1
|
Feng Z, Duren Z, Xiong Z, Wang S, Liu F, Wong WH, Wang Y. hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context. Commun Biol 2021; 4:442. [PMID: 33824393 PMCID: PMC8024315 DOI: 10.1038/s42003-021-01970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cranial Neural Crest Cells (CNCC) originate at the cephalic region from forebrain, midbrain and hindbrain, migrate into the developing craniofacial region, and subsequently differentiate into multiple cell types. The entire specification, delamination, migration, and differentiation process is highly regulated and abnormalities during this craniofacial development cause birth defects. To better understand the molecular networks underlying CNCC, we integrate paired gene expression & chromatin accessibility data and reconstruct the genome-wide human Regulatory network of CNCC (hReg-CNCC). Consensus optimization predicts high-quality regulations and reveals the architecture of upstream, core, and downstream transcription factors that are associated with functions of neural plate border, specification, and migration. hReg-CNCC allows us to annotate genetic variants of human facial GWAS and disease traits with associated cis-regulatory modules, transcription factors, and target genes. For example, we reveal the distal and combinatorial regulation of multiple SNPs to core TF ALX1 and associations to facial distances and cranial rare disease. In addition, hReg-CNCC connects the DNA sequence differences in evolution, such as ultra-conserved elements and human accelerated regions, with gene expression and phenotype. hReg-CNCC provides a valuable resource to interpret genetic variants as early as gastrulation during embryonic development. The network resources are available at https://github.com/AMSSwanglab/hReg-CNCC .
Collapse
Affiliation(s)
- Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China.,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.,Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Sijia Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China.
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA.
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China. .,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. .,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
3
|
Yang S, Wang C, Zhou C, Kang D, Zhang X, Yuan H. A follow-up study of a Chinese family with Waardenburg syndrome type II caused by a truncating mutation of MITF gene. Mol Genet Genomic Med 2020; 8:e1520. [PMID: 33045145 PMCID: PMC7767564 DOI: 10.1002/mgg3.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Background Waardenburg syndrome (WS) is a highly clinically and genetically heterogeneous disease. The core disease phenotypes of WS are sensorineuronal hearing loss and pigmentary disturbance, which are usually caused by the absence of neural crest cell‐derived melanocytes. At present, four subtypes of WS have been defined, which are caused by seven genes. Waardenburg syndrome type 2 (WS2) is one of the most common forms. Two genes, MITF and SOX10, have been found to be responsible for majority of WS2. Methods In this study, we performed a clinical longitudinal follow‐up and mutation screening for a Chinese family with Waardenburg syndrome type II. Results A diversity of clinical manifestations was observed in this WS2 family. In addition to the congenital hearing loss of most affected family members, progressive hearing loss was also found in some WS2 patients. A nonsense mutation of c.328C>T (p.R110X) in MITF was identified in all affected family members. This mutation results in a truncated MITF protein, which is considered to be a disease‐causing mutation. Conclusion These findings offer a better understanding of the spectrum of MITF mutations and highlight the necessity of continuous hearing assessment in WS patients.
Collapse
Affiliation(s)
- Shuzhi Yang
- Department of Otolaryngology, The 4th Medical CenterChinese PLA General HospitalBeijingChina
- Department of Otorhinolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- National Clinical Research Center for Otorhinolaryngologic DiseaseChinese PLA General HospitalBeijingChina
| | - Cuicui Wang
- Center for Medical GeneticsSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chengyong Zhou
- Department of Otolaryngology, The 4th Medical CenterChinese PLA General HospitalBeijingChina
- Department of Otorhinolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- National Clinical Research Center for Otorhinolaryngologic DiseaseChinese PLA General HospitalBeijingChina
| | - DongYang Kang
- Institute Of OtolaryngologyChinese PLA General HospitalBeijingChina
| | - Xin Zhang
- Institute Of OtolaryngologyChinese PLA General HospitalBeijingChina
| | - Huijun Yuan
- Center for Medical GeneticsSouthwest HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
4
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
5
|
Lee VM, Hernandez S, Giang B, Chabot C, Hernandez J, de Bellard ME. Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation. Front Cell Dev Biol 2020; 8:199. [PMID: 32318567 PMCID: PMC7147452 DOI: 10.3389/fcell.2020.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCC) migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system. Little is known about the molecular mechanisms that lead migrating trunk NCC to settle at selected sites in the embryo, ceasing their migration and initiating differentiation programs. To identify candidate genes involved in these processes, we profiled genes up-regulated in purified post-migratory compared with migratory NCC using a staged, macroarrayed cDNA library. A secondary screen of in situ hybridization revealed that many genes are specifically enhanced in neural crest-derived ganglia, including macrophage migration inhibitory factor (MIF), a ligand for CXCR4 receptor. Through in vivo and in vitro assays, we found that MIF functions as a potent chemoattractant for NCC. These results provide a molecular profile of genes expressed concomitant with gangliogenesis, thus, offering new markers and potential regulatory candidates involved in cessation of migration and onset of differentiation.
Collapse
Affiliation(s)
- Vivian M Lee
- Universal Cells Inc., Seattle, WA, United States
| | - Sergio Hernandez
- Biology Department, California State University Northridge, Northridge, CA, United States
| | - Belle Giang
- Moorpark College, Moorpark, CA, United States
| | - Chris Chabot
- Biology Department, California State University Northridge, Northridge, CA, United States
| | | | - Maria Elena de Bellard
- Biology Department, California State University Northridge, Northridge, CA, United States
| |
Collapse
|
6
|
York JR, McCauley DW. The origin and evolution of vertebrate neural crest cells. Open Biol 2020; 10:190285. [PMID: 31992146 PMCID: PMC7014683 DOI: 10.1098/rsob.190285] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
The neural crest is a vertebrate-specific migratory stem cell population that generates a remarkably diverse set of cell types and structures. Because many of the morphological, physiological and behavioural novelties of vertebrates are derived from neural crest cells, it is thought that the origin of this cell population was an important milestone in early vertebrate history. An outstanding question in the field of vertebrate evolutionary-developmental biology (evo-devo) is how this cell type evolved in ancestral vertebrates. In this review, we briefly summarize neural crest developmental genetics in vertebrates, focusing in particular on the gene regulatory interactions instructing their early formation within and migration from the dorsal neural tube. We then discuss how studies searching for homologues of neural crest cells in invertebrate chordates led to the discovery of neural crest-like cells in tunicates and the potential implications this has for tracing the pre-vertebrate origins of the neural crest population. Finally, we synthesize this information to propose a model to explain the origin of neural crest cells. We suggest that at least some of the regulatory components of early stages of neural crest development long pre-date vertebrate origins, perhaps dating back to the last common bilaterian ancestor. These components, originally directing neuroectodermal patterning and cell migration, served as a gene regulatory 'scaffold' upon which neural crest-like cells with limited migration and potency evolved in the last common ancestor of tunicates and vertebrates. Finally, the acquisition of regulatory programmes controlling multipotency and long-range, directed migration led to the transition from neural crest-like cells in invertebrate chordates to multipotent migratory neural crest in the first vertebrates.
Collapse
Affiliation(s)
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
7
|
Dick C, Arendt J, Reznick DN, Hayashi CY. The developmental and genetic trajectory of coloration in the guppy (Poecilia reticulata). Evol Dev 2018; 20:207-218. [PMID: 30191662 DOI: 10.1111/ede.12268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Examining the association between trait variation and development is crucial for understanding the evolution of phenotypic differences. Male guppy ornamental caudal fin coloration is one trait that shows a striking degree of variation within and between guppy populations. Males initially have no caudal fin coloration, then gradually develop it as they reach sexual maturity. For males, there is a trade-off between female preference for caudal fin coloration and increased visibility to predators. This trade-off may reach unique endpoints in males from different predation regimes. Caudal fin coloration includes black melanin, orange/yellow pteridines or carotenoids, and shimmering iridescence. This study examined the phenotypic trajectory and genetics associated with color development. We found that black coloration always developed first, followed by orange/yellow, then iridescence. The ordering and timing of color appearance was the same regardless of predation regime. The increased expression of melanin synthesis genes correlated well with the visual appearance of black coloration, but there was no correlation between carotenoids or pteridine synthesis gene expression and the appearance of orange/yellow. The lack of orange/yellow coloration in earlier male caudal fin developmental stages may be due to reduced expression of genes underlying the development of orange/yellow xanthophores.
Collapse
Affiliation(s)
- Cynthia Dick
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - Jeff Arendt
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - David N Reznick
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - Cheryl Y Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| |
Collapse
|
8
|
York JR, Yuan T, Lakiza O, McCauley DW. An ancestral role for Semaphorin3F-Neuropilin signaling in patterning neural crest within the new vertebrate head. Development 2018; 145:dev.164780. [PMID: 29980564 DOI: 10.1242/dev.164780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
The origin of the vertebrate head is one of the great unresolved issues in vertebrate evolutionary developmental biology. Although many of the novelties in the vertebrate head and pharynx derive from the neural crest, it is still unknown how early vertebrates patterned the neural crest within the ancestral body plan they inherited from invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show complementary and dynamic patterns of expression that correlate with key periods of neural crest development (migration and patterning of cranial neural crest-derived structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia and the head skeleton, but is not required for neural crest migration or patterning of trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our results suggest that the deployment of Nrp-Sema3F signaling, along with other intercellular guidance cues, was pivotal in allowing early vertebrates to organize and pattern cranial neural crest cells into many of the hallmark structures that define the vertebrate head.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Olga Lakiza
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
9
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
10
|
Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development. PLoS One 2017; 12:e0184473. [PMID: 28934221 PMCID: PMC5608218 DOI: 10.1371/journal.pone.0184473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/24/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. PURPOSE To address the temporal requirement of Pdgfra in embryonic development. METHODS We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. RESULTS Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. CONCLUSION Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.
Collapse
|
11
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
12
|
York JR, Yuan T, Zehnder K, McCauley DW. Lamprey neural crest migration is Snail-dependent and occurs without a differential shift in cadherin expression. Dev Biol 2017. [PMID: 28624345 DOI: 10.1016/j.ydbio.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The acquisition of neural crest cells was a key step in the origin of the vertebrate body plan. An outstanding question is how neural crest cells acquired their ability to undergo an epithelial-mesenchymal transition (EMT) and migrate extensively throughout the vertebrate embryo. We tested if differential regulation of classical cadherins-a highly conserved feature of neural crest EMT and migration in jawed vertebrates-mediates these cellular behaviors in lamprey, a basal jawless vertebrate. Lamprey has single copies of the type I and type II classical cadherins (CadIA and CadIIA). CadIIA is expressed in premigratory neural crest, and requires the transcription factor Snail for proper expression, yet CadIA is never expressed in the neural tube during neural crest development, suggesting that differential regulation of classical cadherin expression is not required to initiate neural crest migration in basal vertebrates. We hypothesize that neural crest cells evolved by retention of regulatory programs linking distinct mesenchymal and multipotency properties, and emigrated from the neural tube without differentially regulating type I/type II cadherins. Our results point to the coupling of mesenchymal state and multipotency as a key event facilitating the origin of migratory neural crest cells.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Kevin Zehnder
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
13
|
Zhang S, Su Y, Gao J, Zhang C, Tanaka H. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration. In Vitro Cell Dev Biol Anim 2016; 53:43-53. [PMID: 27649978 PMCID: PMC5258808 DOI: 10.1007/s11626-016-0079-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.
Collapse
Affiliation(s)
- Sanbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang City, 15 South Tiyu Street, Shijiazhuang, 050000, People's Republic of China.
| | - Yuhong Su
- Department of Human Anatomy, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, Hebei Province, 050017, People's Republic of China.
| | - Jinbao Gao
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang City, 15 South Tiyu Street, Shijiazhuang, 050000, People's Republic of China
| | - Chenbing Zhang
- Department of Hand and Foot Surgery, The Third Hospital of Shijiazhuang City, 15 South Tiyu Street, Shijiazhuang, 050000, People's Republic of China
| | - Hideaki Tanaka
- Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Mandalos NP, Remboutsika E. Sox2: To crest or not to crest? Semin Cell Dev Biol 2016; 63:43-49. [PMID: 27592260 DOI: 10.1016/j.semcdb.2016.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Precise control of neural progenitor transformation into neural crest stem cells ensures proper craniofacial and head development. In the neural progenitor pool, SoxB factors play an essential role as cell fate determinants of neural development, whereas during neural crest stem cell formation, Sox2 plays a predominant role as a guardian of the developmental clock that ensures precision of cell flow in the developing head.
Collapse
Affiliation(s)
- Nikolaos Panagiotis Mandalos
- National University of Athens Medical School, Department of Pediatrics, 75 Mikras Asias Str., 115 27, Athens, Greece; Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming Str., 16672 Vari-Attica, Greece; Adjunct Faculty, The Lieber Institute for Brain Development, Basic Sciences Division, Johns Hopkins Medical Campus, 855 North Wolfe Str., Suite 300, 3rd Floor, Baltimore, MD 21205, USA
| | - Eumorphia Remboutsika
- National University of Athens Medical School, Department of Pediatrics, 75 Mikras Asias Str., 115 27, Athens, Greece; Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming", 34 Fleming Str., 16672 Vari-Attica, Greece; Adjunct Faculty, The Lieber Institute for Brain Development, Basic Sciences Division, Johns Hopkins Medical Campus, 855 North Wolfe Str., Suite 300, 3rd Floor, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Chicken trunk neural crest migration visualized with HNK1. Acta Histochem 2015; 117:255-66. [PMID: 25805416 DOI: 10.1016/j.acthis.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
The development of the nervous system involves cells remaining within the neural tube (CNS) and a group of cells that delaminate from the dorsal neural tube and migrate extensively throughout the developing embryo called neural crest cells (NCC). These cells are a mesenchymal highly migratory group of cells that give rise to a wide variety of cell derivatives: melanocytes, sensory neurons, bone, Schwann cells, etc. But not all NCC can give rise to all derivatives, they have fate restrictions based on their axial level of origin: cranial, vagal, trunk and sacral. Our aim was to provide a thorough presentation on how does trunk neural crest cell migration looks in the chicken embryo, in wholemount and in sections using the unique chicken marker HNK1. The description presented here makes a good guideline for those interested in viewing trunk NCC migration patterns. We show how before HH14 there are few trunk NCC delaminating and migrating, but between HH15 through HH19 trunk NCC delaminate in large numbers. Melanocytes precursors begin to enter the dorsolateral pathway by HH17. We found that by HH20 HNK1 is not a valid good marker for NCC and that HNK1 is a better marker than Sox10 when looking at neural crest cells morphology and migration details.
Collapse
|
16
|
Epigenetic regulation in neural crest development. Dev Biol 2014; 396:159-68. [PMID: 25446277 DOI: 10.1016/j.ydbio.2014.09.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
The neural crest is a migratory and multipotent cell population that plays a crucial role in many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases.
Collapse
|
17
|
Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation. BMC DEVELOPMENTAL BIOLOGY 2014; 14:3. [PMID: 24433583 PMCID: PMC3899388 DOI: 10.1186/1471-213x-14-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022]
Abstract
Background LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele revealed additional roles of Ldb1 in the development of the central nervous system, hematopoietic system, and limbs. The goal of the current study was to determine the importance of Ldb1 function during craniofacial development in mouse embryos. Results We generated tissue-specific Ldb1 mutants using Wnt1-Cre, which causes deletion of a floxed allele in the neural crest; neural crest-derived cells contribute to most of the mesenchyme of the developing face. All examined Wnt1-Cre;Ldb1fl/- mutants suffered from cleft secondary palate. Therefore, we performed a series of experiments to investigate how Ldb1 regulated palate development. First, we examined the expression of Ldb1 during normal development, and found that Ldb1 was expressed broadly in the palatal mesenchyme during early stages of palate development. Second, we compared the morphology of the developing palate in control and Ldb1 mutant embryos using sections. We found that the mutant palatal shelves had abnormally blunt appearance, and failed to elevate above the tongue at the posterior domain. An in vitro head culture experiment indicated that the elevation defect was not due to interference by the tongue. Finally, in the Ldb1 mutant palatal shelves, cell proliferation was abnormal in the anterior, and the expression of Wnt5a, Pax9 and Osr2, which regulate palatal shelf elevation, was also altered. Conclusions The function of Ldb1 in the neural crest-derived palatal mesenchyme is essential for normal morphogenesis of the secondary palate.
Collapse
|
18
|
Green SA, Bronner ME. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 2014; 87:44-51. [PMID: 24560767 PMCID: PMC3995830 DOI: 10.1016/j.diff.2014.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/26/2014] [Accepted: 02/04/2014] [Indexed: 11/15/2022]
Abstract
Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates.
Collapse
Affiliation(s)
- Stephen A Green
- California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Marianne E Bronner
- California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
20
|
Bildsoe H, Loebel DAF, Jones VJ, Hor ACC, Braithwaite AW, Chen YT, Behringer RR, Tam PPL. The mesenchymal architecture of the cranial mesoderm of mouse embryos is disrupted by the loss of Twist1 function. Dev Biol 2012; 374:295-307. [PMID: 23261931 DOI: 10.1016/j.ydbio.2012.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 12/07/2012] [Accepted: 12/09/2012] [Indexed: 11/17/2022]
Abstract
The basic helix-loop-helix transcription factor Twist1 is a key regulator of craniofacial development. Twist1-null mouse embryos exhibit failure of cephalic neural tube closure and abnormal head development and die at E11.0. To dissect the function of Twist1 in the cranial mesoderm beyond mid-gestation, we used Mesp1-Cre to delete Twist1 in the anterior mesoderm, which includes the progenitors of the cranial mesoderm. Deletion of Twist1 in mesoderm cells resulted in loss and malformations of the cranial mesoderm-derived skeleton. Loss of Twist1 in the mesoderm also resulted in a failure to fully segregate the mesoderm and the neural crest cells, and the malformation of some cranial neural crest-derived tissues. The development of extraocular muscles was compromised whereas the differentiation of branchial arch muscles was not affected, indicating a differential requirement for Twist1 in these two types of craniofacial muscle. A striking effect of the loss of Twist1 was the inability of the mesodermal cells to maintain their mesenchymal characteristics, and the acquisition of an epithelial-like morphology. Our findings point to a role of Twist1 in maintaining the mesenchyme architecture and the progenitor state of the mesoderm, as well as mediating mesoderm-neural crest interactions in craniofacial development.
Collapse
Affiliation(s)
- Heidi Bildsoe
- Embryology Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Greenwood AK, Cech JN, Peichel CL. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evol Dev 2012; 14:351-62. [PMID: 22765206 DOI: 10.1111/j.1525-142x.2012.00553.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment pattern variation across species or populations offers a tractable framework in which to investigate the evolution of development. Juvenile threespine sticklebacks (Gasterosteus aculeatus) from marine and freshwater environments exhibit divergent pigment patterns that are associated with ecological differences. Juvenile marine sticklebacks have a silvery appearance, whereas sticklebacks from freshwater environments exhibit a pattern of vertical bars. We investigated both the developmental and molecular basis of this population-level variation in pigment pattern. Time course imaging during the transition from larval to juvenile stages revealed differences between marine and freshwater fish in spatial patterns of chromatophore differentiation as well as in pigment amount and dispersal. In freshwater fish, melanophores appear primarily within dark bars whereas iridophores appear within light bars. By contrast, in marine fish, these chromatophores are interspersed across the flank. In addition to spatially segregated chromatophore differentiation, pigment amount and dispersal within melanophores varies spatially across the flank of freshwater, but not marine fish. To gain insight into the molecular pathways that underlie the differences in pigment pattern development, we evaluated differential gene expression in the flanks of developing fish using high-throughput cDNA sequencing (RNA-seq) and quantitative PCR. We identified several genes that were differentially expressed across dark and light bars of freshwater fish, and between freshwater and marine fish. Together, these experiments begin to shed light on the process of pigment pattern evolution in sticklebacks.
Collapse
Affiliation(s)
- Anna K Greenwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
22
|
Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Dev Biol 2012; 366:10-21. [PMID: 22583479 DOI: 10.1016/j.ydbio.2012.03.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/07/2023]
Abstract
Neural crest cells are a population of multipotent stem cell-like progenitors that arise at the neural plate border in vertebrates, migrate extensively, and give rise to diverse derivatives such as melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia. The neural crest gene regulatory network (NC-GRN) includes a number of key factors that are used reiteratively to control multiple steps in the development of neural crest cells, including the acquisition of stem cell attributes. It is therefore essential to understand the mechanisms that control the distinct functions of such reiteratively used factors in different cellular contexts. The context-dependent control of neural crest specification is achieved through combinatorial interaction with other factors, post-transcriptional and post-translational modifications, and the epigenetic status and chromatin state of target genes. Here we review the current understanding of the NC-GRN, including the role of the neural crest specifiers, their links to the control of "stemness," and their dynamic context-dependent regulation during the formation of neural crest progenitors.
Collapse
|
23
|
Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. Dev Biol 2012; 364:99-113. [PMID: 22309705 DOI: 10.1016/j.ydbio.2012.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 12/30/2011] [Accepted: 01/23/2012] [Indexed: 11/23/2022]
Abstract
Neural crest induction is the result of the combined action at the neural plate border of FGF, BMP, and Wnt signals from the neural plate, mesoderm and nonneural ectoderm. In this work we show that the expression of Indian hedgehog (Ihh, formerly named Banded hedgehog) and members of the Hedgehog pathway occurs at the prospective neural fold, in the premigratory and migratory neural crest. We performed a functional analysis that revealed the requirement of Ihh signaling in neural crest development. During the early steps of neural crest induction loss of function experiments with antisense morpholino or locally grafted cyclopamine-loaded beads suppressed the expression of early neural crest markers concomitant with the increase in neural and epidermal markers. We showed that changes in Ihh activity produced no alterations in either cell proliferation or apoptosis, suggesting that this signal involves cell fate decisions. A temporal analysis showed that Hedgehog is continuously required not only in the early and late specification but also during the migration of the neural crest. We also established that the mesodermal source of Ihh is important to maintain specification and also to support the migratory process. By a combination of embryological and molecular approaches our results demonstrated that Ihh signaling drives in the migration of neural crest cells by autocrine or paracrine mechanisms. Finally, the abrogation of Ihh signaling strongly affected only the formation of cartilages derived from the neural crest, while no effects were observed on melanocytes. Taken together, our results provide insights into the role of the Ihh cell signaling pathway during the early steps of neural crest development.
Collapse
|
24
|
Parada C, Han D, Chai Y. Molecular and cellular regulatory mechanisms of tongue myogenesis. J Dent Res 2012; 91:528-35. [PMID: 22219210 DOI: 10.1177/0022034511434055] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tongue exerts crucial functions in our daily life. However, we know very little about the regulatory mechanisms of mammalian tongue development. In this review, we summarize recent findings of the molecular and cellular mechanisms that control tissue-tissue interactions during tongue morphogenesis. Specifically, cranial neural crest cells (CNCC) lead the initiation of tongue bud formation and contribute to the interstitial connective tissue, which ultimately compartmentalizes tongue muscles and serves as their attachments. Occipital somite-derived cells migrate into the tongue primordium and give rise to muscle cells in the tongue. The intimate relationship between CNCC- and mesoderm-derived cells, as well as growth and transcription factors that have been shown to be crucial for tongue myogenesis, clearly indicate that tissue-tissue interactions play an important role in regulating tongue morphogenesis.
Collapse
Affiliation(s)
- C Parada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
25
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
26
|
Murphy DA, Diaz B, Bromann PA, Tsai JH, Kawakami Y, Maurer J, Stewart RA, Izpisúa-Belmonte JC, Courtneidge SA. A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS One 2011; 6:e22499. [PMID: 21799874 PMCID: PMC3143166 DOI: 10.1371/journal.pone.0022499] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/27/2011] [Indexed: 01/07/2023] Open
Abstract
In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis.
Collapse
Affiliation(s)
- Danielle A. Murphy
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Begoña Diaz
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Paul A. Bromann
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeff H. Tsai
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Yasuhiko Kawakami
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Jochen Maurer
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Rodney A. Stewart
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | | | - Sara A. Courtneidge
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Glejzer A, Laudet E, Leprince P, Hennuy B, Poulet C, Shakhova O, Sommer L, Rogister B, Wislet-Gendebien S. Wnt1 and BMP2: two factors recruiting multipotent neural crest progenitors isolated from adult bone marrow. Cell Mol Life Sci 2011; 68:2101-14. [PMID: 20976520 PMCID: PMC11114799 DOI: 10.1007/s00018-010-0558-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/22/2010] [Accepted: 10/04/2010] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities.
Collapse
Affiliation(s)
- A. Glejzer
- GIGA Neurosciences, University of Liege, Tour de Pathologie 2, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
| | - E. Laudet
- GIGA Neurosciences, University of Liege, Tour de Pathologie 2, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
| | - P. Leprince
- GIGA Neurosciences, University of Liege, Tour de Pathologie 2, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
| | - B. Hennuy
- University of Liege, GIGA Research, Tour GIGA +1, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
| | - C. Poulet
- University of Liege, GIGA Research, Tour GIGA +1, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
| | - O. Shakhova
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - L. Sommer
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - B. Rogister
- GIGA Neurosciences, University of Liege, Tour de Pathologie 2, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
- GIGA Development, Stem Cells and Regenerative Medicine, University of Liège, Liège, Belgium
- Department of Neurology, University of Liège, CHU, Liège, Belgium
| | - S. Wislet-Gendebien
- GIGA Neurosciences, University of Liege, Tour de Pathologie 2, CHU Avenue de L’hôpital, 1, 4000 Liège, Belgium
| |
Collapse
|
28
|
Agarwal P, Verzi MP, Nguyen T, Hu J, Ehlers ML, McCulley DJ, Xu SM, Dodou E, Anderson JP, Wei ML, Black BL. The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development 2011; 138:2555-65. [PMID: 21610032 PMCID: PMC3100711 DOI: 10.1242/dev.056804] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2011] [Indexed: 12/24/2022]
Abstract
Waardenburg syndromes are characterized by pigmentation and autosensory hearing defects, and mutations in genes encoding transcription factors that control neural crest specification and differentiation are often associated with Waardenburg and related disorders. For example, mutations in SOX10 result in a severe form of Waardenburg syndrome, Type IV, also known as Waardenburg-Hirschsprung disease, characterized by pigmentation and other neural crest defects, including defective innervation of the gut. SOX10 controls neural crest development through interactions with other transcription factors. The MADS box transcription factor MEF2C is an important regulator of brain, skeleton, lymphocyte and cardiovascular development and is required in the neural crest for craniofacial development. Here, we establish a novel role for MEF2C in melanocyte development. Inactivation of Mef2c in the neural crest of mice results in reduced expression of melanocyte genes during development and a significant loss of pigmentation at birth due to defective differentiation and reduced abundance of melanocytes. We identify a transcriptional enhancer of Mef2c that directs expression to the neural crest and its derivatives, including melanocytes, in transgenic mouse embryos. This novel Mef2c neural crest enhancer contains three functional SOX binding sites and a single essential MEF2 site. We demonstrate that Mef2c is a direct transcriptional target of SOX10 and MEF2 via this evolutionarily conserved enhancer. Furthermore, we show that SOX10 and MEF2C physically interact and function cooperatively to activate the Mef2c gene in a feed-forward transcriptional circuit, suggesting that MEF2C might serve as a potentiator of the transcriptional pathways affected in Waardenburg syndromes.
Collapse
Affiliation(s)
- Pooja Agarwal
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Michael P. Verzi
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Thuyen Nguyen
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco, CA 94143-0316, USA
| | - Jianxin Hu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Melissa L. Ehlers
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - David J. McCulley
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Evdokia Dodou
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Joshua P. Anderson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Maria L. Wei
- Department of Dermatology, Veterans Affairs Medical Center, University of California, San Francisco, CA 94143-0316, USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
29
|
CtBP2 downregulation during neural crest specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Mol Cell Biol 2011; 31:955-70. [PMID: 21199918 DOI: 10.1128/mcb.01062-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Trunk neural crest (NC) cells differentiate to neurons, melanocytes, and glia. In NC cultures, cyclic AMP (cAMP) induces melanocyte differentiation while suppressing the neuronal sympathoadrenal lineage, depending on the signal intensity. Melanocyte differentiation requires activation of CREB and cAMP-dependent protein kinase A (PKA), but the role of PKA is not understood. We have demonstrated, in NC cultures, cAMP-induced transcription of the microphthalmia-associated transcription factor gene (Mitf) and the RE-1 silencing transcription factor gene (REST), both Wnt-regulated genes. In NC cultures and zebrafish, knockdown of the corepressor of Wnt-mediated transcription C-terminal binding protein 2 (CtBP2) but not CtBP1 derepressed Mitf and REST expression and enhanced melanocyte differentiation. cAMP in NC and B16 melanoma cells decreased CtBP2 protein levels, while inhibition of PKA or proteasome rescued CtBP2 degradation. Interestingly, knockdown of homeodomain-interacting protein kinase 2 (HIPK2), a CtBP stability modulator, increased CtBP2 levels, suppressed expression of Mitf, REST, and melanocyte differentiation, and increased neuronal gene expression and sympathoadrenal lineage differentiation. We conclude that cAMP/PKA via HIPK2 promotes CtBP2 degradation, leading to Mitf and REST expression. Mitf induces melanocyte specification, and REST suppresses neuron-specific gene expression and the sympathoadrenal lineage. Our studies identify a novel role for REST in NC cell differentiation and suggest cross talk between cAMP and Wnt signaling in NC lineage specification.
Collapse
|
30
|
Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 2010; 32:808-17. [PMID: 20730948 DOI: 10.1002/bies.200900151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Essentially we show recent data to shed new light on the thorny controversy of how teeth arose in evolution. Essentially we show (a) how teeth can form equally from any epithelium, be it endoderm, ectoderm or a combination of the two and (b) that the gene expression programs of oral versus pharyngeal teeth are remarkably similar. Classic theories suggest that (i) skin denticles evolved first and odontode-inductive surface ectoderm merged inside the oral cavity to form teeth (the 'outside-in' hypothesis) or that (ii) patterned odontodes evolved first from endoderm deep inside the pharyngeal cavity (the 'inside-out' hypothesis). We propose a new perspective that views odontodes as structures sharing a deep molecular homology, united by sets of co-expressed genes defining a competent thickened epithelium and a collaborative neural crest-derived ectomesenchyme. Simply put, odontodes develop 'inside and out', wherever and whenever these co-expressed gene sets signal to one another. Our perspective complements the classic theories and highlights an agenda for specific experimental manipulations in model and non-model organisms.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | |
Collapse
|
31
|
Gu Y, Hu N, Liu J, Ding F, Gu X. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1057-64. [DOI: 10.1007/s11427-010-4053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 11/17/2009] [Indexed: 12/13/2022]
|
32
|
Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:779-90. [PMID: 20706996 PMCID: PMC5070114 DOI: 10.1002/bdra.20704] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maternal pregestational diabetes (type 1 or type 2) poses an increased risk for a broad spectrum of birth defects. To our knowledge, this problem first came to the attention of the Teratology Society at the 14th Annual Meeting in Vancouver, B.C. in 1974, with a presentation by Lewis Holmes, "Etiologic heterogeneity of neural tube defects". Although advances in the control of diabetes in the decades since the discovery of insulin in the 1920's have reduced the risk for birth defects during diabetic pregnancy, the increasing incidence of diabetes among women of childbearing years indicates that this cause of birth defects is a growing public health concern. Major advances in understanding how a disease of maternal fuel metabolism can interfere with embryogenesis of multiple organ systems have been made in recent years. In this review, we trace the history of the study of diabetic teratogenesis and discuss a model in which tissue-specific developmental control genes are regulated at specific times in embryonic development by glucose metabolism. The major function of such genes is to suppress apoptosis, perhaps to preserve proliferative capability, and inhibit premature senescence.
Collapse
Affiliation(s)
- Sheller Zabihi
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| |
Collapse
|
33
|
Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, Yoo SH, Buettner R, Kim KS. Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci 2010; 46:245-51. [PMID: 20875861 DOI: 10.1016/j.mcn.2010.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022] Open
Abstract
During development, sympathetic neurons and chromaffin cells originate from bipotential sympathoadrenal (SA) progenitors arising from neural crests (NC) in the trunk regions. Recently, we showed that AP-2β, a member of the AP2 family, plays a critical role in the development of sympathetic neurons and locus coeruleus and their norepinephrine (NE) neurotransmitter phenotype. In the present study, we investigated the potential role of AP-2β in the development of NC-derived neuroendocrine chromaffin cells of the adrenal medulla and the epinephrine (EPI) phenotype determination. In support of its role in chromaffin cell development, AP-2β is prominently expressed in both embryonic and adult adrenal medulla. In adrenal chromaffin cells of the AP-2β(-/-) mouse, the expression levels of catecholamine biosynthesizing enzymes, dopamine β-hydroxylase (DBH) and phenylethanolamine-N-methyl-transferase (PNMT), as well as the SA-specific transcription factor, Phox2b, are significantly reduced compared to wild type. In addition, ultrastructural analysis demonstrated that the formation of large secretory vesicles, a hallmark of differentiated chromaffin cells, is defective in AP-2β(-/-) mice. Furthermore, the level of EPI content is largely diminished (>80%) in the adrenal gland of AP-2β(-/-) mice. Chromatin immunoprecipitation (ChIP) assays of rat adrenal gland showed that AP-2β binds to the upstream promoter of the PNMT gene in vivo; strongly suggesting that it is a direct target gene. Overall, our data suggest that AP-2β plays critical roles in the epinephrine phenotype and maturation of adrenal chromaffin cells.
Collapse
Affiliation(s)
- Seok Jong Hong
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rifat Y, Parekh V, Wilanowski T, Hislop NR, Auden A, Ting SB, Cunningham JM, Jane SM. Regional neural tube closure defined by the Grainy head-like transcription factors. Dev Biol 2010; 345:237-45. [DOI: 10.1016/j.ydbio.2010.07.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 07/14/2010] [Indexed: 12/26/2022]
|
35
|
Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Natl Acad Sci U S A 2010; 107:3570-5. [PMID: 20139305 DOI: 10.1073/pnas.0906596107] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neural crest is a multipotent, stem cell-like population that migrates extensively in the embryo and forms a wide array of derivatives, ranging from neurons to melanocytes and cartilage. Analyses of the gene regulatory network driving neural crest development revealed Sox10 as one of the earliest neural crest-specifying genes, cell-autonomously driving delamination and directly regulating numerous downstream effectors and differentiation gene batteries. In search of direct inputs to the neural crest specifier module, we dissected the chick Sox10 genomic region and isolated two downstream regulatory regions with distinct spatiotemporal activity. A unique element, Sox10E2 represents the earliest-acting neural crest cis-regulatory element, critical for initiating Sox10 expression in newly formed cranial, but not vagal and trunk neural crest. A second element, Sox10E1, acts in later migrating vagal and trunk crest cells. Deep characterization of Sox10E2 reveals Sox9, Ets1, and cMyb as direct inputs mediating enhancer activity. ChIP, DNA-pull down, and gel-shift assays demonstrate their direct binding to the Sox10E2 enhancer in vivo, whereas mutation of their corresponding binding sites, or inactivation of the three upstream regulators, abolishes both reporter and endogenous Sox10 expression. Using cis-regulatory analysis as a tool, our study makes critical connections within the neural crest gene regulatory network, thus being unique in establishing a direct link of upstream effectors to a key neural crest specifier.
Collapse
|
36
|
Pytel P, Karrison T, Can Gong, Tonsgard JH, Krausz T, Montag AG. Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development. Int J Surg Pathol 2009; 18:449-57. [PMID: 20034979 DOI: 10.1177/1066896909351698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of transcription factors have been identified as important in guiding normal Schwann cell development. This study used immunohistochemistry on tissue arrays to assess the expression of some of these transcription factors (Sox5, Sox9, Sox10, AP-2α, Pax7, and FoxD3) on 76 schwannomas, 105 neurofibromas, and 34 malignant peripheral nerve sheath tumors (MPNSTs). Sox9 and Sox10 were found to be widely expressed in all tumor types. FoxD3 reactivity was stronger and more frequently found in schwannomas and MPNSTs than neurofibromas. AP-2α was positive in 31% to 49% of all tumors, but strong reactivity was limited to MPNSTs and schwannomas. Pax7 and Sox5 expression was restricted to subsets of MPNSTs. Statistical analysis showed significant differences between the 3 tumor types in the expression of these markers. No differences were found in the analyzed tumor subgroups, including schwannomas of different sites, schwannomas with or without NF2 association, neurofibromas of different types, or sporadic versus NF1-associated MPNSTs. These results suggest that the transcription factors that guide normal Schwann cell development also play a role in the biology of neoplastic cells with Schwannian differentiation. FoxD3, AP-2α, Pax7, and Sox5 are upregulated in MPNSTs compared with neurofibromas and may be markers of malignant transformation. Screening the expression of FoxD3, Sox9, and Sox10 on 23 cases of other spindle-cell proliferations that may be considered in the differential diagnosis of MPNST, including synovial sarcoma and spindle cell melanoma, suggests that these 3 are helpful markers of Schwannian differentiation in the context of diagnosing MPNSTs.
Collapse
Affiliation(s)
- Peter Pytel
- University of Chicago Medical Center, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kato M, Sternberg PW. The C. elegans tailless/Tlx homolog nhr-67 regulates a stage-specific program of linker cell migration in male gonadogenesis. Development 2009; 136:3907-15. [PMID: 19906858 DOI: 10.1242/dev.035477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67.
Collapse
Affiliation(s)
- Mihoko Kato
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
38
|
Su Y, Naser IB, Islam SM, Zhang S, Ahmed G, Chen S, Shinmyo Y, Kawakami M, Yamamura KI, Tanaka H. Draxin, an axon guidance protein, affects chick trunk neural crest migration. Dev Growth Differ 2009; 51:787-96. [PMID: 19824897 DOI: 10.1111/j.1440-169x.2009.01137.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neural crest is a multipotent population of migratory cells that arises in the central nervous system and subsequently migrates along defined stereotypic pathways. In the present work, we analyzed the role of a repulsive axon guidance protein, draxin, in the migration of neural crest cells. Draxin is expressed in the roof plate of the chick trunk spinal cord and around the early migration pathway of neural crest cells. Draxin modulates chick neural crest cell migration in vitro by reducing the polarization of these cells. When exposed to draxin, the velocity of migrating neural crest cells was reduced, and the cells changed direction so frequently that the net migration distance was also reduced. Overexpression of draxin also caused some early migrating neural crest cells to change direction to the dorsolateral pathway in the chick trunk region, presumably due to draxin's inhibitory activity. These results demonstrate that draxin, an axon guidance protein, can also affect trunk neural crest migration in the chick embryo.
Collapse
Affiliation(s)
- Yuhong Su
- Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nie S, Kee Y, Bronner-Fraser M. Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. Dev Biol 2009; 335:132-42. [PMID: 19712673 DOI: 10.1016/j.ydbio.2009.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 01/26/2023]
Abstract
The neural crest is a highly migratory cell population, unique to vertebrates, that forms much of the craniofacial skeleton and peripheral nervous system. In exploring the cell biological basis underlying this behavior, we have identified an unconventional myosin, myosin-X (Myo10) that is required for neural crest migration. Myo10 is highly expressed in both premigratory and migrating cranial neural crest (CNC) cells in Xenopus embryos. Disrupting Myo10 expression using antisense morpholino oligonucleotides leads to impaired neural crest migration and subsequent cartilage formation, but only a slight delay in induction. In vivo grafting experiments reveal that Myo10-depleted CNC cells migrate a shorter distance and fail to segregate into distinct migratory streams. Finally, in vitro cultures and cell dissociation-reaggregation assays suggest that Myo10 may be critical for cell protrusion and cell-cell adhesion. These results demonstrate an essential role for Myo10 in normal cranial neural crest migration and suggest a link to cell-cell interactions and formation of processes.
Collapse
Affiliation(s)
- Shuyi Nie
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
40
|
Cooper CD, Linbo TH, Raible DW. Kit and foxd3 genetically interact to regulate melanophore survival in zebrafish. Dev Dyn 2009; 238:875-86. [PMID: 19301400 DOI: 10.1002/dvdy.21910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have investigated the role of foxd3 activity in conjunction with signaling by the kit tyrosine kinase receptor in zebrafish black pigment cell (melanophore) development. As loss-of-function of these molecules individually has distinct effects on melanophore number, we have examined the phenotype of double mutants. Individuals with a null mutation in kit have fewer melanophores than wild-type, with cells lost through death. When kit mutants are injected with foxd3 antisense morpholino oligonucleotides or crossed with a foxd3 zebrafish mutant, they have more melanophores than their uninjected or foxd3+ counterparts. Examination of foxd3 loss-of-function in two additional kit mutants that differentially alter kit-dependent migration and survival indicates a change in melanophore number in survival mutants only. Consistently, TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling) analysis confirms a partial rescue of melanophores from cell death. Ectopic expression of foxd3 indicates that foxd3 promotes early melanophore death only when kit is inactive. Taken together, these data suggest a kit-dependent role for foxd3 in the regulation of melanophore survival.
Collapse
Affiliation(s)
- Cynthia D Cooper
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
41
|
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119:1438-49. [PMID: 19487820 DOI: 10.1172/jci38019] [Citation(s) in RCA: 1064] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | | | | | | | | |
Collapse
|
42
|
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009. [PMID: 19487820 DOI: 10.1172/jci38019.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | | | | | | | | |
Collapse
|
43
|
Pierani A, Wassef M. Cerebral cortex development: From progenitors patterning to neocortical size during evolution. Dev Growth Differ 2009; 51:325-42. [PMID: 19298550 DOI: 10.1111/j.1440-169x.2009.01095.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system is composed of thousands of distinct neurons that are assembled in a highly organized structure. In order to form functional neuronal networks, distinct classes of cells have to be generated in a precise number, in a spatial and temporal hierarchy and to be positioned at specific coordinates. An exquisite coordination of appropriate growth of competent territories and their patterning is required for regionalization and neurogenesis along both the anterior-posterior and dorso-ventral axis of the developing nervous system. The neocortex represents the brain territory that has undergone a major increase in its relative size during the course of mammalian evolution. In this review we will discuss how the fine tuning of growth and cell fate patterning plays a crucial role in the achievement of the final size of central nervous system structures and how divergence might have contributed to the surface increase of the cerebral cortex in mammals. In particular, we will describe how lack of precision might have been instrumental to neocortical evolution.
Collapse
Affiliation(s)
- Alessandra Pierani
- Centre National de Recherche Scientifique (CNRS)-UMR 7592, Institut Jacques Monod, Université Paris Diderot et UPMC, 2 place Jussieu, 75005 Paris, France.
| | | |
Collapse
|
44
|
Matthews HK, Broders-Bondon F, Thiery JP, Mayor R. Wnt11r is required for cranial neural crest migration. Dev Dyn 2009; 237:3404-9. [PMID: 18942153 DOI: 10.1002/dvdy.21758] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
wnt11r is a recently identified member of the Wnt family of genes, which has been proposed to be the true Xenopus homologue to the mammalian wnt11 gene. In this study we have examined the role of wnt11r on neural crest development. Expression analysis of wnt11r and comparison with the neural crest marker snail2 and the noncanonical Wnt, wnt11, shows wnt11r is expressed at the medial or neural plate side of the neural crest while wnt11 is expressed at the lateral or epidermal side. Injection of wnt11r morpholino leads to strong inhibition of neural crest migration with no effect on neural crest induction or maintenance. This effect can be rescued by co-injection of Wnt11r but not by Wnt11 mRNA, demonstrating the specificity of the loss of function treatment. Finally, neural crest graft experiments show that wnt11r is required in a non-cell-autonomous manner to control neural crest migration.
Collapse
Affiliation(s)
- Helen K Matthews
- Department of Cell and Developmental Biology, University College London, United Kingdom
| | | | | | | |
Collapse
|
45
|
de Carlos F, Varela I, Germanà A, Montalbano G, Freije JMP, Vega JA, López-Otin C, Cobo JM. Microcephalia with mandibular and dental dysplasia in adult Zmpste24-deficient mice. J Anat 2009; 213:509-19. [PMID: 19014358 DOI: 10.1111/j.1469-7580.2008.00970.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
ZMPSTE24 (also called FACE-1) is a zinc-metalloprotease involved in the post-translational processing of prelamin A to mature lamin A, a major component of the nuclear envelope. Mutations in the ZMPSTE24 gene or in that encoding its substrate prelamin A (LMNA) result in a series of human inherited diseases known collectively as laminopathies and showing regional or systemic manifestations (i.e. the Hutchinson-Gilford progeria syndrome). Typically, patients suffering some laminopathies show craniofacial or mandible anomalies, aberrant dentition or facial features characteristic of aged persons. To analyse whether Zmpste24(-/-) mice reproduce the cranial phenotype observed in humans due to mutations in ZMPSTE24 or LMNA, we conducted a craniometric study based on micro-computer tomography (microCT) images. Furthermore, using simple radiology, microCT, microCT-densitometry and scanning electron microscopy, we analysed the mandible and the teeth from Zmpste24(-/-) mice. Finally, the structure of the lower incisor was investigated using an H&E technique. The results demonstrate that Zmpste24(-/-) mice are microcephalic and show mandibular and dental dysplasia affecting only the mandible teeth. In all cases, the lower incisor of mice lacking Zmpste24 was smaller than in control animals, showed cylindrical morphology and a transverse fissure at the incisal edge, and the pulpal cavity was severely reduced. Structurally, the dental layers were normally arranged but cellular layers were disorganized. The inferior molars showed a reduced cusp size. Taken together, these data strongly suggest that Zmpste24(-/-) mice represent a good model to analyse the craniofacial and teeth malformations characteristic of lamin-related pathologies, and might contribute to a better understanding of the molecular events underlying these diseases.
Collapse
Affiliation(s)
- F de Carlos
- Departamentos de Cirugía y Especialidades Médico-Quirúrgicas (Area de Estomatología), Universidad de Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sauka-Spengler T, Bronner-Fraser M. Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 2009; 46:673-82. [PMID: 19003930 DOI: 10.1002/dvg.20436] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neural crest cells are a vertebrate innovation and form a wide variety of embryonic cell types as diverse as peripheral neurons and facial skeleton. They undergo complex migration and differentiation processes from their site of origin in the developing central nervous system to their final destinations in the periphery. In this review, we summarize recent data on the current formulation of a gene regulatory network underlying neural crest formation and its roots at the base of the vertebrate lineage. Analyzing neural crest formation from a gene regulatory viewpoint provides insights into both the developmental mechanisms and evolutionary origins of this vertebrate-specific cell type.
Collapse
Affiliation(s)
- Tatjana Sauka-Spengler
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
47
|
Abstract
The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.
Collapse
|
48
|
Nikitina N, Sauka‐Spengler T, Bronner‐Fraser M. Chapter 1 Gene Regulatory Networks in Neural Crest Development and Evolution. Curr Top Dev Biol 2009; 86:1-14. [DOI: 10.1016/s0070-2153(09)01001-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
49
|
Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor REB, Hendrix MJC, Kulesa PM. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn 2008; 237:2657-66. [PMID: 18629870 DOI: 10.1002/dvdy.21613] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumor cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay toward this important interface of developmental and cancer biology.
Collapse
|
50
|
Bonano M, Tríbulo C, De Calisto J, Marchant L, Sánchez SS, Mayor R, Aybar MJ. A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. Dev Biol 2008; 323:114-29. [DOI: 10.1016/j.ydbio.2008.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|