1
|
Yu W, Liu J, Yang C, Luo Y, Mu H, Wang S, Dong W, Jia M, Dong Z, Lu X, Wang J. Cold atmospheric plasma enhances immune clearance of Porphyromonas gingivalis via LC3-associated phagocytosis in mice with experimental periodontitis. Int Immunopharmacol 2025; 153:114494. [PMID: 40117805 DOI: 10.1016/j.intimp.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Periodontitis is a microbe-driven infectious disease, in which Porphyromonas gingivalis (Pg) plays a keystone role. As the front line to eliminate dysbiotic microbiota, macrophages are critical for recognition, phagocytosis and digestion of bacteria. However, deficiencies in the antimicrobial function of periodontal macrophages lead to diminished Pg clearance and destructive periodontal inflammation. Cold atmospheric plasma (CAP) enables non-invasive treatment by producing reactive species including reactive oxygen species (ROS), reactive nitrogen species (RNS) and electro-magnetic field, and is of great interest for infectious diseases. These radicals have a significant influence on cellular biochemistry and are crucial components of the immune system. The CAP jet using helium gas was developed and driven by the bipolar pulse high voltage. The negative voltage was 5 kV and the positive voltage was 10 kV. The irradiation time was set to 120 s for in vivo experiments and 80 s for in vitro experiments. In vivo experiments demonstrated that CAP significantly alleviated periodontitis. In addition to the directly antimicrobial effects, in vitro experiments demonstrated that CAP enhanced intracellular killing of Pg by bone marrow-derived macrophages (BMMs) and murine macrophage cell line RAW 264.7 in a ROS-dependent manner. BMMs were collected from the tibias and femurs of healthy C57BL/6 mice aged 6-8 weeks old. Mechanistically, it is found that CAP promotes microtubule-associated protein 1A/1B-light chain 3 (MAP1LC3, LC3)-associated phagocytosis (LAP) in macrophages to defend against Pg. Therefore, CAP is proposed a potential therapy for effectively alleviating periodontitis through regulating the bactericidal activity of macrophages.
Collapse
Affiliation(s)
- Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jialin Liu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinpei Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Wu Y, Liu Y, Zhang Y, Wang X, Wang W. Targeted delivery of neratinib/xanthan gum-capped calcium carbonate nanoparticles induces apoptosis through PI3K/AKT pathway in breast cancer mice model. Int J Biol Macromol 2025; 310:142963. [PMID: 40222535 DOI: 10.1016/j.ijbiomac.2025.142963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Breast cancer (BC) continues to be the most common malignancy among women, presenting therapeutic challenges including drug resistance. This study examines the effectiveness of neratinib-loaded xanthan gum-capped calcium carbonate nanoparticles (NB/XG@CaCO₃NPs) for targeted breast cancer treatment. The nanoparticles were synthesized using the co-precipitation method, characterized, and assessed against MCF7 and MDA-MB231 breast cancer cell lines. In vitro, NB/XG@CaCO₃NPs demonstrated considerable cytotoxicity at approximately 50 μg/mL, whereas non-cancerous HMEC cells retained high viability. Flow cytometry demonstrated an 85.2 % apoptosis rate, signifying effective cancer cell mortality. Mechanistic investigations validated that the downregulation of the PI3K/AKT pathway facilitated the anti-tumor effects. In vivo, NB/XG@CaCO₃NPs administered intravenously to cadmium chloride-induced breast cancer mice significantly diminished tumor volume and enhanced histomorphology without causing major organ toxicity. qRT-PCR and western blot analysis further confirmed tumor suppression at the molecular level. These results indicate that NB/XG@CaCO₃NPs present a viable targeted treatment for BC, efficiently suppressing tumor proliferation while maintaining biocompatibility.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yanxi Liu
- Department of Plastic and Reconstructive Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yawen Zhang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xuekui Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
3
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
4
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
5
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
6
|
Holanda AGA, Francelino LEC, de Moura CEB, Alves Junior C, Matera JM, de Queiroz GF. Cold Atmospheric Plasma in Oncology: A Review and Perspectives on Its Application in Veterinary Oncology. Animals (Basel) 2025; 15:968. [PMID: 40218360 PMCID: PMC11987927 DOI: 10.3390/ani15070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as a low-cost and environmentally sustainable alternative. Its mechanisms of action involve reactive oxygen and nitrogen species (RONS), UV radiation, and electromagnetic fields, which induce cell death. Preclinical and clinical studies have demonstrated the efficacy of CAP, with devices such as dielectric barrier discharge (DBD) and the plasma jet developed to minimize damage to healthy cells. Some CAP devices are already approved for clinical use, showing safety and efficacy. However, the standardization of treatments remains a challenge due to the variety of devices and parameters used. Although CAP has shown promising cytotoxic effects in vitro and in animal models, especially in different cancer cell lines, further research, particularly in vivo and in veterinary medicine, is needed to optimize its clinical use and maximize its efficacy in combating cancer.
Collapse
Affiliation(s)
- André Gustavo Alves Holanda
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (A.G.A.H.); (J.M.M.)
| | - Luiz Emanuel Campos Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| | - Carlos Eduardo Bezerra de Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| | - Clodomiro Alves Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil;
| | - Julia Maria Matera
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (A.G.A.H.); (J.M.M.)
| | - Genilson Fernandes de Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (L.E.C.F.); (C.E.B.d.M.)
| |
Collapse
|
7
|
Yao H, Toyoda H, Takada N, Oebisu N, Orita K, Ban Y, Saito K, Nakazawa K, Kobayashi Y, Taniwaki H, Ohira C, Oh JS, Shirafuji T, Terai H, Nakamura H. Anti-Tumor Effect of Non-Thermal Atmospheric Pressure Plasma-Activated Medium on Synovial Sarcoma: An In Vitro and In Vivo Study. Biomedicines 2025; 13:534. [PMID: 40149512 PMCID: PMC11940581 DOI: 10.3390/biomedicines13030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objective: Anti-tumor effects of plasma-activated medium (PAM) were demonstrated using various malignant tumors. However, the anti-tumor effect of PAM on synovial sarcoma remains unclear. Therefore, we aimed to investigate the anti-tumor effects of PAM on synovial sarcoma and its underlying mechanisms, focusing on the quantitative analyses of both intracellular reactive oxygen species (ROS) and cell apoptosis. Methods: The human synovial sarcoma cell line HS-SY-II was used to investigate the cell viability after PAM treatment. We investigated the anti-tumor effects and side effects of local PAM injection in a synovial sarcoma xenograft murine model. Moreover, we observed PAM-induced intracellular ROS accumulation and cell apoptosis and assessed the involvement of intracellular ROS in the anti-tumor effects of PAM using an intracellular ROS scavenger. Results: PAM significantly decreased the viability of synovial sarcoma cells compared with untreated Dulbecco's modified Eagle medium. Local PAM injection into a synovial sarcoma xenograft murine model significantly suppressed tumor growth, including tumor volume (p < 0.001) and weight (p = 0.031), without side effects. Regarding anti-tumor mechanisms, PAM induced significant cell apoptosis and intracellular ROS accumulation (p < 0.001). The intracellular ROS scavenger significantly inhibited the anti-tumor effect of PAM (p < 0.001). Conclusions: We confirmed the anti-tumor effects of PAM on synovial sarcoma in vitro and in vivo, as well as the absence of side effects. The underlying mechanism was suggested to involve cell apoptosis induced by intracellular ROS accumulation. Considering the various clinical issues associated with the existing treatments of synovial sarcoma, PAM is a promising new option.
Collapse
Affiliation(s)
- Hana Yao
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiromitsu Toyoda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Naoki Takada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Naoto Oebisu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Kumi Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Yoshitaka Ban
- Department of Orthopaedic Surgery, Osaka City Juso Hospital, Osaka 532-0034, Japan
| | - Kosuke Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Katsumasa Nakazawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Yuto Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiroshi Taniwaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Chinatsu Ohira
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Jun-Seok Oh
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan; (J.-S.O.)
| | - Tatsuru Shirafuji
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan; (J.-S.O.)
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan (N.T.)
| |
Collapse
|
8
|
di Giacomo V, Balaha M, Pinti M, Di Marcantonio MC, Cela I, Acharya TR, Kaushik NK, Choi EH, Mincione G, Sala G, Perrucci M, Locatelli M, Perrotti V. Cold atmospheric plasma activated media selectively affects human head and neck cancer cell lines. Oral Dis 2025; 31:401-416. [PMID: 39314203 PMCID: PMC11976116 DOI: 10.1111/odi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Cold atmospheric plasma (CAP) is a novel approach for cancer treatment. It can be used to treat liquids-plasma-activated media (PAM)-which are then transferred to the target as an exogenous source of reactive oxygen and nitrogen species (RONS). The present study aimed at chemically characterizing different PAM and assessing their in vitro selectivity against head and neck cancer cells (HNC). METHODS PAM were obtained by exposing 2 and 5 mL of cell culture medium to CAP for 5, 10 and 20 min at a 6 mm working distance. Anions kinetics was evaluated by ion chromatography. Cell proliferation inhibition, apoptosis occurrence, and cell cycle modifications were assessed by MTS and flow cytometry, on human epidermal keratinocyte (HaCaT) and HNC cell lines HSC3, HSC4 and A253. RESULTS The 2 mL conditions showed a significant reduction in cell proliferation whereas for the 5 mL the effect was milder, but the time-dependence was more evident. HaCaT were unaffected by the 5 mL PAM, indicating a selectivity for cancer cells. CONCLUSIONS The media chemical composition modified by CAP exposure influenced cell proliferation by modulating cell cycle and inducing apoptosis in cancer cells, without affecting normal cells.
Collapse
Affiliation(s)
- Viviana di Giacomo
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- UdA‐TechLab, Research Center“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Marwa Balaha
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Department of Pharmaceutical Chemistry, Faculty of PharmacyKafrelsheikh UniversityKafr El SheikhEgypt
| | - Morena Pinti
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Ilaria Cela
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological PhysicsKwangwoon UniversitySeoulSouth Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological PhysicsKwangwoon UniversitySeoulSouth Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological PhysicsKwangwoon UniversitySeoulSouth Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Miryam Perrucci
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Marcello Locatelli
- Department of Pharmacy“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Vittoria Perrotti
- UdA‐TechLab, Research Center“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
9
|
Sun Z, Ding C, Wang Y, Lu T, Song W. Plasma-Activated Medium Inhibited the Proliferation and Migration of Non-Small Cell Lung Cancer A549 Cells in 3D Culture. Int J Mol Sci 2024; 25:13262. [PMID: 39769029 PMCID: PMC11676436 DOI: 10.3390/ijms252413262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Lung cancer is the most common type of malignant tumor worldwide. Plasma-activated medium (PAM) is an innovative cancer treatment method that has received considerable scientific attention. The objective of this study is to evaluate the effects of PAM on the anti-tumor characteristics of non-small cell lung cancer (NSCLC) cells in two-dimensional (2D) and three-dimensional (3D) cultures. The effects of PAM treatment on the proliferative and migratory capabilities of A549 cells in 2D and 3D cultures were assessed using MTT, migration, invasion assays, and cell cycle, respectively. The study also investigated the impact of PAM treatment on the changes in the content of intracellular and extracellular reactive species and analyzed protein expression using the Western Blot method. PAM treatment inhibited the viability, migration, and invasion abilities of A549 cells in both 2D and 3D cultures, suppressed the epithelial-mesenchymal transition (EMT) process, and downregulated the expression of the RAS/ERK signaling pathway, which effectively inhibited tumor spheroid formation. Additionally, the effect of PAM on A549 cells was mediated through ROS-induced oxidative reactions, and PAM treatment exhibited greater cytotoxicity in 2D culture compared to 3D culture. As compared to 2D, the 3D cell culture model provides a viable in vitro cell model for studying the mechanisms of PAM treatment in lung cancer. PAM represents an effective new treatment for NSCLC.
Collapse
Affiliation(s)
- Zhidan Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Chenglong Ding
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yuhan Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Tingting Lu
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Z.S.); (C.D.); (Y.W.)
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Khosravi S, Chaibakhsh N, Jafari S, Nilkar M. Enhanced photocatalytic activity of ZnS/TiO 2 nanocomposite by nitrogen and tetrafluoromethane plasma treatments. Sci Rep 2024; 14:28385. [PMID: 39551837 PMCID: PMC11570603 DOI: 10.1038/s41598-024-78009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
In the present study, the photocatalytic performance of ZnS/TiO2 nanocomposite was investigated through the photodegradation of Acid Blue 113 (AB113) dye under ultraviolet light exposure. TiO2 and ZnS-based nanocomposites suffer from relatively wide bandgap energy and low adsorption capacity which limit their photocatalytic applications. These problems can be suppressed by modifying the surface of nanocomposite particles by the non-thermal plasma. Herein, surface modification of the ZnS/TiO2 nanocomposite was performed using a dielectric-barrier discharge plasma under nitrogen (N2) and tetrafluoromethane (CF4) gases. The characteristics of the plasma-treated nanocomposites were evaluated by XRD, FTIR, Raman, FESEM, EDS, BET, BJH, and DRS analyses. According to the results, by applying plasma treatment, cation and anion vacancies are produced that reduces the band gap energy of the photocatalyst hence improves its performance. The results indicate that the photocatalytic efficiency of the N2-plasma-treated nanocatalyst has been almost two times higher than that of the untreated ZnS/TiO2. It was found that after 25 min of UV irradiation, the AB113 was almost completely degraded in the presence of N2-plasma-treated ZnS/TiO2 nanocomposite (about 95%), whereas, it was degraded by 64% and 46% in the presence of CF4-plasma-treated ZnS/TiO2 and untreated ZnS/TiO2, respectively. This study presents a new approach to designing cost-effective plasma-treated photocatalysts to degrade organic contaminants in wastewater.
Collapse
Affiliation(s)
- S Khosravi
- Department of Physics, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran
- Department of Physics "G. Occhialini", University of Milano-Bicocca, Piazza della Scienza 3, Milano, 20126, Italy
| | - N Chaibakhsh
- Department of Applied Chemistry, Faculty of Chemistry, University of Guilan, Rasht, 4193833697, Iran.
| | - S Jafari
- Department of Physics, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
| | - M Nilkar
- Department of Applied Physics, Faculty of Engineering and Architecture, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41 B4, Ghent, 9000, Belgium
| |
Collapse
|
11
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
12
|
Manzhula K, Rebl A, Budde-Sagert K, Rebl H. Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells. Int J Mol Sci 2024; 25:10967. [PMID: 39456749 PMCID: PMC11507371 DOI: 10.3390/ijms252010967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress.
Collapse
Affiliation(s)
- Kristina Manzhula
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, 18051 Rostock, Germany;
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
13
|
Zhu J, Liu Q, Chen Y, Zhang J, Xu Q, Wu Z. Synergistic effects of plasma-activated medium in combination with Baicalin against neuronal damage. Heliyon 2024; 10:e36079. [PMID: 39224291 PMCID: PMC11366879 DOI: 10.1016/j.heliyon.2024.e36079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Neurodegenerative disorders are chronic conditions that progressively damage and destroy parts of the nervous system, and are currently considered permanent and incurable. Alternative strategies capable of effectively healing neuronal damage have been actively pursued. Here, we report the neuroprotective effects of baicalin (BA) combined with plasma-activated medium (PAM) against glutamate-induced excitotoxicity in SH-SY5Y cells. Through in vitro assays, the cell viability, inflammation, apoptosis, and oxidative stress were evaluated. The co-application of BA and PAM significantly enhanced cell viability, reduced pro-inflammatory markers (TNF-α and NF-κB), decreased apoptotic proteins (Bax and Caspase-3) and boosted antioxidative defenses (increased SOD activity and lowered ROS levels). This study confirms the potential of combining BA with PAM as an effective therapeutic strategy for mitigating the effects of excitotoxicity. PAM is a promising adjunct and potential drug delivery method in neuroprotective therapy, providing a new avenue for developing treatments for diseases characterized by neuronal damage.
Collapse
Affiliation(s)
- Jiwen Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Chen
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - JiaMing Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, Anhui, 230061, China
| | - Zhengwei Wu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
14
|
Nitsch A, Qarqash S, Schulze F, Nonnenmacher L, Bekeschus S, Tzvetkov MV, Wassilew GI, Haralambiev L. Combined Application of Cold Physical Plasma and Chemotherapeutics against Chondrosarcoma Cells. Int J Mol Sci 2024; 25:6955. [PMID: 39000064 PMCID: PMC11241706 DOI: 10.3390/ijms25136955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Chondrosarcoma (CS) is a rare malignant bone sarcoma that primarily affects cartilage cells in the femur and pelvis. While most subtypes exhibit slow growth with a very good prognosis, some aggressive subtypes have a poorer overall survival. CS is known for its resistance to chemotherapy and radiotherapy, leaving surgery as the sole effective therapeutic option. Cold physical plasma (CPP) has been explored in vitro as a potential therapy, demonstrating positive anti-tumor effects on CS cells. This study investigated the synergistic effects of combining CPP with cytostatics on CS cells. The chemotherapeutic agents cisplatin, doxorubicin, and vincristine were applied to two CS cell lines (CAL-78 and SW1353). After determining their IC20 and IC50, they were combined with CPP in both cell lines to assess their impact on the cell proliferation, viability, metabolism, and apoptosis. This combined approach significantly reduced the cell proliferation and viability while increasing the apoptosis signals compared to cytostatic therapy alone. The combination of CPP and chemotherapeutic drugs shows promise in targeting chemoresistant CS cells, potentially improving the prognosis for patients in clinical settings.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frank Schulze
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lars Nonnenmacher
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| |
Collapse
|
15
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
16
|
Nitsch A, Qarqash S, Römer S, Schoon J, Singer D, Bekeschus S, Ekkernkamp A, Wassilew GI, Tzvetkov MV, Haralambiev L. Effective combination of cold physical plasma and chemotherapy against Ewing sarcoma cells in vitro. Sci Rep 2024; 14:6505. [PMID: 38499701 PMCID: PMC10948386 DOI: 10.1038/s41598-024-56985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Ewing's sarcoma (ES) is the second most common bone tumor in children and adolescents and is highly malignant. Although the new chemotherapy has significantly improved the survival rate for ES from about 10 to 75%, the survival rate for metastatic tumors remains around 30%. This treatment is often associated with various side effects that contribute to the suffering of the patients. Cold physical plasma (CPP), whether used alone or in combination with current chemotherapy, is considered a promising adjunctive tool in cancer treatment. This study aims to investigate the synergistic effects of CPP in combination with cytostatic chemotherapeutic agents that are not part of current ES therapy. Two different ES cell lines, RD-ES and A673, were treated with the determined IC20 concentrations of the chemotherapeutic agents cisplatin and methotrexate (MTX) in combination with CPP. The effects on population doubling, cell viability, and apoptotic processes within these cell lines were assessed. This combination therapy has led to a reduction of population doubling and cell viability, as well as an increase in apoptotic activity in cells compared to CPP monotherapy. The results of this study provide evidence that combining CPP with non-common chemotherapy drugs such as MTX and CIS in the treatment of ES enhances the anticancer effects of these drugs. These findings open up new possibilities for the effective use of these drugs against ES.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Debora Singer
- Clinic and Polyclinic for Dermatology and Venerology, Strempelstr. 13, 18057, Rostock, Germany
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- Clinic and Polyclinic for Dermatology and Venerology, Strempelstr. 13, 18057, Rostock, Germany
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Axel Ekkernkamp
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683, Berlin, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683, Berlin, Germany.
| |
Collapse
|