1
|
Tian R, Geng S, Lv X, Li W, Xu T, Sun Y. Evolutionary insights and poly(I:C)-induced changes in expression and m 6A modifications of il17ra and il17rc in Miichthysmiiuy. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110343. [PMID: 40239933 DOI: 10.1016/j.fsi.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Interleukin-17 receptor A (IL17RA) and IL17RC form a receptor complex critical for initiating IL-17A-mediated immune responses, a hallmark of T helper 17 (Th17) cells. In this study, il17ra and il17rc were identified in miiuy croaker (Miichthys miiuy) and bioinformatics analysis revealed their evolutionary and structural conservation, underscoring their roles in immunity. However, there has been little research on the IL-17 receptor family from the perspective of N6-methyladenosine (m6A) modifications. Using methylated RNA immunoprecipitation sequencing (MeRIP-seq), we identified strong m6A modifications on the last exons of il17ra and il17rc, validated by MeRIP-PCR. Poly(I:C) stimulation significantly upregulated il17ra and il17rc expression, while reducing their m6A modification levels, implicating these changes in antiviral immunity. Interestingly, cycloleucine (CL), a well-known methylation inhibitor, did not alter the expression of il17ra and il17rc but promoted the nuclear-to-cytoplasmic transport of il17ra mRNA, potentially influencing its translation process. These findings provide valuable insights into the regulatory roles of m6A modifications in il17ra and il17rc function and highlight their importance in the antiviral immune response.
Collapse
Affiliation(s)
- Ruotong Tian
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenhui Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Li H, Zhang L, Yao Z, Wang H, Dong X, Wang L, Wang S, Gao Z. Functional characterization of interleukin 17 family members and their receptors in amphioxus. Int J Biol Macromol 2025; 311:143901. [PMID: 40319973 DOI: 10.1016/j.ijbiomac.2025.143901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/29/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
The interleukin 17 (IL17) cytokine family plays a crucial role in phylogenetically conserved immune defense mechanisms, broadly categorized into two distinct evolutionary lineages: the invertebrate-derived (i-type) and vertebrate-specific (v-type) IL17 homologs. Intriguingly, the basal chordate amphioxus retains both IL17 subtypes, though the corresponding receptors and functional specializations orchestrated by these paralogs have remained enigmatic. In this investigation, we delineated four i-type IL17 ligands (designated BjIL17-i1 to BjIL17-i4) and four v-type homologs (BjIL17-v1 to BjIL17-v4), along with two cognate receptors (BjIL17R1 and BjIL17R2), within the amphioxus Branchiostoma japonicum genome. Functional analyses revealed that all i-type ligands, with the exception of BjIL17-i3, demonstrated robust capacity to stimulate the BjIL17R1/R2 heterocomplex. Conversely, v-type ligands exhibited preferential activation of independent BjIL17R1 or BjIL17R2 in an isoform-specific manner. Of particular significance, all eight BjIL17 isoforms participate in inflammatory regulation, differentially modulating transcriptional programs associated with either pro-inflammatory signaling or antimicrobial defense. Strikingly, BjIL17-i2 emerged as a potent pro-inflammatory mediator, displaying biomarker potential for inflammatory status delineation in amphioxus. Furthermore, BjIL17-v1 uniquely facilitated the coordinated induction of ATP synthesis and DNA repair-associated genes during inflammatory challenge. These findings collectively establish that the BjIL17 ligand-receptor network embodies an ancient, multifunctional regulatory axis governing immunological and homeostatic processes in basal chordates, predating the vertebrate-invertebrate divergence.
Collapse
Affiliation(s)
- Haifeng Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Liping Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuocheng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Haitao Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuecheng Dong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuai Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
3
|
Cao JF, Yang GJ, Zhang YA, Chen J. Contribution of interleukins in the regulation of teleost fish immunity: A review from the perspective of regulating macrophages. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110173. [PMID: 39909123 DOI: 10.1016/j.fsi.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Interleukins (ILs) are potent secreted regulators of a wide range of cell types and cellular activities, particularly in the immune system. They are able to participate in intercellular communication in homeostasis and disease, thereby exerting immune functions. Macrophages serve as the innate immune cells of vertebrates and play a pivotal role in defending against and eliminating external pathogens. In mammals, the immune response mounted by macrophages is intricately linked to ILs. Given the fact that teleost fish have evolved an innate immune system that closely resembles those of mammals, particularly in terms of the functionality of macrophages, raises the intriguing possibility that the regulatory function of ILs in macrophage-mediated immunity might be evolutionarily conserved across both mammal and teleost fish lineages. Consequently, from the perspective of interleukin regulation of macrophages, this review outlines the relationship between ILs and macrophages in teleost fish, and elucidates the regulatory role of ILs of immune cell function in teleost fish, thereby contributing to our understanding of the key role of these cytokines in the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Jia-Feng Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
4
|
Alsubaie N, Ibrahim RE, Bawahab AA, Mohamed AAR, Abd-Elhakim YM, Khamis T, Osman A, Metwally MMM, Alotaibi BS, Ghannam HE. Ameliorative role of camel protein hydrolysates diet against alkaline stress in Oreochrmis niloticus: Hematology, immune responses and their regulating genes expression, and histopathological assays. Vet Res Commun 2025; 49:79. [PMID: 39821552 DOI: 10.1007/s11259-024-10637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
This investigation looked at the ameliorative role of camel whey protein hydrolysates-diet (PH) in Oreochromis niloticus stocked under alkaline conditions. One hundred sixty fish (16.02 ± 0.14 g) were allocated equally into four groups with four replications for 30 days. The first (control) and second (alkaline) groups were fed basal diets and maintained in fresh and alkaline water, respectively. The third and fourth groups were fed on a PH diet (basal diet containing 75 g PH/kg) and maintained in fresh water and alkaline water, respectively. The hematology, immune-antioxidant indices, immune-regulatory genes, histopathological investigation of the spleen, and resistance to Aeromonas sobria were investigated. The results showed that the alkaline condition induced hematological disorders (lowered red blood cells, hemoglobin, packed cell volume, and white blood cell count) and immunosuppression (lowered phagocytic activity and index, lysozyme, nitric oxide, and complement 3) in the exposed fish. Alkaline exposure induced oxidative stress through elevation of the malondialdehyde and reduction in the antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione S-reductase, and reduced glutathione). The immune modulatory genes (tolls like receptor-5, interleukin-1beta, interleukin-6, interleukin-8, interleukin-10, interleukin-17, nuclear factor kappa beta, and tumor necrosis factor-alpha) were down-regulated by exposure to alkaline conditions. The microscopic section of the spleen of the fish subjected to alkaline conditions showed notable hyperplasia of the melanomacrophage centers, besides vascular congestion, endothelial cell hypertrophy, and mild hypercellularity in the erythroid and lymphoid elements. In addition, few sections manifested more pronounced erythroid hyperplasia than the lymphoid one. The survival of the fish subjected to alkaline conditions was reduced during the A. sobria challenge. Feeding on a PH diet, the hematology was restored and the immune-antioxidant functions were modulated. Modulation of the immune-regulatory genes and increased survivability of the alkaline-exposed fish were noticed when fed on the PH diet. Consequently, we can recommend enriching the Nile tilapia diet with a 75 g PH/kg diet especially when reared under alkaline conditions to support the immune functions of the fish.
Collapse
Affiliation(s)
- Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Hala Elshahat Ghannam
- Pollution Laboratory, Freshwater and Lakes Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
5
|
Wang Y, Wang W, Chen W, Liu Q, Zhang Y, Yang D. Characterization of ccl20a.3 and ccl20l as gene markers for Th17 cell in turbot. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109005. [PMID: 37604262 DOI: 10.1016/j.fsi.2023.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
T-helper 17 lymphocytes (Th17) are the most common inflammatory cells identified in mammals. However, the identification of Th17 cells and the clarification of their function in teleost fish remain largely unknown. In this study, we took advantage of the single-cell RNA sequencing-based immune cell atlas that was identified in turbot (Scophthalmus maximus), and revealed two chemokine-related genes, ccl20a.3 and ccl20l, that were specifically expressed in Th17 cells. Moreover, through immuno-fluorescence analysis, we found that CCL20a.3 or CCL20l was co-expressed with the classical makers in Th17 cells, including IL17a/f1 and IL22. Furthermore, through a Th17 lineage-specific transcription factor RORc inhibitor GSK805 treatment, we found that the expression of ccl20a.3 and ccl20l was significantly impaired, compared with other T cell markers. Besides, we also found that ccl20a.3 and ccl20l exhibited the same dynamic response with the classical markers that were identified in Th17 cells during bacterial infection. Taken together, these results provide potential gene markers for better understanding of the dynamic immune responses of Th17 cells in teleost fish.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
6
|
Zhou X, Fang PX, Cao HM, Xie JJ, Li S, Chi CF. Molecular characterization and expression of twenty interleukin-17 transcripts in the common Chinese cuttlefish (Sepiella japonica) in response to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108903. [PMID: 37423402 DOI: 10.1016/j.fsi.2023.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
The common Chinese cuttlefish (Sepiella japonica) is an essential species for stock enhancement by releasing juveniles in the East China Sea now. S. japonica is susceptible to bacterial diseases during parental breeding. In vertebrates, Interleukin-17 (IL-17) cytokine family plays critical roles in both acute and chronic inflammatory responses. In Cephalopoda, few studies have been reported on IL-17 genes so far. In this study, twenty IL-17 transcripts obtained from S. japonica were divided into eight groups (designated as Sj_IL-17-1 to Sj_IL-17-8). Multiple alignment analysis showed that IL-17s in S. japonica and human both contained four β-folds (β1-β4), except for Sj_IL-17-6 with two β-folds (β1 and β2), and the third and fourth β-folds of Sj_IL-17-5 and Sj_IL-17-8 were longer than those of other Sj_IL-17. Protein structure and conserved motifs analysis demonstrated that Sj_IL-17-5 and Sj_IL-17-6 displayed different protein structure with respect to other six Sj_IL-17 proteins. The homology and phylogenetic analysis of amino acids showed that Sj_IL-17-5, Sj_IL-17-6 and Sj_IL-17-8 had low homology with the other five Sj_IL-17s. Eight Sj_IL-17 mRNAs were ubiquitously expressed in ten examined tissues, with dominant expression in the hemolymph. qRT-PCR data showed that the mRNA expression levels of Sj_IL-17-2, Sj_IL-17-3, Sj_IL-17-6, and Sj_IL-17-8 were significantly up-regulated in infected cuttlefishes, and Sj_IL-17-2, Sj_IL-17-6, Sj_IL-17-7, and Sj_IL-17-8 mRNAs Awere significantly up-regulated after bath infection of Vibrio harveyi, suggesting that certain Sj_IL-17s were involved in the immune response of S. japonica against V. harveyi infection. These results implied that Sj_IL-17s were likely to have distinct functional diversification. This study aims to understand the involvement of Sj_IL-17 genes in immune responses of cuttlefish against bacterial infections.
Collapse
Affiliation(s)
- Xu Zhou
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Pei-Xuan Fang
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Hui-Min Cao
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Jian-Jun Xie
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Shuang Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China.
| |
Collapse
|
7
|
Wang X, Yuan G, Zhu L, Li L, Pei C, Hou L, Li C, Jiang X, Kong X. Molecular characteristics of interleukin (IL)-17A/F3 and its immune response on the pathogen and functional regulation on cytokines in common carp Cyprinus carpio L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104566. [PMID: 36240860 DOI: 10.1016/j.dci.2022.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Fish interleukin (IL)-17A/F is homologous with mammalian IL-17A and IL-17F, which plays a key role in regulating inflammatory responses and autoimmune diseases. In fish, IL-17A/F1, 2, and 3 have been identified and described. However, IL-17A/F3 has received little attention in fish. In this study, a homolog of IL-17A/F3 was identified in common carp (Cyprinus carpio L.), which was termed as Cc_IL-17A/F3. The deduced amino acid sequence of Cc_IL-17A/F3 has four conserved cysteine residues, which could form two intrachain disulfide bonds. Homology comparison showed that the Cc_IL-17A/F3 was in the range of 31.7-71.9% of sequence similarity with these of other fishes. The Cc_IL-17A/F3 gene was constitutively expressed in various tissues, with higher expression levels in the skin and gills. After common carp were infected by Aeromonas. hydrophila, the mRNA expression levels of Cc_IL-17A/F3 were significantly up-regulated in the spleen, head kidney, gills, and intestine. Based on the indirect immunofluorescence assay, Cc_IL-17A/F3 proteins were found to be obviously increased in the intestine and spleen upon A. hydrophila infection at 24 h post-infection. The recombinant protein rCc_IL-17A/F3 could enhance the gene expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) as well as chemokines (CXCL8 and CXCL20) in primary head kidney leukocytes. In vivo and in vitro experiments have similar stimulatory effects. When Cc_IL-17A/F3 was overexpressed in common carp, the expressions of pro-inflammatory cytokines and chemokines were significantly up-regulated in head kidney and spleen. In summary, the results derived from the present study suggested that the Cc_IL-17A/F3 plays an important role in defending against bacterial infections, and probably participates in mucosal immunity of the host.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Gaoliang Yuan
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
8
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
9
|
Dynamic transcriptome and LC-MS/MS analysis revealed the important roles of taurine and glutamine metabolism in response to environmental salinity changes in gills of rainbow trout (Oncorhynchus mykiss). Int J Biol Macromol 2022; 221:1545-1557. [PMID: 36122778 DOI: 10.1016/j.ijbiomac.2022.09.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Recently, the frequent salinity fluctuation has become a growing threat to fishes. However, the dynamic patterns of gene expression in response to salinity changes remain largely unexplored. In the present study, 18 RNA-Seq datasets were generated from gills of rainbow trout at different salinities, including 0 ‰, 6 ‰, 12 ‰, 18 ‰, 24 ‰ and 30 ‰. Based on the strict thresholds, we have identified 63, 1411, 2096, 1031 and 1041 differentially expressed genes in gills of rainbow trout through pairwise comparisons. Additionally, weighted gene co-expression network analysis was performed to construct 18 independent modules with distinct expression patterns. Of them, green and tan modules were found to be tightly related to salinity changes, several hub genes of which are known as the important regulators in taurine and glutamine metabolism. To further investigate their potential roles in response to salinity changes, taurine, glutamine, and their metabolism-related glutamic acid and α-ketoglutaric acid were accurately quantitated using liquid chromatography-tandem mass spectrometry analysis. Results clearly showed that their concentrations were closely associated with salinity changes. These findings suggested that taurine and glutamine play important roles in response to salinity changes in gills of rainbow trout, providing new insights into the molecular mechanism of fishes in salinity adaptation.
Collapse
|
10
|
Zhou X, Jiang XX, Zhang GR, Ji W, Shi ZC, Ma XF, Wei KJ. Molecular and functional characterization of teleost-specific Interleukin-17N in yellow catfish (Pelteobagrus fulvidraco). Int J Biol Macromol 2022; 220:493-509. [PMID: 35981681 DOI: 10.1016/j.ijbiomac.2022.08.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
In mammals, six interleukin-17 (IL-17) genes, as potent pro-inflammatory cytokines, all accelerate the inflammatory responses. In teleosts, seven IL-17 genes have been found in various species, but little is known about the function of teleost-specific IL-17N. In this study, teleost IL-17N and IL-17A/F2 genes all had six conserved cysteine residues forming three intrachain disulfide bridges, the length of three exons of teleost IL-17N gene was similar to that of teleost IL-17A/F2 gene, and the neighbor-joining (NJ) phylogenetic tree showed that teleost IL-17N was clustered with vertebrate IL-17A/F, implying that teleost IL-17N gene may be a paralog of teleost IL-17A/F gene. Pelteobagrus fulvidraco (Pf) IL-17N gene was highly expressed in the blood, brain and kidney of healthy yellow catfish. Pf_IL-17N transcript and protein were notably up-regulated in the spleen, head kidney, gill and kidney detected after Edwardsiella ictaluri infection. Lipopolysaccharides (LPS), polyinosinic-polycytidylic acid (Poly I:C) and peptidoglycan (PGN) also remarkably induced the expression of Pf_IL-17N in the isolated peripheral blood leucocytes (PBLs) of yellow catfish. These results reveal that Pf_IL-17N may play important roles in preventing the invasion of pathogens. Furthermore, the recombinant (r) Pf_IL-17N protein could significantly induce the mRNA expressions of inflammatory cytokines, chemokines and antimicrobial peptide genes in yellow catfish in vivo and in vitro, and it also notably promoted the phagocytosis of myeloid cells in the PBLs and the chemotaxis of the PBLs and gill leucocytes (GLs) in yellow catfish. Besides, though the rPf_IL-17N protein could induce and aggravate inflammation infiltration in the kidney of yellow catfish, it did not effectively and notably increase the survival rate of yellow catfish after E. ictaluri infection. Furthermore, the rPf_IL-17N protein could induce the mRNA expressions of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways related genes, and the inhibitor of NF-κB and MAPK signal pathways could restrain the rPf_IL-17N protein-induced inflammatory response. This study provides crucial evidence that the Pf_IL-17N may mediate inflammatory response to eliminate invasive pathogens.
Collapse
Affiliation(s)
- Xu Zhou
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xin-Xin Jiang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gui-Rong Zhang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wei Ji
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, PR China
| | - Xu-Fa Ma
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kai-Jian Wei
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
11
|
Wang X, Jiang X, Zhu L, Yuan G, Li L, Pei C, Kong X. Molecular characterizations, immune modulation, and antibacterial activity of interleukin-17A/F1a and interleukin-17A/F1b in common carp Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 127:561-571. [PMID: 35798245 DOI: 10.1016/j.fsi.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Interleukin-17 (IL-17), as a pro-inflammatory cytokine family, mediates different pro-inflammatory mediators in various cell types (e.g., epithelial cells, macrophages, endothelial cells, and fibroblasts), which play an important role in defending against pathogens. The IL-17A/F1 genes have recently been reported in fish. However, the functions of these genes are still unclear. In this study, we identified two duplicated IL-17A/F1 genes in common carp (Cyprinus carpio L.), namely, CcIL-17A/F1a and CcIL-17A/F1b. Sequence analysis showed that CcIL-17A/F1a and CcIL-17A/F1b proteins had four conserved cysteine residues, which could form two intra-chain disulfide bridges. Homology comparison displayed that the deduced amino acid sequences of CcIL-17A/F1a and CcIL-17A/F1b shared 31.1%-77.3% and 32.5%-75.7% of sequence similarity to IL-17A/F1 homologues from other fish species, respectively. The mRNA expression levels of CcIL-17A/F1a and CcIL-17A/F1b were obviously increased in gill and head-kidney of fish challenged with A. hydrophila. The recombinant protein rCcIL-17A/F1a and rCcIL-17A/F1b could enhance the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) and chemokines (CXCL8 and CXCL20). The 3 × Flag eukaryotic expression vectors to express protein rCcIL-17A/F1a (or rCcIL-17A/F1b) were constructed and intramuscularly injected in common carp. The rCcIL-17A/F1a (or rCcIL-17A/F1b) could be successfully expressed in vivo. Four immune-related genes, namely, CD4, CD8, TNF-α, and IgM, were also significantly induced to be expressed at higher mRNA levels compared with the control. The pretreatment with CcIL-17A/F1a or CcIL-17A/F1b could markedly increase the survival rate of common carp challenged with A. hydrophila. Our results demonstrated that CcIL-17A/F1a or CcIL-17A/F1b plays an important role in immune responses and immune defense against bacteria. CcIL-17A/F1a or CcIL-17A/F1b could also be potentially used as an immunopotentiator to prevent diseases in common carp.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Gaoliang Yuan
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
12
|
Liyanage DS, Omeka WKM, Nadarajapillai K, Lim C, Yang H, Choi JY, Kim KM, Noh JK, Jeong T, Lee J. Molecular cloning, expression analysis of interleukin 17D (cysteine knot cytokine) from Amphiprion clarkii and their functional characterization and NFκB pathway activation using FHM cells. FISH & SHELLFISH IMMUNOLOGY 2022; 126:217-226. [PMID: 35636699 DOI: 10.1016/j.fsi.2022.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Interleukin 17D (IL-17D), a pro-inflammatory cytokine, is a signature cytokine of T helper 17 (Th17) cells. However, studies characterizing the functions of IL-17D in teleost are scarce. Therefore, we aimed to characterize the properties of IL-17D in Amphiprion clarkii. We performed spatial and temporal expression, AcIL-17D-mediated antibacterial and inflammatory gene expression, NFκB pathway-related gene expression analyses, and bacterial colony counting and cell protection assays. We found that AcIL-17D contains a 630 bp coding sequence and encodes 210 amino acids. The spatial expression analysis of AcIL-17D in 12 tissues showed ubiquitous expression, with the highest expression in the brain, followed by blood and skin. Temporal expression analysis of AcIL-17D in blood showed upregulated expression at 6 and 24 h (polyinosinic: polycytidylic acid and lipopolysaccharide), 12 h (all stimulants), and 48 h (polyinosinic: polycytidylic acid and Vibrio harveyi). AcIL-17D expression in the blood gradually decreased at later hours in response to all the stimulants. After treatment of fathead minnow (FHM) cells with different recombinant AcIL-17D concentrations, the downstream gene expression analysis showed increased expression of antimicrobial genes in the FHM cells, namely [NK-Lysin (NKL), Hepcidin antimicrobial peptide-1 (HAMP-1), Defensin-β (DEFB1)] and some inflammatory genes such as IL-1β, TNF-α, IL-11, and STAT3. Further nuclear factor κB (NFκB) subunits (NFκB1, NFκB2, RelA, and Rel-B) showed upregulated gene expression at 12 and 24 h. The bacterial colony counting assay using FHM cells showed lower bacterial colony counts in rAcIL-17D-treated cells than in control. Furthermore, the Water-Soluble Tetrazolium Salt (WST -1) assay confirmed the ability of rAcIL-17D in the protection of FHM cells from bacterial infection and conducted the Hoechst 33342 staining upon treatment with rAcIL-17D and rMBP. Therefore, our findings provide important insights into the activation of IL-17D pathway genes in FHM cells, the protective role of AcIL-17D against bacterial infection, and host defense mechanisms in teleost.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ji Young Choi
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| | - Kyong Min Kim
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| | - Jae Koo Noh
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
13
|
Monteiro M, Perdiguero P, Couto A, Serra CR, Pereiro P, Novoa B, Figueras A, Ribeiro L, Pousão-Ferreira P, Tafalla C, Oliva-Teles A, Enes P, Secombes CJ, Díaz-Rosales P. Comprehensive transcriptome profiling and functional analysis of the meagre (Argyrosomus regius) immune system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:506-520. [PMID: 35351613 DOI: 10.1016/j.fsi.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Meagre (Argyrosomus regius) belongs to the family Sciaenidae and is a promising candidate for Mediterranean aquaculture diversification. As a relatively recent species in aquaculture, the physiological consequences of the immune system activation in meagre are understudied. Spleen, as a primary lymphoid organ has an essential role in meagre immune and inflammatory responses. In this study, we have evaluated the in vivo effects of lipopolysaccharide (LPS) on the spleen transcriptome of meagre by RNA-seq analysis at 4 and 24 h after injection.
Collapse
Affiliation(s)
- M Monteiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal.
| | - P Perdiguero
- Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain; Departamento de Genética, Fisiología y Microbiología. Universidad Complutense de Madrid, Ciudad universitaria s/n, 28040, Madrid, Spain
| | - A Couto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - C R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Pereiro
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - B Novoa
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - A Figueras
- Inmunología y Genómica, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain
| | - L Ribeiro
- IPMA - Portuguese Institute for Sea and Atmosphere / EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n 8700-194 Olhão, Portugal
| | - P Pousão-Ferreira
- IPMA - Portuguese Institute for Sea and Atmosphere / EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa, s/n 8700-194 Olhão, Portugal
| | - C Tafalla
- Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain
| | - A Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Enes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, AB24 2TZ Aberdeen, UK
| | - P Díaz-Rosales
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Inmunología y Patología de Peces, Centro de Investigación en Sanidad Animal (CISA, INIA-CSIC), Carretera de Algete a El Casar s/n, 28130 Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
14
|
Lv X, Sun J, Li Y, Yang W, Wang L, Leng J, Yan X, Guo Z, Yang Q, Wang L, Song L. CgIL17-5 regulates the mRNA expressions of immune effectors through inducing the phosphorylation of CgMAPKs and the nuclear translocation of CgRel and CgAP-1 in the Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104263. [PMID: 34563588 DOI: 10.1016/j.dci.2021.104263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Interleukin-17 (IL-17) is a classic pro-inflammatory cytokine that plays an important role in the immune and inflammatory response. In the present study, the sequence feature of CgIL17-5 and its function as a pro-inflammatory factor in inducing the mRNA expressions of downstream immune effectors were investigated in oyster Crassostrea gigas. There were two tightly folded alpha helixes and two pairs of antiparallel beta-pleated sheet in the amino acid sequence of CgIL17-5. The mRNA transcripts of CgIL17-5 were constitutively distributed in all the tested tissues, with the highest level in haemocytes. The mRNA expression level of CgIL17-5 in haemocytes increased significantly at 24 h after Vibrio splendidus stimulation. CgIL17-5 protein was mainly detected in granulocytes which were the main immunocompetent haemocytes in C. gigas. The phosphorylation of mitogen-activated protein kinases (CgJNK, CgERK and CgP38) and nuclear translocation of the transcription factors (CgRel and CgAP-1) in haemocytes were induced after the oysters received an injection of recombinant CgIL17-5 for 2 h. The mRNA expression levels of CgIL-17s, CgTNF-1, Cgdefh1 and Cgdefh2 increased significantly in haemocytes. At the same time, obvious branchial swelling and cilium shedding in gills were observed at 24 h after the oysters received an injection of rCgIL17-5. All the results collectively suggested that CgIL17-5 promoted the activation of CgMAPKs and the nuclear translocation of CgRel and CgAP-1 to promote the mRNA expressions of cytokines and antibacterial peptides.
Collapse
Affiliation(s)
- Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhicheng Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
15
|
Lv Z, Guo M, Zhao X, Shao Y, Zhang W, Li C. IL-17/IL-17 Receptor Pathway-Mediated Inflammatory Response in Apostichopus japonicus Supports the Conserved Functions of Cytokines in Invertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:464-479. [PMID: 34965964 DOI: 10.4049/jimmunol.2100047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/03/2021] [Indexed: 01/29/2023]
Abstract
Inflammation participates in host defenses against infectious agents and contributes to the pathophysiology of many diseases. IL-17 is a well-known proinflammatory cytokine that contributes to various aspects of inflammation in vertebrates. However, the functional role of invertebrate IL-17 in inflammatory regulation is not well understood. In this study, we first established an inflammatory model in the Vibrio splendidus-challenged sea cucumber Apostichopus japonicus (Echinodermata). Typical inflammatory symptoms, such as increased coelomocyte infiltration, tissue vacuoles, and tissue fractures, were observed in the V. splendidus-infected and diseased tissue of the body wall. Interestingly, A. japonicus IL-17 (AjIL-17) expression in the body wall and coelomocytes was positively correlated with the development of inflammation. The administration of purified recombinant AjIL-17 protein also directly promoted inflammation in A. japonicus Through genome searches and ZDOCK prediction, a novel IL-17R counterpart containing FNIII and hypothetical TIR domains was identified in the sea cucumber genome. Coimmunoprecipitation, far-Western blotting, and laser confocal microscopy confirmed that AjIL-17R could bind AjIL-17. A subsequent cross-linking assay revealed that the AjIL-17 dimer mediates the inflammatory response by the specific binding of dimeric AjIL-17R upon pathogen infection. Moreover, silencing AjIL-17R significantly attenuated the LPS- or exogenous AjIL-17-mediated inflammatory response. Functional analysis revealed that AjIL-17/AjIL-17R modulated inflammatory responses by promoting A. japonicus TRAF6 ubiquitination and p65 nuclear translocation and evenly mediated coelomocyte proliferation and migration. Taken together, our results provide functional evidence that IL-17 is a conserved cytokine in invertebrates and vertebrates associated with inflammatory regulation via the IL-17-IL-17R-TRAF6 axis.
Collapse
Affiliation(s)
- Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
16
|
Soveral LDF, de Almeida PA, Kreutz Y, Ribeiro VA, Frandoloso R, Kreutz LC. Modulation of expression of proinflammatory genes and humoral immune response following immunization or infection with Aeromonas hydrophila in silver catfish (Rhamdia quelen). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100053. [DOI: 10.1016/j.fsirep.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022] Open
|
17
|
Abstract
Cytokines belong to the most widely studied group of intracellular molecules involved in the function of the immune system. Their secretion is induced by various infectious stimuli. Cytokine release by host cells has been extensively used as a powerful tool for studying immune reactions in the early stages of viral and bacterial infections. Recently, research attention has shifted to the investigation of cytokine responses using mRNA expression, an essential mechanism related to pathogenic and nonpathogenic-immune stimulants in fish. This review represents the current knowledge of cytokine responses to infectious diseases in the common carp (Cyprinus carpio L.). Given the paucity of literature on cytokine responses to many infections in carp, only select viral diseases, such as koi herpesvirus disease (KHVD), spring viremia of carp (SVC), and carp edema virus disease (CEVD), are discussed. Aeromonas hydrophila is one of the most studied bacterial pathogens associated with cytokine responses in common carp. Therefore, the cytokine-based immunoreactivity raised by this specific bacterial pathogen is also highlighted in this review.
Collapse
|
18
|
Harada N, Okamura Y, Kono T, Sakai M, Hikima JI. Identification of two interleukin 17 receptor C (IL-17RC) genes and their binding activities to three IL-17A/F ligands in the Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104179. [PMID: 34171369 DOI: 10.1016/j.dci.2021.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
In mammals, interleukin (IL)-17 receptor C (IL-17RC) and IL-17RA mediate IL-17A and IL-17F signaling to produce mucin, antimicrobial peptides, and maintain healthy intestinal flora. However, IL-17RC signaling in fish remains unclear. In this study, three il17rc transcripts (il17rca1, il17rca2, and il17rcb) from the Japanese medaka (Oryzias latipes) were cloned; il17rca1 and il17rca2 mRNAs were alternatively spliced from il17rca pre-mRNA as transcript variants. The il17rca and il17rcb genes were located on chromosomes 7 and 5, respectively. Teleost clades containing medaka il17rca and il17rcb clustered separately from the tetrapod clade. In adult tissues, il17rca1 expression was significantly higher than il17rca2 and il17rcb. Conversely, il17rcb expression was significantly higher in embryos and larvae. These expression patterns changed following infection with Edwardsiella piscicida and Aeromonas hydrophila. Furthermore, an immunoprecipitation assay using recombinant IL-17RCs and rIL-17A/Fs suggested that, in teleosts, three ligands could function in signaling through two IL-17RCs.
Collapse
Affiliation(s)
- Nanaki Harada
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
19
|
Tang H, Jiang X, Zhang J, Pei C, Zhao X, Li L, Kong X. Teleost CD4 + helper T cells: Molecular characteristics and functions and comparison with mammalian counterparts. Vet Immunol Immunopathol 2021; 240:110316. [PMID: 34474261 DOI: 10.1016/j.vetimm.2021.110316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
CD4+ helper T cells play key and diverse roles in inducing adaptive immune responses in vertebrates. The CD4 molecule, which is found on the surfaces of CD4+ helper T cells, can be used to distinguish subsets of helper T cells. Teleosts are the oldest living species with bona-fide CD4 coreceptors. Although some components of immune systems of teleosts and mammals appear to be similar, many physiological differences are represented between them. Previous studies have shown that two CD4 paralogs are present in teleosts, whereas only one is present in mammals. Therefore, in this review, the CD4 molecular structure, expression profiles, subpopulations, and biological functions of teleost CD4+ helper T cells were summarized and compared with those of their mammalian counterparts to understand the differences in CD4 molecules between teleosts and mammals. This review provides suggestions for further studies on the CD4 molecular function and regulatory mechanism of CD4+ helper T cells in teleost fish and will help establish therapeutic strategies to control fish diseases in the future.
Collapse
Affiliation(s)
- Hairong Tang
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Henan Province, PR China; Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
20
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Choi CY, Lee J. Molecular characterization of fish cytokine IL-17C from Amphiprion clarkii and its immunomodulatory effects on the responses to pathogen-associated molecular patterns and bacterial challenges. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110669. [PMID: 34428552 DOI: 10.1016/j.cbpb.2021.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022]
Abstract
Interleukin 17C (IL17C) is a cytokine that regulates innate immunity by recruiting antimicrobial peptides and pro-inflammatory cytokines. In this study, we characterized properties of IL-17C from Amphiprion clarkii also known as yellowtail clownfish (AcIL-17C). The AcIL-17C gene is 489 base pairs long and encodes a 163 amino acid long protein. AcIL-17C includes a signal peptide for localization in the extracellular space and comprises the IL-17 domain. The transcription analysis revealed that AcIL-17C mRNA was ubiquitously expressed in 12 tested tissues. Blood cells treated with polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharides (LPS), and Vibrio harveyi, AcIL-17C mRNA expression was upregulated at 6 h (following poly (I:C) and LPS treatments) and at 24 h post-injection (following all treatments). The downstream gene analysis of the epithelial fathead minnow (FHM) cells showed upregulated expression of genes, such as FHM_NK-Lysin, FHM_Hepcidin-1, FHM_Defensin-β, encoding antimicrobial peptides, as well as of FHM_IL-1β, FHM_TNF-A, FHM_IL-11, and FHM_STAT3 genes encoding inflammation-related proteins and IL-17C receptor genes FHM_IL-17RA, and FHM_IL-17RE at 12 and 24 h after treatment with AcIL-17C. The bacterial colony counting assay showed lower colony counts of Escherichia coli grown on FHM cells transfected with AcIL-17C carrying vector compared to those grown on control FHM cells. Further, AcIL-17C had a concentration-dependent positive effect on the survival of FHM cells infected with E. coli compared to the percentage of survived control cells. There has been a lack of studies characterizing the functions of teleost IL-17C. Therefore, these findings provide important information about the teleost host defense mechanisms and insights on the IL-17C-mediated antibacterial immunity.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea.
| |
Collapse
|
21
|
Saco A, Rey-Campos M, Rosani U, Novoa B, Figueras A. The Evolution and Diversity of Interleukin-17 Highlight an Expansion in Marine Invertebrates and Its Conserved Role in Mucosal Immunity. Front Immunol 2021; 12:692997. [PMID: 34386003 PMCID: PMC8353272 DOI: 10.3389/fimmu.2021.692997] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
The interleukin-17 (IL-17) family consists of proinflammatory cytokines conserved during evolution. A comparative genomics approach was applied to examine IL-17 throughout evolution from poriferans to higher vertebrates. Cnidaria was highlighted as the most ancient diverged phylum, and several evolutionary patterns were revealed. Large expansions of the IL-17 repertoire were observed in marine molluscs and echinoderm species. We further studied this expansion in filter-fed Mytilus galloprovincialis, which is a bivalve with a highly effective innate immune system supported by a variable pangenome. We recovered 379 unique IL-17 sequences and 96 receptors from individual genomes that were classified into 23 and 6 isoforms after phylogenetic analyses. Mussel IL-17 isoforms were conserved among individuals and shared between closely related Mytilidae species. Certain isoforms were specifically implicated in the response to a waterborne infection with Vibrio splendidus in mussel gills. The involvement of IL-17 in mucosal immune responses could be conserved in higher vertebrates from these ancestral lineages.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
22
|
Okamura Y, Kinoshita M, Kono T, Sakai M, Hikima JI. Deficiency of interleukin-17 receptor A1 induces microbiota disruption in the intestine of Japanese medaka, Oryzias latipes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100885. [PMID: 34339936 DOI: 10.1016/j.cbd.2021.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/11/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
The mutual relationship between the intestinal immune system and the gut microbiota has received a great deal of attention. In mammals, interleukin-17A and F (IL-17A/F) are inflammatory cytokines and key regulators of the gut microbiota. However, in teleosts, the function of IL-17A/F in controlling the gut microbiota is poorly understood. We attempted to elucidate the importance of teleost IL-17 signaling in controlling gut microbiota. We previously established a knockout (KO) of IL-17 receptor A (RA) 1, a receptor for IL-17A/F, in the Japanese medaka (Oryzias latipes) using the CRISPR-Cas9 system and performed 16S rRNA-based metagenomic analyses using the anterior and posterior sections of the intestinal tract. The number of observed OTUs in the anterior intestine was significantly decreased in IL-17RA1 KO medaka compared to that in the wild-type (WT). Furthermore, β-diversity analysis (weighted UniFrac) revealed considerably different bacterial composition in the anterior intestine of IL-17RA1 KO compared to WT, with similar findings in α-diversity. Notably, the pathogen Plesiomonas shigelloides was significantly increased in the posterior intestine of IL-17RA1 KO medaka. These findings indicate that signaling via IL-17RA1 is required to maintain a healthy gut microbiota in teleosts and mammals. The involvement of IL-17RA1 in controlling the gut microbiota has been demonstrated, resulting in microbiome dysbiosis in IL-17RA1 KO medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
23
|
Zhou X, Zhang GR, Ji W, Shi ZC, Ma XF, Luo ZL, Wei KJ. Expression and Function Analysis of Interleukin-17A/F1, 2, and 3 Genes in Yellow Catfish ( Pelteobagrus fulvidraco): Distinct Bioactivity of Recombinant IL-17A/F1, 2, and 3. Front Immunol 2021; 12:626895. [PMID: 34267744 PMCID: PMC8276262 DOI: 10.3389/fimmu.2021.626895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
In mammals, Interleukin-17 cytokine family plays critical roles in both acute and chronic inflammatory responses. In fish species, three Interleukin-17A/F (IL-17A/F) genes have been identified to be homologous to mammalian IL-17A and IL-17F, but little is known about their functional activity. In this study, Pf_IL-17A/F1, 2 and 3 genes were cloned from yellow catfish (Pelteobagrus fulvidraco) and they differed in protein structure and exon length, implying that they may have divergent bioactivity. Real-time quantitative PCR analyses revealed that three Pf_IL-17A/F genes were highly expressed in blood and mucosal tissues (skin+mucus and gill) from healthy adult fish. The mRNA expressions of Pf_IL-17A/F1, 2 and 3 genes were significantly up-regulated in the gill, skin+mucus, head kidney and spleen after challenge with Edwardsiella ictaluri and in the isolated peripheral blood leucocytes (PBLs) of yellow catfish after stimulation with phytohaemagglutinin (PHA), lipopolysaccharides (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (Poly I:C). These results indicate that Pf_IL-17A/F1, 2 and 3 genes may play a vital role in the regulation of immune against pathogens. Additionally, the recombinant (r) Pf_IL-17A/F1, 2 and 3 proteins significantly induced the mRNA expressions of proinflammatory cytokines, chemokines and antibacterial peptides genes, and the rPf_IL-17A/F 2 and 3 proteins promoted phagocytosis of PBLs more powerfully than the rPf_IL-17A/F1. Furthermore, the rPf_IL-17A/F1, 2 and 3 proteins might activate the NF-κB and MAPK signal pathways by IL-17RA, ACT1, TRAF6, TRAF2, TRAF5 and TAK1, indicating that the three Pf_IL-17A/F proteins may play different roles in promoting inflammatory response.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.,National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gui-Rong Zhang
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei Ji
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xu-Fa Ma
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zun-Lan Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kai-Jian Wei
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Li H, Zhang L, Li J, Yu F, Wang M, Wang Q, Wu Y, Zhang Q, Tang Y, Yu J. Identification, expression and pro-inflammatory effect of interleukin-17 N in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2021; 111:6-15. [PMID: 33387658 DOI: 10.1016/j.fsi.2020.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Two interleukin (IL)-17 N genes (CcIL-17Na and b) present on different linkage groups were identified in the common carp (Cyprinus carpio) genome and confirmed by polymerase chain reaction (PCR) and real time (RT)-PCR in this experiment. Synteny analysis revealed that IL-17 N is transcribed by the complement sequence of TOP3B's intron 2. It is flanked by SDF2L and PPM1F in all fish studied to date, except fugu (Takifugu rubripes). The open reading frames of the two CcIL-17Ns are 411 base pairs long and encode 136 amino acids. The amino acid identity/similarity between CcIL-17Na and b is 91.2%/97.1%. The CcIL-17Ns share identity (46.8-90.4%) with their orthologs from other teleosts. Identities/similarities to other members of the IL-17 family in common carp were low at 21.4-30.2%/31.4-51.4%. In the phylogenetic tree, IL-17Ns from spotted gar (Lepisosteus oculatus, the ancestor of teleosts) and coelacanth (Latimeria chalumnae, the ancestor of tetrapods) were grouped within the same branch with a high bootstrap value of 97%, which indicates that IL-17 N is an ancient and conserved gene. Quantitative RT-PCR results showed that CcIL-17Ns were most highly expressed in the brain of healthy individuals. The expression in brain was significantly induced at 6 h post Aeromonas hydrophila infection; at 1 day post infection, expression in liver, muscle, skin, spleen, and head kidney was up-regulated. In addition, the upregulated expression of proinflammatory cytokines IL-1β, IFN-γ, IL-6, chemokine CCL20, NF - κ B and TRAF6 in kidney tissue by ccIL-17 N recombinant protein also indicate that IL-17 N can promote inflammation through NF-κB pathway and induce the expression of chemokines and inflammatory factors.
Collapse
Affiliation(s)
- Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Lei Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qin Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yunsheng Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiyuan Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Juhua Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
25
|
Washington A, Varki N, Valderrama JA, Nizet V, Bui JD. Evaluation of IL-17D in Host Immunity to Group A Streptococcus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:3122-3129. [PMID: 33077643 DOI: 10.4049/jimmunol.1901482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.
Collapse
Affiliation(s)
- Allen Washington
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
26
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Mao X, Tian Y, Wen H, Liu Y, Sun Y, Yanglang A, Li Y. Effects of Vibrio harveyi infection on serum biochemical parameters and expression profiles of interleukin-17 (IL-17) / interleukin-17 receptor (IL-17R) genes in spotted sea bass. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103731. [PMID: 32387558 DOI: 10.1016/j.dci.2020.103731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Vibrio harveyi is regarded as serious pathogen for marine fishes. To evaluate the physiological responses of spotted sea bass (Lateolabrax maculatus) after V. harveyi infection, four biochemical biomarkers including alanine amino transferase (ALT), albumin (ALB), total protein (TP) and glucose (GLU) were measured in serum. Our results showed that V. harveyi infection significantly influenced the concentration of ALT, ALB and GLU. Additionally, five interleukin-17 (IL-17) and five IL-17 receptors (IL-17R) genes were identified in spotted sea bass and their gene structures were characterized. Furthermore, the expression patterns of IL-17 and IL-17R genes were determined by qPCR in liver, intestine, spleen and head kidney after V. harveyi infection. All IL-17 and IL-17R genes exhibited time- and tissue-dependent expressions. Several tested genes were dramatically induced by V. harveyi treatment, particularly IL-17A/F1 in liver and head kidney, IL-17A/F2 in head kidney, IL-17RC in spleen with more than 10-fold increases, which suggested their potential essential roles against bacterial infection.
Collapse
Affiliation(s)
- Xuebin Mao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Yang Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Yalong Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Arat Yanglang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China.
| |
Collapse
|
28
|
Takahashi Y, Okamura Y, Morimoto N, Mihara K, Maekawa S, Wang HC, Aoki T, Kono T, Sakai M, Hikima JI. Interleukin-17A/F1 from Japanese pufferfish (Takifugu rubripes) stimulates the immune response in head kidney and intestinal cells. FISH & SHELLFISH IMMUNOLOGY 2020; 103:143-149. [PMID: 32437858 DOI: 10.1016/j.fsi.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
In mammals, interleukin (IL)-17A and IL-17F, mainly produced by Th17 cells, are hallmark inflammatory cytokines that play important roles in the intestinal mucosal immune response. In contrast, three mammalian IL-17A and IL-17F counterparts (IL-17A/F1-3) have been identified in teleosts, and most of their functions have been described in the lymphoid organs. However, their function in the intestinal mucosal immune response is poorly understood. In this study, a recombinant (r) tiger puffer fish fugu (Takifugu rubripes) IL-17A/F1 was produced and purified using a mammalian expression system, and was used to stimulate cells isolated from fugu head kidney and intestines. The gene expression levels of TNF-α, IL-1β, IL-6, and β-defensin-like protein-1 (BD-1) genes were evaluated at 0, 3, 6 and 12 h post-stimulation (hps). Phagocytic activity and superoxide anion production were evaluated at the same time points using an NBT assay. The rIL-17A/F1 protein was shown to induce the expression of pro-inflammatory cytokines and antimicrobial peptides in both head kidney and intestinal cells. Expression levels for IL-1β, TNF-α, and IL-6 were all up-regulated between 3 and 12 hps. In addition, stimulation with rIL-17A/F1 enhanced phagocytic activity at 24 hps. Superoxide anion production was increased at 48 hps in the head kidney cells and moderately increased at 48 hps in intestinal cells. This study suggests that fugu IL-17A/F1 plays an important role in promoting the innate immune response and may act as a bridge between innate and adaptive immunity in the head kidney and intestine.
Collapse
Affiliation(s)
- Yoshie Takahashi
- International Course of Agriculture, Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Koshin Mihara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Shun Maekawa
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Takashi Aoki
- Integrated Institute for Regulatory Science, Research Organization for Nao and Life Innovation, Waseda University, 513 Tsurumaki-cho, Sbinjuku-ku, Tokyo, 162-0041, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
29
|
El Euony OI, Elblehi SS, Abdel-Latif HM, Abdel-Daim MM, El-Sayed YS. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23108-23128. [PMID: 32333347 DOI: 10.1007/s11356-020-08588-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Thiamethoxam (TMX) is a widely used neonicotinoid insecticide for its effective potential for controlling insects from the agricultural field, which might induce toxicity to the aquatic biota. In this study, the role of the probiotic Bacillus subtilis (BS) and a phytogenic oil extract of Thymus vulgaris essential oil (TVEO) in the modulation of thiamethoxam (TMX)-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus) has been evaluated. Fish were subjected to TMX (5 mg L-1) and fed with a diet either supplemented with BS (1000 ppm) or TVEO (500 ppm). The experiment lasted for 1 month. By the end of the experiment, blood was sampled for biochemical analysis and fish organs and tissues were collected for histopathological and immunohistochemical examinations. Results showed a substantial increase of serum markers of hepatorenal damage such as the activities of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) and levels of blood urea nitrogen (BUN) and creatinine with an obvious decrease of serum protein levels in the TMX-intoxicated group. Also, there was a considerable increase in malondialdehyde (MDA) levels and glutathione-S-transferase (GST) activity. TMX remarkably suppressed serum lysozyme activity, respiratory burst activity, and phagocytosis with a conspicuous elevation of the levels of interleukins (interleukin-1 beta (IL-1β) and interleukin-6 IL-6). The histopathological findings showed that TMX induced degenerative changes and necrosis in the gills, liver, head kidneys, and spleen of the intoxicated fish. Significant alterations of frequency, size, and area percentage of melanomacrophage centers (MMCs), decreased splenocyte proliferation, and increased number of caspase-3 immunopositive cells were also observed. Contrariwise, the concurrent supplementation of either BS or TVEO in the diets of catfish partially mitigated both the histopathological and histomorphometric lesions of the examined tissues. Correspondingly, they improved the counts of proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive splenocytes. In conclusion, the co-administration of either BS or TVEO in catfish diets partially diminished the toxic impacts of TMX. Nonetheless, the inclusion of TVEO in the diets of catfish elicited better protection than BS against TMX-induced toxicity in response to its potential anti-inflammatory, antioxidant, anti-apoptotic, and immune-stimulant effects.
Collapse
Affiliation(s)
- Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Hany M Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
30
|
Zhang Y, Zhang X, Liang Z, Dai K, Zhu M, Zhang M, Pan J, Xue R, Cao G, Tang J, Song X, Hu X, Gong C. Interleukin-17 suppresses grass carp reovirus infection in Ctenopharyngodon idellus kidney cells by activating NF-κB signaling. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2020; 520:734969. [PMID: 32287459 PMCID: PMC7112052 DOI: 10.1016/j.aquaculture.2020.734969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
The grass carp accounts for a large proportion of aquacultural production in China, but the hemorrhagic disease caused by grass carp reovirus (GCRV) infection often causes huge economic losses to the industry. Interleukin 17 (IL-17) is an important cytokine that plays a critical role in the inflammatory and immune responses. Although IL-17 family members have been extensively studied in mammals, our knowledge of the activity of IL-17 proteins in teleosts in response to viral infection is still limited. In this study, the role of IL-17 in GCRV infection and its mechanism were investigated. The expression levels of IL-17AF1, IL-17AF2, and IL-17AF3 in Ctenopharyngodon idella kidney (CIK) cells gradually increased from 6 h after infection with GCRV. The nuclear translocation of p65, which acts in the NF-κB signaling pathway, was also increased by GCRV infection. The overexpression of IL-17AF1, IL-17AF2, or IL-17AF3 also promoted the nuclear translocation of p65 and the levels of phospho-IκBα in CIK cells, and reduced the expression of the viral structural protein VP7. An NF-κB signal inhibitor abolished the inhibition of GCRV infection by IL-17 proteins. These results suggested that the NF-κB signaling pathway was activated by the overexpression of IL-17 proteins, resulting in the inhibition of viral infection. In conclusion, in this study, we demonstrated that IL-17AF1, IL-17AF2, and IL-17AF3 acted as immune cytokines, exerting an antiviral effect by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kun Dai
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingtian Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Identification and Regulation of Interleukin-17 (IL-17) Family Ligands in the Teleost Fish European Sea Bass. Int J Mol Sci 2020; 21:ijms21072439. [PMID: 32244562 PMCID: PMC7178287 DOI: 10.3390/ijms21072439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17 (IL-17) cytokine comprises a family of six ligands in mammals with proinflammatory functions, having an important role in autoimmune disorders and against bacterial, viral, and fungal pathogens. While IL-17A and IL-17F ligands are mainly produced by Th cells (Th17 cells), the rest of the ligands are expressed by other immune and non-immune cells and have different functions. The identification of IL-17 ligands in fish has revealed the presence of six members, counterparts to mammalian ones, and a teleost-specific form, the fish IL-17N. However, tissue distribution, the regulation of gene expression, and scarce bioactivity assays point to similar functions compared to mammalian ones, though this yet to be investigated and confirmed. Thus, we have identified seven IL-17 ligands in the teleost European sea bass (Dicentrarchus labrax), for the first time, corresponding to IL-17A/F1, IL-17A/F2, IL-17A/F3, IL-17C1, IL-17C2, IL-17D, and IL-17N, according to the predicted protein sequences and phylogenetic analysis. They are constitutively and widely transcribed in sea bass tissues, with some of them being mainly expressed in the thymus, brain or intestine. Upon in vitro stimulation of head-kidney leucocytes, the mRNA levels of all sea bass IL-17 ligands were up-regulated by phytohemagglutinin treatment, a well-known T cell mitogen, suggesting a major expression in T lymphocytes. By contrast, the infection of sea bass juveniles with nodavirus (NNV), a very pathogenic virus for this fish species, resulted in the up-regulation of the transcription of IL-17C1 in the head-kidney and of IL-17C1 and IL-17D in the brain, the target tissue for NNV replication. By contrast, NNV infection led to a down-regulated transcription of IL-17A/F1, IL-17A/F2, IL-17C1, IL-17C2, and IL-17D in the head-kidney and of IL-17A/F1 and IL-17A/F3 in the brain. The data are discussed accordingly with the IL-17 ligand expression and the immune response under the different situations tested.
Collapse
|
32
|
Okamura Y, Morimoto N, Ikeda D, Mizusawa N, Watabe S, Miyanishi H, Saeki Y, Takeyama H, Aoki T, Kinoshita M, Kono T, Sakai M, Hikima JI. Interleukin-17A/F1 Deficiency Reduces Antimicrobial Gene Expression and Contributes to Microbiome Alterations in Intestines of Japanese medaka ( Oryzias latipes). Front Immunol 2020; 11:425. [PMID: 32256492 PMCID: PMC7092794 DOI: 10.3389/fimmu.2020.00425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals, interleukin (IL)-17A and F are hallmark inflammatory cytokines that play key roles in protection against infection and intestinal mucosal immunity. In the gastrointestinal tract (GI), the induction of antimicrobial peptide (AMP) production via Paneth cells is a fundamental role of IL-17A and F in maintaining homeostasis of the GI microbiome and health. Although mammalian IL-17A and F homologs (referred to as IL-17A/F1-3) have been identified in several fish species, their function in the intestine is poorly understood. Additionally, the fish intestine lacks Paneth cells, and its GI structure is very different from that of mammals. Therefore, the GI microbiome modulatory mechanism via IL-17A/F genes has not been fully elucidated. In this study, Japanese medaka (Oryzias latipes) were used as a teleost model, and IL-17A/F1-knockout (IL-17A/F1-KO) medaka were established using the CRISPR/Cas9 genome editing technique. Furthermore, two IL-17A/F1-deficient medaka strains were generated, including one strain containing a 7-bp deletion (-7) and another with an 11-bp addition (+11). After establishing F2 homozygous KO medaka, transcriptome analysis (RNA-seq) was conducted to elucidate IL-17A/F1-dependent gene induction in the intestine. Results of RNA-seq and real-time PCR (qPCR) demonstrated down-regulation of immune-related genes, including interleukin-1β (IL-1β), complement 1q subunit C (C1qc), transferrin a (Tfa), and G-type lysozyme (LyzG), in IL-17A/F1-KO medaka. Interestingly, protein and lipid digestive enzyme genes, including phospholipase A2, group IB (pla2g1b), and elastase-1-like (CELA1), were also downregulated in the intestines of IL-17A/F1-KO medaka. Furthermore, to reveal the influence of these downregulated genes on the gut microbiome in IL-17A/F1-KO, 16S rRNA-based metagenomic sequencing analysis was conducted to analyze the microbiome constitution. Under a non-exposed state, the intestinal microbiome of IL-17A/F1-KO medaka differed at the phylum level from wild-type, with significantly higher levels of Verrucomicrobia and Planctomycetes. Additionally, at the operational taxonomic unit (OTU) level of the human and fish pathogens, the Enterobacteriaceae Plesiomonas shigelloides was the dominant species in IL-17A/F1-KO medaka. These findings suggest that IL-17A/F1 is involved in the maintenance of a healthy gut microbiome.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Daisuke Ikeda
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Saeki
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takashi Aoki
- Integrated Institute for Regulatory Science, Research Organization for Nao and Life Innovation, Waseda University, Tokyo, Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
33
|
Ma R, Yu Y, Liu X, Lei Y, Zhou S, Xie X, Jin S, Qian D, Yin F. Transcriptomic analysis of Nibea albiflora skin in response to infection by Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2020; 98:819-831. [PMID: 31751659 DOI: 10.1016/j.fsi.2019.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Massive infection caused by Cryptocaryon irritans is detrimental to the development of marine aquaculture. Recently, our lab found that Nibea albiflora has low sensitivity and low mortality to C. irritans infection. The present study was designed to investigate the mechanisms of the N. albiflora response to C. irritans infection by analyzing transcriptome changes in the skin. Skin samples of control and experimental groups with C. irritans infection were collected at 24 and 72 h (24 h control, 24 h post-infection, 72 h control, and 72 h post-infection). Three parallels were set for each group and sample time, and a total of 12 skin samples were collected for sequencing. Overall, 297,489,843 valid paired-end reads and 48,817 unigenes were obtained with an overall length of 59,010,494 nt. In pairwise comparisons, changes in expression occurred in 1621 (764 upregulated and 857 downregulated), 285 (180 upregulated and 105 downregulated), 993 (489 upregulated and 504 downregulated), and 37 (8 upregulated and 29 downregulated) genes at 24 h control vs 24 h post-infection, 72 h control vs 72 h post-infection, 24 h post-infection vs 72 h post-infection, and 24 h control vs 72 h control, respectively. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) indicated that the number of genes enriched in GO sub-categories were ordered 24 h control vs 24 h post-infection > 24 h post-infection vs 72 h post-infection >72 h control vs 72 h post-infection > 24 h control vs 72 h control. Further analysis showed that immune-related GO terms (including immune system process, complement activation, and humoral immunity) were significantly enriched at both 72 h control vs 72 h post-infection and 24 h post-infection vs 72 h post-infection, but no immune-related GO terms were significantly enriched in the 24 h control vs 72 h control and at 24 h control vs 24 h post-infection, indicating that C. irritans infection mainly affected the physiological metabolism of N. albiflora at an early stage (24 h), and immune-related genes play an important role at a later stage (72 h) of infection. In KEGG pathway analysis, the complement and coagulation cascade pathway are involved in early infection. Hematopoietic cell lineage, natural killer (NK) cell-mediated cytotoxicity, and the intestinal immune network for IgA production are involved in later infection. Further analysis showed that the alternative pathway of complement and coagulation cascades plays an important role in the resistance of N. albiflora to early C. irritans infection. During late infection, CD34, IgM, and IgD were significantly upregulated in the hematopoietic cell lineage pathway. CCR9 was significantly downregulated, and IGH and PIGR were significantly upregulated in the intestinal immune network for IgA production. GZMB and IGH were significantly downregulated in NK cell-mediated cytotoxicity. These findings indicate that acquired immunity at the mRNA level was initiated during later infection. In addition, the IL-17 signaling pathway was enriched by downregulated DEGs at 24 h post-infection vs 72 h post-infection, suggesting the inflammatory response at 24 h was stronger than at 72 h and the invasion of the parasite has a greater impact on the host.
Collapse
Affiliation(s)
- Rongrong Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Youbin Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Yuhua Lei
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Suming Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Xiao Xie
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Shan Jin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Dong Qian
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China
| | - Fei Yin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Collaborative Innovation Centre for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China; School of Marine Sciences, Ningbo University, 169 South Qixing Road, Ningbo, 315832, PR China.
| |
Collapse
|
34
|
Okamura Y, Morimoto N, Sawada S, Kono T, Hikima JI, Sakai M. Molecular characterization and expression of two interleukin-17 receptor A genes on different chromosomes in Japanese medaka, Oryzias latipes. Comp Biochem Physiol B Biochem Mol Biol 2020; 240:110386. [DOI: 10.1016/j.cbpb.2019.110386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/03/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|
35
|
Tang D, Wu S, Luo K, Yuan H, Gao W, Zhu D, Zhang W, Xu Q. Sequence characterization and expression pattern analysis of six kinds of IL-17 family genes in the Asian swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2019; 89:257-270. [PMID: 30922887 DOI: 10.1016/j.fsi.2019.03.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Interleukin-17 (IL-17) is an important cytokine that plays a critical role in the inflammatory response and host defense against extracellular pathogens. In the present study, six novel IL-17 family genes (MaIL-17) were identified by analyzing Asian swamp eel (Monopterus albus) genome. Sequence analysis revealed that the MaIL-17 family genes shared similar features, comprising a signal peptide, an IL-17 superfamily region, and four conserved cysteines. Phylogenetic analysis showed that the MaIL-17 genes were clustered together with their corresponding IL-17 genes from other species. The similarity and identity of all IL-17 family genes indicated that the MaIL-17 genes are conserved among teleosts, while Ma-IL-17D is more conserved than the other Ma-IL-17s. Except for MaIL-17A/F3 and MaIL-17D, all MaIL-17s shared the same genomic structure as the genes from other fish, namely three exons and two introns. The MaIL-17s showed conserved synteny among fish, and we found that the MaIL-17D locus has a more conserved syntenic relationship with the loci from other fish and humans. These results demonstrated that MaIL-17D and human IL-17D might have evolved from a common ancestral gene and subsequently diverged. The analysis of swamp eel reference genes revealed that EEF1A1 (encoding eukaryotic translation elongation factor 1 alpha 1) was an ideal reference gene for accurate real-time qRT-PCR normalization in the swamp eel. The MaIL-17 genes are widely distributed throughout tissues, suggesting that MaIL-17s carry out their biological functions in immune and non-immune tissues compartments. The transcript of Ma-IL17s exhibited different fold changes in head kidney cells in response to Aeromonas veronii phorbol 12-myristate 13-acetate (PMA) and polyinosinic:polycytidylic acid (poly I:C) challenge, showing that MaIL-17A/F1 has stronger antiviral activities compared with other MaIL-17 family genes, and that MaIL-17A/F3 and MaIL-17A/F2 possess stronger effects against extracellular pathogens compared with the others; however, MaIL-17C2 and MaIL-17D may play vital roles during pathogen infection. The differential immune responses of these genes to Aeromonas veronii, PMA and poly I:C implied distinct mechanisms of host defense against extracellular pathogens.
Collapse
Affiliation(s)
- Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China
| | - Shipei Wu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Kai Luo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Hanwen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Weihua Gao
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Dashi Zhu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China.
| |
Collapse
|
36
|
Bouallegui Y. Immunity in mussels: An overview of molecular components and mechanisms with a focus on the functional defenses. FISH & SHELLFISH IMMUNOLOGY 2019; 89:158-169. [PMID: 30930277 DOI: 10.1016/j.fsi.2019.03.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Bivalves' immunity has received much more attention in the last decade, which resulted to a valuable growth in the availability of its molecular components. Such data availability coupled with the economical importance of these organisms aimed to shift the increase in the number of immunological and stress-related studies. Unfortunately, the crowd of generated data deciphering the involved physiological processes, investigators' differential conceptualization and the aimed objectives, has complicated the sensu stricto outlining of immune-related mechanisms. Overall, this review tried to compiles a summary about the molecular components of the mussels' immune response, surveying an overview of the mussels' functional immunity through gathering the most recent-related topics of bivalves' immunity as apoptosis and autophagy which deserves a great attention as stress-related mechanisms, the disseminated neoplasia as outbreak transmissible disease, not only within the same specie but also among different species, the hematopoiesis as topic that still generating interesting debate in the scientific community, the mucosal immunity described as the interface where host-pathogen interactions would occurs and determinate the late immune response, and innate immune memory and transgenerational priming, which described as very recent research topic with extensive applications in shellfish farming industry.
Collapse
Affiliation(s)
- Younes Bouallegui
- University of Carthage, Faculty of Sciences Bizerte, LR01ES14 Laboratory of Environmental Biomonitoring, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|
37
|
Maekawa S, Wang PC, Chen SC. Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis. Front Immunol 2019; 10:153. [PMID: 30804945 PMCID: PMC6370674 DOI: 10.3389/fimmu.2019.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Transcriptome analysis is a powerful tool that enables a deep understanding of complicated physiological pathways, including immune responses. RNA sequencing (RNA-Seq)-based transcriptome analysis and various bioinformatics tools have also been used to study non-model animals, including aquaculture species for which reference genomes are not available. Rapid developments in these techniques have not only accelerated investigations into the process of pathogenic infection and defense strategies in fish, but also used to identify immunity-related genes in fish. These findings will contribute to fish immunotherapy for the prevention and treatment of bacterial infections through the design of more specific and effective immune stimulants, adjuvants, and vaccines. Until now, there has been little information regarding the universality and diversity of immune reactions against pathogenic infection in fish. Therefore, one of the aims of this paper is to introduce the RNA-Seq technique for examination of immune responses in pathogen-infected fish. This review also aims to highlight comparative studies of immune responses against bacteria, based on our previous findings in largemouth bass (Micropterus salmoides) against Nocardia seriolae, gray mullet (Mugil cephalus) against Lactococcus garvieae, orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio) against Aeromonas sobria, using RNA-seq techniques. We demonstrated that only 39 differentially expressed genes (DEGs) were present in all species. However, the number of specific DEGs in each species was relatively higher than that of common DEGs; 493 DEGs in largemouth bass against N. seriolae, 819 DEGs in mullets against L. garvieae, 909 in groupers against V. harveyi, and 1471 in carps against A. sobria. The DEGs in different fish species were also representative of specific immune-related pathways. The results of this study will enhance our understanding of the immune responses of fish, and will aid in the development of effective vaccines, therapies, and disease-resistant strains.
Collapse
Affiliation(s)
- Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
38
|
Eggestøl HØ, Lunde HS, Rønneseth A, Fredman D, Petersen K, Mishra CK, Furmanek T, Colquhoun DJ, Wergeland HI, Haugland GT. Transcriptome-wide mapping of signaling pathways and early immune responses in lumpfish leukocytes upon in vitro bacterial exposure. Sci Rep 2018; 8:5261. [PMID: 29588496 PMCID: PMC5869700 DOI: 10.1038/s41598-018-23667-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
We performed RNA sequencing, identified components of the immune system and mapped early immune responses of lumpfish (Cyclopterus lumpus) leukocytes following in vitro exposure to the pathogenic bacterium Vibrio anguillarum O1. This is the first characterization of immune molecules in lumpfish at the gene level. In silico analyses revealed that genes encoding proteins involved in pathogen recognition, cell signaling and cytokines in mammals and teleosts are conserved in lumpfish. Unique molecules were also identified. Pathogen recognition components include 13 TLRs, several NLRs and complement factors. Transcriptome-wide analyses of immune responses 6 and 24 hours post bacterial exposure revealed differential expression of 9033 and 15225 genes, respectively. These included TLR5S, IL-1β, IL-8, IL-6, TNFα, IL-17A/F3, IL-17C and several components of the complement system. The data generated will be valuable for comparative studies and make an important basis for further functional analyses of immune and pathogenicity mechanisms. Such knowledge is also important for design of immunoprophylactic measures in lumpfish, a species of fish now farmed intensively for use as cleaner-fish in Atlantic salmon (Salmo salar) aquaculture.
Collapse
Affiliation(s)
| | - Harald S Lunde
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - David Fredman
- Computational biology unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Kjell Petersen
- Computational biology unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Charitra K Mishra
- Computational biology unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Tomasz Furmanek
- Computational biology unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Duncan J Colquhoun
- Department of Biology, University of Bergen, Bergen, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Gyri T Haugland
- Department of Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
39
|
Ding Y, Ao J, Chen X. Comparative study of interleukin-17C (IL-17C) and IL-17D in large yellow croaker Larimichthys crocea reveals their similar but differential functional activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:34-44. [PMID: 28526442 DOI: 10.1016/j.dci.2017.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/14/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Interleukin 17 (IL-17) family members are key players in regulating the immune response in mammals. Here, we identified the IL-17C and IL-17D homologs from large yellow croaker (Larimichthys crocea), named LcIL-17C and LcIL-17D, respectively. The deduced LcIL-17C and LcIL-17D proteins possessed the typical IL-17 domain and shared a conserved arrangement of eight cysteine residues. Both LcIL-17C and LcIL-17Dc genes were constitutively expressed in all tissues examined, although at different levels. After challenge with Aeromonas hydrophila, the expression of LcIL-17C and LcIL-17D was significantly increased in gills, head kidney, and spleen. In the peripheral blood leukocytes (PBLs), the recombinant LcIL-17C (rLcIL-17C) could strongly promote the expression of chemokines (CXCL8, CXCL12, and CXCL13), proinflammatory factors (TNF-α, IL-1β, IL-6, and IFNg), and antibacterial peptide hepcidin, whereas rLcIL-17D induced a weaker expression of these chemokines. Consistently, the culture supernatants from the PBLs treated by rLcIL-17C showed a stronger ability to induce the migration of PBLs than those treated by rLcIL-17D. Furthermore, both rLcIL-17C and rLcIL-17D could activate the NF-κB signalling in the epithelioma papulosum cyprini (EPC) cells. Taken together, these results indicated that LcIL-17C and LcIL-17D, although differing in their ability to mediate chemotaxis for PBLs, may promote the inflammatory response and host defence via activating NF-κB signalling. To our knowledge, this is the first report on functional identification of a IL-17C in teleost.
Collapse
Affiliation(s)
- Yang Ding
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Jingqun Ao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Xinhua Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
40
|
Jiang B, Li YW, Hu YZ, Luo HL, Li AX. Characterization and expression analysis of six interleukin-17 receptor genes in grouper (Epinephelus coioides) after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2017; 69:46-51. [PMID: 28811226 DOI: 10.1016/j.fsi.2017.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-17 receptors (IL17Rs) mediate the activation of several downstream signal pathways to induce inflammatory response and contribute to the pathology of many autoimmune diseases. In this study, six IL17Rs (IL17RA1, RA2, RB, RC, RD and RE) were cloned and characterized from Epinephelus coioides, an orange-spotted grouper. Multiple sequence alignment and structural analysis revealed that all members of IL17Rs were low in sequence identity with each other. But their structures were conservative in grouper, which contain signal peptide, extracellular FNIII domain (IL17RA1/RA2/RB) or IL-17_R_N domain (IL17RC/RD/RE), transmembrane domain and SEFIR domain in their intracellular region. The analysis of tissue distribution showed these six genes were ubiquitously and differentially expressed in all major types of tissues. What's more, it is interesting to find their high expression in immune tissues (liver, gill, skin and thymus). IL17RA1 and IL17RA2 were significantly down-regulated at all time-points in gill and spleen after Cryptocaryon irritans infection, however, there was no significant change in other grouper IL17Rs. It suggests that the C. irritans may escape from the host immunity or the host prevents serious inflammation by inhibiting the expression of ILl7Rs.
Collapse
Affiliation(s)
- Biao Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Heng-Li Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
41
|
Bouallegui Y, Ben Younes R, Bellamine H, Oueslati R. Histopathology and analyses of inflammation intensity in the gills of mussels exposed to silver nanoparticles: role of nanoparticle size, exposure time, and uptake pathways. Toxicol Mech Methods 2017; 27:582-591. [DOI: 10.1080/15376516.2017.1337258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Younes Bouallegui
- Research Unit of Immuno-Microbiology Environmental and Cancerogensis, Sciences Faculty of Bizerte, University of Carthage, Carthage, Tunisia
| | - Ridha Ben Younes
- Research Unit of Immuno-Microbiology Environmental and Cancerogensis, Sciences Faculty of Bizerte, University of Carthage, Carthage, Tunisia
| | - Houda Bellamine
- Department of Pathological Anatomy, Regional Hospital of Menzel Bourguiba, Bizerte, Tunisia
| | - Ridha Oueslati
- Research Unit of Immuno-Microbiology Environmental and Cancerogensis, Sciences Faculty of Bizerte, University of Carthage, Carthage, Tunisia
| |
Collapse
|
42
|
Zhu H, Song R, Wang X, Hu H, Zhang Z. Peritoneal bacterial infection repressed the expression of IL17D in Siberia sturgeon a chondrostean fish in the early immune response. FISH & SHELLFISH IMMUNOLOGY 2017; 64:39-48. [PMID: 28279790 DOI: 10.1016/j.fsi.2017.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/25/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
IL17s are pro-inflammatory cytokines that play important roles in host fighting against extracellular bacteria and auto-immune and allergic diseases. IL17D is believed to be the most ancient IL17 member and its functions are far from clarity. Although it has been found in invertebrates, jawless fish, teleosts, and tetrapods, it has not been described in chondrostean fish. Moreover, there are discrepancies concerning its expression pattern in these animals. In this study, we cloned and characterized the cDNA of il17d in Siberia sturgeon (Acipenser baerii), a chondrostean fish and commercially important species in aquaculture. The sturgeon il17d cDNA encodes a deduced protein of 210aa. The classical characteristics of IL17, such as IL17 domain, cysteine and serine residues importantly for cystine-knot formation, and signal peptide, were observed in sturgeon IL17D. Phylogenetic analysis and multiple alignment suggest it is a counterpart of mammalian IL17D. However, in vivo studies demonstrated that the expression pattern of sturgeon il17d mRNA is different from that of other teleosts and jawless fish, and in most cases its expression was down-regulated at the early time points and gradually increasing at late time points when sturgeon were challenged with bacteria (Aernomas hydrophila or Staphylococcus aureus). The In vitro study by using primary spleen cells stimulated with polyI:C revealed a similar expression pattern to that in vivo studies, while the stimulation with β-glucan or LPS, which normally induced expression of il17d mRNA in target cells in vitro in other animals, did not show apparent changes in the expression of il17d mRNA. The results of present study indicated sturgeon IL17D may possess some different characteristics from its counterparts of other fish and invertebrates in the immune response, and may contribute to the understanding of IL17D functions in evolution as well as the potential use in sturgeon aquaculture.
Collapse
Affiliation(s)
- Hua Zhu
- Beijing Fisheries Research Institute, Beijing Key Laboratory of Fishery Biotechnology, Beijing 100068, China.
| | - Ruxing Song
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Xiaowen Wang
- Beijing Fisheries Research Institute, Beijing Key Laboratory of Fishery Biotechnology, Beijing 100068, China
| | - Hongxia Hu
- Beijing Fisheries Research Institute, Beijing Key Laboratory of Fishery Biotechnology, Beijing 100068, China
| | - Zuobing Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China.
| |
Collapse
|
43
|
Seelige R, Washington A, Bui JD. The ancient cytokine IL-17D is regulated by Nrf2 and mediates tumor and virus surveillance. Cytokine 2017; 91:10-12. [PMID: 27940089 PMCID: PMC5316352 DOI: 10.1016/j.cyto.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
Abstract
Early stage immune responses can dictate the severity and outcome of inflammatory processes such as tumor growth and viral infection. Cytokines such as the interleukin 17 (IL-17) family and cellular stress defense (e.g., anti-oxidant) pathways have evolved early and regulate disease surveillance in vertebrates and invertebrates as far back as Caenorhabditis elegans. Our group has recently found a new role for nuclear factor erythroid-derived 2-like 2 (Nrf2) in regulating early anti-cancer immune responses by inducing IL-17D and recruiting natural killer (NK) cells. In this Cytokine Stimulus, we discuss recent findings that encourage boosting the Nrf2/IL-17D/NK cell axis for the treatment of cancer and viral infection.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - Allen Washington
- Department of Pathology, University of California, San Diego, CA 92093, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
44
|
Ding Y, Ai C, Mu Y, Ao J, Chen X. Molecular characterization and evolution analysis of five interleukin-17 receptor genes in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 58:332-339. [PMID: 27633682 DOI: 10.1016/j.fsi.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/29/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Interleukin-17s (IL-17s) play critical roles in inflammatory response and host defense against extracellular pathogens. IL-17s induce the immune response signaling through the specific IL-17 receptors (IL-17Rs) that consist of five members (IL-17RA to E). In the present work, we have identified the five IL-17R orthologs (LycIL-17Rs) from large yellow croaker Larimichthys crocea. The deduced protein of each LycIL-17R exhibits a typical IL-17R domain architecture, including a signal peptide, the extracellular FNIII domain (IL-17RA/RB/RD) or IL-17_R_N domain (IL-17RC/RE), a transmembrane domain, and a SEFIR domain in cytoplasmic region. In particular, the extracellular regions of teleost IL-17RB are much shorter than those in mammals and lack an FNIII domain (FN2). Phylogenetic tree shows that IL-17Rs are classified into two main groups: IL-17RA/RB/RD group and IL-17RC/RE group, which is distinct from previous proposal that grouped IL-17RB into IL-17RC/RE. The surrounding genes of IL-17Rs are conservatively aligned in genomes between teleosts and mammals. The five LycIL-17Rs were constitutively expressed in all tissues examined, but with different expression patterns. Aeromonas hydrophila infection significantly upregulated LycIL-17RA, RC, RD and RE in both mucosal tissue (gills) and systemic immune tissues (head kidney and spleen), while the increase of LycIL-17RB expression could be detected in gills, indicating that LycIL-17Rs may be involved in host defense against bacterial infection. Thus, these results suggest that teleost IL-17Rs may function in mediating immune response as their mammalian orthologs. To our knowledge, this is the first report of molecular characterization of the five IL-17Rs (IL-17RA/RB/RD and IL-17RC/RE) in teleost fish.
Collapse
Affiliation(s)
- Yang Ding
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinhua Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
45
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
46
|
Li H, Yu J, Li J, Tang Y, Yu F, Zhou J, Yu W. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2. FISH & SHELLFISH IMMUNOLOGY 2016; 51:303-312. [PMID: 26921542 DOI: 10.1016/j.fsi.2016.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes.
Collapse
Affiliation(s)
- Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Juhua Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jie Zhou
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Wenjuan Yu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China.
| |
Collapse
|
47
|
Ding Y, Ao J, Ai C, Chen X. Molecular and functional identification of three interleukin-17A/F (IL-17A/F) homologues in large yellow croaker (Larimichthys crocea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:221-232. [PMID: 26429410 DOI: 10.1016/j.dci.2015.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The interleukin-17 (IL-17) cytokine family plays a central role in the coordination of inflammatory responses. In fish species, three genes that have a similar homology to both IL-17A and IL-17F were designated IL-17A/F1, 2, and 3. In this study, we identified three IL-17A/F homologues (LycIL-17A/F1, 2, and 3) from large yellow croaker (Larimichthys crocea). The deduced LycIL-17A/F1 and 3 had four cysteine residues conserved in teleost IL-17A/F1 and 3 homologues and shared a domain similar to the B chain of human IL-17F. The deduced LycIL-17A/F2 possessed the unique arrangement of six cysteine residues as teleost IL-17A/F2 (except Fugu IL-17A/F2) and higher vertebrate IL-17A and F, and shared a domain similar to the D/E chain of human IL-17A. Phylogenetic analysis showed that teleost IL-17A/F1 and 3 fall into a major clade, whereas IL-17A/F2 forms a separated clade and is clustered with IL-17N. Based on structural and phylogenetic analyses, we suggest that teleost IL-17A/Fs may be classified into two subgroups: one consisting of IL-17A/F1 and 3, and the other composed of IL-17A/F2. The three LycIL-17A/Fs were constitutively expressed in all tissues examined although at a different level. Following challenge with Aeromonas hydrophila, expression of these three LycIL-17A/Fs was rapidly increased in head kidney and gills. The in vivo assays showed that recombinant LycIL-17A/F1, 2, and 3 all were able to enhance the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α2), chemokines (CXCL8 and CXCL13), and antimicrobial peptide hepcidin in head kidney. Furthermore, LycIL-17A/Fs appeared to mediate pro-inflammatory responses via NF-κB signalling. These results therefore reveal similar functions between the two subgroup members,LycIL-17A/F1 and 3 and LycIL-17A/F2, in promoting inflammation and host defences.
Collapse
Affiliation(s)
- Yang Ding
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China.
| |
Collapse
|
48
|
Yang Q, Sun Y, Su X, Li T, Xu T. Characterization of six IL-17 family genes in miiuy croaker and evolution analysis of vertebrate IL-17 family. FISH & SHELLFISH IMMUNOLOGY 2016; 49:243-251. [PMID: 26721231 DOI: 10.1016/j.fsi.2015.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Interleukin-17 (IL-17) family is a cytokine family which is one of the major signaling molecules family involved in immunity. Six member of IL-17 family cytokines (IL-17A-F) were found in mammals. In fish, all IL-17 family genes except IL-17B and IL-17E have been isolated and identified. Besides, IL-17N is uniquely found from teleosts. IL-17 family genes are widely studied in mammals, but have not been widely reported in lower vertebrates. In this study, we identify six IL-17 family genes (IL-17A/F1-3, IL-17C, IL-17D, IL-17N) from miiuy croaker, using LPS and poly (I:C) to infect miiuy croaker in order to analyze the expression response to bacteria and virus and expression in normal tissues. Challenge experiment showed that miiuy croaker IL-17 family genes exhibited more sensitive response to the poly (I:C) than the LPS. The expression of IL-17 in un-stimulated tissues showed that different gene has expressed in different tissues. Through the analysis of IL-17 family members exist in various representative species to study the evolution of the IL-17 family, and the result showed IL-17A/F, IL-17B, IL-17C, and IL-17D should be present in early gnathostomes species.
Collapse
Affiliation(s)
- Qiong Yang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Xiurong Su
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Taiwu Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
49
|
Chi H, Bøgwald J, Dalmo RA, Zhang W, Hu YH. Th17 master transcription factors RORα and RORγ regulate the expression of IL-17C, IL-17D and IL-17F in Cynoglossus semilaevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:169-178. [PMID: 26547017 DOI: 10.1016/j.dci.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. In this study, we examined the regulatory properties of RORα (CsRORα) and RORγ (CsRORγ) in tongue sole (Cynoglossus semilaevis). CsRORα and CsRORγ expression was detected in major lymphoid organs and altered to significant extents after bacterial and viral infection. CsRORα enhanced the activities of CsIL-17C, CsIL-17D, and CsIL-17F promoters, which contain CsRORα and CsRORγ binding sites. CsRORγ also upregulated the promoter activities of CsIL-17D and CsIL-17F but not CsIL-17C. CsRORα and CsRORγ proteins were detected in the nucleus, and overexpression of CsRORα in tongue sole significantly increased the expression of CsIL-17C, CsIL-17D, and CsIL-17F, whereas overexpression of CsRORγ significantly increased the expression of CsIL-17C and CsIL-17F but no CsIL-17D. These results indicate that RORα and RORγ in teleost regulate the expression of IL-17 members in different manners.
Collapse
Affiliation(s)
- Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jarl Bøgwald
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø N-9037, Norway
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Tromsø N-9037, Norway
| | - Wenjie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
50
|
Han Q, Das S, Hirano M, Holland SJ, McCurley N, Guo P, Rosenberg CS, Boehm T, Cooper MD. Characterization of Lamprey IL-17 Family Members and Their Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5440-51. [PMID: 26491201 PMCID: PMC4655163 DOI: 10.4049/jimmunol.1500892] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
Abstract
IL-17 is an ancient cytokine implicated in a variety of immune defense reactions. We identified five members of the sea lamprey IL-17 family (IL-17D.1, IL-17D.2, IL-17E, IL-17B, and IL-17C) and six IL-17R genes (IL-17RA.1, IL-17RA.2, IL-17RA.3, IL-17RF, IL-17RE/RC, and IL-17RD), determined their relationship with mammalian orthologs, and examined their expression patterns and potential interactions to explore their roles in innate and adaptive immunity. The most highly expressed IL-17 family member is IL-17D.1 (mammalian IL-17D like), which was found to be preferentially expressed by epithelial cells of skin, intestine, and gills and by the two types of lamprey T-like cells. IL-17D.1 binding to rIL-17RA.1 and to the surface of IL-17RA.1-expressing B-like cells and monocytes of lamprey larvae was demonstrated, and treatment of lamprey blood cells with rIL-17D.1 protein enhanced transcription of genes expressed by the B-like cells. These findings suggest a potential role for IL-17 in coordinating the interactions between T-like cells and other cells of the adaptive and innate immune systems in jawless vertebrates.
Collapse
Affiliation(s)
- Qifeng Han
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Sabyasachi Das
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Stephen J Holland
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nathanael McCurley
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Peng Guo
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Charles S Rosenberg
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Max D Cooper
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| |
Collapse
|