1
|
Sharma G, Chadha P. Toxic effects of aniline in liver, gills and kidney of freshwater fish Channa punctatus after acute exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109916. [PMID: 38599346 DOI: 10.1016/j.cbpc.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Aniline (C6H5NH2) is one of the hazardous aromatic amine where an amino group -NH2) is connected to phenyl ring (C6H5). Based on the evaluation of the 96-hour LC50 of aniline, two sublethal concentrations (4.19 mg/l and 8.39 mg/l) were selected for acute exposure tests in freshwater fish Channa punctatus. The liver, gills and kidney of fish being the principal sites of xenobiotic material accumulation, respiration, biotransformation, and excretion are the focus of the present study. Throughout the exposure time, the comet assay revealed increased tail length and tail DNA percentage indicating maximum damage to liver, gills and kidney of treated group after 96 h. After acute exposure, there was a significant (p ≤ 0.05) increase in the enzymatic activity of glutathione-S-transferase (GST) and acetylcholinesterase (AChE), whereas decline in superoxide dismutase (SOD) and catalase (CAT) activity was observed. Meanwhile, levels of malondialdehyde (MDA) increased over the exposure period for both concentrations. After 96 h of exposure, degree of tissue change (DTC) was evaluated in liver, gill and kidney of aniline exposed fish. Additionally, light microscopy revealed multiple abnormalities in liver, gills and kidney of all the treated groups. Significant changes were observed in the levels of biochemical markers viz., glucose, triglyceride, cholesterol, aspartate transaminase, alanine transaminase and urea following a 96-hour exposure to aniline. Studies using ATR-FTIR and transmission electron microscopy (TEM) revealed changes in biomolecules and structural abnormalities in several tissues of the aniline-exposed groups in comparison to the control group respectively.
Collapse
Affiliation(s)
- Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
2
|
Sun H, Zhang Y, Ren T, Gao Q, Shi X, Li X, Zhang P, Li Z, Liu H. Comparative Analysis of Physiological Responses and Intestinal Microbiota in Juvenile Soft-Shelled Turtle ( Pelodiscus sinensis) Fed Four Types of Dietary Carbohydrates. Animals (Basel) 2024; 14:1781. [PMID: 38929400 PMCID: PMC11200370 DOI: 10.3390/ani14121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
A 60 day feeding trial was conducted to evaluate the impacts of dietary carbohydrates with different complexities and configurations on the growth, plasma parameters, apparent digestibility, intestinal microbiota, glucose, and lipid metabolism of soft-shelled turtles (Pelodiscus sinensis). Four experimental diets were formulated by adding 170 g/kg glucose, fructose, α-starch, or cellulose, respectively. A total of 280 turtles (initial body weight 5.11 ± 0.21 g) were distributed into 28 tanks and were fed twice daily. The results showed that the best growth performance and apparent digestibility was observed in the α-starch group, followed by the glucose, fructose, and cellulose groups (p < 0.05). Monosaccharides (glucose and fructose) significantly enhanced the postprandial plasma glucose levels and hepatosomatic index compared to polysaccharides, due to the un-inhibited gluconeogenesis (p < 0.05). Starch significantly up-regulated the expression of the genes involved in glycolysis, pentose phosphate pathway, lipid anabolism and catabolism, and the transcriptional regulation factors of glycolipid metabolism (srebp and chrebp) (p < 0.05), resulting in higher plasma triglyceride levels and lipid contents in the liver and the whole body. The fructose group exhibited a lower lipid deposition compared with the glucose group, mainly by inhibiting the expression of srebp and chrebp. Cellulose enhanced the proportion of opportunistic pathogenic bacteria. In conclusion, P. sinensis utilized α-starch better than glucose, fructose, and cellulose.
Collapse
Affiliation(s)
- Haoran Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
| | - Yue Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
| | - Tiancong Ren
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
- College of Resource and Environment Sciences, Shijiazhuang University, Shijiazhuang 050035, China
| | - Qian Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
- College of Resource and Environment Sciences, Shijiazhuang University, Shijiazhuang 050035, China
| | - Xueying Shi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
| | - Xiangce Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
| | - Peiyu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Zhi Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Haiyan Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (H.S.); (Y.Z.); (T.R.); (Q.G.); (X.S.); (X.L.); (P.Z.)
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Jiang Y, Liu Z, Zhang L, Liu W, Li H, Li X. Phosphatidylserine Counteracts the High Stocking Density-Induced Stress Response, Redox Imbalance and Immunosuppression in Fish Megalobrama ambylsephala. Antioxidants (Basel) 2024; 13:644. [PMID: 38929083 PMCID: PMC11200497 DOI: 10.3390/antiox13060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
This study was conducted to investigate the effects of dietary phosphatidylserine (PS) supplementation on the growth performance, stress response, non-specific immunity and antioxidant capacity of juvenile blunt snout bream (Megalobrama ambylcephala) cultured under a high stocking density. A 2 × 2 two-factorial design was adopted, including two stocking densities (10 and 20 fish/m3) and two dietary PS levels (0 and 50 mg/kg). After the 12-week feeding trial, the high stocking density significantly decreased the final weight; weight gain rate; specific growth rate; feed intake; nitrogen retention efficiency; plasma complement 3 (C3) level; albumin/globulin (ALB/GLB, A/G) ratio; activity of myeloperoxidase, lysozyme (LZM) and glutathione peroxidase (GPX); gpx transcription; and abundance of sirtuin3 (Sirt3) and nuclear factor erythroid-2-related factor 2 (Nrf2). However, it significantly increased the plasma levels of cortisol, glucose (GLU), lactic acid (LD), total protein and GLB; hepatic malondialdehyde (MDA) content; and sirt1 transcription. PS supplementation significantly increased the plasma ALB and C4 levels; the A/G ratio; the activity of LZM, CAT and GPX; the transcription of sirt1, nrf2, manganese-containing superoxide dismutase and catalase; and the Nrf2 abundance. However, it significantly decreased the plasma levels of cortisol, GLU and GLB, as well as the hepatic MDA content. In addition, there was a significant interaction between the stocking density and PS supplementation regarding the effects on the plasma LD, ALB, GLB and C3 levels; A/G ratio; hepatic CAT activity; and protein abundance of Sod2. In conclusion, PS supplementation can counteract the high stocking density-induced stress response, redox imbalance and immunosuppression in blunt snout bream.
Collapse
Affiliation(s)
- Yangyang Jiang
- Anhui Province Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zishang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Haiyang Li
- Anhui Province Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
4
|
Xie Y, Shao X, Zhang P, Zhang H, Yu J, Yao X, Fu Y, Wei J, Wu C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass ( Micropterus salmoides). Metabolites 2024; 14:236. [PMID: 38668364 PMCID: PMC11051861 DOI: 10.3390/metabo14040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.
Collapse
Affiliation(s)
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| | | | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| |
Collapse
|
5
|
Wang S, Xu G, Zou J. Soluble non-starch polysaccharides in fish feed: implications for fish metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1-22. [PMID: 36219350 DOI: 10.1007/s10695-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, β-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
High Glucose Promotes Inflammation and Weakens Placental Defenses against E. coli and S. agalactiae Infection: Protective Role of Insulin and Metformin. Int J Mol Sci 2023; 24:ijms24065243. [PMID: 36982317 PMCID: PMC10048930 DOI: 10.3390/ijms24065243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Placentas from gestational diabetes mellitus (GDM) patients undergo significant metabolic and immunologic adaptations due to hyperglycemia, which results in an exacerbated synthesis of proinflammatory cytokines and an increased risk for infections. Insulin or metformin are clinically indicated for the treatment of GDM; however, there is limited information about the immunomodulatory activity of these drugs in the human placenta, especially in the context of maternal infections. Our objective was to study the role of insulin and metformin in the placental inflammatory response and innate defense against common etiopathological agents of pregnancy bacterial infections, such as E. coli and S. agalactiae, in a hyperglycemic environment. Term placental explants were cultivated with glucose (10 and 50 mM), insulin (50–500 nM) or metformin (125–500 µM) for 48 h, and then they were challenged with live bacteria (1 × 105 CFU/mL). We evaluated the inflammatory cytokine secretion, beta defensins production, bacterial count and bacterial tissue invasiveness after 4–8 h of infection. Our results showed that a GDM-associated hyperglycemic environment induced an inflammatory response and a decreased beta defensins synthesis unable to restrain bacterial infection. Notably, both insulin and metformin exerted anti-inflammatory effects under hyperglycemic infectious and non-infectious scenarios. Moreover, both drugs fortified placental barrier defenses, resulting in reduced E. coli counts, as well as decreased S. agalactiae and E. coli invasiveness of placental villous trees. Remarkably, the double challenge of high glucose and infection provoked a pathogen-specific attenuated placental inflammatory response in the hyperglycemic condition, mainly denoted by reduced TNF-α and IL-6 secretion after S. agalactiae infection and by IL-1β after E. coli infection. Altogether, these results suggest that metabolically uncontrolled GDM mothers develop diverse immune placental alterations, which may help to explain their increased vulnerability to bacterial pathogens.
Collapse
|
7
|
Lu J, Tao X, Luo J, Zhu T, Jiao L, Jin M, Zhou Q. Dietary choline promotes growth, antioxidant capacity and immune response by modulating p38MAPK/p53 signaling pathways of juvenile Pacific white shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2022; 131:827-837. [PMID: 36334698 DOI: 10.1016/j.fsi.2022.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The objective of the present study was to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity, innate immunity and hemocyte apoptosis of Litopenaeus vannamei. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels: 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g kg-1choline, respectively. The results indicated that shrimp fed diet with 4.67 g kg-1 choline had the highest final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR), feed efficiency (FE), and activities of alkaline phosphatase (AKP) and phenoloxidase (PO) in hemolymph among all treatments. Shrimp fed diet with 18.90 g kg-1 choline exhibited significantly lower crude lipid in hepatopancreas than those fed diets with 2.91, 3.85, 4.67 and 6.55 g kg-1 choline (P < 0.05). The concentration of reactive oxygen species (ROS) and apoptosis rate in hemocytes significantly decreased with the increase of dietary choline levels (P < 0.05). Shrimp fed diets with 6.55, 10.70 and 18.90 g kg-1 choline had significantly higher scavenging ability of hydroxyl radical (SAHR) and total antioxidant capacity (T-AOC) in hemolymph than those fed diet with 2.91 g kg-1 choline (P < 0.05). Dietary choline supplementation down-regulated the expression of genes related to apoptosis such as caspase-1, caspase-3, caspase-8, p53, and p38MAPK in hemocytes (P < 0.05), while up-regulated the expression of anti-apoptosis gene bcl2 in hemocytes (P < 0.05). Overall, the results of the present study demonstrated that appropriate dietary choline could improve growth performance and feed utilization, enhance antioxidant capacity and innate immunity, and mitigate apoptosis in Litopenaeus vannamei. Moreover, the inhibition of hemocyte apoptosis by dietary choline may be regulated by the p38MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Huang G, Wang J, Liu K, Wang F, Zheng N, Zhao S, Qu X, Yu J, Zhang Y, Wang J. Effect of Flaxseed Supplementation on Milk and Plasma Fatty Acid Composition and Plasma Parameters of Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12151898. [PMID: 35892548 PMCID: PMC9332015 DOI: 10.3390/ani12151898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to determine the effect of whole flaxseed and ground flaxseed supplementation on the composition of fatty acids in plasma and milk, particularly the content of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Thirty Holstein dairy cows were randomly assigned to three treatment groups. Cows were fed a total mixed ration without flaxseed (CK), 1500 g of whole flaxseed (WF), and 1500 g of ground flaxseed (GF) supplementation. There were no differences observed in dry matter intake, milk yield, energy-corrected milk, and 4% fat-corrected milk (p > 0.05). Compared with the CK group, the contents of α-linolenic acid (ALA), eicosatrienoic acid, and eicosapentaenoic acid increased in the plasma and milk WF and GF groups, and the content of docosahexaenoic acid and total n-3 PUFA was higher in GF than the other groups (p < 0.001). The ALA yield increased to 232% and 360% in WF and GF, respectively, compared to the CK group. Compared with the WF group, GF supplementation resulted in an increased milk ALA/ALA intake ratio (p < 0.001). Flaxseed supplementation increased the activity of GSH-Px and decreased the concentration of MDA in milk (p < 0.001). Plasma parameters did not differ among the treatments (p > 0.05). This result indicated that compared with the WF group, GF supplementation in the diet showed higher efficiency in increasing the total n-3 PUFA levels and the milk ALA/ALA intake ratio, and decreased the ratio of n-6 PUFAs to n-3 PUFAs in milk.
Collapse
Affiliation(s)
- Guoxin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jie Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Kaizhen Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fengen Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xueyin Qu
- China Excellent Milk Academy (Tianjin) Co., Ltd., Beichen District, Tianjin 300400, China; (X.Q.); (J.Y.)
| | - Jing Yu
- China Excellent Milk Academy (Tianjin) Co., Ltd., Beichen District, Tianjin 300400, China; (X.Q.); (J.Y.)
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Correspondence: (Y.Z.); (J.W.)
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (G.H.); (J.W.); (K.L.); (F.W.); (N.Z.); (S.Z.)
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Correspondence: (Y.Z.); (J.W.)
| |
Collapse
|
9
|
Evaluation of Ammonia Nitrogen Exposure in Immune Defenses Present on Spleen and Head-Kidney of Wuchang Bream ( Megalobrama amblycephala). Int J Mol Sci 2022; 23:ijms23063129. [PMID: 35328551 PMCID: PMC8953400 DOI: 10.3390/ijms23063129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Ammonia is one of the most important environmental factors in aquatic ecosystems. However, there are limited studies on the effects of chronic or long-term ammonia stress and its potential molecular mechanism in fish. This study aimed to investigate the immune response and molecular mechanisms in the spleen and head-kidney of fish following chronic ammonia exposure. Megalobrama amblycephala (9.98 ± 0.48 g) were exposed to different concentrations of total ammonia nitrogen (0-30 mg/L) for 30 days. Ammonia exposure caused significant increases in cortisol levels and decreases in lysozyme and complement 3/4 concentrations in the serum, indicating inhibitory effects of ammonia stress on innate immune responses. Ammonia exposure also induced concentration-dependent increases in ammonia concentrations in tissue, pathological damage and indexes of spleen and head-kidney. Additionally, the contents of immunoglobulin M (IgM), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) as well as mRNA levels of toll-like receptors (TLRs)/Myeloid differentiation factor 88 (MyD88)-independent signaling molecules in the spleen and head-kidney were significantly downregulated after ammonia exposure. Our findings suggested that chronic ammonia exposure caused the suppression of innate and adaptive immune responses through downregulating TLR/MyD88-independent signaling. Adverse influences of chronic ammonia stress were more severe in the spleen than in the head-kidney.
Collapse
|
10
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
11
|
Liu H, Yang JJ, Dong XH, Tan BP, Zhang S, Chi SY, Yang QH, Liu HY, Yang YZ. Effects of different dietary carbohydrate-to-lipid ratios on growth, plasma biochemical indexes, digestive, and immune enzymes activities of sub-adult orange-spotted grouper Epinephelus coioides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1409-1420. [PMID: 32240445 DOI: 10.1007/s10695-020-00799-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
A 10-week feeding trial was conducted to investigate the effects of dietary carbohydrate-to-lipid (CHO:L) ratios on glycogen content, hematological indices, liver, and intestinal enzyme activity of sub-adult grouper Epinephelus coioides. Five iso-nitrogenous (496.0 g kg-1 protein) and iso-energetic (21.6 KJ g-1 gross energy) diets with varying CHO: L ratios of 0.65 (D1), 1.31 (D2), 2.33 (D3), 4.24 (D4), and 8.51 (D5), respectively, were fed to triplicate groups of 20 fish (average 275.1 ± 1.86 g). Results showed that the weight gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER) of sub-adult grouper increased and then stable when dietary CHO:L ratios reach D4 (CHO:L = 4.24). The trend of feed conversion ratio (FCR) was opposite to PER. Along with the dietary CHO:L ratios, the liver and muscle glycogen level increased gradually. Plasma triglycerides (TG) and glucose (GLU) were all maximized at D5 (CHO:L = 8.51) group, cholesterol (CHOL) at D4 (CHO:L = 4.24) group. Digestive enzyme activities were significantly affected by dietary CHO:L ratios. Liver hexokinase (HK), alkaline phosphatase (AKP), and glucose-6-phosphate dehydrogenase (G6PDH) activity increased significantly as CHO:L ratios increased. Liver lysozyme (LYZ) and superoxide dismutase (SOD) activity of sub-adult grouper fed the D4 diet was significantly higher than that of the D2 (CHO:L = 1.31) diet. The trend of acid phosphatase (ACP) is opposite to AKP. The regression model analysis showed that the most suitable dietary CHO:L ratio to reach the highest SGR is 6.06.
Collapse
Affiliation(s)
- Hao Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China
| | - Jun-Jiang Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Xiao-Hui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China.
| | - Bei-Ping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China.
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China
| | - Shu-Yan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China
| | - Qi-Hui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China
| | - Hong-Yu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, 524088, Guangdong, China
| | - Yuan-Zhi Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| |
Collapse
|
12
|
Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019; 7:microorganisms7120627. [PMID: 31795391 PMCID: PMC6955699 DOI: 10.3390/microorganisms7120627] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
Immersion vaccines are used for a variety of aquacultured fish to protect against infectious diseases caused by bacteria and viruses. During immersion vaccination the antigens are taken up by the skin, gills or gut and processed by the immune system, where the resulting response may lead to protection. The lack of classical secondary responses following repeated immersion vaccination may partly be explained by the limited uptake of antigens by immersion compared to injection. Administration of vaccines depends on the size of the fish. In most cases, immersion vaccination is inferior to injection vaccination with regard to achieved protection. However, injection is problematic in small fish, and fry as small as 0.5 gram may be immersion vaccinated when they are considered adaptively immunocompetent. Inactivated vaccines are, in many cases, weakly immunogenic, resulting in low protection after immersion vaccination. Therefore, during recent years, several studies have focused on different ways to augment the efficacy of these vaccines. Examples are booster vaccination, administration of immunostimulants/adjuvants, pretreatment with low frequency ultrasound, use of live attenuated and DNA vaccines, preincubation in hyperosmotic solutions, percutaneous application of a multiple puncture instrument and application of more suitable inactivation chemicals. Electrostatic coating with positively charged chitosan to obtain mucoadhesive vaccines and a more efficient delivery of inactivated vaccines has also been successful.
Collapse
|
13
|
Ye Q, Feng Y, Wang Z, Zhou A, Xie S, Zhang Y, Xiang Q, Song E, Zou J. Effects of dietary Gelsemium elegans alkaloids on growth performance, immune responses and disease resistance of Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2019; 91:29-39. [PMID: 31100439 DOI: 10.1016/j.fsi.2019.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The present study aim to investigate the effects of dietary Gelsemium elegans alkaloids supplementation in Megalobrama amblycephala. A basal diet supplemented with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids were fed to M. amblycephala for 12 weeks. The study indicated that dietary 20 mg/kg and 40 mg/kg G. elegans alkaloids supplementation could significantly improve final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR) and protein efficiency ratio (PER) (P < 0.05). The 20 mg/kg and 40 mg/kg G. elegans alkaloids groups showed significantly higher whole body and muscle crude protein and crude lipid contents compared to the control group (P < 0.05). The amino acid contents in muscle were also significantly increased in 20 mg/kg and 40 mg/kg groups (P < 0.05). Dietary 40 mg/kg G. elegans alkaloids had a significant effect on the contents of LDH, AST, ALT, ALP, TG, TC, LDL-C, HDL-C, ALB and TP in M. amblycephala (P < 0.05). Fish fed 20 mg/kg and 40 mg/kg dietary G. elegans alkaloids showed significant increase in complement 3, complement 4 and immunoglobulin M contents. The liver antioxidant enzymes (SOD, CAT and T-AOC) and MDA content significantly increased at 20 mg/kg and 40 mg/kg G. elegans alkaloids supplement (P < 0.05). The mRNA levels of immune-related genes IL-1β, IL8, TNF-α and IFN-α were significantly up-regulated, whereas TGF-β and IL10 genes were significantly down-regulated in the liver, spleen and head kidney of fish fed dietary supplementation with 20 mg/kg and 40 mg/kg G. elegans alkaloids. After challenge with Aeromonas hydrophila, significant higher survival rate was observed at 20 mg/kg and 40 mg/kg G. elegans alkaloids supplement (P < 0.05). Therefore, these results indicated that M. amblycephala fed a diet supplemented with 20 mg/kg and 40 mg/kg G. elegans alkaloids could significantly promote its growth performance, lipids and amino acids deposition, immune ability and resistance to Aeromonas hydrophila.
Collapse
Affiliation(s)
- Qiao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yongyong Feng
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- Department of Pharmacology, Department Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Zheng Y, Wu W, Hu G, Qiu L, Bing X, Chen J. Varieties of immunity activities and gut contents in tilapia with seasonal changes. FISH & SHELLFISH IMMUNOLOGY 2019; 90:466-476. [PMID: 31004800 DOI: 10.1016/j.fsi.2019.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We performed 16S rDNA sequencing of tilapia fecal samples to analyze changes in tilapia gut contents after cultivation of the fish in the presence of sandwich-like floating beds of Chinese medicinal herbs (5 and 10% planting-areas; 5% Polygonum cuspidatum). The interactive effects between water quality and blood and hepatic pro- and anti-inflammatory concentrations were also assessed. Our results showed that the water quality (i.e., NO3--N, NO2--N, TP removal rates) improved, and the abundance of Chloroflexi and Cyanobacteria increased. The abundance of Bacteroidetes, Verrucomicrobia, Saccharibacteria, and Actinobacteria showed both significant seasonal decreases and increases in the presence of P. cuspidatum (increases in August and decreases in July). Fish blood and hepatic IL-10 and IFN-γ levels (together with fish sampled in September) significantly increased in the P. cuspidatum group sampled in August, while those of TNF-α (10% sandwich-like, P. cuspidatum), IL-1β (P. cuspidatum), IL-8 (5% sandwich-like in September, S905S) significantly decreased. Heat shock proteins 60 and 70 levels significantly increased in the P. cuspidatum group, and complement C3 and C4 concentrations significantly increased in S905S. This study demonstrated that enhanced immunity through the regulation of pro- and anti-inflammatory proteins was sustained throughout development until harvest, particularly in fish grown with P. cuspidatum.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, Jiangsu, 214081, China.
| |
Collapse
|
15
|
Li X, Ji L, Wu L, Gao X, Li X, Li J, Liu Y. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1169-1176. [PMID: 30599254 DOI: 10.1016/j.fsi.2018.12.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Land-based recirculating aquaculture systems (RAS) are widely utilized for turbot (Scophthalmus maximus) culture. Flow velocity in the tank is essential to maintain water quality, conservation of energy and fish welfare. However, little is known about how turbot respond to different velocities in the long term. In this study, water quality was kept constant, allowing the effect of flow velocity on the feeding intake, growth, plasma biochemical indexes, innate (non-specific) immunity and immune-related stress gene expressions in the skin to be examined in isolation in RAS. Turbot (average body length 20.10 cm) were reared for 60 days in RAS under three velocities, 0.06 m s-1, 0.18 m s-1, and 0.36 m s-1, corresponding to approximately 0.3 body length per second (bl s-1), 0.9 bl s-1 and 1.8 bl s-1, respectively. The results showed that at velocities of 0.36 m s-1 (1.8 bl s-1), juvenile turbot were subject to stress accompanied by a reduced growth rate. A velocity of 0.36 m s-1 was also found to significantly reduce SOD and GSH activity, and the concentration of total protein in plasma, while concentrations of urea nitrogen (BUN) and total bilirubin (TBIL) increased. There was an up-regulation of cathepsin D and lysozyme (LZM) in the skin at the highest velocity, implying the activation of stress and immune responses. At the medium velocity of 0.18 m s-1 (0.9 bl s-1), turbot increased their feed intake, obtained an elevated special growth rate (SGR), and exhibited significantly higher AKP and ACP activity in plasma. Overall, the results suggest that excessively high velocities are a stressor for turbot inducing an immune response in the skin, which is sensitive to environmental changes. A velocity of approximately 0.9 bl s-1 is suggested to promote growth and obtain better innate immunity of cultured turbot.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Liqin Ji
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lele Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaolong Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xueqin Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ying Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; School of Marine Science and Environmental Engineering, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|