1
|
Sojoudi K, Solaimani M, Azizi H. Exosomal insights into ovarian cancer stem cells: revealing the molecular hubs. J Ovarian Res 2025; 18:20. [PMID: 39891297 PMCID: PMC11784003 DOI: 10.1186/s13048-025-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
Ovarian cancer is a deadly disease, often diagnosed at advanced stages due to a lack of reliable biomarkers. Exosomes, which carry a variety of molecules such as proteins, lipids, DNA, and non-coding RNAs, have recently emerged as promising tools for early cancer detection. While exosomes have been studied in various cancer types, comprehensive network analyses of exosome proteins in ovarian cancer remain limited. In this study, we used a protein-protein interaction (PPI) network. Using the Clustermaker2 app and the MCODE algorithm, we identified six significant clusters within the network, highlighting regions involved in functional pathways. A four-fold algorithmic approach, including MCC, DMNC, Degree, and EPC, identified 12 common hub genes. STRING analysis and visualization techniques provided a detailed understanding of the biological processes associated with these hub genes. Notably, 91.7% of the identified hub genes were involved in translational processes, showing an important role in protein synthesis regulation in ovarian cancer. In addition, we identified the miRNAs and LncRNAs carried by ovarian cancer exosomes. These findings highlight potential biomarkers for early detection and therapeutic targets.
Collapse
Affiliation(s)
- Kiana Sojoudi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran
| | - Maryam Solaimani
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 49767, Iran.
| |
Collapse
|
2
|
Naineni S, Bhatt G, Jiramongkolsiri E, Robert F, Cencic R, Huang S, Nagar B, Pelletier J. Protein-RNA interactions mediated by silvestrol-insight into a unique molecular clamp. Nucleic Acids Res 2024; 52:12701-12711. [PMID: 39351865 PMCID: PMC11551732 DOI: 10.1093/nar/gkae824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/12/2024] Open
Abstract
Molecular staples or interfacial inhibitors are small molecules that exert their activity through co-association with macromolecules leading to various effects on target functions. Some molecules inhibit target activity, while others generate gain-of-function complexes. We and others have previously identified two structurally distinct classes of molecular staples, pateamine A and rocaglates. These molecules inhibit eukaryotic initiation factor (eIF) 4A, a critical RNA helicase required for translation initiation, by simultaneously interacting with both RNA and protein components. Structural insights from members of these two families indicate that they wedge themselves between RNA bases during engagement. To extend our understanding of rocaglates, we investigated the RNA-binding properties of silvestrol, a natural rocaglate distinguished by the presence of a unique dioxanyloxy ring. Our study demonstrates that silvestrol expands the RNA-binding repertoire of rocaglates due to this structural characteristic, providing a rationale for improving synthetic molecular staples targeting eIF4A.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Garvit Bhatt
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3649 Promenade Sir William Osler, Montreal H3G 0B1 Quebec, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Osler, Montreal H3G 0B1 Quebec, Canada
| | - Ekkanat Jiramongkolsiri
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
- Department of Human Genetics, McGill University, 3640 University, Room W 315 D, Montreal, H3A 0C7 Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Osler, Montreal H3G 0B1 Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Institute, 1160 Pine Ave W, Montreal, H3A 1A3, Quebec, Canada
- Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. Montreal H4A 3T2 Quebec, Canada
| |
Collapse
|
3
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
4
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
5
|
Zhang J, Yang SG, Zhou FQ. Glycogen synthase kinase 3 signaling in neural regeneration in vivo. J Mol Cell Biol 2024; 15:mjad075. [PMID: 38059848 PMCID: PMC11063957 DOI: 10.1093/jmcb/mjad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) signaling plays important and broad roles in regulating neural development in vitro and in vivo. Here, we reviewed recent findings of GSK3-regulated axon regeneration in vivo in both the peripheral and central nervous systems and discussed a few controversial findings in the field. Overall, current evidence indicates that GSK3β signaling serves as an important downstream mediator of the PI3K-AKT pathway to regulate axon regeneration in parallel with the mTORC1 pathway. Specifically, the mTORC1 pathway supports axon regeneration mainly through its role in regulating cap-dependent protein translation, whereas GSK3β signaling might be involved in regulating N6-methyladenosine mRNA methylation-mediated, cap-independent protein translation. In addition, GSK3 signaling also plays a key role in reshaping the neuronal transcriptomic landscape during neural regeneration. Finally, we proposed some research directions to further elucidate the molecular mechanisms underlying the regulatory function of GSK3 signaling and discover novel GSK3 signaling-related therapeutic targets. Together, we hope to provide an updated and insightful overview of how GSK3 signaling regulates neural regeneration in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shu-Guang Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Feng-Quan Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
6
|
Meril S, Bahlsen M, Eisenstein M, Savidor A, Levin Y, Bialik S, Pietrokovski S, Kimchi A. Loss-of-function cancer-linked mutations in the EIF4G2 non-canonical translation initiation factor. Life Sci Alliance 2024; 7:e202302338. [PMID: 38129098 PMCID: PMC10746786 DOI: 10.26508/lsa.202302338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.
Collapse
Affiliation(s)
- Sara Meril
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Marcela Bahlsen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling of the Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Wu S, Wagner G. Computational inference of eIF4F complex function and structure in human cancers. Proc Natl Acad Sci U S A 2024; 121:e2313589121. [PMID: 38266053 PMCID: PMC10835048 DOI: 10.1073/pnas.2313589121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells. An alternative cap-independent initiation can occur, involving only eIF4G1 and eIF4A1 through internal ribosome entry sites (IRESs). This mechanism is considered complementary to cap-dependent initiation, particularly in tumors under stress conditions. However, the selection and molecular mechanism of specific translation initiation remains poorly understood in human cancers. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Utilizing Alphafold predictions, we modeled the eIF4F structure with and without eIF4E binding. For cap-dependent initiation, our modeling reveals extensive interactions between the N-terminal eIF4E-binding domain of eIF4G1 and eIF4E. Furthermore, the eIF4G1 HEAT-2 domain positions eIF4E near the eIF4A1 N-terminal domain (NTD), resulting in the collaborative enclosure of the RNA binding cavity within eIF4A1. In contrast, during cap-independent initiation, the HEAT-2 domain directly binds the eIF4A1-NTD, leading to a stronger interaction between eIF4G1 and eIF4A1, thus closing the mRNA binding cavity without the involvement of eIF4E.
Collapse
Affiliation(s)
- Su Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
8
|
Teraiya M, Krokhin O, Chen VC, Perreault H. Cytoplasmic Shotgun Proteomic Points to Key Proteins and Pathways in Temozolomide-Resistant Glioblastoma Multiforme. J Proteome Res 2024; 23:465-482. [PMID: 38147655 DOI: 10.1021/acs.jproteome.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
| | - Oleg Krokhin
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
- Manitoba Centre for Proteomics and Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Vincent C Chen
- Chemistry Department, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
| |
Collapse
|
9
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
10
|
Schaeffer J, Vilallongue N, Decourt C, Blot B, El Bakdouri N, Plissonnier E, Excoffier B, Paccard A, Diaz JJ, Humbert S, Catez F, Saudou F, Nawabi H, Belin S. Customization of the translational complex regulates mRNA-specific translation to control CNS regeneration. Neuron 2023; 111:2881-2898.e12. [PMID: 37442131 PMCID: PMC10522804 DOI: 10.1016/j.neuron.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/30/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
In the adult mammalian central nervous system (CNS), axons fail to regenerate spontaneously after injury because of a combination of extrinsic and intrinsic factors. Despite recent advances targeting the intrinsic regenerative properties of adult neurons, the molecular mechanisms underlying axon regeneration are not fully understood. Here, we uncover a regulatory mechanism that controls the expression of key proteins involved in regeneration at the translational level. Our results show that mRNA-specific translation is critical for promoting axon regeneration. Indeed, we demonstrate that specific ribosome-interacting proteins, such as the protein Huntingtin (HTT), selectively control the translation of a specific subset of mRNAs. Moreover, modulating the expression of these translationally regulated mRNAs is crucial for promoting axon regeneration. Altogether, our findings highlight that selective translation through the customization of the translational complex is a key mechanism of axon regeneration with major implications in the development of therapeutic strategies for CNS repair.
Collapse
Affiliation(s)
- Julia Schaeffer
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Noemie Vilallongue
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Decourt
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Beatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Nacera El Bakdouri
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Elise Plissonnier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Centre Léon Bérard, 69008 Lyon, France; Université de Lyon 1, 69000 Lyon, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frederic Catez
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Centre Léon Bérard, 69008 Lyon, France; Université de Lyon 1, 69000 Lyon, France
| | - Frederic Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Homaira Nawabi
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| | - Stephane Belin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
11
|
Hamm DC, Paatela EM, Bennett SR, Wong CJ, Campbell AE, Wladyka CL, Smith AA, Jagannathan S, Hsieh AC, Tapscott SJ. The transcription factor DUX4 orchestrates translational reprogramming by broadly suppressing translation efficiency and promoting expression of DUX4-induced mRNAs. PLoS Biol 2023; 21:e3002317. [PMID: 37747887 PMCID: PMC10553841 DOI: 10.1371/journal.pbio.3002317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.
Collapse
Affiliation(s)
- Danielle C. Hamm
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Ellen M. Paatela
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington State, United States of America
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Amy E. Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cynthia L. Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| | - Andrew A. Smith
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington State, United States of America
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew C. Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington State, United States of America
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
- Department of Neurology, University of Washington, Seattle, Washington State, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington State, United States of America
| |
Collapse
|
12
|
Wu S, Wagner G. Computational inference of eIF4F complex function and structure in human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552450. [PMID: 37609226 PMCID: PMC10441403 DOI: 10.1101/2023.08.10.552450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells (1). However, cap-independent initiation can occur through internal ribosomal entry sites (IRESs), involving only eIF4G1 and eIF4A1 present, which is considered to be a complementary process to cap-dependent initiation in tumors under stress conditions (2). The selection and molecular mechanism of specific translation initiation in human cancers remains poorly understood. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Using Alphafold predictions, we modeled the eIF4F structure with and without eIF4G1-eIF4E binding. The modeling for cap-dependent initiation suggests that eIF4G1 interacts with eIF4E through its N-terminal eIF4E-binding domain, bringing eIF4E near the eIF4A1 mRNA binding cavity and closing the cavity with both eIF4G1 HEAT-2 domain and eIF4E. In the cap-independent mechanism, α-helix 5 of eIF4G1 HEAT-2 domain instead directly interacts with the eIF4A1 N-terminal domain to close the mRNA binding cavity without eIF4E involvement, resulting in a stronger interaction between eIF4G1 and eIF4A1. Significance Statement Translation initiation is primarily governed by eIF4F, employing a "cap-dependent" mechanism, but eIF4F dysregulation may lead to a "cap-independent" mechanism in stressed cancer cells. We found frequent amplification of translation initiation genes, and co-occurring copy number gains of EIF4G1 and EIF3E genes in human cancers. EIF4G1 amplification or duplication may be positively selected for its beneficial impact on the overexpression of cancer survival genes. The co-regulation of eIF4G1 and eIF4A1, distinctly from eIF4E, reveals eIF4F dysregulation favoring cap-independent initiation. Alphafold predicts changes in the eIF4F complex assembly to accommodate both initiation mechanisms. These findings have significant implications for evaluating cancer cell vulnerability to eIF4F inhibition and developing treatments that target cancer cells with dependency on the translation initiation mechanism.
Collapse
|
13
|
Xue M, Cong F, Zheng W, Xu R, Liu X, Bao H, Sung YY, Xi Y, He F, Ma J, Yang X, Ge W. Loss of Paip1 causes translation reduction and induces apoptotic cell death through ISR activation and Xrp1. Cell Death Discov 2023; 9:288. [PMID: 37543696 PMCID: PMC10404277 DOI: 10.1038/s41420-023-01587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Regulation of protein translation initiation is tightly associated with cell growth and survival. Here, we identify Paip1, the Drosophila homolog of the translation initiation factor PAIP1, and analyze its role during development. Through genetic analysis, we find that loss of Paip1 causes reduced protein translation and pupal lethality. Furthermore, tissue specific knockdown of Paip1 results in apoptotic cell death in the wing imaginal disc. Paip1 depletion leads to increased proteotoxic stress and activation of the integrated stress response (ISR) pathway. Mechanistically, we show that loss of Paip1 promotes phosphorylation of eIF2α via the kinase PERK, leading to apoptotic cell death. Moreover, Paip1 depletion upregulates the transcription factor gene Xrp1, which contributes to apoptotic cell death and eIF2α phosphorylation. We further show that loss of Paip1 leads to an increase in Xrp1 translation mediated by its 5'UTR. These findings uncover a novel mechanism that links translation impairment to tissue homeostasis and establish a role of ISR activation and Xrp1 in promoting cell death.
Collapse
Affiliation(s)
- Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Fei Cong
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wanling Zheng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruoqing Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyu Liu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongcun Bao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ying Ying Sung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Feng He
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
14
|
Alard A, Katsara O, Rios-Fuller T, Parra CDL, Ozerdem U, Ernlund A, Schneider RJ. Breast cancer cell mesenchymal transition and metastasis directed by DAP5/eIF3d-mediated selective mRNA translation. Cell Rep 2023; 42:112646. [PMID: 37314929 PMCID: PMC10895648 DOI: 10.1016/j.celrep.2023.112646] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Cancer cell plasticity enables cell survival in harsh physiological environments and fate transitions such as the epithelial-to-mesenchymal transition (EMT) that underlies invasion and metastasis. Using genome-wide transcriptomic and translatomic studies, an alternate mechanism of cap-dependent mRNA translation by the DAP5/eIF3d complex is shown to be essential for metastasis, EMT, and tumor directed angiogenesis. DAP5/eIF3d carries out selective translation of mRNAs encoding EMT transcription factors and regulators, cell migration integrins, metalloproteinases, and cell survival and angiogenesis factors. DAP5 is overexpressed in metastatic human breast cancers associated with poor metastasis-free survival. In human and murine breast cancer animal models, DAP5 is not required for primary tumor growth but is essential for EMT, cell migration, invasion, metastasis, angiogenesis, and resistance to anoikis. Thus, cancer cell mRNA translation involves two cap-dependent mRNA translation mechanisms, eIF4E/mTORC1 and DAP5/eIF3d. These findings highlight a surprising level of plasticity in mRNA translation during cancer progression and metastasis.
Collapse
Affiliation(s)
- Amandine Alard
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | | | | | - Ugur Ozerdem
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Translational Control of Metabolism and Cell Cycle Progression in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24054885. [PMID: 36902316 PMCID: PMC10002961 DOI: 10.3390/ijms24054885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.
Collapse
|
16
|
Mu H, Yang C, Zhang Y, Chen S, Wang P, Yan B, Zhang Q, Wei C, Gao H. Dietary β-Hydroxy- β-Methylbutyrate Supplementation Affects Growth Performance, Digestion, TOR Pathway, and Muscle Quality in Kuruma Shrimp ( Marsupenaeus japonicas) Fed a Low Protein Diet. AQUACULTURE NUTRITION 2023; 2023:9889533. [PMID: 36860981 PMCID: PMC9973151 DOI: 10.1155/2023/9889533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
An 8-week feeding trial was performed to evaluate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) supplementation on growth performance and muscle quality of kuruma shrimp (Marsupenaeus japonicas) (initial weight: 2.00 ± 0.01 g) fed a low protein diet. The positive control diet (HP) with 490 g/kg protein and negative control diet (LP) with 440 g/kg protein were formulated. Based on the LP, 0.25, 0.5, 1, 2 and 4 g/kg β-hydroxy-β-methylbutyrate calcium were supplemented to design the other five diets named as HMB0.25, HMB0.5, HMB1, HMB2 and HMB4, respectively. Results showed that compared with the shrimp fed LP, the HP, HMB1 and HMB2 groups had significantly higher weight gain and specific growth rate, while significantly lower feed conversion ratio (p < 0.05). Meanwhile, intestinal trypsin activity was significantly elevated in the above three groups than that of the LP group. Higher dietary protein level and HMB inclusion upregulated the expressions of target of rapamycin, ribosomal protein S6 kinase, phosphatidylinositol 3-kinase, and serine/threonine-protein kinase in shrimp muscle, accompanied by the increases in most muscle free amino acids contents. Supplementation of 2 g/kg HMB in a low protein diet improved muscle hardness and water holding capacity of shrimp. Total collagen content in shrimp muscle increased with increasing dietary HMB inclusion. Additionally, dietary inclusion of 2 g/kg HMB significantly elevated myofiber density and sarcomere length, while reduced myofiber diameter. In conclusion, supplementation of 1-2 g/kg HMB in a low protein diet improved the growth performance and muscle quality of kuruma shrimp, which may be ascribed to the increased trypsin activity and activated TOR pathway, as well as elevated muscle collagen content and changed myofiber morphology caused by dietary HMB.
Collapse
Affiliation(s)
- Hua Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Chenbin Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shengdi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Qingqi Zhang
- Ganyu Jiaxin Fishery Technical Development Co., Ltd., Lianyungang 222100, China
| | - Chaoqing Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Marine Resource Development Institute of Jiangsu (Lianyungang), Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| |
Collapse
|
17
|
XPO1-Mediated EIF1AX Cytoplasmic Relocation Promotes Tumor Migration and Invasion in Endometrial Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1361135. [PMID: 36589683 PMCID: PMC9800903 DOI: 10.1155/2022/1361135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of eukaryotic translation initiation factor 1A, X-linked (EIF1AX), has been implicated in the pathogenesis of some cancers. However, the role of EIF1AX in endometrial carcinoma (EC) remains unknown. We investigated the EIF1AX expression in EC patients and assessed its tumorigenesis-associated function and nucleocytoplasmic transport mechanism in vitro and in vivo. The results indicated that the cytoplasmic EIF1AX expression showed a gradual increase when going from endometrium normal tissue, simple endometrial hyperplasia, complex endometrial hyperplasia, and endometrial atypical hyperplasia to EC, while vice versa for the nuclear EIF1AX expression. In addition, the cytoplasmic EIF1AX expression was positively correlated with histologic type, high International Federation of Gynecology and Obstetrics (FIGO) grade, advanced FIGO stage, deeper infiltration, high Ki67 index, and shorter recurrence-free survival in EC patients. In vitro, short hairpin RNA-mediated EIF1AX depletion or SV40NLS-mediated EIF1AX import into the nucleus in multiple human EC cells potently suppressed cell migration and invasion, epithelial-mesenchymal transition, and lung metastasis. Moreover, exportin 1 induced the transport of EIF1AX from the nucleus to the cytoplasm that could be inhibited by leptomycin B treatment or the mutation in the EIF1AX location sequence. These results demonstrate that cytoplasmic EIF1AX may play a key role in the incidence and promotion of EC, and thus, targeting EIF1AX or its nucleocytoplasmic transport process may offer an effective new therapeutic approach to EC.
Collapse
|
18
|
Tonmoy MIQ, Fariha A, Hami I, Kar K, Reza HA, Bahadur NM, Hossain MS. Computational epigenetic landscape analysis reveals association of CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1 lncRNAs in prostate cancer progression through aberrant methylation. Sci Rep 2022; 12:10260. [PMID: 35715447 PMCID: PMC9205881 DOI: 10.1038/s41598-022-13381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs), caused by alterations in DNA methylation, is a driving factor in several cancers. Interplay between lncRNAs’ aberrant methylation and expression in prostate cancer (PC) progression still remains largely elusive. Therefore, this study characterized the genome-wide epigenetic landscape and expression profiles of lncRNAs and their clinical impact by integrating multi-omics data implementing bioinformatics approaches. We identified 62 differentially methylated CpG-sites (DMCs) and 199 differentially expressed lncRNAs (DElncRNAs), where 32 DElncRNAs contain 32 corresponding DMCs within promoter regions. Significant negative correlation was observed between 8 DElncRNAs-DMCs pairs. 3 (cg23614229, cg23957912, and cg11052780) DMCs and 4 (CACNA1G-AS1, F11-AS1, NNT-AS1, and MSC-AS1) DElncRNAs were identified as high-risk factors for poor prognosis of PC patients. Overexpression of hypo-methylated CACNA1G-AS1, F11-AS1, and NNT-AS1 and down-regulation of hyper-methylated MSC-AS1 significantly lower the survival of PC patients and could be a potential prognostic and therapeutic biomarker. These DElncRNAs were found to be associated with several molecular functions whose deregulation can lead to cancer. Involvement of these epigenetically deregulated DElncRNAs in cancer-related biological processes was also noticed. These findings provide new insights into the understanding of lncRNA regulation by aberrant DNA methylation which will help to clarify the epigenetic mechanisms underlying PC.
Collapse
Affiliation(s)
- Mahafujul Islam Quadery Tonmoy
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Kumkum Kar
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh. .,Computational Biology and Chemistry Lab (CBC), Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
19
|
Gaydosik AM, Stonesifer CJ, Khaleel AE, Geskin LJ, Fuschiotti P. Single-Cell RNA Sequencing Unveils the Clonal and Transcriptional Landscape of Cutaneous T-Cell Lymphomas. Clin Cancer Res 2022; 28:2610-2622. [PMID: 35421230 PMCID: PMC9197926 DOI: 10.1158/1078-0432.ccr-21-4437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Clonal malignant T lymphocytes constitute only a fraction of T cells in mycosis fungoides skin tumors and in the leukemic blood of Sézary syndrome, the classic types of cutaneous T-cell lymphomas. However, lack of markers specific for malignant lymphocytes prevents distinguishing them from benign T cells, thus delaying diagnosis and the development of targeted treatments. Here we applied single-cell methods to assess the transcriptional profiles of both malignant T-cell clones and reactive T lymphocytes directly in mycosis fungoides/Sézary syndrome patient samples. EXPERIMENTAL DESIGN Single-cell RNA sequencing was used to profile the T-cell immune repertoire simultaneously with gene expression in CD3+ lymphocytes from mycosis fungoides and healthy skin biopsies as well as from Sézary syndrome and control blood samples. Transcriptional data were validated in additional advanced-stage mycosis fungoides/Sézary syndrome skin and blood samples by immunofluorescence microscopy. RESULTS Several nonoverlapping clonotypes are expanded in the skin and blood of individual advanced-stage mycosis fungoides/Sézary syndrome patient samples, including a dominant malignant clone as well as additional minor malignant and reactive clones. While we detected upregulation of patient-specific as well as mycosis fungoides- and Sézary syndrome-specific oncogenic pathways within individual malignant clones, we also detected upregulation of several common pathways that included genes associated with cancer cell metabolism, cell-cycle regulation, de novo nucleotide biosynthesis, and invasion. CONCLUSIONS Our analysis unveils new insights into mycosis fungoides/Sézary syndrome pathogenesis by providing an unprecedented report of the transcriptional profile of malignant T-cell clones in the skin and blood of individual patients and offers novel prospective targets for personalized therapy.
Collapse
Affiliation(s)
- Alyxzandria M. Gaydosik
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA
| | | | | | | | - Patrizia Fuschiotti
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA,Correspondence to: Patrizia Fuschiotti, Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, S709 BST, 200 Lothrop Street, Pittsburgh PA 15261, USA. Tel.: +1-412-648-9385;
| |
Collapse
|
20
|
Alam M, Shima H, Matsuo Y, Long NC, Matsumoto M, Ishii Y, Sato N, Sugiyama T, Nobuta R, Hashimoto S, Liu L, Kaneko MK, Kato Y, Inada T, Igarashi K. mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. J Biol Chem 2022; 298:102084. [PMID: 35636512 PMCID: PMC9243181 DOI: 10.1016/j.jbc.2022.102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.
Collapse
Affiliation(s)
- Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nguyen Chi Long
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nichika Sato
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takato Sugiyama
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Risa Nobuta
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Satoshi Hashimoto
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
21
|
Epigenetic regulation of EIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer. Oncogene 2022; 41:2778-2785. [PMID: 35361883 PMCID: PMC9215223 DOI: 10.1038/s41388-022-02272-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
In prostate cancers, elongation initiation factor 4A1 (eIF4A1) supports an oncogenic translation program and is highly expressed, but its role remains elusive. By use of human specimens and cell models, we addressed the role of eIF4A1 in prostate cancer in vitro and in vivo. EIF4A1 expression, as determined by mRNA and protein levels, was higher in primary prostate cancers relative to normal prostate tissue. Also, for primary prostate cancers, elevated mRNA levels of EIF4A1 correlated with DNA hypomethylation levels in the CpG-rich island of EIF4A1. Using a DNMT3a CRISPR-Cas9-based tool for specific targeting of DNA methylation, we characterized, in human prostate cancer cells, the epigenetic regulation of EIF4A1 transcripts through DNA methylation in the CpG-rich island of EIF4A1. Next, we investigated the oncogenic effect of EIF4A1 on cancer cell proliferation in vitro and tumor growth in vivo. For prostate cancer cells, EIF4A1 heterozygous knockout or knockdown inhibited protein translation and tumor growth. In addition, using RNA immunoprecipitation with RNA sequencing, we discovered the eIF4A1-mediated translational regulation of the oncogene BRD2, which contains the most enriched eIF4A1-binding motifs in its 5’ untranslated region, establishing an eIF4A1-BRD2 axis for oncogenic translation. Finally, we found a positive correlation between expression levels of eIF4A1 and BRD2 in primary prostate cancers. Our results demonstrate, for prostate cancer cells, epigenetic regulation of EIF4A1 transcripts through DNA methylation and an oncogenic roles of eIF4A1 through BRD2 signaling.
Collapse
|
22
|
Song S, Liu J, Zhang M, Gao X, Sun W, Liu P, Wang Y, Li J. Eukaryotic translation initiation factor 3 subunit B could serve as a potential prognostic predictor for breast cancer. Bioengineered 2022; 13:2762-2776. [PMID: 35040374 PMCID: PMC8974155 DOI: 10.1080/21655979.2021.2017567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The EIF3 gene family is essential in controlling translation initiation during the cell cycle. The significance of the EIF3 subunits as prognostic markers and therapeutic targets in breast cancer is not yet clear. We analyzed the expression of EIF3 subunits in breast cancer on the GEPIA and Oncomine databases and compared their expression in breast cancer and normal tissues using BRCA data downloaded from TCGA. Then we performed clinical survival analysis on the Kaplan–Meier Plotter database and clinicopathologic analysis on the bc-genexMiner v4.1 database. And EIF3B was chosen for mutation analysis via the Cancer SEA online tool. Meanwhile, we performed the immunohistochemical assay, real-time RT-PCR, and Western blotting to analyze EIF3B expression levels in breast cancer. An EIF3B knockdown and a negative control cell line were conducted for MTT assay and cell cycle analysis to assess cell growth. Specifically, the results of TCGA and online databases demonstrated that upregulated EIF3B was associated with poorer overall and advanced tumor progression. We also confirmed that EIF3B was more highly expressed in breast cancer cells and tissues than normal and correlated with a worse outcome. And knockdown of EIF3B expression inhibited the cell cycle and proliferation. Furthermore, EIF3B was highly mutated in breast cancer. Collectively, our results suggested EIF3B as a potential prognostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| |
Collapse
|
23
|
Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun 2021; 12:6979. [PMID: 34848685 PMCID: PMC8632918 DOI: 10.1038/s41467-021-27087-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5' noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.
Collapse
Affiliation(s)
- Viviana Volta
- Synthis LLC, 430 East 29th Street, Launch Labs, Alexandria Center for Life Sciences, New York, NY, 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, The Graduate Center, Biochemistry Ph.D. Program, City University of New York, New York, NY, 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Johns Hopkins Applied Physics Lab, 11000 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Sophie Dornbaum
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
24
|
Role of RONS and eIFs in Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5522054. [PMID: 34285764 PMCID: PMC8275427 DOI: 10.1155/2021/5522054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/05/2022]
Abstract
Various research works have piled up conflicting evidence questioning the effect of oxidative stress in cancer. Reactive oxygen and nitrogen species (RONS) are the reactive radicals and nonradical derivatives of oxygen and nitrogen. RONS can act as a double-edged weapon. On the one hand, RONS can promote cancer initiation through activating certain signal transduction pathways that direct proliferation, survival, and stress resistance. On the other hand, they can mitigate cancer progression via their resultant oxidative stress that causes many cancer cells to die, as some recent studies have proposed that high RONS levels can limit the survival of cancer cells during certain phases of cancer development. Similarly, eukaryotic translation initiation factors are key players in the process of cellular transformation and tumorigenesis. Dysregulation of such translation initiation factors in the form of overexpression, downregulation, or phosphorylation is associated with cancer cell's altering capability of survival, metastasis, and angiogenesis. Nonetheless, eIFs can affect tumor age-related features. Data shows that alternating the eukaryotic translation initiation apparatus can impact many downstream cellular signaling pathways that directly affect cancer development. Hence, researchers have been conducting various experiments towards a new trajectory to find novel therapeutic molecular targets to improve the efficacy of anticancer drugs as well as reduce their side effects, with a special focus on oxidative stress and initiation of translation to harness their effect in cancer development. An increasing body of scientific evidence recently links oxidative stress and translation initiation factors to cancer-related signaling pathways. Therefore, in this review, we present and summarize the recent findings in this field linking certain signaling pathways related to tumorigeneses such as MAPK and PI3K, with either RONS or eIFs.
Collapse
|
25
|
Vo DK, Engler A, Stoimenovski D, Hartig R, Kaehne T, Kalinski T, Naumann M, Haybaeck J, Nass N. Interactome Mapping of eIF3A in a Colon Cancer and an Immortalized Embryonic Cell Line Using Proximity-Dependent Biotin Identification. Cancers (Basel) 2021; 13:cancers13061293. [PMID: 33799492 PMCID: PMC7999522 DOI: 10.3390/cancers13061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Translation initiation comprises complex interactions of eukaryotic initiation factor (eIF) subunits and the structural elements of the mRNAs. Translation initiation is a key process for building the cell's proteome. It not only determines the total amount of protein synthesized but also controls the translation efficiency for individual transcripts, which is important for cancer or ageing. Thus, understanding protein interactions during translation initiation is one key that contributes to understanding how the eIF subunit composition influences translation or other pathways not yet attributed to eIFs. We applied the BioID technique to two rapidly dividing cell lines (the immortalized embryonic cell line HEK-293T and the colon carcinoma cell line HCT-166) in order to identify interacting proteins of eIF3A, a core subunit of the eukaryotic initiation factor 3 complex. We identified a total of 84 interacting proteins, with very few proteins being specific to one cell line. When protein biosynthesis was blocked by thapsigargin-induced endoplasmic reticulum (ER) stress, the interacting proteins were considerably smaller in number. In terms of gene ontology, although eIF3A interactors are mainly part of the translation machinery, protein folding and RNA binding were also found. Cells suffering from ER-stress show a few remaining interactors which are mainly ribosomal proteins or involved in RNA-binding.
Collapse
Affiliation(s)
- Diep-Khanh Vo
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Alexander Engler
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Darko Stoimenovski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany;
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, D-39120 Magdeburg, Germany; (A.E.); (T.K.); (M.N.)
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
- Center for Biomarker Research in Medicine, A-8010 Graz, Austria
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany; (D.-K.V.); (D.S.); (T.K.); (J.H.)
- Correspondence:
| |
Collapse
|
26
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Jiang SL, Mo JL, Peng J, Lei L, Yin JY, Zhou HH, Liu ZQ, Hong WX. Targeting translation regulators improves cancer therapy. Genomics 2020; 113:1247-1256. [PMID: 33189778 DOI: 10.1016/j.ygeno.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Jun-Luan Mo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China.
| |
Collapse
|
28
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
29
|
Translational control in the naked mole-rat as a model highly resistant to cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188455. [PMID: 33148499 DOI: 10.1016/j.bbcan.2020.188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Dysregulation of mRNA translation is involved in the onset and progression of different types of cancer. To gain insight into novel genetic strategies to avoid this malady, we reviewed the available genomic, transcriptomic, and proteomic data about the translational machinery from the naked-mole rat (NMR) Heterocephalus glaber, a new model of study that exhibits high resistance to cancer. The principal features that might confer cancer resistance are 28S rRNA fragmentation, RPL26 and eIF4G overexpression, global downregulation of mTOR pathway, specific amino acid residues in RAPTOR (P908) and RICTOR (V1695), and the absence of 4E-BP3. These features are not only associated with cancer but also might couple longevity and adaptation to hypoxia. We propose that the regulation of translation is among the strategies endowing NMR cancer resistance.
Collapse
|
30
|
Bertorello J, Sesen J, Gilhodes J, Evrard S, Courtade-Saïdi M, Augustus M, Uro-Coste E, Toulas C, Moyal ECJ, Seva C, Dassi E, Cammas A, Skuli N, Millevoi S. Translation reprogramming by eIF3 linked to glioblastoma resistance. NAR Cancer 2020; 2:zcaa020. [PMID: 34316689 PMCID: PMC8210094 DOI: 10.1093/narcan/zcaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 08/25/2020] [Indexed: 11/12/2022] Open
Abstract
Intrinsic resistance to current therapies, leading to dismal clinical outcomes, is a hallmark of glioblastoma multiforme (GBM), the most common and aggressive brain tumor. Understanding the underlying mechanisms of such malignancy is, therefore, an urgent medical need. Deregulation of the protein translation machinery has been shown to contribute to cancer initiation and progression, in part by driving selective translational control of specific mRNA transcripts involved in distinct cancer cell behaviors. Here, we focus on eIF3, a multimeric complex with a known role in the initiation of translation and that is frequently deregulated in cancer. Our results show that the deregulated expression of eIF3e, the e subunit of eIF3, in specific GBM regions could impinge on selective protein synthesis impacting the GBM outcome. In particular, eIF3e restricts the expression of proteins involved in the response to cellular stress and increases the expression of key functional regulators of cell stemness. Such a translation program can therefore serve as a double-edged sword promoting GBM tumor growth and resistance to radiation.
Collapse
Affiliation(s)
- Juliette Bertorello
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
| | - Julie Sesen
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
| | - Julia Gilhodes
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Solène Evrard
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Monique Courtade-Saïdi
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Meera Augustus
- INSERM U1051, Institute for Neurosciences, Hôpital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier Cedex 5, France
| | - Emmanuelle Uro-Coste
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Christine Toulas
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
- Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Catherine Seva
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento (TN), Italy
| | - Anne Cammas
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
| | - Nicolas Skuli
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
| | - Stefania Millevoi
- Cancer Research Center of Toulouse, INSERM UMR 1037, 31037 Toulouse, France
- Université Toulouse III—Paul Sabatier, 2 Avenue Hubert Curien, 31100 Toulouse, France
| |
Collapse
|
31
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
32
|
Xie S, Wei D, Fang W, Yin P, Liu Y, Niu J, Tian L. Survival and protein synthesis of post-larval White Shrimp, Litopenaeus vannamei were affected by dietary protein level. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Pesce E, Miluzio A, Turcano L, Minici C, Cirino D, Calamita P, Manfrini N, Oliveto S, Ricciardi S, Grifantini R, Degano M, Bresciani A, Biffo S. Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits. Cells 2020; 9:cells9010172. [PMID: 31936702 PMCID: PMC7017188 DOI: 10.3390/cells9010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible.
Collapse
Affiliation(s)
- Elisa Pesce
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Annarita Miluzio
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Lorenzo Turcano
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
| | - Claudia Minici
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Delia Cirino
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Piera Calamita
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Massimo Degano
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
- Correspondence: (A.B.); (S.B.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (A.B.); (S.B.)
| |
Collapse
|
34
|
Harvey RF, Pöyry TAA, Stoneley M, Willis AE. Signaling from mTOR to eIF2α mediates cell migration in response to the chemotherapeutic doxorubicin. Sci Signal 2019; 12:12/612/eaaw6763. [PMID: 31848319 DOI: 10.1126/scisignal.aaw6763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After exposure to cytotoxic chemotherapeutics, tumor cells alter their translatome to promote cell survival programs through the regulation of eukaryotic initiation factor 4F (eIF4F) and ternary complex. Compounds that block mTOR signaling and eIF4F complex formation, such as rapamycin and its analogs, have been used in combination therapies to enhance cell killing, although their success has been limited. This is likely because the cross-talk between signaling pathways that coordinate eIF4F regulation with ternary complex formation after treatment with genotoxic therapeutics has not been fully explored. Here, we described a regulatory pathway downstream of p53 in which inhibition of mTOR after DNA damage promoted cross-talk signaling and led to eIF2α phosphorylation. We showed that eIF2α phosphorylation did not inhibit protein synthesis but was instead required for cell migration and that pharmacologically blocking this pathway with either ISRIB or trazodone limited cell migration. These results support the notion that therapeutic targeting of eIF2α signaling could restrict tumor cell metastasis and invasion and could be beneficial to subsets of patients with cancer.
Collapse
Affiliation(s)
- Robert F Harvey
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Tuija A A Pöyry
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Mark Stoneley
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Lancaster Rd., Leicester LE1 9HN, UK.
| |
Collapse
|
35
|
Zhang Q, Du R, Reis Monteiro Dos Santos GR, Yefidoff-Freedman R, Bohm A, Halperin J, Chorev M, Aktas BH. New activators of eIF2α Kinase Heme-Regulated Inhibitor (HRI) with improved biophysical properties. Eur J Med Chem 2019; 187:111973. [PMID: 31881453 DOI: 10.1016/j.ejmech.2019.111973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023]
Abstract
Heme-regulated inhibitor (HRI), a eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, is critically important for coupling protein synthesis to heme availability in reticulocytes and adaptation to various environmental stressors in all cells. HRI modifies the severity of several hemoglobin misfolding disorders including β-thalassemia. Small molecule activators of HRI are essential for studying normal- and patho-biology of this kinase as well as for the treatment of various human disorders for which activation of HRI or phosphorylation of eIF2α may be beneficial. We previously reported development of 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) as specific HRI activators and demonstrated their potential as molecular probes for studying HRI biology and as lead compounds for treatment of various human disorders. To develop more druglike cHAUs for in vivo studies and drug development and to expand the chemical space, we undertook bioassay guided structure-activity relationship studies replacing cyclohexyl ring with various 4-6-membered rings and explored further substitutions on the N-phenyl ring. We tested all analogs in the surrogate eIF2α phosphorylation and cell proliferation assays, and a subset of analogs in secondary mechanistic assays that included endogenous eIF2α phosphorylation and expression of C/EBP homologous protein (CHOP), a downstream effector. Finally, we determined specificity of these compounds for HRI by testing their anti-proliferative activity in cells transfected with siRNA targeting HRI or mock. These compounds have significantly improved cLogPs with no loss of potencies, making them excellent candidates for lead optimization for development of investigational new drugs that potently and specifically activate HRI.
Collapse
Affiliation(s)
- Qingwen Zhang
- Division of Medicinal and Process Chemistry, Shanghai Institute of Pharmaceutical Industry, Pudong, Shanghai, 201203, China; Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ronghui Du
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA; Medicine School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | | | - Revital Yefidoff-Freedman
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew Bohm
- Tufts University Medical School, Boston, MA, 02117, USA
| | - Jose Halperin
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Chorev
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bertal H Aktas
- Hematology Laboratory for Translational Research, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Zhao L, Wang L, Zhang C, Liu Z, Piao Y, Yan J, Xiang R, Yao Y, Shi Y. E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway. Signal Transduct Target Ther 2019; 4:32. [PMID: 31637011 PMCID: PMC6799841 DOI: 10.1038/s41392-019-0060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
mRNA translation reprogramming occurs frequently in many pathologies, including cancer and viral infection. It remains largely unknown whether viral-induced alterations in mRNA translation contribute to carcinogenesis. Most cervical cancer is caused by high-risk human papillomavirus infection, resulting in the malignant transformation of normal epithelial cells mainly via viral E6 and E7 oncoproteins. Here, we utilized polysome profiling and deep RNA sequencing to systematically evaluate E6-regulated mRNA translation in HPV18-infected cervical cancer cells. We found that silencing E6 can cause over a two-fold change in the translation efficiency of ~653 mRNAs, most likely in an eIF4E- and eIF2α-independent manner. In addition, we identified that E6 can selectively upregulate the translation of WNT4, JIP1, and JIP2, resulting in the activation of the noncanonical WNT/PCP/JNK pathway to promote cell proliferation in vitro and tumor growth in vivo. Ectopic expression of WNT4/JIP2 can effectively rescue the decreased cell proliferation caused by E6 silencing, strongly suggesting that the WNT4/JIP2 pathway mediates the role of E6 in promoting cell proliferation. Thus, our results revealed a novel oncogenic mechanism of E6 via regulating the translation of mRNAs.
Collapse
Affiliation(s)
- Lin Zhao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, 28 Fuxing Road, 100853 Beijing, China
| | - Longlong Wang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Chenglan Zhang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Ze Liu
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Yongjun Piao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Jie Yan
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| | - Yuanqing Yao
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, 28 Fuxing Road, 100853 Beijing, China
| | - Yi Shi
- School of Medicine, Nankai University, 94 Weijin Road, 300071 Tianjin, China
| |
Collapse
|
37
|
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032896. [PMID: 29959193 DOI: 10.1101/cshperspect.a032896] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The translation of messenger RNAs (mRNAs) into proteins is a key event in the regulation of gene expression. This is especially true in the cancer setting, as many oncogenes and transforming events are regulated at this level. Cancer-promoting factors that are translationally regulated include cyclins, antiapoptotic factors, proangiogenic factors, regulators of cell metabolism, prometastatic factors, immune modulators, and proteins involved in DNA repair. This review discusses the diverse means by which cancer cells deregulate and reprogram translation, and the resulting oncogenic impacts, providing insights into the complexity of translational control in cancer and its targeting for cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Robichaud
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, and Departments of Urology and of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Robert J Schneider
- NYU School of Medicine, Alexandria Center for Life Science, New York, New York 10016
| |
Collapse
|
38
|
Sato K, Masuda T, Hu Q, Tobo T, Gillaspie S, Niida A, Thornton M, Kuroda Y, Eguchi H, Nakagawa T, Asano K, Mimori K. Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer. EBioMedicine 2019; 44:387-402. [PMID: 31175057 PMCID: PMC6606960 DOI: 10.1016/j.ebiom.2019.05.058] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Translational reprogramming through controlled initiation from non-AUG start codons is considered a crucial driving force in tumorigenesis and tumor progression. However, its clinical impact and underlying mechanism are not fully understood. METHODS Using a bioinformatics approach, we identified translation initiation regulator 5MP1/BZW2 on chromosome 7p as a potential oncogenic driver gene in colorectal cancer (CRC), and explored the biological effect of 5MP1 in CRC in vitro or in vivo. Pathway analysis was performed to identify the downstream target of 5MP1, which was verified with transcriptomic and biochemical analyses. Finally, we assessed the clinical significance of 5MP1 expression in CRC patients. FINDINGS 5MP1 was ubiquitously amplified and overexpressed in CRC. 5MP1 promoted tumor growth and induced cell cycle progression of CRC. c-Myc was identified as its potential downstream effector. c-Myc has two in-frame start codons, AUG and CUG (non-AUG) located upstream of the AUG. 5MP1 expression increased the AUG-initiated c-Myc isoform relative to the CUG-initiated isoform. The AUG-initiated c-Myc isoform displayed higher protein stability and a stronger transactivation activity for oncogenic pathways than the CUG-initiated isoform, accounting for 5MP1-driven cell cycle progression and tumor growth. Clinically, high 5MP1 expression predicts poor survival of CRC patients. INTERPRETATION 5MP1 is a novel oncogene that reprograms c-Myc translation in CRC. 5MP1 could be a potential therapeutic target to overcome therapeutic resistance conferred by tumor heterogeneity of CRC. FUND: Japan Society for the Promotion of Science; Priority Issue on Post-K computer; National Institutes of Health; National Science Foundation; KSU Johnson Cancer Center.
Collapse
Affiliation(s)
- Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka 860-8556, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine and Pathology, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yousuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka 860-8556, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, Oita 874-0838, Japan.
| |
Collapse
|
39
|
Howard CM, Bearss N, Subramaniyan B, Tilley A, Sridharan S, Villa N, Fraser CS, Raman D. The CXCR4-LASP1-eIF4F Axis Promotes Translation of Oncogenic Proteins in Triple-Negative Breast Cancer Cells. Front Oncol 2019; 9:284. [PMID: 31106142 PMCID: PMC6499106 DOI: 10.3389/fonc.2019.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are lacking. In addition, patient mortality mainly results from the metastasized lesions. CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 associated with eIF4A in a CXCL12-dependent manner via a proximity ligation assay. We then confirmed this finding, and the association of LASP1 with eIF4B via co-immunoprecipitation assays. Furthermore, we show that LASP1 can interact with eIF4A and eIF4B through a GST-pulldown approach. Activation of CXCR4 signaling increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins. This impaired ability of eIF4A was confirmed by a previously established 5′UTR luciferase reporter assay. Finally, lack of LASP1 sensitizes 231S cells to pharmacological inhibition of eIF4A by Rocaglamide A as evident through BIRC5 expression. Overall, our work identified the CXCR4-LASP1 axis to be a novel mediator in oncogenic protein translation. Thus, our axis of study represents a potential target for future TNBC therapies.
Collapse
Affiliation(s)
- Cory M Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nicole Bearss
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nancy Villa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
40
|
Gaydosik AM, Tabib T, Geskin LJ, Bayan CA, Conway JF, Lafyatis R, Fuschiotti P. Single-Cell Lymphocyte Heterogeneity in Advanced Cutaneous T-cell Lymphoma Skin Tumors. Clin Cancer Res 2019; 25:4443-4454. [PMID: 31010835 DOI: 10.1158/1078-0432.ccr-19-0148] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE The heterogeneity of tumor cells presents a major challenge to cancer diagnosis and therapy. Cutaneous T-cell lymphomas (CTCL) are a group of T lymphocyte malignancies that primarily affect skin. Lack of highly specific markers for malignant lymphocytes prevents early diagnosis, while only limited treatment options are available for patients with advanced stage CTCL. Droplet-based single-cell transcriptome analysis of CTCL skin biopsies opens avenues for dissecting patient-specific T lymphocyte heterogeneity, providing a basis for identifying specific markers for diagnosis and cure of CTCL. EXPERIMENTAL DESIGN Single-cell RNA-sequencing was performed by Droplet-based sequencing (10X Genomics), focusing on 14,056 CD3+ lymphocytes (448 cells from normal and 13,608 cells from CTCL skin samples) from skin biopsies of 5 patients with advanced-stage CTCL and 4 healthy donors. Protein expression of identified genes was validated in advanced stage CTCL skin tumors by immunohistochemistry and confocal immunofluorescence microscopy. RESULTS Our analysis revealed a large inter- and intratumor gene expression heterogeneity in the T lymphocyte subset, as well as a common gene expression signature in highly proliferating lymphocytes that was validated in multiple advanced-stage skin tumors. In addition, we established the immunologic state of reactive lymphocytes and found heterogeneity in effector and exhaustion programs across patient samples. CONCLUSIONS Single-cell analysis of CTCL skin tumor samples reveals patient-specific landscapes of malignant and reactive lymphocytes within the local microenvironment of each tumor, giving an unprecedented view of lymphocyte heterogeneity and identifying tumor-specific molecular signatures, with important implications for diagnosis and personalized disease treatment.
Collapse
Affiliation(s)
- Alyxzandria M Gaydosik
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tracy Tabib
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert Lafyatis
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrizia Fuschiotti
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
41
|
Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E, Vakifahmetoglu-Norberg H. Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy 2019; 15:1558-1571. [PMID: 30821613 PMCID: PMC6693453 DOI: 10.1080/15548627.2019.1586255] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of select soluble proteins. Nearly one-third of the soluble proteins are predicted to be recognized by this pathway, yet only a minor fraction of this proteome has been identified as CMA substrates in cancer cells. Here, we undertook a quantitative multiplex mass spectrometry approach to study the proteome of isolated lysosomes in cancer cells during CMA-activated conditions. By integrating bioinformatics analyses, we identified and categorized proteins of multiple cellular pathways that were specifically targeted by CMA. Beyond verifying metabolic pathways, we show that multiple components involved in select biological processes, including cellular translation, was specifically targeted for degradation by CMA. In particular, several proteins of the translation initiation complex were identified as bona fide CMA substrates in multiple cancer cell lines of distinct origin and we show that CMA suppresses cellular translation. We further show that the identified CMA substrates display high expression in multiple primary cancers compared to their normal counterparts. Combined, these findings uncover cellular processes affected by CMA and reveal a new role for CMA in the control of translation in cancer cells. Abbreviations: 6-AN: 6-aminonicotinamide; ACTB: actin beta; AR7: atypical retinoid 7; CHX: cycloheximide; CMA: chaperone-mediated autophagy; CQ: chloroquine; CTS: cathepsins; DDX3X: DEAD-box helicase 3 X-linked; EEF2: eukaryotic translation elongation factor 2; EIF4A1: eukaryotic translation initiation factor 4A1; EIF4H: eukaryotic translation initiation factor 4H; GEO: Gene Expression Omnibus; GO: Gene Ontology; GSEA: gene set enrichment analysis; HK2: hexokinase 2; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; LAMP: lysosomal-associated membrane protein; LDHA: lactate dehydrogenase A; NES: normalized enrichment score; NFKBIA: NFKB inhibitor alpha; PCA: principle component analysis; PQ: paraquat; S.D.: standard deviation; SUnSET: surface sensing of translation; TMT: tandem mass tags; TOMM40/TOM40: translocase of outer mitochondrial membrane 40.
Collapse
Affiliation(s)
- Yuqing Hao
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Merve Kacal
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Amanda Tomie Ouchida
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Boxi Zhang
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | - Erik Norberg
- a Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet , Stockholm , Sweden
| | | |
Collapse
|
42
|
Sridharan S, Robeson M, Bastihalli-Tukaramrao D, Howard CM, Subramaniyan B, Tilley AMC, Tiwari AK, Raman D. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol 2019; 9:1311. [PMID: 31867270 PMCID: PMC6909344 DOI: 10.3389/fonc.2019.01311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are intrinsically chemoresistant and capable of self-renewal. Following chemotherapy, patients can develop minimal residual disease due to BCSCs which can repopulate into a relapsed tumor. Therefore, it is imperative to co-target BCSCs along with the bulk tumor cells to achieve therapeutic success and prevent recurrence. So, it is vital to identify actionable molecular targets against both BCSCs and bulk tumor cells. Previous findings from our lab and others have demonstrated that inhibition of the emerging drug target eIF4A with Rocaglamide A (RocA) was efficacious against triple-negative breast cancer cells (TNBC). RocA specifically targets the pool of eIF4A bound to the oncogenic mRNAs that requires its helicase activity for their translation. This property enables specific targeting of tumor cells. The efficacy of RocA against BCSCs is unknown. In this study, we postulated that eIF4A could be a vulnerable node in BCSCs. In order to test this, we generated a paclitaxel-resistant TNBC cell line which demonstrated an elevated level of eIF4A along with increased levels of cancer stemness markers (ALDH activity and CD44), pluripotency transcription factors (SOX2, OCT4, and NANOG) and drug transporters (ABCB1, ABCG2, and ABCC1). Furthermore, genetic ablation of eIF4A resulted in reduced expression of ALDH1A1, pluripotency transcription factors and drug transporters. This pointed out that eIF4A is likely associated with selected set of proteins that are critical to BCSCs, and hence targeting eIF4A may eliminate BCSCs. Therefore, we isolated BCSCs from two TNBC cell lines: MDA-Bone-Un and SUM-159PT. Following RocA treatment, the self-renewal ability of the BCSCs was significantly reduced as determined by the efficiency of the formation of primary and secondary mammospheres. This was accompanied by a reduction in the levels of NANOG, OCT4, and drug transporters. Exposure to RocA also induced cell death of the BCSCs as evaluated by DRAQ7 and cell viability assays. RocA treatment induced apoptosis with increased levels of cleaved caspase-3. Overall, we identified that RocA is effective in targeting BCSCs, and eIF4A is an actionable molecular target in both BCSCs and bulk tumor cells. Therefore, anti-eIF4A inhibitors could potentially be combined synergistically with existing chemo-, radio- and/or immunotherapies.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Megan Robeson
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Diwakar Bastihalli-Tukaramrao
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus M. C. Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
- *Correspondence: Dayanidhi Raman
| |
Collapse
|
43
|
Cuesta R, Berman AY, Alayev A, Holz MK. Estrogen receptor α promotes protein synthesis by fine-tuning the expression of the eukaryotic translation initiation factor 3 subunit f (eIF3f). J Biol Chem 2018; 294:2267-2278. [PMID: 30573685 DOI: 10.1074/jbc.ra118.004383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
Approximately two thirds of all breast cancer cases are estrogen receptor (ER)-positive. The treatment of this breast cancer subtype with endocrine therapies is effective in the adjuvant and recurrent settings. However, their effectiveness is compromised by the emergence of intrinsic or acquired resistance. Thus, identification of new molecular targets can significantly contribute to the development of novel therapeutic strategies. In recent years, many studies have implicated aberrant levels of translation initiation factors in cancer etiology and provided evidence that identifies these factors as promising therapeutic targets. Accordingly, we observed reduced levels of the eIF3 subunit eIF3f in ER-positive breast cancer cells compared with ER-negative cells, and determined that low eIF3f levels are required for proper proliferation and survival of ER-positive MCF7 cells. The expression of eIF3f is tightly controlled by ERα at the transcriptional (genomic pathway) and translational (nongenomic pathway) level. Specifically, estrogen-bound ERα represses transcription of the EIF3F gene, while promoting eIF3f mRNA translation. To regulate translation, estrogen activates the mTORC1 pathway, which enhances the binding of eIF3 to the eIF4F complex and, consequently, the assembly of the 48S preinitiation complexes and protein synthesis. We observed preferential translation of mRNAs with highly structured 5'-UTRs that usually encode factors involved in cell proliferation and survival (e.g. cyclin D1 and survivin). Our results underscore the importance of estrogen-ERα-mediated control of eIF3f expression for the proliferation and survival of ER-positive breast cancer cells. These findings may provide rationale for the development of new therapies to treat ER-positive breast cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- From the Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595
| | - Adi Y Berman
- the Department of Biology, Yeshiva University, New York, New York 10016, and
| | - Anya Alayev
- the Department of Biology, Yeshiva University, New York, New York 10016, and
| | - Marina K Holz
- From the Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, .,Albert Einstein Cancer Center, Bronx, New York 10461
| |
Collapse
|
44
|
Xie S, Wei D, Yin P, Zheng L, Guo T, Liu Y, Tian L, Niu J. Dietary replacement of fish-meal impaired protein synthesis and immune response of juvenile Pacific white shrimp, Litopenaeus vannamei at low salinity. Comp Biochem Physiol B Biochem Mol Biol 2018; 228:26-33. [PMID: 30448604 DOI: 10.1016/j.cbpb.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022]
Abstract
An 8-week feeding trial was conducted to evaluate the effect of fish-meal replacement on growth performance, protein synthesis and immune response of juvenile Pacific white shrimp, Litopenaeus vannamei reared at low salinity (7‰). Five isonitrogenous and isolipidic diets were formulated to contain graded levels (25, 20, 15, 10 and 5%) of fish-meal. High quality alternative solutions were performed, crystalline amino acids, phytase, mannan oligosaccharides and some micro-nutrients were supplemented in the low fish-meal diets. Each diet was randomly assigned to triplicate tanks, each tank with 30 shrimp (mean weight 0.3 g), the shrimp were fed 3 times a day. Weight gain and survival were decreased with the decreasing dietary fish meal levels. When dietary fish-meal decreased, the gene expression of TOR, Raptor and eIF4E2 in hepatopancreas were decreased with the decreasing fish meal levels, eIF4E2 in intestine was decreased while 4E-BP was increased with the decreasing fish meal levels. The mRNA level of SOD in hepatopancreas decreased, and the expression of GPx and CAT increased with the decreasing FM levels. The Toll pathway was affected by dietary FM levels, the expression of Toll2, TNFSF, MyD88, Rho and p38 in intestine were increased with the decreasing FM levels. The results indicated that at low salinity condition, fish meal level lower than 15% would inhibit the protein synthesis and harm to the health of shrimp.
Collapse
Affiliation(s)
- Shiwei Xie
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Dan Wei
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peng Yin
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zheng
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tianyu Guo
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Jin Niu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of aquatic economic animals, school of life sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
45
|
Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med 2018; 24:1877-1886. [PMID: 30374200 DOI: 10.1038/s41591-018-0217-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023]
Abstract
Preventing the immune escape of tumor cells by blocking inhibitory checkpoints, such as the interaction between programmed death ligand-1 (PD-L1) and programmed death-1 (PD-1) receptor, is a powerful anticancer approach. However, many patients do not respond to checkpoint blockade. Tumor PD-L1 expression is a potential efficacy biomarker, but the complex mechanisms underlying its regulation are not completely understood. Here, we show that the eukaryotic translation initiation complex, eIF4F, which binds the 5' cap of mRNAs, regulates the surface expression of interferon-γ-induced PD-L1 on cancer cells by regulating translation of the mRNA encoding the signal transducer and activator of transcription 1 (STAT1) transcription factor. eIF4F complex formation correlates with response to immunotherapy in human melanoma. Pharmacological inhibition of eIF4A, the RNA helicase component of eIF4F, elicits powerful antitumor immune-mediated effects via PD-L1 downregulation. Thus, eIF4A inhibitors, in development as anticancer drugs, may also act as cancer immunotherapies.
Collapse
|
46
|
Sriram A, Bohlen J, Teleman AA. Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Rep 2018; 19:embr.201845947. [PMID: 30224410 DOI: 10.15252/embr.201845947] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Recent work has brought to light many different mechanisms of translation initiation that function in cells in parallel to canonical cap-dependent initiation. This has important implications for cancer. Canonical cap-dependent translation initiation is inhibited by many stresses such as hypoxia, nutrient limitation, proteotoxic stress, or genotoxic stress. Since cancer cells are often exposed to these stresses, they rely on alternate modes of translation initiation for protein synthesis and cell growth. Cancer mutations are now being identified in components of the translation machinery and in cis-regulatory elements of mRNAs, which both control translation of cancer-relevant genes. In this review, we provide an overview on the various modes of non-canonical translation initiation, such as leaky scanning, translation re-initiation, ribosome shunting, IRES-dependent translation, and m6A-dependent translation, and then discuss the influence of stress on these different modes of translation. Finally, we present examples of how these modes of translation are dysregulated in cancer cells, allowing them to grow, to proliferate, and to survive, thereby highlighting the importance of translational control in cancer.
Collapse
Affiliation(s)
- Ashwin Sriram
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany .,Heidelberg University, Heidelberg, Germany
| |
Collapse
|
47
|
Gay S. A novel function for the mitotic checkpoint protein Mad2p in translation. Mol Cell Oncol 2018; 5:e1494949. [PMID: 30250931 DOI: 10.1080/23723556.2018.1494949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022]
Abstract
MAD2L1 (Mitotic Arrest Deficient 2 Like 1), a member of the mitotic checkpoint, maintains the genomic stability by insuring the proper segregation of the sister chromatids. Deregulation of MAD2L1 protein expression is a recurrent feature in cancer cells. In our recent publication, we uncovered a role for its yeast homolog, Mad2p, in protein synthesis during S-phase.
Collapse
Affiliation(s)
- Sophie Gay
- Genome Integrity Group, IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
48
|
de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ. A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun 2018; 9:3068. [PMID: 30076308 PMCID: PMC6076257 DOI: 10.1038/s41467-018-05539-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022] Open
Abstract
Translation initiation of most mammalian mRNAs is mediated by a 5′ cap structure that binds eukaryotic initiation factor 4E (eIF4E). However, inactivation of eIF4E does not impair translation of many capped mRNAs, suggesting an unknown alternate mechanism may exist for cap-dependent but eIF4E-independent translation. We show that DAP5, an eIF4GI homolog that lacks eIF4E binding, utilizes eIF3d to facilitate cap-dependent translation of approximately 20% of mRNAs. Genome-wide transcriptomic and translatomic analyses indicate that DAP5 is required for translation of many transcription factors and receptor capped mRNAs and their mRNA targets involved in cell survival, motility, DNA repair and translation initiation, among other mRNAs. Mass spectrometry and crosslinking studies demonstrate that eIF3d is a direct binding partner of DAP5. In vitro translation and ribosome complex studies demonstrate that DAP5 and eIF3d are both essential for eIF4E-independent capped-mRNA translation. These studies disclose a widespread and previously unknown mechanism for cap-dependent mRNA translation by DAP5-eIF3d complexes. Binding of eIF4E to the 5′ cap of mRNAs is a key early step in canonical translation initiation, but the requirement for eIF4E is not universal. Here the authors show that the eIF4G homolog DAP5 interacts with eIF3 to promote cap-dependent translation of a significant number of mRNA in an eIF4E-independent manner.
Collapse
Affiliation(s)
- Columba de la Parra
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA.,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Amandine Alard
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Kelly Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU School of Medicine, New York, NY, 10016, USA. .,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
49
|
Zhong X, Persaud L, Muharam H, Francis A, Das D, Aktas BH, Sauane M. Eukaryotic Translation Initiation Factor 4A Down-Regulation Mediates Interleukin-24-Induced Apoptosis through Inhibition of Translation. Cancers (Basel) 2018; 10:cancers10050153. [PMID: 29786657 PMCID: PMC5977126 DOI: 10.3390/cancers10050153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Dysregulated activity of helicase eIF4A drives transformation to and maintenance of cancer cell phenotype by reprogramming cellular translation. Interleukin 24 (IL-24) is a tumor-suppressing protein, which has the ability to inhibit angiogenesis, sensitize cancer cells to chemotherapy, and induce cancer cell-specific apoptosis. In this study, we found that eIF4A is inhibited by IL-24. Consequently, selective reduction of translation was observed for mRNAs harboring strong secondary structures in their 5′-untranslated regions (5′UTRs). These mRNAs encode proteins, which function in cell survival and proliferation. Consistently, overexpression of eIF4A conferred cancer cells with resistance to IL-24-induced cell death. It has been established that inhibition of eIF4A triggers mitochondrial-mediated apoptosis. We showed that IL-24 induces eIF4A-dependent mitochondrial depolarization. We also showed that IL-24 induces Sigma 1 Receptor-dependent eIF4A down-regulation and mitochondrial depolarization. Thus, the progress of apoptosis triggered by IL-24 is characterized by a complex program of changes in regulation of several initiation factors, including the eIF4A.
Collapse
Affiliation(s)
- Xuelin Zhong
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| | - Leah Persaud
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| | - Hilal Muharam
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Ashleigh Francis
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
| | - Dibash Das
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| | - Bertal Huseyin Aktas
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
- Harvard Medical School, Laboratory for Translational Research, One Kendall Square, Building 600, 3rd Floor, Cambridge, MA 02139, USA.
| | - Moira Sauane
- Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.
- Department of Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, Room 4315, New York, NY 10016, USA.
| |
Collapse
|