1
|
Kolesnikova TO, Prokhorenko NO, Amikishiev SV, Nikitin VS, Shevlyakov AD, Ikrin AN, Mukhamadeev RR, Buglinina AD, Apukhtin KV, Moskalenko AM, Ilyin NP, de Abreu MS, Demin KA, Kalueff AV. Differential effects of chronic unpredictable stress on behavioral and molecular (cortisol and microglia-related neurotranscriptomic) responses in adult leopard (leo) zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:30. [PMID: 39812898 DOI: 10.1007/s10695-024-01446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Stress plays a key role in mental, neurological, endocrine, and immune disorders. The zebrafish (Danio rerio) is rapidly gaining popularity as s model organism in stress physiology and neuroscience research. Although the leopard (leo) fish are a common outbred zebrafish strain, their behavioral phenotypes and stress responses remain poorly characterized. Here, we examined the effects of a 5-week chronic unpredictable stress (CUS) exposure on adult leo zebrafish behavior, cortisol levels, and brain gene expression. Compared to their unstressed control leo counterparts, CUS-exposed fish showed paradoxically lower anxiety-like, but higher whole-body cortisol levels and altered expression of multiple pro- and anti-inflammatory brain genes. Taken together, these findings suggest that behavioral and physiological (endocrine and genomic) responses to CUS do differ across zebrafish strains. These findings add further complexity to systemic effects of chronic stress in vivo and also underscore the importance of considering the genetic background of zebrafish in stress research.
Collapse
Affiliation(s)
| | - Nikita O Prokhorenko
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Sahil V Amikishiev
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Vadim S Nikitin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Radmir R Mukhamadeev
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | - Kirill V Apukhtin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | - Nikita P Ilyin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Gjøen J, Jean-Joseph H, Kotrschal K, Jensen P. Domestication and social environment modulate fear responses in young chickens. Behav Processes 2023:104906. [PMID: 37311492 DOI: 10.1016/j.beproc.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Domesticated species differ from their wild ancestors in a mosaic of traits. Classical domestication theories agree that reactivity to fear and stress is one of the main traits affected. Domesticated species are expected to be less fear and stress prone to than their wild counterparts. To test this hypothesis, we compared the behavioural responses of White Leghorn (WL) chicks to their wild counterparts, Red Junglefowl (RJF) chicks in risk-taking situations. In order to obtain food, the chicks faced an unknown and potentially harmful object at the presence or absence of a social partner. We found that according to our predictions, RJF were more stressed and fearful of the object than the WL. Still, RJF were more explorative than WL. Additionally, the presence of a social partner reduced the fear response in both, but had a stronger effect on RJF. Finally, WL were more food orientated than the RJF. Our results confirmed classical domestication hypotheses of downregulation of the stress system and importance of the social partner in domesticated farm chicken.
Collapse
Affiliation(s)
- Johanna Gjøen
- AVIAN Behavior Genetics and Physiology Group, IFM Biology, Linköping University, Sweden
| | - Hillary Jean-Joseph
- Department of Behavioural and Cognitive Biology, University of Vienna, Austria; Wolf Science Center, University of Veterinary Medicine, Vienna, Medical University of Vienna, University of Vienna, Austria; Domestication Lab, University of Veterinary Medicine, Vienna, Medical University of Vienna, University of Vienna, Austria.
| | - Kurt Kotrschal
- Department of Behavioural and Cognitive Biology, University of Vienna, Austria
| | - Per Jensen
- AVIAN Behavior Genetics and Physiology Group, IFM Biology, Linköping University, Sweden.
| |
Collapse
|
3
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
4
|
Tissue-Specific and Differential Cold Responses in the Domesticated Cold Tolerant Fugu. FISHES 2022. [DOI: 10.3390/fishes7040159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Domestication can be defined as the artificial selection in animals to achieve morphological, physiological, and developmental conformity to human needs, with the aim of improving various limitations in species under a human feeding environment. The future sustainability of aquaculture may rely partly on the availability of numerous domesticated fish species. However, the underlying adaptive mechanisms that result in the domestication of fish are still unclear. Because they are poikilothermic, temperature is a key environmental element that affects the entire life of fish, so studying the association between physiological and behavioral changes in low-temperature domesticated fish can provide a model for understanding the response mechanisms of fish under cold stress. Through 5 generations and 10 years of artificial selection at low temperatures, we used cold-tolerant fugu as a biological model to compare transcriptome changes in brain and liver tissues to study the effects of cold stress on fish. It was found that the expression of genes such as apoptosis, p53, oxidative phosphorylation, and mitochondrial β-oxidation in the brain of cold-tolerant fugu was significantly lower than the wild type due to cold stress, while excessive energy metabolism would lead to the production of reactive oxygen species (ROS) and exacerbate the brain damage, thus causing rollover and coma. Meanwhile, under cold stress, the signaling pathways involved in glycogenolysis and lipid metabolism, such as insulin signaling, adipocytokines, and mTOR signaling pathways, were significantly up-regulated in the liver of cold-tolerant fugu. Although the mitochondrial β-oxidation pathway was increased in cold-tolerant fugu liver tissues, the transcriptome was not enriched in apoptotic. These phenomena predict that in response to low-temperature conditions, cold-tolerant fugu employs a dynamic inter-organ metabolic regulation strategy to cope with cold stress and reduce damage to brain tissues.
Collapse
|
5
|
Esmaeili N, Hosseini H, Zare M, Akhavan SR, Rombenso A. Early Mild Stress along with Lipid Improves the Stress Responsiveness of Oscar ( Astronotus ocellatus). AQUACULTURE NUTRITION 2022; 2022:8991678. [PMID: 37576918 PMCID: PMC10415086 DOI: 10.1155/2022/8991678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 08/15/2023]
Abstract
Early-life exposure to mild stressors can assist animals in coping with more stressful events in later life. This study was aimed at investigating how early stress and dietary lipid contents affect growth, hematology, blood biochemistry, immunological responses, antioxidant system, liver enzymes, and stress responses of oscar (Astronotus ocellatus) (6.8 ± 0.7 g). Six experimental treatments were HL0Stress (high-lipid diet and without stress), HL2Stresses (high-lipid diet and two-week stress), HL4Stresses (high-lipid diet and four-week stress), LL0Stress (low-lipid diet and without stress), LL2Stresses (low-lipid diet and two-week stress), and LL4Stresses (low-lipid diet and four-week stress). During the ten-week trial, fish fed high-lipid diets grew faster (46.41 ± 4.67 vs. 38.81 ± 2.81) and had a lower feed conversion ratio (2.21 vs. 2.60) than those fed low-lipid diets (P < 0.05). After acute confinement stress (AC stress), high-lipid groups had higher survival than low-lipid treatments (81.25% vs 72.92%) (P < 0.05). Fish subjected to two-time stress (2Stresses) had a higher survival rate after AC stress (90.63% vs. 62.50%), hematocrit, white blood cell, blood performance, total protein, high-density lipoproteins, cholesterol, triglyceride, alternative complement activity (ACH50), superoxide dismutase, glutathione peroxidase, and alkaline phosphatase levels than those not stressed (P < 0.05). Contrariwise, glucose, cortisol, alanine aminotransferase, and aspartate aminotransferase levels were significantly lower in the 2Stresses groups compared with 0Stress fish (P < 0.05). Collectively, these findings suggest stressing the signs of adaptation in 2Stresses fish. However, a higher number of early stress events (4Stresses) appears to exceed the threshold of manageable stress levels for this species. In conclusion, the HL2Stresses group outperformed the other treatments in terms of growth, health status, and stress responsiveness. Although fish welfare must be considered, these results suggest that early mild stress can result in a greater survival rate after fish are exposed to later acute stress.
Collapse
Affiliation(s)
- Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Hossein Hosseini
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mahyar Zare
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Sobhan R. Akhavan
- Nelson Marlborough Institute of Technology, H-Block, 322 Hardy Street, Private Bag 19, Nelson 7042, New Zealand
| | - Artur Rombenso
- CSIRO, Agriculture and Food, Livestock & Aquaculture Program, Bribie Island Research Centre, Bribie Island, QLD, Australia
| |
Collapse
|
6
|
Shimon-Hophy M, Avtalion RR. Influence of chronic stress on the mechanism of the cytotoxic system in common carp (Cyprinus carpio). Immunology 2021; 164:211-222. [PMID: 33930181 PMCID: PMC8442244 DOI: 10.1111/imm.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture conditions expose fish to internal and environmental stressors that increase their susceptibility to morbidity and mortality. The brain accumulates stress signals and processes them according to the intensity, frequency duration and type of stress, recruiting several brain functions to activate the autonomic or limbic system. Triggering the autonomic system causes the rapid release of catecholamines, such as adrenaline and noradrenaline, into circulation from chromaffin cells in the head kidney. Catecholamines trigger blood cells to release proinflammatory and regulatory cytokines to cope with acute stress. Activation of the limbic axis stimulates the dorsolateral and dorsomedial pallium to process emotions, memory, behaviour and the activation of preoptic nucleus‐pituitary gland‐interrenal cells in the head kidney, releasing glucocorticoids, such as cortisol to the bloodstream. Glucocorticoids cause downregulation of various immune system functions depending on the duration, intensity and type of chronic stress. As stress persists, most immune functions, with the exception of cytotoxic functions, overcome these effects and return to homeostasis. The deterioration of cytotoxic functions during chronic stress appears to be responsible for increased morbidity and mortality.
Collapse
Affiliation(s)
- Mazal Shimon-Hophy
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ramy R Avtalion
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
7
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Żarski D, Le Cam A, Nynca J, Klopp C, Ciesielski S, Sarosiek B, Montfort J, Król J, Fontaine P, Ciereszko A, Bobe J. Domestication modulates the expression of genes involved in neurogenesis in high-quality eggs of Sander lucioperca. Mol Reprod Dev 2020; 87:934-951. [PMID: 32864792 DOI: 10.1002/mrd.23414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Pikeperch, Sander lucioperca, is a species of high interest to the aquaculture. The expansion of its production can only be achieved by furthering domestication level. However, the mechanisms driving the domestication process in finfishes are poorly understood. Transcriptome profiling of eggs was found to be a useful tool allowing understanding of the domestication process in teleosts. In this study, using next-generation sequencing, the first pikeperch transcriptome has been generated as well as pikeperch-specific microarray comprising 35,343 unique probes. Next, we performed transcriptome profiling of eggs obtained from wild and domesticated populations. We found 710 differentially expressed genes that were linked mostly to nervous system development. These results provide new insights into processes that are directly involved in the domestication of finfishes. It can be suggested that all the identified processes were predetermined by the maternally derived set of genes contained in the unfertilized eggs. This allows us to suggest that fish behavior, along with many other processes, can be predetermined at the cellular level and may have significant implications on the adaptation of cultured fish to the natural environment. This also allows to suggest that fish behavior should be considered as a very important pikeperch aquaculture selection trait.
Collapse
Affiliation(s)
- Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Aurelie Le Cam
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| | - Joanna Nynca
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Sarosiek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jerome Montfort
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| | - Jarosław Król
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Julien Bobe
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| |
Collapse
|
9
|
Palińska-Żarska K, Woźny M, Kamaszewski M, Szudrowicz H, Brzuzan P, Żarski D. Domestication process modifies digestion ability in larvae of Eurasian perch (Perca fluviatilis), a freshwater Teleostei. Sci Rep 2020; 10:2211. [PMID: 32042003 PMCID: PMC7010758 DOI: 10.1038/s41598-020-59145-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/20/2020] [Indexed: 11/12/2022] Open
Abstract
To date, a comparative analysis of larval performance and digestion abilities between wild and domesticated Eurasian perch has not yet been performed. Eurasian perch larvae from wild and domesticated spawners were reared in the same conditions and at different development stages, growth performance variables, the expression of genes encoding digestive enzymes and specific enzymatic activity were analysed. No significant differences in hatching rate, deformity rate or swim bladder inflation effectiveness between wild and domesticated larvae were found. Specific growth rate, final total length and wet body weight were significantly lower in wild larvae, whereas higher mortality in wild larvae was observed compared to domesticated larvae. The data obtained in this study clearly indicate that during domestication, significant modification of digestion ability occurs at the very beginning of ontogeny, where domesticated fish are characterised by lower enzymatic activity and lower expression of genes encoding digestive enzymes. This probably results from the low diversity of the food offered in culture conditions, which significantly modified digestion capability. The obtained data provide an understanding of how domestication affects fish in aquaculture and may improve the planning of selective breeding programs of Eurasian perch and other freshwater Teleosts.
Collapse
Affiliation(s)
- Katarzyna Palińska-Żarska
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury, Oczapowskiego 5, 10-719, Olsztyn, Poland.
| | - Maciej Woźny
- Department of Environmental Biotechnology, University of Warmia and Mazury, Słoneczna 45G, 10-709, Olsztyn, Poland
| | - Maciej Kamaszewski
- Departament of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Hubert Szudrowicz
- Departament of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, University of Warmia and Mazury, Słoneczna 45G, 10-709, Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
10
|
Ghisaura S, Pagnozzi D, Melis R, Biosa G, Slawski H, Uzzau S, Anedda R, Addis MF. Liver proteomics of gilthead sea bream (Sparus aurata) exposed to cold stress. J Therm Biol 2019; 82:234-241. [PMID: 31128654 DOI: 10.1016/j.jtherbio.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
Abstract
The gilthead sea bream (Sparus aurata, L.) is very sensitive to low temperatures, which induce fasting and reduced growth performances. There is a strong interest in understanding the impact of cold on fish metabolism to foster the development and optimization of specific aquaculture practices for the winter period. In this study, an 8 week feeding trial was carried out on gilthead sea bream juveniles reared in a Recirculated Aquaculture System (RAS) by applying a temperature ramp in two phases of four weeks each: a cooling phase from 18 °C to 11 °C and a cold maintenance phase at 11 °C. Liver protein profiles were evaluated with a shotgun proteomics workflow based on filter-aided sample preparation (FASP) and liquid chromatography-mass spectrometry (LC-ESI-Q-TOF MS/MS) followed by label-free differential analysis. Along the whole trial, sea breams underwent several changes in liver protein abundance. These occurred mostly during the cooling phase when catabolic processes were mainly observed, including protein and lipid degradation, together with a reduction in protein synthesis and amino acid metabolism. A decrease in protein mediators of oxidative stress protection was also seen. Liver protein profiles changed less during cold maintenance, but pathways such as the methionine cycle and sugar metabolism were significantly affected. These results provide novel insights on the dynamics and extent of the metabolic shift occurring in sea bream liver with decreasing water temperature, supporting future studies on temperature-adapted feed formulations. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011059.
Collapse
Affiliation(s)
- S Ghisaura
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - D Pagnozzi
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - R Melis
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - G Biosa
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | | | - S Uzzau
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Department of Biomedical Sciences, University of Sassari, Italy
| | - R Anedda
- Porto Conte Ricerche, Tramariglio, Alghero, Italy.
| | - M F Addis
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Department of Veterinary Medicine, University of Milan, Italy.
| |
Collapse
|
11
|
Baylor JL, Butler MW. Immune challenge-induced oxidative damage may be mitigated by biliverdin. ACTA ACUST UNITED AC 2019; 222:jeb.200055. [PMID: 30770399 DOI: 10.1242/jeb.200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
An effective immune response results in the elimination of pathogens, but this immunological benefit may be accompanied by increased levels of oxidative damage. However, organisms have evolved mechanisms to mitigate the extent of such oxidative damage, including the production and mobilization of antioxidants. One potential mechanism of mitigating immune challenge-induced changes in oxidative physiology is increasing biliverdin production. Biliverdin is chemically an antioxidant, but within-tissue correlations between biliverdin concentration and oxidative damage have never been directly examined. To test how biliverdin tissue concentrations are associated with physiological responses to an immune challenge, we exposed northern bobwhite quail (Colinus virginianus) to one of four treatments: injection of a non-pathogenic antigen - either lipopolysaccharide or phytohemagglutinin, control injection of phosphate-buffered saline or a sham procedure with no injection. Twenty-four hours later, we quantified oxidative damage and triglyceride concentration in the plasma, and biliverdin concentration in the plasma, liver and spleen. We found that both types of immune challenge increased oxidative damage relative to both non-injected and vehicle-injected controls, but treatment had no effects on any other metric. However, across all birds, oxidative damage and biliverdin concentration in the plasma were negatively correlated, which is consistent with a localized antioxidant function of biliverdin. Additionally, we uncovered multiple links between biliverdin concentration, change in mass during the immune challenges and triglyceride levels, suggesting that pathways associated with biliverdin production may also be associated with aspects of nutrient mobilization. Future experiments that manipulate biliverdin levels or oxidative damage directly could establish a systemic antioxidant function or elucidate important physiological impacts on body mass maintenance and triglyceride storage, mobilization or transport.
Collapse
|
12
|
Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3-GENES GENOMES GENETICS 2019; 9:105-116. [PMID: 30591433 PMCID: PMC6325909 DOI: 10.1534/g3.118.200647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.
Collapse
|
13
|
Karami AM, Bani A, Pourkazemi M, Ghasemi M, Kania PW, Buchmann K. Comparative susceptibilities and immune reactions of wild and cultured populations of Caspian trout Salmo trutta caspius to VHSV. DISEASES OF AQUATIC ORGANISMS 2018; 128:187-201. [PMID: 29862977 DOI: 10.3354/dao03231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Caspian trout Salmo trutta caspius is an endangered subspecies of brown trout Salmo trutta which is native to the Caspian Sea. Restocking programmes have been established, but recent introduction of the rhabdovirus viral haemorrhagic septicaemia virus (VHSV) into Iranian rainbow trout farms connected to waterbodies supporting wild Caspian trout may represent an additional threat to the declining stock. The susceptibility of wild and cultured populations of this endemic subspecies was demonstrated by performing controlled VHSV infection experiments (both by bath and injection challenges). Subsequently, VHSV infection in exposed fish was confirmed (CPE and quantitative PCR), virus levels were measured, and regulation of immune genes in exposed fish was investigated with a focus on the genes encoding IL-8, IFNγ, TGFβ, TNFα, SAA, C3-4, CD8α, IgM, MHC I, MHC II, iNOS and IGF-1. The presence of IgM-, CD8α- and MHC II-positive cells in host organs was visualized by immunohistochemistry. Both wild and cultured trout strains proved to be VHSV-susceptible following experimental challenge, but the mortality curves and associated regulation of immune-related genes differed between the 2 trout types. Implications of the results for future management of Caspian trout populations are discussed.
Collapse
Affiliation(s)
- Asma Mohammad Karami
- Department of Biology, Faculty of Science, University of Guilan, Rasht 4199613776, Iran
| | | | | | | | | | | |
Collapse
|
14
|
Rearing conditions and life history influence the progress of gametogenesis and reproduction performances in pikeperch males and females. Animal 2018; 12:2335-2346. [DOI: 10.1017/s1751731118000010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Shirmohammadi M, Salamat N, Ronagh MT, Movahedinia A, Hamidian G. Assessment of immune status of yellowfin seabream (Acanthopagrus latus) during short term exposure to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2017; 195:78-90. [PMID: 28257924 DOI: 10.1016/j.cbpc.2017.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
The aim of the present investigation was to assess the immune status in yellowfin seabream (Acanthopagrus latus) exposed to different concentrations of phenanthrene (Phe) for 14days. In addition, the Phe accumulation in the fish muscle was measured during the experiment. Fish were injected with different concentrations (0, 2, 20 and 40mg/kg) of Phe and samples were taken from tissue and blood of fish 1, 4, 7 and 14days after injection. Exposure of fish to Phe caused a significant decrease in white blood cells, C3 and C4 levels, lysosomal membrane stability, lysozyme activity after 4days and antibacterial activity after 7days of the experiment. In contrast, cortisol level significantly increased after 4days. The concentration of Phe in fish muscle increased rapidly after 4days. The main tissue changes observed in the head kidney including increase in melanomacrophage centers (MMCs), empty spaces between cells and hemorrhage. The degree of tissue changes ranged from normal to moderate in Phe-treated fish. The size and number of MMCs in treated fish were significantly higher than control. In conclusion, Phe toxicity in yellowfin seabream can induce increased cortisol level, tissue changes and immune suppression.
Collapse
Affiliation(s)
- Mehrnaz Shirmohammadi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Mohammad Taghi Ronagh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr City, Khuzestan Province, Iran.
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
16
|
Mandiki SNM, Milla S, Robles SN, Kestemont P. Corticosteroids deeply depress the in vitro steroidogenic capacity of Eurasian perch ovary at the end of the reproductive cycle. Gen Comp Endocrinol 2017; 245:44-54. [PMID: 28185934 DOI: 10.1016/j.ygcen.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
Abstract
Corticosteroids play positive or negative role in the reproductive mechanisms of many fish species but the physiological contexts relating to such biphasic actions are not well defined. In the present study we investigated to what extent corticosteroids (cortisol-Co, 11-deoxycorticosterone-DOC) hormones may interfere with the steroidogenic capacity of Eurasian perch ovarian tissues, and we tested whether the negative effects of corticosteroids may be mitigated by potential stimulating endocrine factors, namely insulin-like growth factor-1 (IGF), human chorionic gonadotropin (HCG) or thyroid hormones (Triidothyronine-T3, thyroxine-T4). Ovarian tissues from six maturing fish at late vitellogenesis developmental stage (LVO) or at the start of the final meiotic oocyte maturation (FMO) were incubated during 6h in Cortland medium containing various endocrine compounds. Both corticosteroids drastically suppressed aromatase activity (AA) and sex-steroid production, namely 17-β estradiol (E2), 17α-20β-dihydroxy-4-pregnen-3-one (DHP) and testosterone (T). HCG significantly prevented the suppression of both AA and sex-steroid production by low and high cortisol doses, but a lesser AA protection was observed in the case of DOC. The protection of DHP and T productions by HCG from the negative effects by the two corticosteroids was higher at FMO than at LVO stage. IGF or thyroid hormone treatments were lesser effective or ineffective in mitigating the suppression of AA or sex-steroid production by cortisol. The results suggest that an increase in cortisol or DOC such as after mild or high stress intensity may inhibit drastically the ovarian steroidogenic capacity whatever the final oocyte maturation stage in percid fish by hampering AA and sex-steroid production. That inhibition may be partly mitigated by gonadotropins but not IGF nor thyroid hormones, especially at final meiotic oocyte maturation stage.
Collapse
Affiliation(s)
- S N M Mandiki
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - S Milla
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - S Nkogo Robles
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - P Kestemont
- Research Unit of Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
17
|
Chen X, Wang J, Qian L, Gaughan S, Xiang W, Ai T, Fan Z, Wang C. Domestication drive the changes of immune and digestive system of Eurasian perch (Perca fluviatilis). PLoS One 2017; 12:e0172903. [PMID: 28257494 PMCID: PMC5336236 DOI: 10.1371/journal.pone.0172903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022] Open
Abstract
Domestication has altered a variety of traits within the Eurasian perch (Perca fluviatilis), including phenotypic, physiological and behavioral traits of Eurasian perch (Perca fluviatilis). Little is known, however, about the genetic changes between domesticated and wild Eurasian perch. In this study, we assembled a high-quality de novo reference transcriptome and identified differentially expressed genes between wild and domesticated Eurasian perch. A total of 113,709 transcripts were assembled, and 58,380 transcripts were annotated. Transcriptomic comparison revealed 630 differentially expressed genes between domesticated and wild Eurasian perch. Within domesticated Eurasian perch there were 412 genes that were up-regulated including MHCI, MHCII, chia, ighm within immune system development. There were 218 genes including try1, ctrl, ctrb, cela3b, cpa1 and cpb1, which were down-regulated that were associated with digestive processes. Our results indicated domestication drives the changes of immune and digestive system of Eurasian perch. Our study not only provide valuable genetic resources for further studies in Eurasian perch, but also provide novel insights into the genetic basis of physiological changes in Eurasian perch during domestication process.
Collapse
Affiliation(s)
- Xiaowen Chen
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jun Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Long Qian
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Sarah Gaughan
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Wei Xiang
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Tao Ai
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Zhenming Fan
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
- * E-mail: (ZF); (CW)
| | - Chenghui Wang
- Key Laboratory of Freshwater Fisheries Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (ZF); (CW)
| |
Collapse
|
18
|
Schmitz M, Douxfils J, Mandiki SNM, Morana C, Baekelandt S, Kestemont P. Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 55:550-558. [PMID: 27346159 DOI: 10.1016/j.fsi.2016.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/11/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Hyperosmotic stress has often been investigated from osmoregulation perspectives while the effects of such stress on the immune capacity remain largely unexplored. In this study, striped catfish were submitted to three salinity profiles (freshwater, low saline water, saline water) during 20 days, followed by infection with a virulent bacteria, Edwardsiella ictaluri, responsible for the enteric septicaemia of catfish. Osmoregulatory (plasma osmolality, gill Na(+)K(+)ATPase), immune (blood cells, lysozyme activity, complement activity, respiratory burst) parameters and mortality rate were investigated. In addition, abundances of heat shock protein 70 and high mobility group box 1 were explored. With elevated salinity, plasma osmolality severely increased while gill Na(+)K(+)ATPase slightly increased. Salinity alone stimulated the number of granulocytes, lysozyme activity and respiratory burst but depleted the number of thrombocytes. Salinity in combination with infection stimulated the number of monocytes and ACH50. On the contrary, erythrocytes, hematocrit, heat shock protein 70 and high mobility group box 1 did not significantly vary with salinity profiles. Then, salinity induced earlier onset on mortalities after E. ictaluri inoculation whereas cumulative mortality reach 79.2%, 67.0% and 91.7% respectively in freshwater, low saline water and saline water. In conclusion, salinity stimulates several immune functions in striped catfish but prolonged exposure to excessive hyperosmotic condition may lead to excessive inflammatory response and death.
Collapse
Affiliation(s)
- Mélodie Schmitz
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium.
| | - Jessica Douxfils
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Cédric Morana
- Katholieke Universiteit Leuven, Department of Earth and Environmental Sciences, Leuven, Belgium
| | - Sébastien Baekelandt
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
| |
Collapse
|
19
|
|
20
|
Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons. PLoS One 2015; 10:e0138007. [PMID: 26368930 PMCID: PMC4569575 DOI: 10.1371/journal.pone.0138007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 12/02/2022] Open
Abstract
Stressors frequently increase oxidative damage–unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus), which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen’s importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin’s antioxidant role in this species.
Collapse
|
21
|
Vargas-Chacoff L, Martínez D, Oyarzún R, Nualart D, Olavarría V, Yáñez A, Bertrán C, Ruiz-Jarabo I, Mancera JM. Combined effects of high stocking density and Piscirickettsia salmonis treatment on the immune system, metabolism and osmoregulatory responses of the Sub-Antarctic Notothenioid fish Eleginops maclovinus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:424-434. [PMID: 25108087 DOI: 10.1016/j.fsi.2014.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to evaluate immunological, metabolic and osmoregulatory secondary stress responses in Eleginops maclovinus specimens submitted to three different stocking densities: i) low (3.1 kg m(-3)), medium (15 kg m(-3)) and high (60 kg m(-3)) during 10 days, alone or in combination with a previous treatment of a protein extract of the pathogen Piscirickettsia salmonis (0.5 μg g weight body(-1)). Plasma, liver, gill and kidney samples were obtained at the end of both experiments. Plasma cortisol and amino acid levels increased, while plasma glucose, triglyceride and lactate levels decreased at higher stocking densities. However, no effects were observed on serum Immunoglobulin type M (IgM anti P. salmonis level) values. Gill Na(+), K(+)-ATPase activity enhanced under these experimental conditions, suggesting an osmotic imbalance. Energy metabolism changes, assessed by metabolite concentrations and enzyme activities, indicated a reallocation of energetic substrates at higher stocking densities. Specimens inoculated with a protein extract of P. salmonis and maintained at different stocking densities showed primary stress response, as all groups enhanced plasma cortisol concentrations. Serum IgM levels increased after treatment with P. salmonis extract but a negative influence of high stocking density on IgM production was observed when immune system was activated. Furthermore, treatment with P. salmonis protein extract evoked deep changes in the metabolite stores in all tissues tested, indicating a mobilization of energy substrates in response to infection. The results show that stocking density induced immunological, metabolic and osmoregulatory secondary stress responses in E. maclovinus specimens and that previous treatment with P. salmonis compromise these changes.
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - D Nualart
- Instituto de Bioquímica y Microbiología, Interdisciplinary Center for Aquaculture Research (FONDAP-INCAR), Universidad Austral de Chile, Valdivia, Chile; EWOS Innovation, Camino a Pargua Km 57, Calbuco, Chile
| | - V Olavarría
- Instituto de Bioquímica y Microbiología, Interdisciplinary Center for Aquaculture Research (FONDAP-INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - A Yáñez
- Instituto de Bioquímica y Microbiología, Interdisciplinary Center for Aquaculture Research (FONDAP-INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - C Bertrán
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - I Ruiz-Jarabo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
22
|
Ghisaura S, Anedda R, Pagnozzi D, Biosa G, Spada S, Bonaglini E, Cappuccinelli R, Roggio T, Uzzau S, Addis MF. Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Sci 2014; 12:44. [PMID: 25342931 PMCID: PMC4200174 DOI: 10.1186/s12953-014-0044-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022] Open
Abstract
Background The zootechnical performance of three different commercial feeds and their impact on liver and serum proteins of gilthead sea bream (Sparus aurata, L.) were assessed in a 12 week feeding trial. The three feeds, named A, B, and C, were subjected to lipid and protein characterization by gas chromatography (GC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Results Feed B was higher in fish-derived lipids and proteins, while feeds C and A were higher in vegetable components, although the largest proportion of feed C proteins was represented by pig hemoglobin. According to biometric measurements, the feeds had significantly different impacts on fish growth, producing a higher average weight gain and a lower liver somatic index in feed B over feeds A and C, respectively. 2D DIGE/MS analysis of liver tissue and Ingenuity pathways analysis (IPA) highlighted differential changes in proteins involved in key metabolic pathways of liver, spanning carbohydrate, lipid, protein, and oxidative metabolism. In addition, serum proteomics revealed interesting changes in apolipoproteins, transferrin, warm temperature acclimation-related 65 kDa protein (Wap65), fibrinogen, F-type lectin, and alpha-1-antitrypsin. Conclusions This study highlights the contribution of proteomics for understanding and improving the metabolic compatibility of feeds for marine aquaculture, and opens new perspectives for its monitoring with serological tests. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0044-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefania Ghisaura
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Roberto Anedda
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Grazia Biosa
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Simona Spada
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Elia Bonaglini
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Roberto Cappuccinelli
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Tonina Roggio
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio, 07041 Alghero, Italy
| |
Collapse
|
23
|
Douxfils J, Lambert S, Mathieu C, Milla S, Mandiki SNM, Henrotte E, Wang N, Dieu M, Raes M, Rougeot C, Kestemont P. Influence of domestication process on immune response to repeated emersion stressors in Eurasian perch (Perca fluviatilis, L.). Comp Biochem Physiol A Mol Integr Physiol 2014; 173C:52-60. [PMID: 24674818 DOI: 10.1016/j.cbpa.2014.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 11/16/2022]
Abstract
Domestication might be a possible way to reduce the physiological response to long-term stressors and deleterious effects on immunity. The present study aimed to evaluate the chronic immune response induced by repeated emersions and the possible impact of domestication by comparing farmed Eurasian perch with short (F1) and long (F4) captive-life history. In the first experiment, fish were exposed to a single emersion and physiological stress response was measured in the short term to characterize fish sensitivity to the tested stressor. Serum cortisol and glucose elevated within 6h post-stress and splenosomatic index (SSI) decreased within 48h, indicating that the species was affected by emersion stressor. In the second experiment, F1 and F4 generations were submitted to repeated water emersions (3 times/week during 44days). On day 9, 18 and 44, samplings were performed 48h post-stressor to highlight any sustained disruption of immune system. Serum cortisol, glucose, SSI and lysozyme activity were evaluated and serum proteome was analyzed using 2D-DIGE. Any of the tested variables were affected by repeated emersions and proteomic analysis only revealed that alpha-2 macroglobulins (a2Ms) were up-regulated in the serum of stressed individuals. Domestication also resulted in the up-regulation of five a2M isoforms and down-regulation of complement C3 and Ig light chain proteins, independently of any stressor exposure. In conclusion, the results suggested that repeated emersions are not severe stressors for Eurasian perch, probably explaining why domestication had no influence on fish responses. Changes associated with domestication are highly complex and certainly need further investigations.
Collapse
Affiliation(s)
- J Douxfils
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - S Lambert
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - C Mathieu
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - S Milla
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - S N M Mandiki
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - E Henrotte
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - N Wang
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - M Dieu
- University of Namur (UNamur), Research Unit in Cellular Biology (URBC)-NARILIS, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - M Raes
- University of Namur (UNamur), Research Unit in Cellular Biology (URBC)-NARILIS, Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - C Rougeot
- University of Liège, Aquaculture Research and Education Centre (CEFRA), Chemin de la Justice, B-5000 Tihange, Belgium
| | - P Kestemont
- University of Namur (UNamur), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium.
| |
Collapse
|
24
|
Mathieu C, Milla S, Mandiki SNM, Douxfils J, Kestemont P. In vivo response of some immune and endocrine variables to LPS in Eurasian perch (Perca fluviatilis, L.) and modulation of this response by two corticosteroids, cortisol and 11-deoxycorticosterone. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:25-34. [PMID: 24041989 DOI: 10.1016/j.cbpa.2013.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/08/2013] [Accepted: 09/08/2013] [Indexed: 11/19/2022]
Abstract
In fish, the endocrine system, especially corticosteroids pathway, strongly interacts with immune system. On the other hand, in vivo co-stimulation of both systems is not well documented. To better understand this interaction, we decided to evaluate the in vivo effects of both stimulation of the immune system and co-stimulation of both systems in Eurasian perch juveniles. Fish were injected either with 10mgkg(-1) LPS, or with a combination of LPS and 0.8mgkg(-1) cortisol or LPS and 0.08mgkg(-1) 11-deoxycorticosterone (DOC) and sampled 1, 3 or 7days after injection. LPS affected the immune system by increasing plasma lysozyme activity and blood neutrophils populations. During the same time-course, LPS decreased the proportion of a mixture of lymphocytes and thrombocytes in blood and TNF-α expression in spleen. Cortisol modulated the LPS-mediated response in TNF-α mRNA expression levels in spleen. Contrary to LPS alone, the association of LPS with DOC modulated the abundance of complement component 3 (C3) mRNA in spleen. On the other hand, LPS altered the corticotropic axis by decreasing mRNA expression levels of all corticosteroid receptors and of 11β-HSD-2 in spleen. Both corticosteroids injected were not able to balance these LPS-induced suppressive effects on corticosteroid receptors and 11β-HSD-2 expression levels in spleen. Contrary to LPS alone, the association of LPS with DOC modulated GR-1b expression in gills. These results indicated that LPS is a strong modulator of the corticosteroid receptors expression in spleen. Furthermore, we report for the first time a LPS-induced decrease of the mineralocorticoid receptor expression. Finally, corticosteroids were able to modulate the LPS-mediated response at the transcriptional level.
Collapse
Affiliation(s)
- Cédric Mathieu
- University of Namur (FUNDP), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Effects of Cortisol Administered through Slow-Release Implants on Innate Immune Responses in Rainbow Trout (Oncorhynchus mykiss). Int J Genomics 2013; 2013:619714. [PMID: 24073392 PMCID: PMC3773382 DOI: 10.1155/2013/619714] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 01/28/2023] Open
Abstract
Cortisol is a key hormone in the fish stress response with a well-known ability to regulate several physiological functions, including energy metabolism and the immune system. However, data concerning cortisol effects on fish innate immune system using a more controlled increase in cortisol levels isolated from any other stress related signaling is scarce. The present study describes the effect of doses of cortisol corresponding to acute and chronic levels on the complement and lysozyme activity in plasma of the rainbow trout (Oncorhynchus mykiss). We also evaluated the effects of these cortisol levels (from intraperitoneally implanted hydrocortisone) on the mRNA levels quantified by RT-qPCR of selected key immune-related genes in the liver, head kidney, and spleen. For that purpose, 60 specimens of rainbow trout were divided in to two groups: a control group injected with a coconut oil implant and another group injected with the same implant and cortisol (50 μg cortisol/g body weight). Our results demonstrate the role of cortisol as a modulator of the innate immune response without the direct contribution of other stress axes. Our results also show a relationship between the complement and lysozyme activity in plasma and mRNA levels in liver, supporting the important role of this organ in producing these immune system proteins after a rise of cortisol in the fish plasma.
Collapse
|
26
|
Mathieu C, Milla S, Mandiki SNM, Douxfils J, Douny C, Scippo ML, De Pauw E, Kestemont P. First evidence of the possible implication of the 11-deoxycorticosterone (DOC) in immune activity of Eurasian perch (Perca fluviatilis, L.): comparison with cortisol. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:149-58. [PMID: 23458843 DOI: 10.1016/j.cbpa.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
Abstract
Cortisol, the main corticosteroid in fish, is frequently described as a modulator of fish immune system. Moreover, 11-deoxycorticosterone (DOC) was shown to bind and transcriptionally activate the mineralocorticoid receptor and may act as a mineralocorticoid in fish. Immune modulations induced by intraperitoneal injections of these two corticosteroids were assessed in Eurasian perch juveniles. Cortisol and DOC were injected at 0.8 mg kg(-1) and 0.08 mg kg(-1) body weight respectively. Cortisol increased plasma lysozyme activity 72 h post-injection, C-type lysozyme expression in spleen from 1 to 72 h post-injection, and favoured blood neutrophils at the expense of a mixture of lymphocytes and thrombocytes. Moreover, 6 h after injection, cortisol reduced expression levels of the pro-inflammatory cytokine TNF-α in spleen. DOC had no effects on the immune variables measured in plasma, but increased expression levels of C-type lysozyme and apolipoprotein A1 mRNA in both gills and spleen. Meanwhile, DOC stimulated its putative signalling pathway by increasing expression of mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 in spleen. These results confirmed the role of cortisol as an innate, short term immune stimulator. For the first time, DOC is described as a possible immune stimulator in fish.
Collapse
Affiliation(s)
- Cédric Mathieu
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Douxfils J, Deprez M, Mandiki SNM, Milla S, Henrotte E, Mathieu C, Silvestre F, Vandecan M, Rougeot C, Mélard C, Dieu M, Raes M, Kestemont P. Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication--clues to physiological acclimation and humoral immune modulations. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1112-1122. [PMID: 22982557 DOI: 10.1016/j.fsi.2012.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
We evaluated the physiological and humoral immune responses of Eurasian perch submitted to 4-h hypoxia in either single or repeated way. Two generations (F1 and F5) were tested to study the potential changes in these responses with domestication. In both generations, single and repeated hypoxia resulted in hyperglycemia and spleen somatic index reduction. Glucose elevation and lysozyme activity decreased following repeated hypoxia. Complement hemolytic activity was unchanged regardless of hypoxic stress or domestication level. A 2D-DIGE proteomic analysis showed that some C3 components were positively modulated by single hypoxia while C3 up- and down-regulations and over-expression of transferrin were observed following repeated hypoxia. Domestication was associated with a low divergence in stress and immune responses to hypoxia but was accompanied by various changes in the abundance of serum proteins related to innate/specific immunity and acute phase response. Thus, it appeared that the humoral immune system was modulated following single and repeated hypoxia (independently of generational level) or during domestication and that Eurasian perch may display physiological acclimation to frequent hypoxic disturbances.
Collapse
Affiliation(s)
- Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology (URBE), NARILIS, University of Namur (FUNDP), Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|