1
|
Zhao K, Chan ITC, Tse EHY, Xie Z, Cheung TH, Zeng YA. Autophagy in adult stem cell homeostasis, aging, and disease therapy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:14. [PMID: 40208372 PMCID: PMC11985830 DOI: 10.1186/s13619-025-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
Autophagy is a crucial cellular process that facilitates the degradation of damaged organelles and protein aggregates, and the recycling of cellular components for the energy production and macromolecule synthesis. It plays an indispensable role in maintaining cellular homeostasis. Over recent decades, research has increasingly focused on the role of autophagy in regulating adult stem cells (SCs). Studies suggest that autophagy modulates various cellular processes and states of adult SCs, including quiescence, proliferation, self-renewal, and differentiation. The primary role of autophagy in these contexts is to sustain homeostasis, withstand stressors, and supply energy. Notably, the dysfunction of adult SCs during aging is correlated with a decline in autophagic activity, suggesting that autophagy is also involved in SC- and aging-associated disorders. Given the diverse cellular processes mediated by autophagy and the intricate mechanisms governing adult SCs, further research is essential to elucidate both universal and cell type-specific regulatory pathways of autophagy. This review discusses the role of autophagy in regulating adult SCs during quiescence, proliferation, self-renewal, and differentiation. Additionally, it summarizes the relationship between SC aging and autophagy, providing therapeutical insights into treating and ameliorating aging-associated diseases and cancers, and ultimately promoting longevity.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Indigo T C Chan
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Zhiyao Xie
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, HKUST-Nan Fung Life Sciences Joint Laboratory, the Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| | - Yi Arial Zeng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
2
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
3
|
Lin DW, Zhang L, Zhang J, Chandrasekaran S. Inferring metabolic objectives and trade-offs in single cells during embryogenesis. Cell Syst 2025; 16:101164. [PMID: 39778581 PMCID: PMC11738665 DOI: 10.1016/j.cels.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning. We validated SCOOTI by identifying essential genes from CRISPR-Cas9 screens in embryonic stem cells, and by inferring the metabolic objectives of quiescent cells, during different cell-cycle phases. Applying this to embryonic cell states, we observed a decrease in metabolic entropy upon development. We further uncovered a trade-off between glutathione and biosynthetic precursors in one-cell zygote, two-cell embryo, and blastocyst cells, potentially representing a trade-off between pluripotency and proliferation. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Da-Wei Lin
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Ling Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Sriram Chandrasekaran
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Dong Q, Yang X, Wang L, Zhang Q, Zhao N, Nai S, Du X, Chen L. Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion. Stem Cell Res Ther 2024; 15:415. [PMID: 39533309 PMCID: PMC11559218 DOI: 10.1186/s13287-024-04027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cellular metabolism regulates the pluripotency of embryonic stem cells (ESCs). Yet, how metabolism regulates the transition among different pluripotent states remains elusive. It has been shown that protein lactylation, which uses lactate, a metabolic product of glycolysis, as a substrate, plays a critical role in various biological events. Here we focused on that glycolysis regulates the conversion between ESCs and 2-cell-like cells (2CLCs) through protein lactylation. METHODS RNA-seq revealed the activation of 2-cell (2C) genes by suppression of Ldh. Stable isotope labeling by amino acids in cell culture (SILAC) coupled with lactylated peptide enrichment and quantitative mass spectrometric analysis was carried out to investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition. And we focused on Hdac1. Lactylation of Hdac1 required for silencing 2C genes was proved by quantitative reverse-transcription PCR (qRT-PCR), immunofluorescence (IF), Western blot and chimeric embryos. Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) and in vitro deacetylation assay confirmed lactylation of Hdac1 promoting its binding at 2C genes and enhancing its deacetylase activity, thereby facilitating the removal of H3K27ac and the silencing of 2C genes. RESULTS We found that inhibition or depletion of Ldha, the enzyme converting pyruvate to lactate, leads to the activation of 2C genes, as well as reduced global lactylation in ESCs. To investigate the mechanism how protein lactylation regulates the pluripotent-to-2C transition, quantitative lactylome analysis was performed, and 1716 lactylated proteins were identified. We then focused on Hdac1, a histone deacetylase involved in the silencing of 2C genes. Lactylation of Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes. CONCLUSIONS In summary, our study reveals a mechanistic link between cellular metabolism and pluripotency regulation through protein lactylation. Our research is the first time to reveal that quantitative lactylome analysis in mouse ESCs. We found that lactylated Hdac1 promotes its binding at 2C genes and enhances its deacetylase activity, thus facilitating the removal of H3K27ac and the silencing of 2C genes.
Collapse
Affiliation(s)
- Qiman Dong
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqiong Yang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingling Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qingye Zhang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nannan Zhao
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shanshan Nai
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoling Du
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Yehya H, Wells A, Majcher M, Nakhwa D, King R, Senturk F, Padmanabhan R, Jensen J, Bukys MA. Identifying and optimizing critical process parameters for large-scale manufacturing of iPSC derived insulin-producing β-cells. Stem Cell Res Ther 2024; 15:408. [PMID: 39522051 PMCID: PMC11550522 DOI: 10.1186/s13287-024-03973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Type 1 diabetes, an autoimmune disorder leading to the destruction of pancreatic β-cells, requires lifelong insulin therapy. Islet transplantation offers a promising solution but faces challenges such as limited availability and the need for immunosuppression. Induced pluripotent stem cells (iPSCs) provide a potential alternative source of functional β-cells and have the capability for large-scale production. However, current differentiation protocols, predominantly conducted in hybrid or 2D settings, lack scalability and optimal conditions for suspension culture. METHODS We examined a range of bioreactor scaleup process parameters and quality target product profiles that might affect the differentiation process. This investigation was conducted using an optimized High Dimensional Design of Experiments (HD-DoE) protocol designed for scalability and implemented in 0.5L (PBS-0.5 Mini) vertical wheel bioreactors. RESULTS A three stage suspension manufacturing process is developed, transitioning from adherent to suspension culture, with TB2 media supporting iPSC growth during scaling. Stage-wise optimization approaches and extended differentiation times are used to enhance marker expression and maturation of iPSC-derived islet-like clusters. Continuous bioreactor runs were used to study nutrient and growth limitations and impact on differentiation. The continuous bioreactors were compared to a Control media change bioreactor showing metabolic shifts and a more β-cell-like differentiation profile. Cryopreserved aggregates harvested from the runs were recovered and showed maintenance of viability and insulin secretion capacity post-recovery, indicating their potential for storage and future transplantation therapies. CONCLUSION This study demonstrated that stage time increase and limited media replenishing with lactate accumulation can increase the differentiation capacity of insulin producing cells cultured in a large-scale suspension environment.
Collapse
Affiliation(s)
- Haneen Yehya
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
- Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Alexandra Wells
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael Majcher
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Dhruv Nakhwa
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Ryan King
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Faruk Senturk
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | | | - Jan Jensen
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael A Bukys
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA.
| |
Collapse
|
6
|
Zhang T, Jia L, Li X, Niu Z, Zhang S, Dong W, Peng L, Ma M, Wang H, Tang X, Chen Q. Integrative proteome and metabolome analyses reveal molecular basis of the tail resorption during the metamorphic climax of Nanorana pleskei. Front Cell Dev Biol 2024; 12:1431173. [PMID: 39224435 PMCID: PMC11366584 DOI: 10.3389/fcell.2024.1431173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
During the metamorphosis of anuran amphibians, the tail resorption process is a necessary and crucial change. One subject that has received relatively little or no attention is the expression patterns of proteins and metabolites in the different tail portions during metamorphosis, especially in highland amphibians. The mechanisms of tail resorption in three portions (the tip, middle and root) of the tail were investigated in N. pleskei G43 tadpole based on two omics (proteomic and metabolomic). Integrin αVβ3 was found to be high expressed in the distal portion of the tail, which could improve the sensitiveness to thyroid hormones in the distal portion of the tail. Muscle regression displayed a spatial pattern with stronger regression in distal and weaker one in proximal portion. Probably, this stronger regression was mainly performed by the proteases of proteasome from the active translation by ribosomes. The suicide model and murder model coexisted in the tail resorption. Meanwhile, fatty acids, amino acids, pyrimidine, and purine which derived from the breakdown of tissues can be used as building blocks or energy source for successful metamorphosis. Our data improved a better comprehension of the tail resorption mechanisms underlying the metamorphism of N. pleskei tadpole through identifying important participating proteins and metabolites.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Weijun Dong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Zeng C, Xiao K, Shi Q, Zhan X, Li C. TMT-Based Quantitative Proteomic Analysis Reveals the Key Role of Cell Proliferation and Apoptosis in Intestine Regeneration of Apostichopus japonicus. Int J Mol Sci 2024; 25:4250. [PMID: 38673840 PMCID: PMC11050598 DOI: 10.3390/ijms25084250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Sea cucumbers are widely known for their powerful regenerative abilities, which allow them to regenerate a complete digestive tract within a relatively short time following injury or autotomy. Recently, even though the histological changes and cellular events in the processes of intestinal regeneration have been extensively studied, the molecular machinery behind this faculty remains unclear. In this study, tandem mass tag (TMT)-based quantitation was utilized to investigate protein abundance changes during the process of intestine regeneration. Approximately 538, 445, 397, 1012, and 966 differential proteins (DEPs) were detected (p < 0.05) between the normal and 2, 7, 12, 20, and 28 dpe stages, respectively. These DEPs also mainly focus on pathways of cell proliferation and apoptosis, which were further validated by 5-Ethynyl-2'-deoxyuridine (EdU) or Tunel-based flow cytometry assay. These findings provide a reference for a comprehensive understanding of the regulatory mechanisms of various stages of intestinal regeneration and provide a foundation for subsequent research on changes in cell fate in echinoderms.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Qilin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Xu Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (C.Z.); (K.X.); (Q.S.); (X.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
8
|
Dong Q, Zhang Q, Yang X, Nai S, Du X, Chen L. Glycolysis-Stimulated Esrrb Lactylation Promotes the Self-Renewal and Extraembryonic Endoderm Stem Cell Differentiation of Embryonic Stem Cells. Int J Mol Sci 2024; 25:2692. [PMID: 38473939 DOI: 10.3390/ijms25052692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Embryonic stem cells (ESCs) favor glycolysis over oxidative phosphorylation for energy production, and glycolytic metabolism is critical for pluripotency establishment, maintenance, and exit. However, an understanding of how glycolysis regulates the self-renewal and differentiation of ESCs remains elusive. Here, we demonstrated that protein lactylation, regulated by intracellular lactate, contributes to the self-renewal of ESCs. We further showed that Esrrb, an orphan nuclear receptor involved in pluripotency maintenance and extraembryonic endoderm stem cell (XEN) differentiation, is lactylated on K228 and K232. The lactylation of Esrrb enhances its activity in promoting ESC self-renewal in the absence of the LIF and XEN differentiation of ESCs by increasing its binding at target genes. Our studies reveal the importance of protein lactylation in the self-renewal and XEN differentiation of ESCs, and the underlying mechanism of glycolytic metabolism regulating cell fate choice.
Collapse
Affiliation(s)
- Qiman Dong
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Qingye Zhang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Xiaoqiong Yang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Shanshan Nai
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Xiaoling Du
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| |
Collapse
|
9
|
Agriesti F, Cela O, Capitanio N. "Time Is out of Joint" in Pluripotent Stem Cells: How and Why. Int J Mol Sci 2024; 25:2063. [PMID: 38396740 PMCID: PMC10889767 DOI: 10.3390/ijms25042063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The circadian rhythm is necessary for the homeostasis and health of living organisms. Molecular clocks interconnected by transcription/translation feedback loops exist in most cells of the body. A puzzling exemption to this, otherwise, general biological hallmark is given by the cell physiology of pluripotent stem cells (PSCs) that lack circadian oscillations gradually acquired following their in vivo programmed differentiation. This process can be nicely phenocopied following in vitro commitment and reversed during the reprogramming of somatic cells to induce PSCs. The current understanding of how and why pluripotency is "time-uncoupled" is largely incomplete. A complex picture is emerging where the circadian core clockwork is negatively regulated in PSCs at the post-transcriptional/translational, epigenetic, and other-clock-interaction levels. Moreover, non-canonical functions of circadian core-work components in the balance between pluripotency identity and metabolic-driven cell reprogramming are emerging. This review selects and discusses results of relevant recent investigations providing major insights into this context.
Collapse
Affiliation(s)
- Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (N.C.)
| | | | | |
Collapse
|
10
|
Janmohammadi M, Nourbakhsh MS, Bahraminasab M, Tayebi L. Enhancing bone tissue engineering with 3D-Printed polycaprolactone scaffolds integrated with tragacanth gum/bioactive glass. Mater Today Bio 2023; 23:100872. [PMID: 38075257 PMCID: PMC10709082 DOI: 10.1016/j.mtbio.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Tissue-engineered bone substitutes, characterized by favorable physicochemical, mechanical, and biological properties, present a promising alternative for addressing bone defects. In this study, we employed an innovative 3D host-guest scaffold model, where the host component served as a mechanical support, while the guest component facilitated osteogenic effects. More specifically, we fabricated a triangular porous polycaprolactone framework (host) using advanced 3D printing techniques, and subsequently filled the framework's pores with tragacanth gum-45S5 bioactive glass as the guest component. Comprehensive assessments were conducted to evaluate the physical, mechanical, and biological properties of the designed scaffolds. Remarkably, successful integration of the guest component within the framework was achieved, resulting in enhanced bioactivity and increased strength. Our findings demonstrated that the scaffolds exhibited ion release (Si, Ca, and P), surface apatite formation, and biodegradation. Additionally, in vitro cell culture assays revealed that the scaffolds demonstrated significant improvements in cell viability, proliferation, and attachment. Significantly, the multi-compartment scaffolds exhibited remarkable osteogenic properties, indicated by a substantial increase in the expression of osteopontin, osteocalcin, and matrix deposition. Based on our results, the framework provided robust mechanical support during the new bone formation process, while the guest component matrix created a conducive micro-environment for cellular adhesion, osteogenic functionality, and matrix production. These multi-compartment scaffolds hold great potential as a viable alternative to autografts and offer promising clinical applications for bone defect repair in the future.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | | | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, 3513138111, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|
11
|
Meshrkey F, Scheulin KM, Littlejohn CM, Stabach J, Saikia B, Thorat V, Huang Y, LaFramboise T, Lesnefsky EJ, Rao RR, West FD, Iyer S. Induced pluripotent stem cells derived from patients carrying mitochondrial mutations exhibit altered bioenergetics and aberrant differentiation potential. Stem Cell Res Ther 2023; 14:320. [PMID: 37936209 PMCID: PMC10631039 DOI: 10.1186/s13287-023-03546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes death in infancy. Since there are no adequate models for understanding the rapid fatality associated with LS, human-induced pluripotent stem cell (hiPSC) technology has been recognized as a useful approach to generate patient-specific stem cells for disease modeling and understanding the origins of the phenotype. METHODS hiPSCs were generated from control BJ and four disease fibroblast lines using a cocktail of non-modified reprogramming and immune evasion mRNAs and microRNAs. Expression of hiPSC-associated intracellular and cell surface markers was identified by immunofluorescence and flow cytometry. Karyotyping of hiPSCs was performed with cytogenetic analysis. Sanger and next-generation sequencing were used to detect and quantify the mutation in all hiPSCs. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XFe96 extracellular flux analyzer. RESULTS Reprogrammed hiPSCs expressed pluripotent stem cell markers including transcription factors POU5F1, NANOG and SOX2 and cell surface markers SSEA4, TRA-1-60 and TRA-1-81 at the protein level. Sanger sequencing analysis confirmed the presence of mutations in all reprogrammed hiPSCs. Next-generation sequencing demonstrated the variable presence of mutant mtDNA in reprogrammed hiPSCs. Cytogenetic analyses confirmed the presence of normal karyotype in all reprogrammed hiPSCs. Patient-derived hiPSCs demonstrated decreased maximal mitochondrial respiration, while mitochondrial ATP production was not significantly different between the control and disease hiPSCs. In line with low maximal respiration, the spare respiratory capacity was lower in all the disease hiPSCs. The hiPSCs also demonstrated neural and cardiac differentiation potential. CONCLUSION Overall, the hiPSCs exhibited variable mitochondrial dysfunction that may alter their differentiation potential and provide key insights into clinically relevant developmental perturbations.
Collapse
Affiliation(s)
- Fibi Meshrkey
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Christopher M Littlejohn
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Joshua Stabach
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
| | - Bibhuti Saikia
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward J Lesnefsky
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
- Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, VA, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Raj R Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Science and Engineering 601, Fayetteville, AR, 72701, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
12
|
Abstract
Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.
Collapse
Affiliation(s)
- Ahmed I. Mahmoud
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
13
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
14
|
Khurgel M. Axolotl Metabolism: Measuring Metabolic Rate. Methods Mol Biol 2023; 2562:407-415. [PMID: 36272090 DOI: 10.1007/978-1-0716-2659-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deciphering how metabolic processes contribute to control of stem cell proliferation and differentiation is essential for understanding the mechanisms of regeneration. However, much is still unknown about axolotls' metabolism, which has not been studied in detail over their lifespan or under varied experimental conditions. We summarize the theoretical underpinnings of metabolism and respirometry, and describe a closed respirometry system to investigate metabolic energetics in axolotls as a specific aspect of metabolism. Placement of post-absorptive, fairly inactive animals in the multiple-probe respirometer for 24-48 h allows us to measure changes in concentrations of respiratory gases: oxygen (atmospheric and dissolved) and carbon dioxide, while monitoring the temperature and salinity (conductivity) of the chamber's water. Respirometry data are used to calculate oxygen intake and carbon dioxide output to estimate animal's metabolic energy dynamics during the observation periods. This method creates opportunities for study of potential fluctuations in axolotls' metabolic rate as it pertains to respiratory gases' dynamics during 24-h circadian cycle, as well as examination of changes in metabolic energy management during aging, under varied environmental temperatures, during post-amputation regeneration and many other circumstances.
Collapse
Affiliation(s)
- Moshe Khurgel
- Department of Biology & Environmental Science, Bridgewater College, Bridgewater, VA, USA.
| |
Collapse
|
15
|
Correia B, Sousa MI, Branco AF, Rodrigues AS, Ramalho-Santos J. Leucine and Arginine Availability Modulate Mouse Embryonic Stem Cell Proliferation and Metabolism. Int J Mol Sci 2022; 23:ijms232214286. [PMID: 36430764 PMCID: PMC9694364 DOI: 10.3390/ijms232214286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Amino acids are crucial nutrients involved in several cellular and physiological processes, including fertilization and early embryo development. In particular, Leucine and Arginine have been shown to stimulate implantation, as lack of both in a blastocyst culture system is able to induce a dormant state in embryos. The aim of this work was to evaluate the effects of Leucine and Arginine withdrawal on pluripotent mouse embryonic stem cell status, notably, their growth, self-renewal, as well as glycolytic and oxidative metabolism. Our results show that the absence of both Leucine and Arginine does not affect mouse embryonic stem cell pluripotency, while reducing cell proliferation through cell-cycle arrest. Importantly, these effects are not related to Leukemia Inhibitory Factor (LIF) and are reversible when both amino acids are reconstituted in the culture media. Moreover, a lack of these amino acids is related to a reduction in glycolytic and oxidative metabolism and decreased protein translation in mouse embryonic stem cells (mESCs), while maintaining their pluripotent status.
Collapse
Affiliation(s)
- Bibiana Correia
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Maria Inês Sousa
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Filipa Branco
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - Ana Sofia Rodrigues
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
| | - João Ramalho-Santos
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-354 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
16
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
17
|
Gervais L, Bardin AJ. Stem cells: Mitochondrial biogenesis links growth and EGFR signaling. Curr Biol 2022; 32:R931-R934. [PMID: 36099901 DOI: 10.1016/j.cub.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidermal growth factor receptor signaling is central to cell proliferation, growth, and survival and is often deregulated in cancers. A new study links downstream effectors of this receptor to stem cell growth via mitochondrial biogenesis and metabolic reprogramming.
Collapse
Affiliation(s)
- Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.
| |
Collapse
|
18
|
Brandão AS, Borbinha J, Pereira T, Brito PH, Lourenço R, Bensimon-Brito A, Jacinto A. A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. eLife 2022; 11:e76987. [PMID: 35993337 PMCID: PMC9395193 DOI: 10.7554/elife.76987] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Regeneration depends on the ability of mature cells at the injury site to respond to injury, generating tissue-specific progenitors that incorporate the blastema and proliferate to reconstitute the original organ architecture. The metabolic microenvironment has been tightly connected to cell function and identity during development and tumorigenesis. Yet, the link between metabolism and cell identity at the mechanistic level in a regenerative context remains unclear. The adult zebrafish caudal fin, and bone cells specifically, have been crucial for the understanding of mature cell contribution to tissue regeneration. Here, we use this model to explore the relevance of glucose metabolism for the cell fate transitions preceding new osteoblast formation and blastema assembly. We show that injury triggers a modulation in the metabolic profile at early stages of regeneration to enhance glycolysis at the expense of mitochondrial oxidation. This metabolic adaptation mediates transcriptional changes that make mature osteoblast amenable to be reprogramed into pre-osteoblasts and induces cell cycle re-entry and progression. Manipulation of the metabolic profile led to severe reduction of the pre-osteoblast pool, diminishing their capacity to generate new osteoblasts, and to a complete abrogation of blastema formation. Overall, our data indicate that metabolic alterations have a powerful instructive role in regulating genetic programs that dictate fate decisions and stimulate proliferation, thereby providing a deeper understanding on the mechanisms regulating blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Ana S Brandão
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Jorge Borbinha
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Telmo Pereira
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | - Patrícia H Brito
- UCIBIO, Dept. Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de LisboaLisbonPortugal
| | - Raquel Lourenço
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| | | | - Antonio Jacinto
- CEDOC, NOVA Medical School, Universidade Nova de LisboaLisbonPortugal
| |
Collapse
|
19
|
Chen A, Kristiansen CK, Høyland LE, Ziegler M, Wang J, Sullivan GJ, Li X, Bindoff LA, Liang KX. POLG mutations lead to abnormal mitochondrial remodeling during neural differentiation of human pluripotent stem cells via SIRT3/AMPK pathway inhibition. Cell Cycle 2022; 21:1178-1193. [PMID: 35298342 PMCID: PMC9103491 DOI: 10.1080/15384101.2022.2044136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We showed previously that POLG mutations cause major changes in mitochondrial function, including loss of mitochondrial respiratory chain (MRC) complex I, mitochondrial DNA (mtDNA) depletion and an abnormal NAD+/NADH ratio in both neural stem cells (NSCs) and astrocytes differentiated from induced pluripotent stem cells (iPSCs). In the current study, we looked at mitochondrial remodeling as stem cells transit pluripotency and during differentiation from NSCs to both dopaminergic (DA) neurons and astrocytes comparing the process in POLG-mutated and control stem cells. We saw that mitochondrial membrane potential (MMP), mitochondrial volume, ATP production and reactive oxygen species (ROS) changed in similar ways in POLG and control NSCs, but mtDNA replication, MRC complex I and NAD+ metabolism failed to remodel normally. In DA neurons differentiated from NSCs, we saw that POLG mutations caused failure to increase MMP and ATP production and blunted the increase in mtDNA and complex I. Interestingly, mitochondrial remodeling during astrocyte differentiation from NSCs was similar in both POLG-mutated and control NSCs. Further, we showed downregulation of the SIRT3/AMPK pathways in POLG-mutated cells, suggesting that POLG mutations lead to abnormal mitochondrial remodeling in early neural development due to the downregulation of these pathways. [Figure: see text].
Collapse
Affiliation(s)
- Anbin Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Cecilie Katrin Kristiansen
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,Institute of Immunology, Oslo University Hospital, Oslo, Norway,Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China,CONTACT Kristina Xiao Liang Department of Clinical Medicine (K1, University of Bergen, Jonas Lies vei 87, P. O. Box 7804, Jinan5021 Bergen, Norway
| | - Laurence A. Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway,Laurence A. Bindoff Department of Clinical Medicine, University of Bergen,Norway
| | - Kristina Xiao Liang
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway,Kristina Xiao Liang Department of Clinical Medicine (K1), University of Bergen, Jonas Lies veg 87, N-5021 Bergen, Norway
| |
Collapse
|
20
|
Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, Ho S, Russo F, Montoya JP, Bhandari DR, Bowman AP, Ellis SR, Guiet R, Burri O, Detzner J, Muthing J, Homicsko K, Kuonen F, Gilliet M, Spengler B, Heeren RMA, Dotto GP, La Manno G, D'Angelo G. Sphingolipids control dermal fibroblast heterogeneity. Science 2022; 376:eabh1623. [PMID: 35420948 DOI: 10.1126/science.abh1623] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cells produce thousands of lipids that change during cell differentiation and can vary across individual cells of the same type. However, we are only starting to characterize the function of these cell-to-cell differences in lipid composition. Here, we measured the lipidomes and transcriptomes of individual human dermal fibroblasts by coupling high-resolution mass spectrometry imaging with single-cell transcriptomics. We found that the cell-to-cell variations of specific lipid metabolic pathways contribute to the establishment of cell states involved in the organization of skin architecture. Sphingolipid composition is shown to define fibroblast subpopulations, with sphingolipid metabolic rewiring driving cell-state transitions. Therefore, cell-to-cell lipid heterogeneity affects the determination of cell states, adding a new regulatory component to the self-organization of multicellular systems.
Collapse
Affiliation(s)
- Laura Capolupo
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Irina Khven
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alex R Lederer
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luigi Mazzeo
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Galina Glousker
- School of Life Sciences, Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvia Ho
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, 80131 Napoli, Italy
| | - Jonathan Paz Montoya
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dhaka R Bhandari
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Andrew P Bowman
- Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6629 ER Maastricht, Netherlands
| | - Shane R Ellis
- Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6629 ER Maastricht, Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Romain Guiet
- Faculté des Sciences de la Vie, Bioimaging and Optics Platform, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Vaud, Switzerland
| | - Olivier Burri
- Faculté des Sciences de la Vie, Bioimaging and Optics Platform, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015 Vaud, Switzerland
| | - Johanna Detzner
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Muthing
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
- Swiss Cancer Center Leman, CH-1015 Lausanne, Switzerland
- The Ludwig Institute for Cancer Research, Lausanne Branch, CH-1066 Epalinges, Switzerland
| | - François Kuonen
- Département de Dermatologie et Vénéréologie, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Michel Gilliet
- Département de Dermatologie et Vénéréologie, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | - Bernhard Spengler
- Institute for Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, 6629 ER Maastricht, Netherlands
| | - G Paolo Dotto
- Personalized Cancer Prevention Research Unit, Head and Neck Surgery Division, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Gioele La Manno
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giovanni D'Angelo
- Interfaculty Institute of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, 80131 Napoli, Italy
| |
Collapse
|
21
|
Zhang W, Li J, Duan Y, Li Y, Sun Y, Sun H, Yu X, Gao X, Zhang C, Zhang H, Shi Y, He X. Metabolic Regulation: A Potential Strategy for Rescuing Stem Cell Senescence. Stem Cell Rev Rep 2022; 18:1728-1742. [PMID: 35258787 DOI: 10.1007/s12015-022-10348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Stem cell senescence and exhaustion are closely related to organ failure and individual aging, which not only induces age-related diseases, but also hinders stem cell applications in regenerative medicine. Thus, it's imminent to find effective ways to delay and retrieve stem cell senescence. Metabolic abnormalities are one of the main characteristics of age-associated declines in stem cell function. Understanding the underlying mechanisms may reveal potential strategies for ameliorating age-associated phenotypes and treating age-related diseases. This review focuses on recent advances in the association between metabolism including glucose, lipid, glutamine and NAD+ metabolism and stem cell senescence, as well as the other properties like proliferation and differentiation. Layers of studies are summarized to demonstrate how metabolism varies in senescent stem cells and how metabolic reprogramming regulates stem cell senescence. Additionally, we mentioned some recent progress in therapeutic strategies to rejuvenate dysfunctional aged stem cells. Finally, a brief conclusion about the prospect of metabolic regulation as a potential strategy for rescuing stem cell senescence is displayed. Stem cell senescence is induced by the metabolic reprogramming. The metabolic alterations of glucose, lipid, glutamine and NAD+ can conversely facilitate or inhibit stem cell senescence. Glycolysis, OXPHOS and PPP are all attenuated. But gluconeogenesis alterations still remain unclear. In lipid metabolisms, both FAO and DNL are suppressed. As for the glutamine metabolism, stem cells' dependence on glutamine is enhanced. Last, NAD+ metabolism undergoes a down-regulated synthesis and up-regulated consumption. All these alterations can be potential targets for reversing stem cell senescence.
Collapse
Affiliation(s)
- Wenxin Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiayu Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuchi Duan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yanlin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
22
|
The Epithelial-Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int J Mol Sci 2022; 23:ijms23020800. [PMID: 35054987 PMCID: PMC8776206 DOI: 10.3390/ijms23020800] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
The transition between epithelial and mesenchymal phenotype is emerging as a key determinant of tumor cell invasion and metastasis. It is a plastic process in which epithelial cells first acquire the ability to invade the extracellular matrix and migrate into the bloodstream via transdifferentiation into mesenchymal cells, a phenomenon known as epithelial–mesenchymal transition (EMT), and then reacquire the epithelial phenotype, the reverse process called mesenchymal–epithelial transition (MET), to colonize a new organ. During all metastatic stages, metabolic changes, which give cancer cells the ability to adapt to increased energy demand and to withstand a hostile new environment, are also important determinants of successful cancer progression. In this review, we describe the complex interaction between EMT and metabolism during tumor progression. First, we outline the main connections between the two processes, with particular emphasis on the role of cancer stem cells and LncRNAs. Then, we focus on some specific cancers, such as breast, lung, and thyroid cancer.
Collapse
|
23
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
24
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
25
|
Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y, Liu M. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol 2021; 14:178. [PMID: 34715882 PMCID: PMC8555326 DOI: 10.1186/s13045-021-01194-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer stem cells (CSCs) are considered as the major cause to tumor initiation, recurrence, metastasis, and drug resistance, driving poor clinical outcomes in patients. Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in cancer development and progression. However, limited lncRNAs involved in CSCs have been reported. Methods The novel lncROPM (a regulator of phospholipid metabolism) in breast CSCs (BCSCs) was identified by microarray and validated by qRT-PCR in BCSCs from breast cancer cells and tissues. The clinical significance of lncROPM was evaluated in two breast cancer cohorts and TANRIC database (TCGA-BRCA, RNAseq data). Gain- and loss-of-function assays were performed to examine the role of lncROPM on BCSCs both in vitro and in vivo. The regulatory mechanism of lncROPM was investigated by bioinformatics, RNA FISH, RNA pull-down, luciferase reporter assay, and actinomycin D treatment. PLA2G16-mediated phospholipid metabolism was determined by UHPLC-QTOFMS system. Cells’ chemosensitivity was assessed by CCK8 assay. Results LncROPM is highly expressed in BCSCs. The enhanced lncROPM exists in clinic breast tumors and other solid tumors and positively correlates with malignant grade/stage and poor prognosis in breast cancer patients. Gain- and loss-of-function studies show that lncROPM is required for the maintenance of BCSCs properties both in vitro and in vivo. Mechanistically, lncROPM regulates PLA2G16 expression by directly binding to 3'-UTR of PLA2G16 to increase the mRNA stability. The increased PLA2G16 significantly promotes phospholipid metabolism and the production of free fatty acid, especially arachidonic acid in BCSCs, thereby activating PI3K/AKT, Wnt/β-catenin, and Hippo/YAP signaling, thus eventually involving in the maintenance of BCSCs stemness. Importantly, lncROPM and PLA2G16 notably contribute to BCSCs chemo-resistance. Administration of BCSCs using clinic therapeutic drugs such as doxorubicin, cisplatin, or tamoxifen combined with Giripladib (an inhibitor of cytoplasmic phospholipase A2) can efficiently eliminate BCSCs and tumorigenesis. Conclusions Our study highlights that lncROPM and its target PLA2G16 play crucial roles in sustaining BCSC properties and may serve as a biomarker for BCSCs or other cancer stem cells. Targeting lncROPM-PLA2G16 signaling axis may be a novel therapeutic strategy for patients with breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01194-z.
Collapse
Affiliation(s)
- Shuiqing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching and Lab Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Pengpeng Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China.
| |
Collapse
|
26
|
Tissue-Specific Metabolic Reprogramming during Wound-Induced Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2021; 22:ijms221810112. [PMID: 34576275 PMCID: PMC8466849 DOI: 10.3390/ijms221810112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.
Collapse
|
27
|
PGC-1α promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes. Genes Dis 2021; 8:891-906. [PMID: 34522716 PMCID: PMC8427271 DOI: 10.1016/j.gendis.2020.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Although it is widely accepted that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are readily available, robustly reproducible, and physiologically appropriate human cells for clinical applications and research in the cardiovascular field, hiPSC-CMs cultured in vitro retain an immature metabolic phenotype that limits their application, and little is known about the underlying molecular mechanism controlling mitochondrial metabolic maturation during human induced pluripotent stem cells (hiPSCs ) differentiation into cardiomyocytes. In this study, we found that peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) played an important role in inducing mitochondrial biogenesis and establishing oxidative phosphorylation (OXPHOS) during the cardiac differentiation of hiPSCs. Knocking down PGC-1α by siRNA impaired mitochondrial respiration, while upregulating PGC-1α by ZLN005 promoted mitochondrial biosynthesis and function by regulating the expression of downstream genes involved in mitochondrial dynamics and oxidative metabolism in hiPSC-CMs. Furthermore, we found that estrogen-related receptor α (ERRα) was required for the induction of PGC-1α stimulatory effects in hiPSC-CMs. These findings provide key insights into the molecular control of mitochondrial metabolism during cardiac differentiation and may be used to generate more metabolically mature cardiomyocytes for application.
Collapse
|
28
|
Falk S, Han D, Karow M. Cellular identity through the lens of direct lineage reprogramming. Curr Opin Genet Dev 2021; 70:97-103. [PMID: 34333231 DOI: 10.1016/j.gde.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Direct lineage reprogramming challenges our traditional view on basic aspects of cellular identity, and in particular on processes crucial for identity acquisition. This is partly because in direct lineage reprogramming but not during natural differentiation processes changing cellular identity can occur in the absence of mitosis. Only recently, technologies emerged to deconstruct the cellular and molecular processes governing the transitory states a cell passes through on the journey from its original identity to the new target cell fate. Here we discuss arising concepts on the nature of these transitory states and the challenges and decisions cells must conquer to reach their new cellular identity.
Collapse
Affiliation(s)
- Sven Falk
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| | - Dandan Han
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Fahrstrasse 17, 91054 Erlangen, Germany.
| |
Collapse
|
29
|
Guo W, Wang S, Zhang X, Shi M, Duan F, Hao J, Gu K, Quan L, Wu Y, Liang Z, Wang Y. Acidic pH transiently prevents the silencing of self-renewal and dampens microRNA function in embryonic stem cells. Sci Bull (Beijing) 2021; 66:1319-1329. [PMID: 36654154 DOI: 10.1016/j.scib.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Enhanced glycolysis is a distinct feature associated with numerous stem cells and cancer cells. However, little is known about its regulatory roles in gene expression and cell fate determination. Here, we confirm that glycolytic metabolism and lactate production decrease during the differentiation of mouse embryonic stem cells (mESCs). Importantly, acidic pH due to lactate accumulation can transiently prevent the silencing of mESC self-renewal in differentiation conditions. Furthermore, acidic pH partially blocks the differentiation of human ESCs (hESCs). Mechanistically, acidic pH downregulates AGO1 protein and de-represses a subset of mRNA targets of miR-290/302 family of microRNAs which facilitate the exit of naive pluripotency state in mESCs. Interestingly, AGO1 protein is also downregulated by acidic pH in cancer cells. Altogether, this study provides insights into the potential function and underlying mechanism of acidic pH in pluripotent stem cells (PSCs).
Collapse
Affiliation(s)
- Wenting Guo
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Shaohua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaoshan Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ming Shi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Feifei Duan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Kaili Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Quan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yixia Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Tangeman JA, Luz-Madrigal A, Sreeskandarajan S, Grajales-Esquivel E, Liu L, Liang C, Tsonis PA, Del Rio-Tsonis K. Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes (Basel) 2021; 12:genes12060840. [PMID: 34072522 PMCID: PMC8226911 DOI: 10.3390/genes12060840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
The plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in a fibroblast growth factor 2 (FGF2)-dependent manner. To better explore the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from (1) intact RPE, (2) transiently reprogrammed RPE (t-rRPE) 6 h post-retinectomy, and (3) reprogrammed RPE (rRPE) 6 h post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for mitogen-activated protein kinase (MAPK)-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis was used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) associated factors, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutharzan Sreeskandarajan
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA;
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Correspondence: ; Tel.: +513-529-3128; Fax: +513-529-6900
| |
Collapse
|
31
|
Bellanti F, di Bello G, Iannelli G, Pannone G, Pedicillo MC, Boulter L, Lu WY, Tamborra R, Villani R, Vendemiale G, Forbes SJ, Serviddio G. Inhibition of nuclear factor (erythroid-derived 2)-like 2 promotes hepatic progenitor cell activation and differentiation. NPJ Regen Med 2021; 6:28. [PMID: 34039998 PMCID: PMC8155039 DOI: 10.1038/s41536-021-00137-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
The stem cell ability to self-renew and lead regeneration relies on the balance of complex signals in their microenvironment. The identification of modulators of hepatic progenitor cell (HPC) activation is determinant for liver regeneration and may improve cell transplantation for end-stage liver disease. This investigation used different models to point out the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) as a key regulator of the HPC fate. We initially proved that in vivo models of biliary epithelial cells (BECs)/HPC activation show hepatic oxidative stress, which activates primary BECs/HPCs in vitro. NRF2 downregulation and silencing were associated with morphological, phenotypic, and functional modifications distinctive of differentiated cells. Furthermore, NRF2 activation in the biliary tract repressed the ductular reaction in injured liver. To definitely assess the importance of NRF2 in HPC biology, we applied a xenograft model by inhibiting NRF2 in the human derived HepaRG cell line and transplanting into SCID/beige mice administered with anti-Fas antibody to induce hepatocellular apoptosis; this resulted in effective human hepatocyte repopulation with reduced liver injury. To conclude, NRF2 inhibition leads to the activation and differentiation of liver progenitors. This redox-dependent transcription factor represents a potential target to regulate the commitment of undifferentiated hepatic progenitors into specific lineages.
Collapse
Affiliation(s)
- Francesco Bellanti
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Giorgia di Bello
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppina Iannelli
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Pannone
- Anatomical Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Carmela Pedicillo
- Anatomical Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei-Yu Lu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham, UK
| | - Rosanna Tamborra
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gaetano Serviddio
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
32
|
Taberner L, Bañón A, Alsina B. Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Rep 2021; 32:107903. [PMID: 32668260 DOI: 10.1016/j.celrep.2020.107903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
In many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered. The first involves precise spatiotemporal endothelial-neuroblast cytoneme contacts and Dll4-Notch signaling to restrain neuroblast proliferation. The second, instead, requires blood flow to trigger a transcriptional response that modifies neuroblast metabolic status and induces sensory neuron differentiation. In contrast, no role of sensory neurogenesis in vascular development is found, suggesting unidirectional signaling from vasculature to sensory neuroblasts. Altogether, we demonstrate that the cranial vasculature constitutes a niche component of the sensory ganglia that regulates the pace of their growth and differentiation dynamics.
Collapse
Affiliation(s)
- Laura Taberner
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Bañón
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
33
|
Ye L, Zhang X, Zhou Q, Tan B, Xu H, Yi Q, Yan L, Xie M, Zhang Y, Tian J, Zhu J. Activation of AMPK Promotes Maturation of Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:644667. [PMID: 33768096 PMCID: PMC7985185 DOI: 10.3389/fcell.2021.644667] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) (hiPSC-CMs) are a promising cell source for disease modeling, myocardial regeneration, and drug assessment. However, hiPSC-CMs have certain immature fetal CM-like properties that are different from the characteristics of adult CMs in several aspects, including cellular structure, mitochondrial function, and metabolism, thus limiting their applications. Adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in cardiomyocytes. This study investigated the effects of AMPK on the maturation of hiPSC-CMs. Activation of AMPK in hiPSC-CMs significantly increased the expression of CM-specific markers and resulted in a more mature myocardial structure compared to that in the control cells. We found that activation of AMPK improved mitochondrial oxidative phosphorylation (OxPhos) and the oxygen consumption rate (OCR). Additionally, our data demonstrated that activation of AMPK increased mitochondrial fusion to promote the maturation of mitochondrial structure and function. Overall, activation of AMPK is an effective approach to promote hiPSC-CMs maturation, which may enhance the utility of hiPSC-CMs in clinical applications.
Collapse
Affiliation(s)
- Liang Ye
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinyuan Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Clinical Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liang Yan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Min Xie
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yin Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Cardiovascular (Internal Medicine), Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
34
|
Purba TS, Berriche L, Paus R. Compartmentalised metabolic programmes in human anagen hair follicles: New targets to modulate epithelial stem cell behaviour, keratinocyte proliferation and hair follicle immune status? Exp Dermatol 2021; 30:645-651. [PMID: 33548088 DOI: 10.1111/exd.14300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Human scalp hair follicles (HF) preferentially engage in glycolysis followed by lactate production in the presence of oxygen (i.e. the Warburg effect). Through the spatiotemporally controlled expression of key metabolic proteins, we hypothesise that the Warburg effect and other HF metabolic programmes are compartmentalised by region in order to regulate regional cell fate and phenotypes, such as epithelial stem cell quiescence in the bulge or keratinocyte proliferation in the hair matrix. We further propose that metabolic conditions in the HF are organised in accordance with the lactate shuttle, hypothesised to occur in other tissue systems and tumours, but never before described in the HF. Specifically, we argue that lactate is produced and exported by glycolytic GLUT1+ lower outer root sheath (ORS) keratinocytes. We further propose that lactate is then utilised by neighbouring highly proliferative matrix keratinocytes to fuel oxidative metabolism via MCT1-mediated uptake. Furthermore, as lactate has been described to be immunomodulatory, its production and accumulation could enhance immune tolerance in the HF bulb. Here we delineate how to experimentally probe this hypothesis, define major open questions and present preliminary immunohistological evidence in support of metabolic compartmentalisation and lactate shuttling. Overall, we argue that basic and translational hair research needs to rediscover the importance of lactate in human HF biology, well beyond its recognised role in murine HF epithelial stem cells, and should explore how HF metabolism can be therapeutically targeted to modulate hair growth and the immunological HF microenvironment as a novel strategy for managing hair loss disorders.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Leïla Berriche
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Claude Bernard Lyon 1, Lyon, France
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
35
|
Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 2021; 22:410-424. [PMID: 33619373 DOI: 10.1038/s41580-021-00335-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
Collapse
|
36
|
Otte J, Dyberg C, Pepich A, Johnsen JI. MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10:624079. [PMID: 33585251 PMCID: PMC7873735 DOI: 10.3389/fonc.2020.624079] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulated expression of the transcription factor MYCN is frequently detected in nervous system tumors such as childhood neuroblastoma. Here, gene amplification of MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-derived cells. This abnormal MYCN expression is one of the strongest predictors of poor prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is an early event in these cancers leading to a peculiar dysregulation of cells that results in embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic resistance, and metabolic flexibility.
Collapse
Affiliation(s)
- Jörg Otte
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Adena Pepich
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Tarazona OA, Pourquié O. Exploring the Influence of Cell Metabolism on Cell Fate through Protein Post-translational Modifications. Dev Cell 2021; 54:282-292. [PMID: 32693060 DOI: 10.1016/j.devcel.2020.06.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022]
Abstract
The connection between cell fate transitions and metabolic shifts is gaining momentum in the study of cell differentiation in embryonic development, adult stem cells, and cancer pathogenesis. Here, we explore how metabolic transitions influence post-translational modifications (PTMs), which play central roles in the activation of transcriptional programs. PTMs can control the function of transcription factors acting as master regulators of cell fate as well as activation or repression of cell identity genes by regulating chromatin state via histone tail modifications. It now becomes clear that cell metabolism is an integral part of the complex landscape of regulatory mechanisms underlying cell differentiation.
Collapse
Affiliation(s)
- Oscar A Tarazona
- Department of Genetics, Blavatnik Institute of Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Blavatnik Institute of Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
38
|
Correia B, Sousa MI, Branco AF, Ramalho-Santos J. Monitoring Mitochondrial Function in Mouse Embryonic Stem Cells (mESCs). Methods Mol Biol 2021; 2310:47-56. [PMID: 34095997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mouse embryonic stem cells (mESCs) can be grown in culture, recapitulating the different states of pluripotency of their in vivo counterparts, with notably different metabolic profiles. mESCs in a naïve pluripotent state present an ambivalent metabolism, using both glycolysis and oxidative phosphorylation as energy sources. Here, we describe a method to evaluate the oxidative function of naïve mESCs using the Seahorse Extracellular Flux Analyzer coupled to flow cytometry analysis of mitochondrial transmembrane potential using the TMRM fluorescence probe, thus assessing both oxygen consumption and mitochondrial membrane potential. This may be a useful protocol for understanding how mitochondrial oxidative function and potential of mESCs change in certain circumstances, and how is it related with various pluripotency/differentiation phenotypes.
Collapse
Affiliation(s)
- Bibiana Correia
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Sousa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal
| | - Ana F Branco
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- CNC-Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Polo 3, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Zhang G, Li X, Sun Y, Wang X, Liu G, Huang Y. A Genetic Screen Identifies Etl4-Deficiency Capable of Stabilizing the Haploidy in Embryonic Stem Cells. Stem Cell Reports 2021; 16:29-38. [PMID: 33440180 PMCID: PMC7815943 DOI: 10.1016/j.stemcr.2020.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023] Open
Abstract
Mammalian haploid embryonic stem cells (haESCs) hold great promise for functional genetic studies and forward screening. However, all established haploid cells are prone to spontaneous diploidization during long-term culture, rendering application challenging. Here, we report a genome-wide loss-of-function screening that identified gene mutations that could significantly reduce the rate of self-diploidization in haESCs. We further demonstrated that CRISPR/Cas9-mediated Etl4 knockout (KO) stabilizes the haploid state in different haESC lines. More interestingly, Etl4 deficiency increases mitochondrial oxidative phosphorylation (OXPHOS) capacity and decreases glycolysis in haESCs. Mimicking this effect by regulating the energy metabolism with drugs decreased the rate of self-diploidization. Collectively, our study identified Etl4 as a novel haploidy-related factor linked to an energy metabolism transition occurring during self-diploidization of haESCs. A genome-wide genetic screen identifies several haploidy-related factors in haESCs Etl4-deficiency stabilizes the haploid state in different haESC lines Etl4-deficiency increases mitochondrial OXPHOS and decrease glycolysis in haESCs Energy metabolism regulation with drugs decreased the rate of self-diploidization
Collapse
Affiliation(s)
- Guozhong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaowen Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yi Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xue Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
40
|
Zhu G, Ying Y, Ji K, Duan X, Mai T, Kim J, Li Q, Yu L, Xu Y. p53 coordinates glucose and choline metabolism during the mesendoderm differentiation of human embryonic stem cells. Stem Cell Res 2020; 49:102067. [PMID: 33160274 DOI: 10.1016/j.scr.2020.102067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023] Open
Abstract
Metabolism plays crucial roles in the fate decision of human embryonic stem cells (hESCs). Here, we show that the depletion of p53 in hESCs enhances glycolysis and reduces oxidative phosphorylation, and delays mesendoderm differentiation of hESCs. More intriguingly, the disruption of p53 in hESCs leads to dramatic upregulation of phosphatidylcholine and decrease of total choline in both pluripotent and differentiated state of hESCs, suggesting abnormal choline metabolism in the absence of p53. Collectively, our study reveals the indispensable role of p53 in orchestrating both glucose and lipid metabolism to maintain proper hESC identity.
Collapse
Affiliation(s)
- Gaoyang Zhu
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Yue Ying
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kaiyuan Ji
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Xinyue Duan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Taoyi Mai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Jinchul Kim
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lili Yu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| | - Yang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
41
|
Yu X, Sun Y, Cai Q, Zhao X, Liu Z, Xue X, Fu J. Hyperoxia exposure arrests alveolarization in neonatal rats via PTEN‑induced putative kinase 1‑Parkin and Nip3‑like protein X‑mediated mitophagy disorders. Int J Mol Med 2020; 46:2126-2136. [PMID: 33125104 PMCID: PMC7595656 DOI: 10.3892/ijmm.2020.4766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), also known as chronic lung disease, is one of the most common respiratory diseases in premature new‑born humans. Mitochondria are not only the main source of reactive oxygen species but are also critical for the maintenance of homeostasis and a wide range of biological activities, such as producing energy, buffering cytosolic calcium and regulating signal transduction. However, as a critical quality control method for mitochondria, little is known about the role of mitophagy in BPD. The present study assessed mitochondrial function in hyperoxia‑exposed alveolar type II (AT‑II) cells of rats during lung development. New‑born Sprague‑Dawley rats were divided into hyperoxia (85% oxygen) and control (21% oxygen) groups. Histopathological and morphological properties of the lung tissues were assessed at postnatal days 1, 3, 7 and 14. Ultrastructural mitochondrial alteration was observed using transmission electron microscopy and the expression of the mitophagy proteins putative kinase (PINK)1, Parkin and Nip3‑like protein X (NIX) in the lung tissues was evaluated using western blotting. Immunofluorescence staining was used to determine the co‑localisation of PINK1 and Parkin. Real‑time analyses of extracellular acidification rate and oxygen consumption rate were performed using primary AT‑II cells to evaluate metabolic changes. Mitochondria in hyperoxia‑exposed rat AT‑II cells began to show abnormal morphological and physiological features. These changes were accompanied by decreased mitochondrial membrane potential and increased expression levels of PINK1‑Parkin and NIX. Increased binding between a mitochondria marker (cytochrome C oxidase subunit IV isoform I) and an autophagy marker (microtubule‑associated protein‑1 light chain‑3B) was observed in primary AT‑II cells and was accompanied by decreased mitochondrial metabolic capacity in model rats. Thus, mitophagy mediated by PINK1, Parkin and NIX in AT‑II cells occurred in hyperoxia‑exposed new‑born rats. These findings suggested that the accumulation of dysfunctional mitochondria may be a key factor in the pathogenesis of BPD and result in attenuated alveolar development.
Collapse
Affiliation(s)
- Xuefei Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yanli Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qing Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
42
|
Kondo T. Selective eradication of pluripotent stem cells by inhibiting DHODH activity. Stem Cells 2020; 39:33-42. [PMID: 33038285 DOI: 10.1002/stem.3290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, give rise to all kinds of functional cells, making them promising for successful application in regenerative medicine. However, there is concern that a PSC-derived differentiated cell population may form teratomas when used for cell therapy if the population contains undifferentiated PSCs. Therefore, for the success of regenerative medicine, it is crucial to establish methods that induce complete PSC differentiation and eliminate the contamination of PSCs. Here, I show that the dihydroorotate dehydrogenase (DHODH) inhibitor brequinar (BRQ) induced cell cycle arrest, cell death, and stemness loss in mouse PSCs (mPSCs), whereas it was less toxic against normal tissue-specific stem cells and differentiating cells. I demonstrate that BRQ-pretreated mPSCs did not form teratomas after being transplanted into NOD/SCID mice. Moreover, BRQ administration to teratoma-bearing mice prevented tumor growth and decreased PSC marker levels in the tumor without any visible effects in the differentiated germ layer cells and the mice. Collectively, these data suggested that DHODH inhibitors such as BRQ can be indispensable in the fundamental methods of PSC-based therapy.
Collapse
Affiliation(s)
- Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
43
|
Zhu W, Chang L, Zhao T, Wang B, Jiang J. Remarkable metabolic reorganization and altered metabolic requirements in frog metamorphic climax. Front Zool 2020; 17:30. [PMID: 33062031 PMCID: PMC7542913 DOI: 10.1186/s12983-020-00378-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Metamorphic climax is the crucial stage of amphibian metamorphosis responsible for the morphological and functional changes necessary for transition to a terrestrial habitat. This developmental period is sensitive to environmental changes and pollution. Understanding its metabolic basis and requirements is significant for ecological and toxicological research. Rana omeimontis tadpoles are a useful model for investigating this stage as their liver is involved in both metabolic regulation and fat storage. Results We used a combined approach of transcriptomics and metabolomics to study the metabolic reorganization during natural and T3-driven metamorphic climax in the liver and tail of Rana omeimontis tadpoles. The metabolic flux from the apoptotic tail replaced hepatic fat storage as metabolic fuel, resulting in increased hepatic amino acid and fat levels. In the liver, amino acid catabolism (transamination and urea cycle) was upregulated along with energy metabolism (TCA cycle and oxidative phosphorylation), while the carbohydrate and lipid catabolism (glycolysis, pentose phosphate pathway (PPP), and β-oxidation) decreased. The hepatic glycogen phosphorylation and gluconeogenesis were upregulated, and the carbohydrate flux was used for synthesis of glycan units (e.g., UDP-glucuronate). In the tail, glycolysis, β-oxidation, and transamination were all downregulated, accompanied by synchronous downregulation of energy production and consumption. Glycogenolysis was maintained in the tail, and the carbohydrate flux likely flowed into both PPP and the synthesis of glycan units (e.g., UDP-glucuronate and UDP-glucosamine). Fatty acid elongation and desaturation, as well as the synthesis of bioactive lipid (e.g., prostaglandins) were encouraged in the tail during metamorphic climax. Protein synthesis was downregulated in both the liver and tail. The significance of these metabolic adjustments and their potential regulation mechanism are discussed. Conclusion The energic strategy and anabolic requirements during metamorphic climax were revealed at the molecular level. Amino acid made an increased contribution to energy metabolism during metamorphic climax. Carbohydrate anabolism was essential for the body construction of the froglets. The tail was critical in anabolism including synthesizing bioactive metabolites. These findings increase our understanding of amphibian metamorphosis and provide background information for ecological, evolutionary, conservation, and developmental studies of amphibians.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, No.9, Section4, South Renmin Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
44
|
Symmank J, Chorus M, Appel S, Marciniak J, Knaup I, Bastian A, Hennig CL, Döding A, Schulze-Späte U, Jacobs C, Wolf M. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci Rep 2020; 10:15706. [PMID: 32973207 PMCID: PMC7518255 DOI: 10.1038/s41598-020-72736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Alveolar bone (AB) remodeling is necessary for the adaption to mechanical stimuli occurring during mastication and orthodontic tooth movement (OTM). Thereby, bone degradation and assembly are strongly regulated processes that can be altered in obese patients. Further, increased fatty acids (FA) serum levels affect bone remodeling cells and we, therefore, investigated whether they also influence the function of periodontal ligament fibroblast (PdLF). PdLF are a major cell type regulating the differentiation and function of osteoblasts and osteoclasts localized in the AB. We stimulated human PdLF (HPdLF) in vitro with palmitic (PA) or oleic acid (OA) and analyzed their metabolic activity, growth, survival and expression of osteogenic markers and calcium deposits. Our results emphasize that PA increased cell death of HPdLF, whereas OA induced their osteoblastic differentiation. Moreover, quantitative expression analysis of OPG and RANKL revealed altered levels in mechanically stimulated PA-treated HPdLF. Furthermore, osteoclasts stimulated with culture medium of mechanical stressed FA-treated HPdLF revealed significant changes in cell differentiation upon FA-treatment. For the first time, our results highlight a potential role of specific FA in the function of HPdLF-modulated AB remodeling and help to elucidate the complex interplay of bone metabolism, mechanical stimulation and obesity-induced alterations.
Collapse
Affiliation(s)
- Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| | - Martin Chorus
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Appel
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
45
|
Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020; 16:506-518. [PMID: 32587391 PMCID: PMC9188823 DOI: 10.1038/s41574-020-0375-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus, which affects more than 463 million people globally, is caused by the autoimmune ablation or functional loss of insulin-producing β-cells, and prevalence is projected to continue rising over the next decades. Generating β-cells to mitigate the aberrant glucose homeostasis manifested in the disease has remained elusive. Substantial advances have been made in producing mature β-cells from human pluripotent stem cells that respond appropriately to dynamic changes in glucose concentrations in vitro and rapidly function in vivo following transplantation in mice. Other potential avenues to produce functional β-cells include: transdifferentiation of closely related cell types (for example, other pancreatic islet cells such as α-cells, or other cells derived from endoderm); the engineering of non-β-cells that are capable of modulating blood sugar; and the construction of synthetic 'cells' or particles mimicking functional aspects of β-cells. This Review focuses on the current status of generating β-cells via these diverse routes, highlighting the unique advantages and challenges of each approach. Given the remarkable progress in this field, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.
Collapse
Affiliation(s)
- Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel S Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
47
|
Ameneiro C, Moreira T, Fuentes-Iglesias A, Coego A, Garcia-Outeiral V, Escudero A, Torrecilla D, Mulero-Navarro S, Carvajal-Gonzalez JM, Guallar D, Fidalgo M. BMAL1 coordinates energy metabolism and differentiation of pluripotent stem cells. Life Sci Alliance 2020; 3:e201900534. [PMID: 32284354 PMCID: PMC7156282 DOI: 10.26508/lsa.201900534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022] Open
Abstract
BMAL1 is essential for the regulation of circadian rhythms in differentiated cells and adult stem cells, but the molecular underpinnings of its function in pluripotent cells, which hold a great potential in regenerative medicine, remain to be addressed. Here, using transient and permanent loss-of-function approaches in mouse embryonic stem cells (ESCs), we reveal that although BMAL1 is dispensable for the maintenance of the pluripotent state, its depletion leads to deregulation of transcriptional programs linked to cell differentiation commitment. We further confirm that depletion of Bmal1 alters the differentiation potential of ESCs in vitro. Mechanistically, we demonstrate that BMAL1 participates in the regulation of energy metabolism maintaining a low mitochondrial function which is associated with pluripotency. Loss-of-function of Bmal1 leads to the deregulation of metabolic gene expression associated with a shift from glycolytic to oxidative metabolism. Our results highlight the important role that BMAL1 plays at the exit of pluripotency in vitro and provide evidence implicating a non-canonical circadian function of BMAL1 in the metabolic control for cell fate determination.
Collapse
Affiliation(s)
- Cristina Ameneiro
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Tiago Moreira
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Alejandro Fuentes-Iglesias
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
- Department of Physiology, USC, Santiago de Compostela, Spain
| | - Alba Coego
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Vera Garcia-Outeiral
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
- Department of Physiology, USC, Santiago de Compostela, Spain
| | - Adriana Escudero
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
- Department of Physiology, USC, Santiago de Compostela, Spain
| | - Daniel Torrecilla
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Sonia Mulero-Navarro
- Department of Biochemistry, Molecular Biology and Genetics, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Jose Maria Carvajal-Gonzalez
- Department of Biochemistry, Molecular Biology and Genetics, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, USC, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
- Department of Physiology, USC, Santiago de Compostela, Spain
| |
Collapse
|
48
|
Baldwin F, Craig TJ, Shiel AI, Cox T, Lee K, Mansell JP. Polydopamine-Lysophosphatidate-Functionalised Titanium: A Novel Hybrid Surface Finish for Bone Regenerative Applications. Molecules 2020; 25:E1583. [PMID: 32235562 PMCID: PMC7180599 DOI: 10.3390/molecules25071583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £135m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. In realising the development of a superior titanium (Ti) technology, we took inspiration from the growing interest in reactive polydopamine thin films for biomaterial surface functionalisations. Adopting a "one-pot" approach, we exposed medical-grade titanium to a mildly alkaline solution of dopamine hydrochloride (DHC) supplemented with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly, LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Herein, we provide evidence that simply immersing Ti in aqueous solutions of DHC-FHBP afforded a surface that was superior to FHBP-Ti at enhancing osteoblast maturation. The facile step we have taken to modify Ti and the biological performance of the final surface finish are appealing properties that may attract the attention of implant manufacturers in the future.
Collapse
Affiliation(s)
- Fiona Baldwin
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (F.B.); (T.J.C.); (A.I.S.); (T.C.)
| | - Tim J. Craig
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (F.B.); (T.J.C.); (A.I.S.); (T.C.)
| | - Anna I. Shiel
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (F.B.); (T.J.C.); (A.I.S.); (T.C.)
| | - Timothy Cox
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (F.B.); (T.J.C.); (A.I.S.); (T.C.)
| | - Kyueui Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA;
| | - Jason P. Mansell
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (F.B.); (T.J.C.); (A.I.S.); (T.C.)
| |
Collapse
|
49
|
Lees JG, Gardner DK, Harvey AJ. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells 2020; 38:624-638. [PMID: 32003519 DOI: 10.1002/stem.3152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) and its precursor metabolites are emerging as important regulators of both cell metabolism and cell state. Interestingly, the role of NAD+ in human embryonic stem cell (hESC) metabolism and the regulation of pluripotent cell state is unresolved. Here we show that NAD+ simultaneously increases hESC mitochondrial oxidative metabolism and partially suppresses glycolysis and stimulates amino acid turnover, doubling the consumption of glutamine. Concurrent with this metabolic remodeling, NAD+ increases hESC pluripotent marker expression and proliferation, inhibits BMP4-induced differentiation and reduces global histone 3 lysine 27 trimethylation, plausibly inducing an intermediate naïve-to-primed bivalent metabolism and pluripotent state. Furthermore, maintenance of NAD+ recycling via malate aspartate shuttle activity is identified as an absolute requirement for hESC self-renewal, responsible for 80% of the oxidative capacity of hESC mitochondria. Our findings implicate NAD+ in the regulation of cell state, suggesting that the hESC pluripotent state is dependent upon cellular NAD+ .
Collapse
Affiliation(s)
- Jarmon G Lees
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St Vincent's Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Wang X, Chang L, Zhao T, Liu L, Zhang M, Li C, Xie F, Jiang J, Zhu W. Metabolic switch in energy metabolism mediates the sublethal effects induced by glyphosate-based herbicide on tadpoles of a farmland frog Microhyla fissipes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109794. [PMID: 31629188 DOI: 10.1016/j.ecoenv.2019.109794] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate-based herbicides (GBHs) are widely-used agricultural chemicals, bringing potential detriments to aquatic organisms. Currently, our understanding of sublethal effects and underlying toxicologic mechanisms of GBHs are still limited, especially in amphibians. Here, the sublethal effects of a commercial GBH (KISSUN®) on tadpoles of a farmland dwelling frog, Microhyla fissipes, were investigated. The 10-d LC50 of "KISSUN®" GBH was 77.5 mg/L. Tadpoles exposed to 60-120 mg/L showed increased preference to higher temperature. After 10 days exposure, obvious growth suppression was observed in survived GBH-stressed tadpoles, characterized by dosage depended decrement in body mass, body width, total length, etc. GBH-stressed tadpoles also showed decreased tail length/snout-vent length ratio and smaller tail muscle fiber diameter. Comparative transcriptomics (control, 60 mg/L and 90 mg/L groups) was conducted to analyze the underlying molecular processes. GBH-stressed tadpoles showed downregulated transcription of ribosomal proteins and cytoskeleton proteins, which could explain their suppressed whole body and tail muscle growth. Moreover, GBH-stressed tadpoles showed transcriptional downregulation of carbohydrate and lipid catabolism, but upregulation of amino acid catabolism. It suggested a metabolic switch from carbohydrate and lipid to amino acid in these tadpoles. Accordingly, there was a trade-off between protein synthesis and energy production in respect to amino acid allocation, and it provided a metabolic explanation for why protein synthesis was downregulated and growth was suppressed in GBH-stressed tadpoles. In combination with existing literatures, we speculated that GBH might directly target the enzymes in carbohydrate and lipid catabolism, and this metabolic effect of GBH might be common to fish and amphibians. In conclusion, our study provided a systematic insight into the sublethal symptoms of GBH-stressed tadpoles, and a metabolic switch from carbohydrate and lipid to amino acid likely underlay some common toxic symptoms of GBHs on both fish and tadpoles.
Collapse
Affiliation(s)
- Xungang Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Lusha Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mengjie Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|