1
|
Negm SS, Abd El-Hack ME, Alagawany M, Patra AK, Naiel MAE. The Beneficial Impacts of Essential Oils Application against Parasitic Infestation in Fish Farm. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:194-214. [DOI: 10.2174/9789815049015122010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aquaculture is a growing sector due to the high rising demand for fish, shrimp, oysters, and other products, which is partially conflicted by various infectious diseases. The infectious diseases affecting the production and inducing high mortalities cause substantial economic losses in this sector. Also, parasitic infections may induce severe mortality and morbidity in fish farms. Therefore, most farmers apply several kinds of antibiotics to control the problems induced by bacterial diseases and, to some extent, parasitic infections. The extensive usage of antibiotics to control or prevent pathogens may lead to the development of pathogenic resistant strains that might cause hazards to human health. Besides, there is a global trend toward reducing the application of antibiotics in aquaculture farms. Thus, there is a great effort to discover new natural and safe products with pharmaceutical properties, such as natural essential oils (EO). Essential oils are secondary metabolites of many plants (roots, flowers, seeds, leaves, fruits and peels) and their molecular structures provide a high antimicrobial and antiparasitic efficiency against pathogens. Consequently, it is essential to provide sufficient knowledge about the mode of action of EO against fish parasites and its future applications and directions in aquaculture.
Collapse
Affiliation(s)
- Samar S. Negm
- Agriculture Research Centre,Fish Biology and Ecology Departmen,Giza,Egypt
| | | | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| | | |
Collapse
|
2
|
Siddiqua KS, Khan MA. Replacement of Fish Oil With Groundnut Oil for Developing Sustainable Feeds for Labeo rohita Fingerling. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.862054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Groundnut oil (GO) is one of the most widely available vegetable oils (VOs) in India and throughout the world, with a global production of 6.12 million metric tons in the year 2020–2021. GO contains phytochemicals and antioxidants with a longer shelf life. Because of these benefits, GO can produce durable, low-cost, and sustainable aquaculture feeds. To evaluate the nutritional efficacy and possibility of replacing fish oil (FO) with GO, this experiment was carried out to test the effects of partial or total substitution of dietary FO by GO on the growth performance, carcass composition, antioxidant capacity, lysozyme activity, muscle fatty acid composition, and filet nutritional quality in Labeo rohita fingerling. Induced bred healthy rohu fingerlings (4.84 ± 0.13 g) were fed six isonitrogenous (400 g kg−1) and isolipidic (97 g kg−1) casein- and gelatin-containing purified diets, wherein the FO was gradually replaced by 0, 20, 40, 60, 80, and 100% GO. Fishes were stocked randomly in triplicate groups of 30 fish per tank and fed at 08:00, 12:00, and 16:00 h to apparent satiety for 8 weeks. The results showed that FO replacement with GO did not affect the growth but decreased the eicosapentaenoic (EPA), docosahexaenoic acid (DHA) levels, and n-3/n-6 ratio in the muscle of rohu fingerlings. The antioxidant capacity and lysozyme activity improved up to 60% replacement of FO with GO in diet and then declined (P > 0.05) upon further inclusion of GO in diets. Although the atherogenicity, thrombogenicity indices, and hypocholesterolemic/hypercholesterolemic (H/H) ratio did not change significantly among all the muscle samples, the highest filet lipid quality (FLQ) value was found in fish receiving a 100% FO diet. Further inclusion of dietary GO decreased the filet H/H ratio and FLQ value. In summary, replacing FO with GO at a higher level had negative consequences on the filet nutritional quality of rohu fingerlings. Therefore, FO can be replaced by GO in formulated feeds to a level of 60% without hampering the growth, antioxidant capacity, and lysozyme activity and to avoid degrading the nutritional quality of fish filet.
Collapse
|
3
|
Cornet V, Geay F, Erraud A, Mandiki SNM, Flamion E, Larondelle Y, Rollin X, Kestemont P. Modulations of lipid metabolism and development of the Atlantic salmon (Salmo salar) fry in response to egg-to-fry rearing conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:979-997. [PMID: 33974164 DOI: 10.1007/s10695-021-00959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In stocking program, the use of artificial incubation conditions in hatcheries from the fertilisation of eggs to the release of unfed fry could reduce their ability to adapt to the natural environment. This study evaluates the effects of three factors on the fitness and physiology of salmon fry at their emergence, the origin of water (river vs drilling), the type of support in the incubator (support matrix vs plastic sheets) and the type of incubators (Californian vs vertical trays), and compares them to a semi-natural incubation method in river. Key biological functions including nutritional and immune status were compared among experimental conditions using biometric parameters, lipid composition and gene expression analyses. Our findings demonstrated that fry incubated in vertical trays supplied with river water had no significant difference in growth and lipid composition compared to those in semi-natural incubators. Besides, fry incubated on a substrate matrix in Californian trays exhibited phenotypic characteristics closest to those incubated in river. This support matrix improved fish growth, lipid consumption and distribution compared to fry on plastic sheets. Moreover, the large amounts of several PUFAs in these fry could allow a better membrane fluidity ensuring a better adaptation to temperature variation under cold conditions. In addition, drilling water improved the survival rate compared to river water due to lower numbers of fine particles, known to be responsible for the clogging of eggs. To conclude, using a substrate combined with drilling water in artificial incubators could increase fry fitness and its adaption to wild life.
Collapse
Affiliation(s)
- Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur (UNamur), 5000, Namur, Belgium.
| | - Florian Geay
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur (UNamur), 5000, Namur, Belgium
| | - Alexandre Erraud
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur (UNamur), 5000, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur (UNamur), 5000, Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur (UNamur), 5000, Namur, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Xavier Rollin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur (UNamur), 5000, Namur, Belgium
| |
Collapse
|
4
|
Bandeira Junior G, Baldisserotto B. Fish infections associated with the genus Aeromonas: a review of the effects on oxidative status. J Appl Microbiol 2021; 131:1083-1101. [PMID: 33382188 DOI: 10.1111/jam.14986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/07/2023]
Abstract
The aim of this review was to summarize the current knowledge regarding the effects of aeromonosis on fish oxidative status. The bibliographic survey was carried out on the research platforms: Scopus and Science Direct. The keywords 'Aeromonas', 'fish' and 'oxidative status' (or 'oxidative stress', 'oxidative damage' and similar terms) were used. Scientific papers and short communications were considered. Studies involving fish aeromonosis and enzymatic or non-enzymatic markers of oxidative status were selected. The results of antioxidant enzymes activities/expressions after infection lack consistency, suggesting that these findings should be interpreted with caution. Most of the analysed studies pointed to an increase in reactive oxygen species, malondialdehyde and protein carbonylation levels, indicating possible oxidative damage caused by the infection. Thus, these three biomarkers are excellent indicators of oxidative stress during infection. Regarding respiratory burst activity, several studies have indicated increased activity, but other studies have indicated unchanged activity after infection. Nitric oxide levels also increased after infection in most studies. Therefore, it is suggested that the fish's immune system tries to fight a bacterial infection by releasing reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- G Bandeira Junior
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
5
|
Yan XB, Dong XH, Tan BP, Zhang S, Chi SY, Liu HY, Yang YZ. Influence of different oil sources on growth, disease resistance, immune response and immune-related gene expression on the hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu), to Vibrio parahaemolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 99:310-321. [PMID: 32070783 DOI: 10.1016/j.fsi.2020.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effects of feeding alternative dietary oils to hybrid grouper fish (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) on their growth, histological morphology of hepatocytes, disease resistance, immune response, and expression of immune-related genes. Seven experimental fish meal-based isonitrogenous and isolipidic diets were formulated containing 5% fish oil (FO; acting as controls) and various vegetable oils (VOs): corn oil (CO), sunflower oil (SO), tea oil (TO), olive oil (OO), rice oil (RO), and mixed oil (MO); comprising equal amounts of these oils). Each diet was fed to triplicate groups of 40 fish (initial mean body weight ± standard error = 15.09 ± 0.01 g) for eight weeks. The results show that 1) alternative dietary oils had no significant effects on weight gain rate, specific growth rate, protein efficiency ratio, and survival rate compared with controls (P > 0.05). The weight gain rate (WGR) and specific growth rate (SGR) of the SO group were lower than in the CO and OO groups. 2) These were no differences in morphological indexes among groups; except for the CO group, in which the condition factor and hepatosomatic index were lower than those in other groups. 3) Compared with controls, the whole-body moisture and crude protein contents in the VO groups were higher, while their crude lipid contents were lower. 4) The fatty acid contents in liver and muscle were affected by lipid type, and the contents of eicosapentaenoic acid and docosahexaenoic acid in liver and muscle in the VO groups were markedly lower than in controls. 5) Compared with control group, VO groups damaged the histological morphology of hepatocytes. 6) After a challenge with the Vibrio parahaemolyticus bacterium, there were no differences in mortality among groups. However, VO enhanced the activity of non-specific immune enzymes while down-regulating the expression of Nrf2 and inducing the expression of pro-inflammatory factors (IL1β, TNFα, TLR22, and MyD88) in the kidney. It can be concluded that dietary VO substitution does not affect the growth of fish but damaged the histological morphology of hepatocytes and induced the expression of pro-inflammatory factors in tissues. Finally, OO and CO were recommended as the appropriate lipid replacement for FO.
Collapse
Affiliation(s)
- Xiao-Bo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiao-Hui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Bei-Ping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China.
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Shu-Yan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Hong-Yu Liu
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, PR China
| | - Yuan-Zhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| |
Collapse
|
6
|
Nguyen TM, Mandiki SNM, Tran TNT, Larondelle Y, Mellery J, Mignolet E, Cornet V, Flamion E, Kestemont P. Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β-glucan. FISH & SHELLFISH IMMUNOLOGY 2019; 92:288-299. [PMID: 31195114 DOI: 10.1016/j.fsi.2019.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Omnivorous fish species such as the common carp (Cyprinus carpio) are able to biosynthesise long chain polyunsaturated fatty acids (LC-PUFAs) from plant oil PUFA precursors, but the influence of the amount and quality of the LC-PUFAs biosynthesised from these oils on the immunocompetence status of the fish has received little attention. This study aims to evaluate whether the conversion of PUFA by carp induces a sufficient biosynthesis of LC-PUFA to maintain a good immunocompetence status in this species. Six iso-nitrogenous (crude protein = 39.1%) and iso-lipidic (crude lipids = 10%) diets containing three different lipid sources (cod liver oil (CLO) as fish oil; linseed oil (LO) and sunflower oil (SFO) as plant oils) were formulated with or without β-glucan supplementation at 0.25 g/kg diet. Juvenile carp (16.3 ± 0.6 g initial body weight) were fed a daily ration of 4% body weight for 9 weeks and then infected at day 64 with the bacteria Aeromonas hydrophyla. No significant differences in survival rate, final body weight, specific growth rate and feed conversion rate were observed between diets. After bacterial infection, mortality rate did not differ between fish fed CLO and plant oil-based diets, indicating that the latter oils did not affect the overall immunocompetence status of common carp. Plant oil-based diets did not alter lysozyme activity in healthy and infected fish. No negative effects of plant oils on complement activity (ACH50) were observed in healthy fish, even if both plant oil-based diets induced a decrease in stimulated fish two days after infection. Furthermore, the levels of various immune genes (nk, lys, il-8, pla, pge, alox) were not affected by plant oil-based diets. The expression of pla and pge genes were higher in SFO-fed fish than in CLO ones, indicating that this plant oil rich in linoleic acid (LA) better stimulated the eicosanoid metabolism process than fish oil. In response to β-glucan supplementation, some innate immune functions seemed differentially affected by plant oil-based diets. LO and SFO induced substantial LC-PUFA production, even if fish fed CLO displayed the highest EPA and DHA levels in tissues. SFO rich in LA induced the highest ARA levels in fish muscle while LO rich in α-linolenic acid (ALA) sustained higher EPA production than SFO. A significantly higher fads-6a expression level was observed in SFO fish than in LO ones, but this was not observed for elovl5 expression. In conclusion, the results show that common carp fed plant oil-based diets are able to produce substantial amounts of LC-PUFA for sustaining growth rate, immune status and disease resistance similar to fish fed a fish oil-based diet. The differences in the production capacity of LC-PUFAs by the two plant oil-based diets were associated to a differential activation of some immune pathways, explaining how the use of these oils did not affect the overall immunocompetence of fish challenged with bacterial infection. Moreover, plant oil-based diets did not induce substantial negative effects on the immunomodulatory action of β-glucans, confirming that these oils are suitable for sustaining a good immunocompetence status in common carp.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam.
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Thi Nang Thu Tran
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Julie Mellery
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur, Belgium.
| |
Collapse
|
7
|
Tinti E, Geay F, Lopes Rodrigues M, Kestemont P, Perpète EA, Michaux C. Molecular cloning and 3D model of a fatty-acid elongase in a carnivorous freshwater teleost, the European perch ( Perca fluviatilis). 3 Biotech 2019; 9:242. [PMID: 31168435 PMCID: PMC6542919 DOI: 10.1007/s13205-019-1773-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
The European perch (Perca fluviatilis) is a carnivorous freshwater fish able to metabolise polyunsaturated fatty acids (PUFA) into highly unsaturated fatty acids (HUFA). This makes it a potential candidate for sustainable aquaculture development. In this study, special attention is given to the fatty-acid elongase (ELOVL) family, one of the two enzymatic systems implied in the HUFA biosynthesis. Structural information on European perch enzyme converting PUFA into HUFA is obtained by both molecular cloning and in silico characterization of an ELOVL5-like elongase from P. fluviatilis (pfELOVL). The full-length cDNA sequence consists of a 885-base pair Open Reading Frame coding for a 294-amino acid protein. Phylogenetic analysis and sequence alignment with fish elongases predict the pfELOVL clusters within the ELOVL5 sub-group. The amino-acid sequence displays the typical ELOVL features: several transmembrane α helices (TMH), an endoplasmic reticulum (ER) retention signal, and four "conserved boxes" involved in the catalytic site. In addition, the topology analysis predicts a 7-TMH structure addressed in the ER membrane. A 3D model of the protein embedded in an ER-like membrane environment is also provided using de novo modelling and molecular dynamics. From docking studies, two putative enzyme-substrate-binding modes, including H bonds and CH-π interactions, emphasize the role of specific residues in the "conserved boxes".
Collapse
Affiliation(s)
- Emmanuel Tinti
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
| | | | - Maximilien Lopes Rodrigues
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Research Unit in Environmental and Evolutionary Biology, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
- Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
8
|
Sourabié A, Mandiki SNM, Geay F, Ahoulé AG, Naert N, Toguyeni A, Kestemont P. Tropical Vegetable Oils Do Not Alter Growth Performance in African Catfish through a High n-6 Polyunsaturated Fatty Acids Biosynthesis Capacity. Lipids 2019; 54:329-345. [PMID: 31006877 DOI: 10.1002/lipd.12145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023]
Abstract
The main objective of this study was to determine the best vegetable oils (VO) for nutrition of African catfish by assessing the effects of a complete replacement of fish oil (FO) by different VO sources on its growth performance, fatty acid composition, and elongase-desaturase gene expression levels. Fish (16.2 g of initial body weight) were fed with five experimental isonitrogenous, isolipidic, and isoenergetic diets in which FO was totally replaced by cottonseed oil (CO), palm oil (PO), desert date oil (DO), or Shea butter (SB). Complete replacement of FO with VO did not affect growth performance except for low values in fish fed SB diet. Muscle n-3 LC-polyunsaturated fatty acids (PUFA) were significantly reduced in fish fed VO-based diets when compared with FO fed fish. However, the muscle arachidinic acid (ARA) levels in phospholipid class were 1.4 to 1.6 times higher in fish fed CO and DO diets than FO fed fish despite the lower ARA suppliers from these VO-based diets, suggesting endogenous LC-PUFA biosynthesis from PUFA precursors in fish fed these VO. The fads2 and elovl5 gene expression levels in liver of fish fed DO were also higher compared to FO controls. Therefore, all the results support the hypothesis that African catfish has higher biosynthesis capacity to convert vegetable n-6 PUFA precursors like linoleic acid (LNA, 18:2n-6) into n-6 LC-PUFA of the ARA type, compared to the conversion of vegetable α-linolenic acid (ALA, 18:3n-3) into n-3 LC-PUFA of the eicosapentanoic acid (EPA) or docosahexanoic acid (DHA) type. The results also indicate that DO can be recommended as the best alternative to FO replacement in African catfish nutrition.
Collapse
Affiliation(s)
- Aboubacar Sourabié
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000, Namur, Belgium.,Natural Resources and Environmental Sciences Research and Studies Laboratory (LERNSE), Institute of Rural Development (IDR), University Nazi Boni of Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Syaghalirwa N M Mandiki
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Florian Geay
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Ange G Ahoulé
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Nathan Naert
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Aboubacar Toguyeni
- Natural Resources and Environmental Sciences Research and Studies Laboratory (LERNSE), Institute of Rural Development (IDR), University Nazi Boni of Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Patrick Kestemont
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles 61, B-5000, Namur, Belgium
| |
Collapse
|
9
|
Dietary fatty acid source has little effect on the development of the immune system in the pyloric caeca of Atlantic salmon fry. Sci Rep 2019; 9:27. [PMID: 30631091 PMCID: PMC6328623 DOI: 10.1038/s41598-018-37266-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
The quality and relative amounts of dietary lipids may affect the health and growth of cultured Atlantic salmon. So far, little is known about their effects on the performance of the fish immune system during early life stages and, in particular their importance in the transition from endogenous nutrition (yolk) in the alevin stage to exogenous nutrition in the later fry stage. We investigated the immunomodulatory effects of fish oil, vegetable oil and phospholipid-rich oil in feeds for farmed Atlantic salmon using a transcriptomic approach. The experiment allowed a fine-scale monitoring of gene expression profiles in two tissues, the pyloric caeca of the intestine and the liver, in a 94 days-long first feeding experiment. The analysis of transcriptional profiles revealed that first feeding induced a strong immunomodulation in the pyloric caeca after 48 days of feeding, lasting up to day 94 and possibly beyond. On the other hand, the differential effect of the three dietary regimes was negligible. We interpret this upregulation, undetectable in liver, as a potentiation of the immune system upon the first contact of the digestive system with exogenous feed. This process involved a complex network of gene products involved in both cellular and humoral immunity. We identified the classical pathway of the complement system, acting at the crossroads between innate and adaptive immunity, as a key process modulated in response to the switch from endogenous to exogenous nutrition.
Collapse
|
10
|
Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus). PLoS One 2018; 13:e0196100. [PMID: 29694393 PMCID: PMC5919051 DOI: 10.1371/journal.pone.0196100] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/08/2018] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to investigate the effects of replacing dietary fish oil (FO) with palm oil (PO) in juvenile Nile tilapia, Oreochromis niloticus (9.34± 0.02g initial weight) with emphasis on growth performance, digestive enzyme activities as well as serum biochemical parameters. Also, lysozyme activity (LYZ), respiratory burst (RB), superoxide dismutase (SOD), catalase (CAT) and resistance to Streptococcus iniae were investigated. Fish were stocked in 15 rectangular fiber glass tanks (150× 60× 40 cm) at 40 fish per tank with water maintained at 210 litres. Fish were fed five isonitrogenous (33% crude protein) and isolipidic (10% lipid) diets with PO included at 0% (0% PO), 25% (25% PO), 50% (50%PO), 75% (75% PO) and 100% (100% PO) for 8 weeks. The findings demonstrated that growth, and feed utilization was not compromised when PO was used in place of FO either partially or totally. Except for protease activity which was not significantly altered, lipase and amylase activities were significantly altered when FO was replaced with PO. There were no significant differences among treatments for CAT, SOD and LYZ. Serum malondialdehyde (MDA) in fish fed 100% PO was significantly lower than all other groups whiles total antioxidant capacity (TAC) of fish fed 0% PO was significantly higher than all other groups. Fish fed 0% PO, 25% PO and 50% PO had glutathione reductase (GR) significantly higher than fish fed 75% PO and 100% PO. RB in fish fed 0% PO were significantly lower than fish fed 75% PO and 100% PO. Also, fish fed 0% PO had significantly lower total protein (TP) compared with groups fed 50% PO and 75% PO. Fish fed diets with PO had similar resistance ability to Streptococcus iniae as those fed diets with FO. However, the liver function was likely to be compromised due to the increase in aspartate amino transferase (AST) and alkaline phosphatas (ALP) along increasing PO inclusion levels. AST, total protein, triacylglycerol (TAG) and low-density lipoprotein cholesterol (LDL-C) were significantly higher (p<0.05) in groups fed higher levels of PO. This study therefore concludes that feeding tilapia fingerlings with diets containing PO affects antioxidant and innate immune parameters negatively due to the reduction in LYS, TAC, GR, MDA, CAT, SOD and GSHpx.
Collapse
|
11
|
Cornet V, Ouaach A, Mandiki SNM, Flamion E, Ferain A, Van Larebeke M, Lemaire B, Reyes López FE, Tort L, Larondelle Y, Kestemont P. Environmentally-realistic concentration of cadmium combined with polyunsaturated fatty acids enriched diets modulated non-specific immunity in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:104-116. [PMID: 29407798 DOI: 10.1016/j.aquatox.2018.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Nutrition is crucial to grow healthy fish particularly in a context of pollution, overcrowding and pathogen risks. Nowadays, the search for food components able to improve fish health is increasingly developing. Here, the influence of four dietary polyunsaturated fatty acids (PUFAs) that are alpha-linolenic acid (ALA, 18:3n-3), linoleic acid (LA, 18:2n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) on the sensitivity of rainbow trout (Oncorhynchus mykiss) juveniles to environmentally realistic cadmium (Cd, 0.3 μg/L) concentration was investigated. Fish diets were designed to ensure the specific abundance of one of these individual PUFAs, and were given for a 4-week pre-conditioning period followed by a 6-week Cd exposure period. Focus was put on growth performance and immune responses following a short (24 h) and a long-term (6 weeks) Cd exposure. For each experimental condition, some fish were submitted to a bacterial challenge (24 h) with Aeromonas salmonicida achromogenes at the end of Cd conditioning period. DHA-enriched diet improved growth performances as compared to LA-enriched diet, but also increased ROS production (after short-term exposure to Cd) that could lead to a higher inflammation status, and some immunity-related genes (at short and long-term exposure). We notably highlighted the fact that even a low, environmentally-realistic concentration, Cd can strongly impact the immune system of rainbow trout, and that specific dietary PUFA enrichment strategies can improve growth performance (DHA-enriched diet), provide protection against oxidative stress (ALA- and EPA-enriched diet) and stimulate non-specific immunity.
Collapse
Affiliation(s)
- Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium.
| | - Abderrahim Ouaach
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| | - Aline Ferain
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Mélusine Van Larebeke
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Benjamin Lemaire
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Felipe E Reyes López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Yvan Larondelle
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
12
|
Douxfils J, Fierro-Castro C, Mandiki SNM, Emile W, Tort L, Kestemont P. Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2017; 63:285-296. [PMID: 28232282 DOI: 10.1016/j.fsi.2017.02.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Although β-glucans stimulating effects have already been demonstrated on the immune system of numerous animal species, available data remain relatively variable and more research should be done regarding the complexity of underlying mechanisms. In this context, the present study aimed to evaluate the stress and immune-related effects of dietary β-glucans (i.e. Macrogard®) by considering a number of influencing factors such as the dose (0, 0.1, 0.2 and 0.5% in food), feeding duration (15 versus 30 days), tissue (blood, kidney, spleen, gills) and infection status (healthy or infected). Blood parameters (lysozyme, ACH50 activities, leucocyte populations) and mRNA expression level of several immune- and stress-related genes (TFN-α1, IL-1β, IL10, COX-2, TGF-β, MC2R, HSP70) were measured. Our results suggest that spleen may be a highly responsive organ to dietary β-glucans both in healthy or infected fish, and that this organ may therefore significantly contribute to the immune reinforcement induced by such immunostimulatory diet. Our study further reveals that overdoses of β-glucans and/or prolonged medication can lead to a non-reactive physiological status and, consequently, to a poor immune response. All in all, the current data emphasizes the need for further extensive research in the field of dietary β-glucans as a preventive method for farmed fish protection.
Collapse
Affiliation(s)
- Jessica Douxfils
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Wakson Emile
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| |
Collapse
|