levels of proinflammatory factors, the decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the increased activities of antioxidant enzymes. In addition, alpinetin attenuated the angiogenesis in fibrotic livers of the test animals. Mechanistically, alpinetin inhibited the CCl4-induced expression of NLRP3, ASC, cleaved caspase-1, mature (cleaved-) IL-1β, and IL-18 in livers of mice. Furthermore, alpinetin resulted in an increased in the nuclear expression and a decrease in the cytoplasmic expression of Nrf2, as well as increased protein expression of downstream target enzymes, GCLC, HO-1, NQO1, and GCLM, thus exerting the antioxidant effect. Overall, these findings suggested that the anti-fibrotic effect of alpinetin can be attributed to the inhibition of NLRP3-mediated anti-inflammatory activities and Nrf2-mediated anti-oxidative activities, in addition to the decrement of hepatic angiogenesis.
Collapse
Affiliation(s)
- Zhiheng Zhu
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Renyue Hu
- Medical School of Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jidan Li
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Xiaoxiao Xing
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Jianxin Chen
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China
| | - Qi Zhou
- Department of Operating Room, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China.
| | - Jingjun Sun
- Department of General Surgery, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226018, China.
| |
Collapse
|
30
|
Sun J, Hong Z, Shao S, Li L, Yang B, Hou Y, Wang H, Xu Y, Zhang Q, Pi J, Fu J. Liver-specific Nrf2 deficiency accelerates ethanol-induced lethality and hepatic injury in vivo. Toxicol Appl Pharmacol 2021; 426:115617. [PMID: 34116071 DOI: 10.1016/j.taap.2021.115617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality from liver disorders. Various mechanisms, including oxidative stress and impaired lipid metabolism, have been implicated in the pathogenesis of ALD. Our previous studies showed that nuclear factor erythroid-derived 2-like 2 (Nrf2) is a master regulator of adaptive antioxidant response and lipid metabolism by using a liver-specific Nrf2 knockout (Nrf2(L)-KO) mouse model. In the current study, an ALD model was developed by a Lieber-DeCarli liquid-based ethanol diet given to this Nrf2(L)-KO mouse strain. We found that Nrf2(L)-KO mice were quite sensitive to lethality from 6.3% ethanol diet. We thus decreased the ethanol concentration to 4.2% to obtain tissues to analyze the role of hepatic Nrf2 in the development of ALD. We found that mild hepatic steatosis occurred with both liquid control and 4.2% ethanol diet feeding, which contain 35% fat. Both the fatty acid β-oxidation marker peroxisome proliferators-activated receptor α (PPARα), and lipogenesis regulator PPARγ were reduced with ethanol feeding in Nrf2(L)-KO mice, compared to Nrf2 floxed control mice (Nrf2-LoxP). However, Nrf2(L)-KO livers showed more cell injury than the livers of Nrf2-LoxP mice. Consistent with these data, there was increased proportion of apoptotic cells in the liver of ethanol-fed Nrf2(L)-KO mice comparing Nrf2-LoxP controls. Mechanistically, Nrf2 mediated expression of ethanol detoxification enzymes, such as alcohol dehydrogenase 1 and aldehyde dehydrogenase1a1, likely contributed to the sensitivity to ethanol toxicity. In conclusion, hepatic Nrf2 is critical to the development of ALD, particularly the morbidity and liver injury.
Collapse
Affiliation(s)
- Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Zhixuan Hong
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Shuai Shao
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Bei Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
31
|
Li R, Yang W, Yin Y, Ma X, Zhang P, Tao K. 4-OI Attenuates Carbon Tetrachloride-Induced Hepatic Injury via Regulating Oxidative Stress and the Inflammatory Response. Front Pharmacol 2021; 12:651444. [PMID: 34113251 PMCID: PMC8185275 DOI: 10.3389/fphar.2021.651444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is an important metabolic organ, and acute liver injury (ALI) is potentially lethal. Itaconate, a metabolic intermediate from the tricarboxylic acid cycle, showed emerging anti-oxidative and anti-inflammation properties, and an accumulating protective effect in multiple diseases, but its role in ALI still needs to be further explored. Here we established an ALI model induced by carbon tetrachloride in mice. Our results showed that 4-Octyl itaconate (OI), a derivate of itaconate, mitigated hepatic damage by improving liver function, reducing histopathological damage, and decreasing the death of hepatocytes. Additionally, OI decreased myeloperoxidase and thiobarbituric acid reactive substances (TBARS) levels in the ALI model. OI also inhibited the inflammatory response by reducing pro-inflammatory cytokine secretion (IL-6, TNF-α, IL-1β, and MCP-1) and infiltration of macrophages and neutrophils in the ALI model. However, administration of ML385, a specified Nrf2 inhibitor, eliminated the protective properties of OI in the CCl4-induced liver injury model by increasing hepatic damage and oxidative stress. Furthermore, OI increased the expression and nuclear translocation of Nrf2 and elevated the expression of heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1, while knockdown of Nrf2 eliminated these effects in murine hepatocyte NCTC 1469 under CCl4 treatment. Moreover, we found that OI reduced serum High-mobility group box 1 (HMGB1) levels in CCl4-treated mice. Finally, OI inhibited nuclear translocation of factor-kappa B (NF-𝜅B) and inflammatory cytokine production in murine macrophages. In conclusion, these results indicated that OI ameliorated CCl4-induced ALI by mitigating oxidative stress and the inflammatory response. The possible mechanism was associated with the elevation of Nrf2 nuclear translocation and inhibition of HMGB1 mediated the nuclear translocation of NF-𝜅B.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Cai Y, Li B, Peng D, Wang X, Li P, Huang M, Xing H, Chen J. Crm1-Dependent Nuclear Export of Bach1 is Involved in the Protective Effect of Hyperoside on Oxidative Damage in Hepatocytes and CCl 4-induced Acute Liver Injury. J Inflamm Res 2021; 14:551-565. [PMID: 33658828 PMCID: PMC7920627 DOI: 10.2147/jir.s279249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Nrf2-Bach1 antioxidant signaling pathway is considered as one of the most important mechanisms of cellular resistance to oxidative injury. The effect of hyperoside (Hyp) on the expression and distribution of Bach1, the relationship of Hyp's antioxidative effect and the influence of Bach1 remains unclear. Purpose The aim of this study was to investigate the role and mechanisms of Bach1 in the protective effect of Hyp on oxidative liver injury. Methods The protective effect of Hyp on oxidative stress injury was observed in vivo and in vitro. Next, the influence of Hyp on Bach1 expression and distribution, and competitive combination of Nrf2-Bach1 with ARE in H2O2-induced L02 cell was studied by Western blot, RT-PCR, immunofluorescence and CHIP assay. Finally, the expressions of Crm1, ERK and p38 and their roles on Hyp mediated nuclear export of Bach1 were investigated by Western blot. Results Hyp ameliorated the pathological damage, reduced the liver index, AST, ALT and MDA activities, and increased SOD and GSH levels in the CCl4-induced acute liver injury mouse model. Hyp attenuated H2O2-induced oxidative stress injury in L02 cells. Hyp promoted the early rapid redistribution of Bach1 from nucleus to cytoplasm. CHIP analyses demonstrated that Hyp enhanced the levels of Nrf2-ARE complex, and weakened the levels of Bach1-ARE complex within three hours. In addition, Hyp enhanced transport protein Crm1 expression and ERK1/2 activity. And LMB, a Crm1 inhibitor, attenuated the effect of Hyp on Bach1 nuclear export and anti-oxidation. U0126, an ERK1/2 inhibitor, reduced the effect of Hyp on Crm1 expression and the Bach1 redistribution. Conclusion The hepatoprotective mechanism of Hyp was related to improve Bach1 nuclear export depending on ERK1/2-Crm1 to upregulate the level of Nrf2 binding to ARE.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Dan Peng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Pan Li
- Department of Pharmacy, Fengdu Traditional Chinese Medicine Hospital, Chongqing, 408299, People's Republic of China
| | - Mingchun Huang
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, People's Republic of China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| |
Collapse
|
33
|
Novel Antioxidant, Deethylated Ethoxyquin, Protects against Carbon Tetrachloride Induced Hepatotoxicity in Rats by Inhibiting NLRP3 Inflammasome Activation and Apoptosis. Antioxidants (Basel) 2021; 10:antiox10010122. [PMID: 33467773 PMCID: PMC7829797 DOI: 10.3390/antiox10010122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation and an increase in antioxidant responses mediated by oxidative stress play an important role in the pathogenesis of acute liver injury (ALI). We utilized in silico prediction of biological activity spectra for substances (PASS) analysis to estimate the potential biological activity profile of deethylated ethoxyquin (DEQ) and hypothesized that DEQ exhibits antioxidant and anti-inflammatory effects in a rat model of carbon tetrachloride (CCl4)-induced ALI. Our results demonstrate that DEQ improved liver function which was indicated by the reduction of histopathological liver changes. Treatment with DEQ reduced CCl4-induced elevation of gene expression, and the activity of antioxidant enzymes (AEs), as well as the expression of transcription factors Nfe2l2 and Nfkb2. Furthermore, DEQ treatment inhibited apoptosis, downregulated gene expression of pro-inflammatory cytokines (Tnf and Il6), cyclooxygenase 2 (Ptgs2), decreased glutathione (GSH) level and myeloperoxidase (MPO) activity in rats with ALI. Notably, DEQ treatment led to an inhibition of CCl4-induced NLRP3-inflammasome activation which was indicated by the reduced protein expression of IL-1β, caspase-1, and NLRP3 in the liver. Our data suggest that DEQ has a hepatoprotective effect mediated by redox-homeostasis regulation, NLRP3 inflammasome, and apoptosis inhibition, which makes that compound a promising candidate for future clinical studies.
Collapse
|
34
|
Mo C, Xie S, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Mutual antagonism between indoleamine 2,3-dioxygenase 1 and nuclear factor E2-related factor 2 regulates the maturation status of DCs in liver fibrosis. Free Radic Biol Med 2020; 160:178-190. [PMID: 32771520 DOI: 10.1016/j.freeradbiomed.2020.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis can develop into liver cirrhosis and hepatocellular carcinoma substantially without effective available treatment currently due to rarely characterized molecular pathogenesis. Indoleamine 2,3-dioxygenase 1(IDO1) can be detected on antigen-presenting cells (APCs) and modulates various immune responses. However, the role of IDO1 in the regulation of dendritic cells (DCs) during liver fibrosis is rarely reported. Here, we found that hepatic IDO1 was up-regulated during CCL4-induced liver fibrosis, which accompanied by a significant decrease in the frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+CD40+ and CD11c+MHCII+ cells and a reduction in the subsequent T cell proliferation rate, whereas these changes were reversed significantly in IDO1-/- mice. Overexpressing IDO1 by adeno-associated viral vector serotype 9 (AAV9) significantly inhibited the maturation status of DCs, worsened fibrosis. In vitro studies showed that significantly elevated CD80, CD86, CD40 and MHCII expression were observed in BMDCs derived from IDO1-/- mice. Moreover, the maturation of BMDCs derived from WT mice were significantly increased after stimulated with IDO1 inhibitor (1-methyl- D -tryptophan). Nuclear factor E2-related factor 2 (Nrf2), a key regulator of the cellular adaptive response to oxidative insults and inflammation, exhibited a markedly decrease in the liver of WT fibrotic mice, nevertheless, knockout of IDO1 enhanced the protein level of Nrf2. Moreover, the expression of IDO1 and Nrf2 exhibited inverse colocalization pattern suggesting that ectopically expressed IDO1 down-regulated Nrf2. Additionally, up-regulation of IDO1 was also observed in the livers of Nrf2-/- fibrotic mice. Taken together, these data uncovered mutual antagonism between IDO1 and Nrf2 on the maturation status of DCs during hepatic fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, Shenzhen, Guangdong, 518033, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
35
|
Hsu YJ, Wang CY, Lee MC, Huang CC. Hepatoprotection by Traditional Essence of Ginseng against Carbon Tetrachloride-Induced Liver Damage. Nutrients 2020; 12:nu12103214. [PMID: 33096694 PMCID: PMC7594089 DOI: 10.3390/nu12103214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
The peroxide produced in the lipid metabolic process attacks liver cells and causes liver injury. Ginsenosides have been shown to have anti-oxidation abilities and to mend myocardial damage. This study evaluated the effect of traditional ginseng essence (TEG) in preventing chemical liver damage induced by carbon tetrachloride (CCl4). Forty 8-week-old male Sprague Dawley (SD) rats were divided into five groups: control, liver injury (CCl4), and TEG by oral gavage at 0.074, 0.149, or 0.298 g/kg/day for nine weeks. Liver injury biochemical indicators, antioxidant enzyme activity, and lipid contents in liver tissues were evaluated. The liver appearance was observed, and histopathological tests were conducted to estimate whether TEG-antagonized oxidants further ameliorated liver injury. The results show that, after supplementation of TEG for nine consecutive weeks and CCl4—induced liver injury for eight weeks, the levels of liver injury biochemical indicators in animal serum decreased significantly, and, in liver tissue, antioxidant activity was significantly improved and accumulation of lipids was decreased. Pathological sections exhibited reduced liver lipid accumulation and fibrosis. As discussed above, TEG can increase the antioxidant capacity in the liver and the maintenance of hepatocyte function, protecting the liver from chemical injury and improving healthcare.
Collapse
|
36
|
Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020; 12:cancers12102932. [PMID: 33053665 PMCID: PMC7599585 DOI: 10.3390/cancers12102932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the Keap1-Nrf2 pathway represents a powerful cell defense mechanism against a variety of toxic insults, its role in acute or chronic liver damage and tumor development is not completely understood. This review addresses how Nrf2 is involved in liver pathophysiology and critically discusses the contrasting results emerging from the literature. The aim of the present report is to stimulate further investigation on the role of Nrf2 that could lead to define the best strategies to therapeutically target this pathway. Abstract Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate. Another topic of uncertainty concerns the nature of the mechanisms of Nrf2 activation in hepatocarcinogenesis. Indeed, it remains unclear what is the main mechanism behind the sustained activation of the Keap1/Nrf2 pathway in hepatocarcinogenesis. This raises doubts about the best strategies to therapeutically target this pathway. In this review, we will analyze and discuss our present knowledge concerning the role of Nrf2 in hepatic physiology and pathology, including hepatocellular carcinoma. In particular, we will critically examine and discuss some findings originating from animal models that raise questions that still need to be adequately answered.
Collapse
|
37
|
Yang K, Zou Z, Wu Y, Hu G. MiR-195 suppression alleviates apoptosis and oxidative stress in CCl4-induced ALI in mice by targeting Pim-1. Exp Mol Pathol 2020; 115:104438. [PMID: 32277959 DOI: 10.1016/j.yexmp.2020.104438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute liver injury (ALI) is associated with the oxidative stress and apoptosis in liver. Recent studies have shown that miR-195, a critical member of miR-15 family, has modulated the apoptosis in various organic diseases. However, it is elusive whether miR-195 regulation exert a hepatic ameliorative effect on ALI by the suppression of apoptosis and oxidative stress levels. We aimed to explore the regulated role of miR-195 in acute liver injury via the current study. METHODS C57BL/6 J mice (male, seven-week, 18-20 g) were administrated intraperitoneal injection with tetrachloromethane (CCl4) to induce ALI. miR-195 inhibitor or mimics loaded in lentivirus vectors (miR-195 INH or MMC) and Pim-1 loaded in Adeno-associated viral vectors (AAV-Pim-1) were respectively delivered into mouse tail intravenous to establish silence or overexpression of miR-195 and overexpression of Pim-1. Western blotting, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), enzyme linked immunosorbent assay (ELISA) technique, Immunohistochemistry (IHC) and Hematoxylin-eosin (H&E) staining were conducted to measure miR-195 and Pim-1 expression, apoptosis and oxidative stress levels, histological and functional change. RESULTS We found that the expression of miR-195 markedly increased in CCl4-induced ALI. Besides, we demonstrated that the silence of miR-195 attenuated the apoptosis and oxidative stress via up-regulating Pim-1 in CCl4-induced ALI. Moreover, the inhibition of miR-195 protected the integrity and function of liver tissue. CONCLUSIONS The above results showed that the suppression of miR-195 ameliorated ALI through inhibiting apoptosis and oxidative stress via targeting Pim-1. Our research provided a novel scheme that the miR-195 modulation in process of ALI may be an effective therapy method and verifies a promising target for diagnostic and therapeutic strategy of miRNAs.
Collapse
Affiliation(s)
- Kun Yang
- Department of Emergency, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China.; Department of Emergency, Jinan City People's Hospital, Jinan, China
| | - Zhongyu Zou
- Department of Emergency, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China.; Department of Emergency, Jinan City People's Hospital, Jinan, China
| | - Yucheng Wu
- Department of PICC Clinic, The First People's Hospital of Jining, Jinan, China
| | - Guiju Hu
- Department of PICC Clinic, The First People's Hospital of Jining, Jinan, China..
| |
Collapse
|