1
|
Tong S, Wang K, Li S, Trimble M, Chen Y, Liu L, Duan J, Taboada E, Lu X, Hsiao W. Longitudinal and cross-sectional sampling and whole genome sequencing of Campylobacter in a chicken abattoir reveal highly dynamic population structure. Appl Environ Microbiol 2025:e0236924. [PMID: 40340445 DOI: 10.1128/aem.02369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Campylobacter is a leading cause of human gastroenteritis worldwide and is commonly identified in poultry products. Current knowledge of its dissemination patterns in poultry production largely relies on the less sensitive traditional genotyping methods. In this study, whole-genome sequencing was applied to 324 Campylobacter isolates sampled from a chicken abattoir in the Greater Vancouver area throughout 2020. Core genome multi-locus sequence typing analysis revealed a highly diverse and dynamic Campylobacter population containing 27 distinct lineages. A wide range of plasmids was characterized, and a high prevalence of antibiotic resistance was observed among these isolates. Distinct subpopulations were identified in 10 lineages, suggesting that some Campylobacter populations may have diversified within the local agricultural environment. Some lineages were frequently reintroduced to the abattoir, suggesting the potential presence of hidden Campylobacter reservoirs upstream of slaughter. Comparisons between biological and environmental samples suggest a high probability of between-batch cross-contamination. Locally sourced public Campylobacter isolates showed strong genomic correlations with the lineages identified in this study. Notably, lineages 1629a and 1629b were identified to have persisted within the local poultry production ecosystem for several years, explaining their recurrent detection. In conclusion, this study enhances our understanding of Campylobacter population dynamics in the chicken abattoir environment, providing insights for controlling this foodborne pathogen in poultry production systems.IMPORTANCEUsing whole-genome sequencing, this study revealed a highly diverse and dynamic Campylobacter population within the chicken abattoir. The high prevalence of antibiotic resistance marked the critical need for surveillance in this region. The findings highlighted the likely existence of a hidden common source of Campylobacter upstream in the poultry production chain, which significantly contributes to the repeated introduction of the same lineages into the abattoir. Given the frequent reintroductions, the current understanding of Campylobacter persistence in the abattoir environment (up to 21 days) may require revision. Additionally, batch-to-batch dissemination of Campylobacter strains during processing is highly possible. A robust geographic association was also observed between the Campylobacter population in the abattoir and the local community. In sum, this study provides insights into the dynamics of Campylobacter contamination in the poultry production chain, offering guidance for improving prevention and control strategies.
Collapse
Affiliation(s)
- Shanwei Tong
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Bioinformatics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Michael Trimble
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yunxuan Chen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lixue Liu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Jun Duan
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eduardo Taboada
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - William Hsiao
- Center for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
He Y, Dykes GE, Kanrar S, Liu Y, Gunther NW, Counihan KL, Lee J, Capobianco JA. Comparative Genomic Analysis of Campylobacter Plasmids Identified in Food Isolates. Microorganisms 2025; 13:206. [PMID: 39858976 PMCID: PMC11768034 DOI: 10.3390/microorganisms13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Campylobacter is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of Campylobacter infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization. They serve as the main vectors for transferring genetic material and spreading resistance and virulence among bacteria. In this study, we identified 34 new plasmids from 43 C. jejuni and C. coli strains isolated from retail meat using long-read and short-read genome sequencing. Pangenomic analysis of the plasmid assemblies and reference plasmids from GenBank revealed five distinct groups, namely, pTet, pVir, mega plasmids (>80 kb), mid plasmids (~30 kb), and small plasmids (<6 kb). Pangenomic analysis identified the core and accessory genes in each group, indicating a high degree of genetic similarity within groups and substantial diversity between the groups. The pTet plasmids were linked to tetracycline resistance phenotypes in host strains. The mega plasmids carry multiple genes (e.g., aph(3')-III, type IV and VI secretion systems, and type II toxin-antitoxin systems) important for plasmid mobilization, virulence, antibiotic resistance, and the persistence of Campylobacter. Together, the identification and comprehensive genetic characterization of new plasmids from Campylobacter food isolates contributes to understanding the mechanisms of gene transfer, particularly the spread of genetic determinants of virulence and antibiotic resistance in this important pathogen.
Collapse
Affiliation(s)
- Yiping He
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Gretchen Elizabeth Dykes
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Siddhartha Kanrar
- Foreign Arthropod-Borne Animal Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Yanhong Liu
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Nereus W. Gunther
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Katrina L. Counihan
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Joe Lee
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| | - Joseph A. Capobianco
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA; (G.E.D.); (Y.L.); (N.W.G.IV); (K.L.C.); (J.L.); (J.A.C.)
| |
Collapse
|
3
|
Ghatak S, Milton AAP, Das S, Momin KM, Srinivas K, Pyngrope DA, Priya GB. Campylobacter coli of porcine origin exhibits an open pan-genome within a single clonal complex: insights from comparative genomic analysis. Front Cell Infect Microbiol 2024; 14:1449856. [PMID: 39415896 PMCID: PMC11480030 DOI: 10.3389/fcimb.2024.1449856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Although Campylobacter spp., including Campylobacter coli, have emerged as important zoonotic foodborne pathogens globally, the understanding of the genomic epidemiology of C. coli of porcine origin is limited. Methods As pigs are an important reservoir of C. coli, we analyzed C. coli genomes that were isolated (n = 3) from pigs and sequenced (this study) them along with all other C. coli genomes for which pig intestines, pig feces, and pigs were mentioned as sources in the NCBI database up to January 6, 2023. In this paper, we report the pan-genomic features, the multi-locus sequence types, the resistome, virulome, and mobilome, and the phylogenomic analysis of these organisms that were obtained from pigs. Results and discussion Our analysis revealed that, in addition to having an open pan-genome, majority (63%) of the typeable isolates of C. coli of pig origin belonged to a single clonal complex, ST-828. The resistome of these C. coli isolates was predominated by the genes tetO (53%), blaOXA-193 (49%), and APH (3')-IIIa (21%); however, the virulome analysis revealed a core set of 37 virulence genes. Analysis of the mobile genetic elements in the genomes revealed wide diversity of the plasmids and bacteriophages, while 30 transposons were common to all genomes of C. coli of porcine origin. Phylogenomic analysis showed two discernible clusters comprising isolates originating from Japan and another set of isolates comprising mostly copies of a type strain stored in three different culture collections.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | | | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kasanchi M. Momin
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Kandhan Srinivas
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India
| | - G. Bhuvana Priya
- College of Agriculture (CAU, Imphal), Kyrdemkulai, Meghalaya, India
| |
Collapse
|
4
|
Woyda R, Oladeinde A, Endale D, Strickland T, Plumblee Lawrence J, Abdo Z. Virulence factors and antimicrobial resistance profiles of Campylobacter isolates recovered from consecutively reused broiler litter. Microbiol Spectr 2023; 11:e0323623. [PMID: 37882583 PMCID: PMC10871742 DOI: 10.1128/spectrum.03236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Campylobacter is a leading cause of foodborne illness in the United States due to consumption of contaminated or mishandled food products, often associated with chicken meat. Campylobacter is common in the microbiota of avian and mammalian gut; however, acquisition of antimicrobial resistance genes (ARGs) and virulence factors (VFs) may result in strains that pose significant threat to public health. Although there are studies investigating the genetic diversity of Campylobacter strains isolated from post-harvest chicken samples, there are limited data on the genome characteristics of isolates recovered from preharvest broiler production. Here, we show that Campylobacter jejuni and Campylobacter coli differ in their carriage of antimicrobial resistance and virulence factors may also differ in their ability to persist in litter during consecutive grow-out of broiler flocks. We found that presence/absence of virulence factors needed for evasion of host defense mechanisms and gut colonization played an integral role in differentiating Campylobacter strains.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, Georgia, USA
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Ju C, Ma Y, Zhang B, Zhou G, Wang H, Yu M, He J, Duan Y, Zhang M. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front Microbiol 2023; 14:1152719. [PMID: 37323906 PMCID: PMC10267384 DOI: 10.3389/fmicb.2023.1152719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of Campylobacter spp.in pets is a potential concern for human health. However, little is known about the pet-related Campylobacter spp. in China. A total of 325 fecal samples were collected from dogs, cats, and pet foxes. Campylobacter spp. were isolated by culture, and MALDI-TOF MS was used to identify 110 Campylobacter spp. isolates in total. C. upsaliensis (30.2%, 98/325), C. helveticus (2.5%, 8/325), and C. jejuni (1.2%, 4/325) were the three found species. In dogs and cats, the prevalence of Campylobacter spp. was 35.0% and 30.1%, respectively. A panel of 11 antimicrobials was used to evaluate the antimicrobial susceptibility by the agar dilution method. Among C. upsaliensis isolates, ciprofloxacin had the highest rate of resistance (94.9%), followed by nalidixic acid (77.6%) and streptomycin (60.2%). Multidrug resistance (MDR) was found in 55.1% (54/98) of the C. upsaliensis isolates. Moreover, 100 isolates, including 88 C. upsaliensis, 8 C. helveticus, and 4 C. jejuni, had their whole genomes sequenced. By blasting the sequence against the VFDB database, virulence factors were identified. In total, 100% of C. upsaliensis isolates carried the cadF, porA, pebA, cdtA, cdtB, and cdtC genes. The flaA gene was present in only 13.6% (12/88) of the isolates, while the flaB gene was absent. By analyzing the sequence against the CARD database, we found that 89.8% (79/88) of C. upsaliensis isolates had antibiotic target alteration in the gyrA gene conferring resistance to fluoroquinolone, 36.4% (32/88) had the aminoglycoside resistance gene, and 19.3% (17/88) had the tetracycline resistance gene. The phylogenetic analysis using the K-mer tree method obtained two major clades among the C. upsaliensis isolates. All eight isolates in subclade 1 possessed the gyrA gene mutation, the aminoglycoside and tetracycline resistance genes, and were phenotypically resistant to six classes of antimicrobials. It has been established that pets are a significant source of Campylobacter spp. strains and a reservoir for them. This study is the first to have documented the presence of Campylobacter spp. in pets in Shenzhen, China. In this study, C. upsaliensis of subclade 1 required additional attention due to its broad MDR phenotype and relatively high flaA gene prevalence.
Collapse
Affiliation(s)
- Changyan Ju
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yanping Ma
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Bi Zhang
- Clinic, IVC Shenzhen Animal Hospital, Shenzhen, China
| | - Guilan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hairui Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Muhua Yu
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Jiaoming He
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yongxiang Duan
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Woyda R, Oladeinde A, Endale D, Strickland T, Lawrence JP, Abdo Z. Broiler house environment and litter management practices impose selective pressures on antimicrobial resistance genes and virulence factors of Campylobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526821. [PMID: 36778422 PMCID: PMC9915665 DOI: 10.1101/2023.02.02.526821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversity of Campylobacter species detected in broiler chicken litter over three consecutive flocks and determined their antimicrobial resistance and virulence factor profiles. Antimicrobial susceptibility testing and whole genome sequencing were performed on Campylobacter jejuni (n = 39) and Campylobacter coli (n = 5) isolates. All C. jejuni isolates were susceptible to all antibiotics tested while C. coli (n =4) were resistant to only tetracycline and harbored the tetracycline-resistant ribosomal protection protein (TetO). Virulence factors differed within and across grow houses but were explained by the isolates' flock cohort, species and multilocus sequence type. Virulence factors involved in the ability to invade and colonize host tissues and evade host defenses were absent from flock cohort 3 C. jejuni isolates as compared to flock 1 and 2 isolates. Our results show that virulence factors and antimicrobial resistance genes differed by the isolates' multilocus sequence type and by the flock cohort they were present in. These data suggest that the house environment and litter management practices performed imposed selective pressures on antimicrobial resistance genes and virulence factors. In particular, the absence of key virulence factors within the final flock cohort 3 isolates suggests litter reuse selected for Campylobacter strains that are less likely to colonize the chicken host.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, GA, 31793
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Robinson L, Liaw J, Omole Z, Corcionivoschi N, Hachani A, Gundogdu O. In silico investigation of the genus Campylobacter type VI secretion system reveals genetic diversity in organization and putative effectors. Microb Genom 2022; 8:mgen000898. [PMID: 36314601 PMCID: PMC9676060 DOI: 10.1099/mgen.0.000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/11/2022] [Indexed: 01/25/2023] Open
Abstract
Bacterial type VI secretion systems (T6SSs) are contractile nanomachines that deliver proteinic substrates into target prokaryotic or eukaryotic cells and the surrounding milieu. The genus Campylobacter encompasses 39 recognized species and 13 subspecies, with many belonging to a group known as ‘emerging Campylobacter pathogens’. Within Campylobacter , seven species have been identified to harbour a complete T6SS cluster but have yet to be comparatively assessed. In this study, using systematic bioinformatics approaches and the T6SS-positive Campylobacter jejuni 488 strain as a reference, we explored the genus-wide prevalence, similarity and make-up of the T6SS amongst 372 publicly available ‘complete’ Campylobacter genomes. Our analyses predict that approximately one-third of Campylobacter species possess a T6SS. We also putatively report the first identification of a T6SS in four species: Campylobacter cuniculorum, Campylobacter helveticus, Campylobacter armoricus and Campylobacter ornithocola . The Campylobacter T6SSs cluster into three distinct organizations (I–III), of which two break down into further variants. Thirty T6SS-containing genomes were found to harbour more than one vgrG gene, with Campylobacter lari strain NCTC 11845 possessing five. Analysis of the C. jejuni Pathogenicity Island-1 confirmed its conservation amongst T6SS-positive C. jejuni strains, as well as highlighting its diverse genetic composition, including additional putative effector–immunity pairs (e.g. PoNe and DUF1911 domains). Effector–immunity pairs were also observed neighbouring vgrG s in several other Campylobacter species, in addition to putative genes encoding nucleases, lysozymes, ATPases and a ferric ATP-binding cassette uptake system. These observations highlight the diverse genetic make-up of the T6SS within Campylobacter and provide further evidence of its role in pathogenesis.
Collapse
Affiliation(s)
- Luca Robinson
- National Heart and Lung Institute, Imperial College London, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, UK
- Bioengineering of Animal Resources, University of Life Sciences – King Mihai I of Romania from Timisoara, Timisoara, Romania
| | - Abderrahman Hachani
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
8
|
Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E, Thorpe HA, Hitchings MD, Feil EJ, Corander J, Blaser MJ, Falush D, Sheppard SK. Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829. [PMID: 34582435 PMCID: PMC8500405 DOI: 10.1371/journal.pgen.1009829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.
Collapse
Affiliation(s)
- Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Elvire Berthenet
- French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, Bordeaux, France
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Harry A. Thorpe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Matthew D. Hitchings
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Edward J. Feil
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Falush
- Centre for Microbes, Development and Health, Institute Pasteur of Shanghai, Shanghai, China
- * E-mail: (DF); (SKS)
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DF); (SKS)
| |
Collapse
|
9
|
Gomes CN, Barker DOR, Duque SDS, Che EV, Jayamanna V, Taboada EN, Falcão JP. Campylobacter coli isolated in Brazil typed by core genome Multilocus Sequence Typing shows high genomic diversity in a global context. INFECTION GENETICS AND EVOLUTION 2021; 95:105018. [PMID: 34332158 DOI: 10.1016/j.meegid.2021.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Campylobacter has been one of the most common causative agent of bacterial food-borne gastroenteritis in humans worldwide. However, in Brazil the campylobacteriosis has been a neglected disease and there is insufficient data to estimate the incidence of this pathogen in the country. AIMS The current study aimed to determine the phylogenetic relationships among Campylobacter coli strains isolated in Brazil and to compare them with international Campylobacter isolates available in some public databases. METHODS AND RESULTS A total of 63C. coli strains isolated in Brazil were studied. The MLST analysis showed 18 different STs including three STs not yet described in the PubMLST database. The cgMLST allocated the Brazilian strains studied into five main clusters and each cluster comprised groups of strains with nearly identical cgMLST profiles and with significant genetic distance observed among the distinct clusters. The comparison of the Brazilian strains with 3401 isolates from different countries showed a wide distribution of these strains isolated in this country. CONCLUSIONS The results showed a high similarity among some strains studied and a wide distribution of the Brazilian strains when compared to isolates from different countries, which is an interesting data set since it showed a high genetic diversity of these strains from Brazil in a global context. This study contributed for a better genomic characterization of C. coli strains isolated in Brazil and provided important information about the diversity of this clinically-relevant pathogen.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Vasena Jayamanna
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
Bravo V, Katz A, Porte L, Weitzel T, Varela C, Gonzalez-Escalona N, Blondel CJ. Genomic analysis of the diversity, antimicrobial resistance and virulence potential of clinical Campylobacter jejuni and Campylobacter coli strains from Chile. PLoS Negl Trop Dis 2021; 15:e0009207. [PMID: 33606689 PMCID: PMC7928456 DOI: 10.1371/journal.pntd.0009207] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/03/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the leading cause of human gastroenteritis in the industrialized world and an emerging threat in developing countries. The incidence of campylobacteriosis in South America is greatly underestimated, mostly due to the lack of adequate diagnostic methods. Accordingly, there is limited genomic and epidemiological data from this region. In the present study, we performed a genome-wide analysis of the genetic diversity, virulence, and antimicrobial resistance of the largest collection of clinical C. jejuni and C. coli strains from Chile available to date (n = 81), collected in 2017–2019 in Santiago, Chile. This culture collection accounts for more than one third of the available genome sequences from South American clinical strains. cgMLST analysis identified high genetic diversity as well as 13 novel STs and alleles in both C. jejuni and C. coli. Pangenome and virulome analyses showed a differential distribution of virulence factors, including both plasmid and chromosomally encoded T6SSs and T4SSs. Resistome analysis predicted widespread resistance to fluoroquinolones, but low rates of erythromycin resistance. This study provides valuable genomic and epidemiological data and highlights the need for further genomic epidemiology studies in Chile and other South American countries to better understand molecular epidemiology and antimicrobial resistance of this emerging intestinal pathogen. Campylobacter is the leading cause of bacterial gastroenteritis worldwide and an emerging and neglected pathogen in South America. In this study, we performed an in-depth analysis of the genome sequences of 69 C. jejuni and 12 C. coli clinical strains isolated from Chile, which account for over a third of the sequences from clinical strains available from South America. We identified a high genetic diversity among C. jejuni strains and the unexpected identification of clade 3 C. coli strains, which are infrequently isolated from humans in other regions of the world. Most strains harbored the virulence factors described for Campylobacter. While ~40% of strains harbored mutation in the gyrA gene described to confer fluoroquinolone resistance, very few strains encoded the determinants linked to macrolide resistance, currently used for the treatment of campylobacteriosis. Our study contributes to our knowledge of this important foodborne pathogen providing valuable data from South America.
Collapse
Affiliation(s)
- Veronica Bravo
- Programa Centro de Investigacion Biomedica y Aplicada, (CIBAP), Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago, Chile
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Assaf Katz
- Programa de Biologia Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Porte
- Laboratorio Clinico, Clinica Alemana de Santiago, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Thomas Weitzel
- Laboratorio Clinico, Clinica Alemana de Santiago, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Instituto de Ciencias e Innovacion en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Carmen Varela
- Laboratorio Clinico, Clinica Alemana de Santiago, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, Division of Microbiology, U.S. Food and Drug Administration, College Park, Maryland, United States of America
| | - Carlos J. Blondel
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
11
|
Abstract
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction-modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
Collapse
Affiliation(s)
- Julia Carolin Golz
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| |
Collapse
|
12
|
Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci Rep 2020; 10:12514. [PMID: 32719325 PMCID: PMC7385129 DOI: 10.1038/s41598-020-69155-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
Megaplasmids in Campylobacter spp. likely play important roles in antibiotic resistance, virulence, and horizontal gene transfer. In this study, megaplasmids pCJDM202 (119 kb) and pCJDM67L (116 kb) from C. jejuni strains WP2-202 and OD2-67, respectively, were sequenced and characterized. These megaplasmids contained genes for tetracycline resistance [tet(O)], the Type IV secretion system, conjugative transfer and the Type VI secretion system (T6SS). The T6SS genes in Campylobacter plasmids encoded genes and proteins that were similar to those identified in Campylobacter chromosomal DNA. When the megaplasmid pCJDM202 from C. jejuni WP2-202 was transferred via conjugation to C. jejuni NCTC11168 Nal+, transconconjugants acquired tetracycline resistance and enhanced cytotoxicity towards red blood cells. A T6SS mutant of strain WP2-202 was generated and designated Δhcp3; the mutant was significantly impaired in its ability to lyse red blood cells and survive in defibrinated blood. The cytotoxicity of Campylobacter strains towards the human embryonic kidney cell line HEK 293 was not impacted by the T6SS. In summary, the T6SS encoded by Campylobacter megaplasmids mediates lysis of RBCs and likely contributes to survival on retail meats where blood cells are abundant.
Collapse
Affiliation(s)
- Daya Marasini
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | - Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | - John M Bryant
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, Tulsa, OK, USA
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
13
|
Ghatak S, He Y, Reed S, Irwin P. Comparative Genomic Analysis of a Multidrug-Resistant Campylobacter jejuni Strain YH002 Isolated from Retail Beef Liver. Foodborne Pathog Dis 2020; 17:576-584. [PMID: 32077758 DOI: 10.1089/fpd.2019.2770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide. In this study, we report the comparative genomic and functional characteristics of C. jejuni YH002 recently isolated from retail beef liver. Whole-genome sequencing and annotation of the strain revealed novel genetic features, including an integrated intact phage element, multiple antimicrobial resistance (AMR) genes, virulence factors, and a Phd-Doc type toxin-antitoxin (TA) system. Phenotypic tests of AMR showed that C. jejuni YH002 was resistant to amoxicillin and tetracycline, which correlates with the AMR genes found in the strain. Comparative analysis of cell motility at genotypic and phenotypic levels identified discernible patterns of amino acid changes, which could explain the variations of motility among C. jejuni strains. Together, these results provide important clues to the genetic mechanisms of AMR and cell motility in C. jejuni. The finding of a Phd-Doc TA system in the genome of C. jejuni YH002 is the first report of this TA system in Campylobacter spp.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, India
| | - Yiping He
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| | - Sue Reed
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| | - Peter Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| |
Collapse
|
14
|
Macori G, Bellio A, Bianchi DM, Chiesa F, Gallina S, Romano A, Zuccon F, Cabrera-Rubio R, Cauquil A, Merda D, Auvray F, Decastelli L. Genome-Wide Profiling of Enterotoxigenic Staphylococcus aureus Strains Used for the Production of Naturally Contaminated Cheeses. Genes (Basel) 2019; 11:E33. [PMID: 31892220 PMCID: PMC7016664 DOI: 10.3390/genes11010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. More than 20 staphylococcal enterotoxins with emetic activity can be produced by specific strains responsible for staphylococcal food poisoning, one of the most common food-borne diseases. Whole genome sequencing provides a comprehensive view of the genome structure and gene content that have largely been applied in outbreak investigations and genomic comparisons. In this study, six enterotoxigenic S. aureus strains were characterised using a combination of molecular, phenotypical and computational methods. The genomes were analysed for the presence of virulence factors (VFs), where we identified 110 genes and classified them into five categories: adherence (n = 31), exoenzymes (n = 28), genes involved in host immune system evasion (n = 7); iron uptake regulatory system (n = 8); secretion machinery factors and toxins' genes (n = 36), and 39 genes coding for transcriptional regulators related to staphylococcal VFs. Each group of VFs revealed correlations among the six enterotoxigenic strains, and further analysis revealed their accessory genomic content, including mobile genetic elements. The plasmids pLUH02 and pSK67 were detected in the strain ProNaCC1 and ProNaCC7, respectively, carrying out the genes sed, ser, and selj. The genes carried out by prophages were detected in the strain ProNaCC2 (see), ProNaCC4, and ProNaCC7 (both positive for sea). The strain ProNaCC5 resulted positive for the genes seg, sei, sem, sen, seo grouped in an exotoxin gene cluster, and the strain ProNaCC6 resulted positive for seh, a transposon-associated gene. The six strains were used for the production of naturally contaminated cheeses which were tested with the European Screening Method for staphylococcal enterotoxins. The results obtained from the analysis of toxins produced in cheese, combined with the genomic features represent a portrait of the strains that can be used for the production of staphylococcal enterotoxin-positive cheese as reference material.
Collapse
Affiliation(s)
- Guerrino Macori
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Alberto Bellio
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Daniela Manila Bianchi
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Francesco Chiesa
- Dipartimento di Scienze Veterinarie, Università di Torino, 10095 Grugliasco, Italy;
| | - Silvia Gallina
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Angelo Romano
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Fabio Zuccon
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Ireland-APC Microbiome Ireland, University College Cork, T12YT20 Cork, Ireland;
| | - Alexandra Cauquil
- European Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Laboratory for Food Safety, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (A.C.); (D.M.); (F.A.)
| | - Déborah Merda
- European Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Laboratory for Food Safety, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (A.C.); (D.M.); (F.A.)
| | - Fréderic Auvray
- European Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Laboratory for Food Safety, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France; (A.C.); (D.M.); (F.A.)
| | - Lucia Decastelli
- National Reference Laboratory for Coagulase-Positive Staphylococci including Staphylococcus aureus, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; (A.B.); (D.M.B.); (S.G.); (A.R.); (F.Z.); (L.D.)
| |
Collapse
|
15
|
Kovanen S, Rossi M, Pohja-Mykrä M, Nieminen T, Raunio-Saarnisto M, Sauvala M, Fredriksson-Ahomaa M, Hänninen ML, Kivistö R. Population Genetics and Characterization of Campylobacter jejuni Isolates from Western Jackdaws and Game Birds in Finland. Appl Environ Microbiol 2019; 85:e02365-18. [PMID: 30552190 PMCID: PMC6365822 DOI: 10.1128/aem.02365-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/08/2018] [Indexed: 01/18/2023] Open
Abstract
Poultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterized Campylobacter jejuni from western jackdaws (n = 91, 43%), mallard ducks (n = 82, 76%), and pheasants (n = 9, 9%). Most of the western jackdaw and mallard duck C. jejuni isolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdaw C. jejuni isolates, e.g., a novel cdtABC gene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention.IMPORTANCE The roles of environmental reservoirs, including wild birds, in the molecular epidemiology of Campylobacter jejuni have not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they had C. jejuni genomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships of C. jejuni isolates.
Collapse
Affiliation(s)
- Sara Kovanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Pohja-Mykrä
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | - Timo Nieminen
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | | | - Mikaela Sauvala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Ricke SC, Feye KM, Chaney WE, Shi Z, Pavlidis H, Yang Y. Developments in Rapid Detection Methods for the Detection of Foodborne Campylobacter in the United States. Front Microbiol 2019; 9:3280. [PMID: 30728816 PMCID: PMC6351486 DOI: 10.3389/fmicb.2018.03280] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The accurate and rapid detection of Campylobacter spp. is critical for optimal surveillance throughout poultry processing in the United States. The further development of highly specific and sensitive assays to detect Campylobacter in poultry matrices has tremendous utility and potential for aiding the reduction of foodborne illness. The introduction and development of molecular methods such as polymerase chain reaction (PCR) have enhanced the diagnostic capabilities of the food industry to identify the presence of foodborne pathogens throughout poultry production. Further innovations in various methodologies, such as immune-based typing and detection as well as high throughput analyses, will provide important epidemiological data such as the identification of unique or region-specific Campylobacter. Comparable to traditional microbiology and enrichment techniques, molecular techniques/methods have the potential to have improved sensitivity and specificity, as well as speed of data acquisition. This review will focus on the development and application of rapid molecular methods for identifying and quantifying Campylobacter in U.S. poultry and the emergence of novel methods that are faster and more precise than traditional microbiological techniques.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Kristina M. Feye
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | - Zhaohao Shi
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
17
|
Rokney A, Valinsky L, Moran-Gilad J, Vranckx K, Agmon V, Weinberger M. Genomic Epidemiology of Campylobacter jejuni Transmission in Israel. Front Microbiol 2018; 9:2432. [PMID: 30386311 PMCID: PMC6198274 DOI: 10.3389/fmicb.2018.02432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Objectives: Campylobacter jejuni is responsible for 80% of Campylobacter infections in Israel, a country with a high incidence reaching 91/100,000 population. We studied the phylogeny, diversity and prevalence of virulence factors using whole genome sequencing (WGS) of a national sample of C. jejuni clinical, food, and animal isolates collected over a 10-year period (2003-2012). Methods: C. jejuni isolates (n = 263) were subject to WGS using Illumina sequencing (PE 250bpx2). Raw reads and de novo assemblies were analyzed with the BioNumerics whole genome MLST (wgMLST) pipeline. Reads were screened for 71 virulence genes by the SRST2 script. Allelic profiles were analyzed to create minimum spanning trees and allelic core distances were investigated to determine a reliable cutoff for strain determination. Results: wgMLST analysis of 263 C. jejuni isolates indicated significant diversity among the prevalent clonal complexes (CCs) with CC-21 and CC-353 being the most diverse, and CC-574 the most clonal. Within CC-21, sequence type (ST)-1359 created a separate clade. Human, poultry and bovine isolates clustered together across the different STs. Forty four percent of studied isolates were assigned to 29 genetic clusters. Temporal and geographical relatedness were found among the minority of clusters, while most phylogenetically associated cases appeared diffuse and unassociated epidemiologically. The majority of virulence factors were highly prevalent across the dataset and not associated with genotype, source of isolation or invasiveness. Conversely, all 13 genes associated with type VI secretion system (T6SS) were lineage-related and identified in only 18% of the isolates. T6SS was detected in 95.2% of ST-1359, a common type in Israel. Conclusions: wgMLST supported the assessment that poultry and cattle are likely food sources of infection in Israel. Substantial genetic clustering among C. jejuni isolates suggested multiple point source and diffuse outbreaks that were previously unreported in Israel. The high prevalence of T6SS among ST-1359 isolates is unique to Israel, and requires further investigation. This study exemplifies the importance of studying foodborne pathogens using advanced genomic approaches across the entire spectrum of One Health.
Collapse
Affiliation(s)
- Assaf Rokney
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Lea Valinsky
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Jacob Moran-Gilad
- Public Health Services, Israel Ministry of Health, Jerusalem, Israel.,Department of Health Policy and Management, Faculty of Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.,ESCMID Study Group for Genomic and Molecular Diagnostics, Basel, Switzerland
| | | | - Vered Agmon
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Miriam Weinberger
- Infectious Diseases Unit, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|