1
|
Garcia BJ, Musayeva N, Reyes A, Martinez C, Serra Dos Santos Y, Salinas I. Ontogeny of the organized nasopharynx-associated lymphoid tissue in rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105298. [PMID: 39643071 DOI: 10.1016/j.dci.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Understanding the ontogeny of teleost mucosa-associated lymphoid tissues (MALT) is critical for determining the earliest timepoint for effective mucosal vaccination of young fish. Here, we describe the developmental sequence that leads to the formation of an organized MALT structure in rainbow trout, the organized nasopharynx-associated lymphoid tissue (O-NALT). Control rainbow trout were sampled between 340 and 1860 degree days (DD) and routine histology and immunofluorescence staining were used to determine cellular changes in immune cells in the nasal cavity as well as O-NALT formation. We identified that O-NALT is first seeded by CD8α+ T cells at 700 DD followed by IgM+ B cells and cd4-2b+ cells at 1000 DD. Histomorphologically, trout O-NALT is fully formed at 1400 DD. Whole body gene expression analyses uncovered waves of igmh, cd4-2b, and cd8a expression that recapitulate the cellular seeding sequence of O-NALT by specific lymphocyte subsets. Our results indicate that 1) O-NALT formation results from a specific sequence of lymphocyte subset colonization pioneered by CD8α+ T cells and 2) the presence of the full O-NALT structure at 1400 DD may mark this timepoint as the earliest developmental stage at which mucosal vaccines can induce long lasting, specific immune responses.
Collapse
Affiliation(s)
- Benjamin J Garcia
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Narmin Musayeva
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexis Reyes
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Chrysler Martinez
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Chief Manuelito Middle School, Gallup, NM, 87301, USA
| | - Yago Serra Dos Santos
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Bjørgen H, Barac F, Fjelldal PG, Hansen T, Hordvik I, Koppang EO. Organisation of the Atlantic salmon (Salmo salar) thymus and its content of Ig-expressing cells. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109652. [PMID: 38788913 DOI: 10.1016/j.fsi.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
The thymus of fishes is located as a dual organ in a rostrodorsal projection within the gill chamber and is covered by the operculum. The histological organization of the teleost fish thymus displays considerable diversity, particularly in salmonids where a clear distinction between the thymus cortex and medulla is yet to be defined. Recent interest has focused on the role of B cells in thymic function, but the presence of these cells within the salmon thymus remains poorly understood. In this morphological study, we applied in situ hybridization to investigate developing Atlantic salmon thymi for the expression of recombination activating (Rag) genes 1 and 2. We identified the location of the cortex, aligning with the previously described inner zone. Expression of IgM and IgD transcripts was predominantly observed in cells within the outer and subcapsular zones, with lesser expression in the cortex and inner zone. IgT expression was confined to a limited number of cells in the inner zone and capsule. The location of the thymus medulla could not be established. Our results are discussed in the context of the recently identified lymphoid organs, namely the intrabranchial lymphoid tissue (ILT) and the salmon bursa.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Fran Barac
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Per G Fjelldal
- Matre Research Station, Institute of Marine Research, Matre, Norway
| | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matre, Norway
| | - Ivar Hordvik
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Erling O Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
3
|
Etayo A, Lie KK, Bjelland RM, Hordvik I, Øvergård AC, Sæle Ø. The thymus and T-cell ontogeny in ballan wrasse ( Labrus bergylta) is nutritionally modelled. Front Immunol 2023; 14:1166785. [PMID: 37197651 PMCID: PMC10183603 DOI: 10.3389/fimmu.2023.1166785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Marine fish larvae often experience high mortality unrelated to predation during early life stages, and farmed ballan wrasse (Labrus bergylta) is no exception. Knowing when the adaptive immune system is developed and fully functional, and how nutrition may modulate these processes is therefore of importance to establish effective prophylactic measures and will also extend the relatively limited knowledge on the immune system in lower vertebrates. The thymus anlage of ballan wrasse was found to be histologically visible for the first time at larval stage 3 (20-30 days post hatch, dph) and becomes lymphoid at stage 5 (50-60 dph) correlating with an increase of T-cell marker transcripts. At this stage, a clear zonation into a RAG1+ cortex and a RAG1- CD3ϵ+ medulla was distinguished, indicating that T-cell maturation processes in ballan wrasse are similar to other teleosts. The higher abundance of CD4-1+ compared to CD8β+ cells in the thymus together with the apparent lack of CD8β+ cells in gill, gut, and pharynx, where CD4-1+ cells were identified, indicates that helper T-cells have a more prominent role during larval development compared to cytotoxic T-cells. As ballan wrasse lacks a stomach but has an exceptionally high IgM expression in the hindgut, we hypothesize that helper T-cells are crucial for activation and recruitment of IgM+ B-cells and possibly other leukocytes to the gut during early development. Nutritional factors such as DHA/EPA, Zn and Se may lead to an earlier expression of certain T-cell markers as well as a larger size of the thymus, indicating an earlier onset of adaptive immunity. Including live feeds that supplies the larva with higher amounts of these nutrients can therefore be beneficial for ballan wrasse farming.
Collapse
Affiliation(s)
- Angela Etayo
- Feed and Nutrition group, Institute of Marine Research, Bergen, Norway
- Fish Health Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
- *Correspondence: Angela Etayo,
| | - Kai K. Lie
- Feed and Nutrition group, Institute of Marine Research, Bergen, Norway
| | - Reidun M. Bjelland
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Ivar Hordvik
- Fish Health Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Fish Health Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Øystein Sæle
- Feed and Nutrition group, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
4
|
Liang C, Sheng X, Tang X, Xing J, Chi H, Zhan W. Structural characteristics and mucosal immune response of the interbranchial lymphoid tissue in the gills of flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:388-398. [PMID: 35334297 DOI: 10.1016/j.fsi.2022.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
A specialized lymphoepithelial tissue termed the interbranchial lymphoid tissue (ILT) is recently identified in several fish species. However, the structural variation and mucosal immune functions of the ILT remain largely unknown. In this study, the anti-Zap-70 MAb was firstly determined to specifically recognize ZAP-70 protein, and CD4-1+, CD4-2+ and CD8β+ T-cells, but not IgM+ B cells, in peripheral blood leucocytes of flounder (Paralichthys olivaceus). Then we found that aggregates of Zap-70+ cells were located in the epithelium covering the bottom of the interbranchial cleft and along the afferent and efferent edges of the filaments in a cross view, where a meshwork of epithelial cells containing diffused lymphoid cells was exhibited, confirming these structures as the ILT; In a sagittal view, Zap-70+ cells were situated at the base of the filaments (here named as proximal ILT, pILT) and in the interlamellar epithelium (named as distal ILT, dILT). Also, a few IgM+ B cells were distributed at these sites. The lymphoepithelium within pILT and dILT was very thin with a low number of Zap-70+ cells in premetamorphosis and postclimax larvae of flounder, and got thicker containing much more Zap-70+ cells in juvenile and adult individuals. The aggregates of CD4-1+/Zap-70+, CD4-2+/Zap-70+, and CD8β+/Zap-70+ T-cell subsets were identified in the ILT. Post bath vaccination with inactivated Edwardsiella tarda and then intraperitoneal injection of EdU, the amounts of EdU+ and Zap-70+ cells obviously increased at 3 d and 7 d, and co-localization of EdU+/Zap-70+ cells identified the presence of proliferative T cells; meanwhile, MHC class II-expressing cells were increased. These findings indicated that the ILT in gills of flounder was an important site for the induction of local T cell-mediated immunity, which would lead to a better understanding of mucosal immunity and defense mechanisms of teleost fish.
Collapse
Affiliation(s)
- Chengcheng Liang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| |
Collapse
|
5
|
Cascarano MC, Ruetten M, Vaughan L, Tsertou MI, Georgopoulou D, Keklikoglou K, Papandroulakis N, Katharios P. Epitheliocystis in Greater Amberjack: Evidence of a Novel Causative Agent, Pathology, Immune Response and Epidemiological Findings. Microorganisms 2022; 10:627. [PMID: 35336202 PMCID: PMC8949381 DOI: 10.3390/microorganisms10030627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Epitheliocystis is a fish gill disease caused by a broad range of intracellular bacteria infecting freshwater and marine fish worldwide. Here we report the occurrence and progression of epitheliocystis in greater amberjack reared in Crete (Greece). The disease appears to be caused mainly by a novel Betaproteobacteria belonging to the Candidatus Ichthyocystis genus with a second agent genetically similar to Ca. Parilichlamydia carangidicola coinfecting the gills in some cases. After a first detection of the disease in 2017, we investigated epitheliocystis in the following year's cohort of greater amberjack juveniles (cohort 2018) transferred from inland tanks to the same cage farm in the open sea where the first outbreak was detected. This cohort was monitored for over a year together with stocks of gilthead seabream and meagre co-farmed in the same area. Our observations showed that epitheliocystis could be detected in greater amberjack gills as early as a month following the transfer to sea cages, with ionocytes at the base of the gill lamellae being initially infected. Cyst formation appears to trigger a proliferative response, leading to the fusion of lamellae, impairment of gill functions and subsequently to mortality. Lesions are characterized by infiltration of immune cells, indicating activation of the innate immune response. At later stages of the outbreak, cysts were no longer found in ionocytes but were observed in mucocytes at the trailing edge of the filament. Whole cysts appeared finally to be expelled from infected mucocytes directly into the water, which might constitute a novel means of dispersion of the infectious agents. Molecular screening indicates that meagre is not affected by this disease and confirms the presence of previously described epitheliocystis agents, Ca. Ichthyocystis sparus, Ca. Ichthyocystis hellenicum and Ca. Similichlamydia spp., in gilthead seabream. Prevalence data show that the bacteria persist in both gilthead seabream and greater amberjack cohorts after first infection.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Department of Biology, University of Crete, 71003 Heraklion, Greece; (M.C.C.); (K.K.)
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 71003 Heraklion, Greece; (M.I.T.); (D.G.); (N.P.)
| | - Maja Ruetten
- Pathovet AG, 8317 Tagelswangen, Switzerland; (M.R.); (L.V.)
| | - Lloyd Vaughan
- Pathovet AG, 8317 Tagelswangen, Switzerland; (M.R.); (L.V.)
| | - Maria Ioanna Tsertou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 71003 Heraklion, Greece; (M.I.T.); (D.G.); (N.P.)
| | - Dimitra Georgopoulou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 71003 Heraklion, Greece; (M.I.T.); (D.G.); (N.P.)
| | - Kleoniki Keklikoglou
- Department of Biology, University of Crete, 71003 Heraklion, Greece; (M.C.C.); (K.K.)
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 71003 Heraklion, Greece; (M.I.T.); (D.G.); (N.P.)
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 71003 Heraklion, Greece; (M.I.T.); (D.G.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 71003 Heraklion, Greece; (M.I.T.); (D.G.); (N.P.)
| |
Collapse
|
6
|
Smith AJ, Adams MB, Crosbie PBB, Nowak BF, Bridle AR. Size-dependent resistance to amoebic gill disease in naïve Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2022; 122:437-445. [PMID: 35189323 DOI: 10.1016/j.fsi.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Amoebic gill disease, caused by the protozoan ectoparasite Neoparamoeba perurans, remains a significant threat to commercial Atlantic salmon aquaculture operations worldwide, despite partial control afforded by selective breeding and therapeutic intervention. Anecdotal reports from commercial producers suggest that historically, smaller Atlantic salmon smolts are more susceptible to AGD than larger smolts. Here, large (>350 g) and small (<200 g) commercially sourced, AGD-naïve Atlantic salmon cohorts were experimentally exposed to 50 N. perurans trophozoites L-1 without intervention. Progression and severity of AGD in challenged cohorts was evaluated through gill pathology, using gill score and histological examination, and quantification of gill-associated amoebae burden using qPCR. To determine the potential basis for differences in AGD susceptibility between cohorts, transcriptome analysis was conducted using RNA extracted from whole gill arches. Overall, the large Atlantic salmon cohort had significantly lower gill parasite burdens and reduced AGD-related gross pathology compared to the small cohort. Relative gill load of N. perurans appeared to be proportional to gill score in both size classes, with larger smolts typically observed to have comparatively reduced parasite burdens at a given gill score. Moreover, comparison between gene expression profiles of large and small smolts highlighted upregulation of genes consistent with elevated immune activity in large smolts. Combined, the results presented here provide strong evidence of size-dependent resistance to AGD in AGD-naïve Atlantic salmon.
Collapse
Affiliation(s)
- Aaron J Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia.
| | - Mark B Adams
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Philip B B Crosbie
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
7
|
Dalum AS, Kraus A, Khan S, Davydova E, Rigaudeau D, Bjørgen H, López-Porras A, Griffiths G, Wiegertjes GF, Koppang EO, Salinas I, Boudinot P, Rességuier J. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Front Immunol 2021; 12:769901. [PMID: 34880866 PMCID: PMC8647647 DOI: 10.3389/fimmu.2021.769901] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts ("Percomorphs"), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills.
Collapse
Affiliation(s)
- Alf S. Dalum
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Aurora Kraus
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Shanawaz Khan
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Erna Davydova
- Department of Biosciences, BMB, University of Oslo, Oslo, Norway
| | | | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Gareth Griffiths
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Erling O. Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julien Rességuier
- Department of Biosciences, FYSCELL, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Bjørgen H, Koppang EO. Anatomy of teleost fish immune structures and organs. Immunogenetics 2021; 73:53-63. [PMID: 33426583 PMCID: PMC7862538 DOI: 10.1007/s00251-020-01196-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The function of a tissue is determined by its construction and cellular composition. The action of different genes can thus only be understood properly when seen in the context of the environment in which they are expressed and function. We now experience a renaissance in morphological research in fish, not only because, surprisingly enough, large structures have remained un-described until recently, but also because improved methods for studying morphological characteristics in combination with expression analysis are at hand. In this review, we address anatomical features of teleost immune tissues. There are approximately 30,000 known teleost fish species and only a minor portion of them have been studied. We aim our review at the Atlantic salmon (Salmo salar) and other salmonids, but when applicable, we also present information from other species. Our focus is the anatomy of the kidney, thymus, spleen, the interbranchial lymphoid tissue (ILT), the newly discovered salmonid cloacal bursa and the naso-pharynx associated lymphoid tissue (NALT).
Collapse
Affiliation(s)
- Håvard Bjørgen
- Section of Anatomy, The Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway
| | - Erling Olaf Koppang
- Section of Anatomy, The Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway.
| |
Collapse
|
9
|
Barraza F, Montero R, Wong-Benito V, Valenzuela H, Godoy-Guzmán C, Guzmán F, Köllner B, Wang T, Secombes CJ, Maisey K, Imarai M. Revisiting the Teleost Thymus: Current Knowledge and Future Perspectives. BIOLOGY 2020; 10:biology10010008. [PMID: 33375568 PMCID: PMC7824517 DOI: 10.3390/biology10010008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary The thymus is the immune organ producing T lymphocytes that are essential to create immunity after encountering pathogens or vaccination. This review summarizes the thymus localization and histological studies, cell composition, and function in teleost fishes. We also describe how seasonal changes, photoperiod, water temperature fluctuations, and hormones can affect thymus development in fish species. Overall, the information helps identify future studies needed to understand thymus function in fish species and the immune system’s evolutionary origins. Since fish are exposed to pathogens, especially under aquaculture conditions, knowledge about the fish thymus and T lymphocyte can also help improve fish farming protocols, considering intrinsic and environmental conditions that can contribute to achieving the best vaccine responsiveness for disease resistance. Abstract The thymus in vertebrates plays a critical role in producing functionally competent T-lymphocytes. Phylogenetically, the thymus emerges early during evolution in jawed cartilaginous fish, and it is usually a bilateral organ placed subcutaneously at the dorsal commissure of the operculum. In this review, we summarize the current understanding of the thymus localization, histology studies, cell composition, and function in teleost fishes. Furthermore, we consider environmental factors that affect thymus development, such as seasonal changes, photoperiod, water temperature fluctuations and hormones. Further analysis of the thymus cell distribution and function will help us understand how key stages for developing functional T cells occur in fish, and how thymus dynamics can be modulated by external factors like photoperiod. Overall, the information presented here helps identify the knowledge gaps and future steps needed for a better understanding of the immunobiology of fish thymus.
Collapse
Affiliation(s)
- Felipe Barraza
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Ruth Montero
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany; (R.M.); (B.K.)
| | - Valentina Wong-Benito
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Héctor Valenzuela
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
| | - Carlos Godoy-Guzmán
- Center for Biomedical and Applied Research (CIBAP), School of Medicine, Faculty of Medical Sciences, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile;
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Bernd Köllner
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald, Insel Riems, Germany; (R.M.); (B.K.)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (T.W.); (C.J.S.)
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; (T.W.); (C.J.S.)
| | - Kevin Maisey
- Laboratory of Comparative Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile;
| | - Mónica Imarai
- Laboratory of Immunology, Center of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O’Higgins, Estación Central, Santiago 3363, Chile; (F.B.); (V.W.-B.); (H.V.)
- Correspondence:
| |
Collapse
|
10
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
11
|
Lymphoid Tissue in Teleost Gills: Variations on a Theme. BIOLOGY 2020; 9:biology9060127. [PMID: 32549335 PMCID: PMC7344468 DOI: 10.3390/biology9060127] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
In bony fish, the gill filaments are essential for gas exchanges, but also are vulnerable to infection by water-borne microorganisms. Omnipresent across fish, gill-associated lymphoid tissues (GIALT) regulate interactions with local microbiota and halt infection by pathogens. A special GIALT structure has recently been found in Salmonids, the interbranchial lymphoid tissue (ILT). However, the structural variation of GIALT across bony fish remains largely unknown. Here, we show how this critical zone of interaction evolved across fishes. By labeling a conserved T-cell epitope on tissue sections, we find that several basal groups of teleosts possess typical ILT, while modern teleosts have lymphoepithelium of different shape and size at the base of primary gill filaments. Within Cypriniformes, neither body size variation between two related species, zebrafish and common carp, nor morphotype variation, did have a drastic effect on the structure of ILT. Thereby this study is the first to describe the presence of ILT in zebrafish. The ILT variability across fish orders seems to represent different evolutionary solutions to balancing trade-offs between multiple adaptations of jaws and pharyngeal region, and immune responses. Our data point to a wide structural variation in gill immunity between basal groups and modern teleosts.
Collapse
|
12
|
Heimroth RD, Casadei E, Salinas I. Molecular Drivers of Lymphocyte Organization in Vertebrate Mucosal Surfaces: Revisiting the TNF Superfamily Hypothesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2697-2711. [PMID: 32238457 PMCID: PMC7872792 DOI: 10.4049/jimmunol.1901059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
The adaptive immune system of all jawed vertebrates relies on the presence of B and T cell lymphocytes that aggregate in specific body sites to form primary and secondary lymphoid structures. Secondary lymphoid organs include organized MALT (O-MALT) such as the tonsils and Peyer patches. O-MALT became progressively organized during vertebrate evolution, and the TNF superfamily of genes has been identified as essential for the formation and maintenance of O-MALT and other secondary and tertiary lymphoid structures in mammals. Yet, the molecular drivers of O-MALT structures found in ectotherms and birds remain essentially unknown. In this study, we provide evidence that TNFSFs, such as lymphotoxins, are likely not a universal mechanism to maintain O-MALT structures in adulthood of teleost fish, sarcopterygian fish, or birds. Although a role for TNFSF2 (TNF-α) cannot be ruled out, transcriptomics suggest that maintenance of O-MALT in nonmammalian vertebrates relies on expression of diverse genes with shared biological functions in neuronal signaling. Importantly, we identify that expression of many genes with olfactory function is a unique feature of mammalian Peyer patches but not the O-MALT of birds or ectotherms. These results provide a new view of O-MALT evolution in vertebrates and indicate that different genes with shared biological functions may have driven the formation of these lymphoid structures by a process of convergent evolution.
Collapse
Affiliation(s)
- Ryan D Heimroth
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131; and
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131; and
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131; and
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
13
|
Meza K, Inami M, Dalum AS, Lund H, Bjelland AM, Sørum H, Løvoll M. Comparative evaluation of experimental challenge by intraperitoneal injection and cohabitation of Atlantic salmon (Salmo salar L) after vaccination against Piscirickettsia salmonis (EM90-like). JOURNAL OF FISH DISEASES 2019; 42:1713-1730. [PMID: 31625186 DOI: 10.1111/jfd.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The Chilean aquaculture has been challenged for years by piscirickettsiosis. A common prophylactic measurement to try to reduce the impact from this disease is vaccination, but the development of vaccines that induce satisfactory protection of the fish in the field has so far not been successful. Experimental challenge models are used to test vaccine efficacy. The aim of this study was to evaluate the performance of experimental vaccines after challenge by the two most widely used challenge routes, intraperitoneal injection and cohabitation. A total of 1,120 Atlantic salmon were vaccinated with non-commercial experimental vaccines with increasing amounts of an inactivated Piscirickettsia salmonis EM90-like isolate. Differences in mortality, macroscopic and microscopic pathological changes, bacterial load and immune gene expression were compared after challenge by different routes. The results revealed a similar progression of the diseases after challenge by both routes and no gross differences reflecting the efficacy of the vaccines could be identified. The analysis of the immune genes suggests a possible suppression of the cellular immunity by CD8 T cell and with this stimulation of bacterial survival and replication. Comparative studies of experimental challenge models are valuable with regard to identifying the best model to mimic real-life conditions and vaccines' performance.
Collapse
Affiliation(s)
- Karla Meza
- VESO Vikan, Namsos, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Oslo, Norway
| | | | | | - Hege Lund
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Oslo, Norway
| | - Ane M Bjelland
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Oslo, Norway
| | - Henning Sørum
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine, Oslo, Norway
| | | |
Collapse
|
14
|
Meza K, Inami M, Dalum AS, Bjelland AM, Sørum H, Løvoll M. Development of piscirickettsiosis in Atlantic salmon (Salmo salar L.) smolts after intraperitoneal and cohabitant challenge using an EM90-like isolate: A comparative study. JOURNAL OF FISH DISEASES 2019; 42:1001-1011. [PMID: 30977526 DOI: 10.1111/jfd.13004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Piscirickettsiosis, caused by the intracellular Gram-negative bacteria Piscirickettsia salmonis, is at present the most devastating disease in the Chilean salmon industry. The aim of this study was to analyse disease development after challenge with a P. salmonis strain (EM90-like) under a controlled environment by comparing intraperitoneal challenge with cohabitation challenge. The P. salmonis EM90-like isolate was cultured in a liquid medium for the challenge of 400 Atlantic salmon (Salmo salar) smolts. Cumulative mortality was registered, necropsy was performed, and bacterial distribution in the tissues and histopathological changes were analysed. The results revealed a similar progression of the disease for the two different challenge models. Pathological and histopathological changes became more visible during the development of the clinical phase of the disease. Bacterial DNA was identified in all the analysed tissues indicating a systemic infection. Bacterial tropism to visceral organs was demonstrated by real-time quantitative PCR and immunohistochemistry. Better knowledge of disease development during P. salmonis infection may contribute to further development of challenge models that mimic the field situation during piscirickettsiosis outbreaks. The models can be used to develop and test future preventive measures against the disease.
Collapse
Affiliation(s)
- Karla Meza
- VESO Vikan, Namsos, Norway
- Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | - Ane M Bjelland
- Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Henning Sørum
- Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | |
Collapse
|
15
|
Aas IB, Austbø L, Falk K, Hordvik I, Koppang EO. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:247-254. [PMID: 28655579 DOI: 10.1016/j.dci.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression.
Collapse
Affiliation(s)
- Ida Bergva Aas
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lars Austbø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Ivar Hordvik
- Department of Biology, High Technology Centre, University of Bergen, 5006 Bergen, Norway
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
16
|
Petit J, David L, Dirks R, Wiegertjes GF. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:48-62. [PMID: 28257855 DOI: 10.1016/j.dci.2017.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Lior David
- Department of Animal Sciences, R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ron Dirks
- ZF-screens B.V., J.H, Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|