1
|
Wang L, Yuan X, Cai Q, Chen Y, Jia Z, Mai Q, Liu J, Liu Y. Mitochondria-targeting Cu 2-xSe-TPP with dual enzyme activity alleviates Alzheimer's disease by modulating oxidative stress. Colloids Surf B Biointerfaces 2024; 245:114244. [PMID: 39366108 DOI: 10.1016/j.colsurfb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Mitochondrial dysfunction in microglia has been implicated as a key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). Abnormal production of reactive oxygen species (ROS) and neuroinflammation caused by mitochondrial oxidative stress are important factors leading to neuronal death in AD. Herein, a "dual brake" strategy to synergistically halt mitochondrial dysfunction and neuroinflammation targeting mitochondria in microglia is proposed. To achieve this goal, (3-carboxypropyl) triphenyl-phosphonium bromide (TPP)-modified Cu2-xSe nanozymes (Cu2-xSe-TPP NPs) with dual enzyme-like activities was designed. Cu2-xSe-TPP NPs with superoxide dismutase-mimetic (SOD) and catalase-mimetic (CAT) activities can effectively scavenge ROS in the mitochondria of microglia and relieve mitochondrial oxidative stress. In vivo studies demonstrated that Cu2-xSe-TPP NPs can alleviate oxidative stress and promote neuroprotection in the hippocampus of AD model mice. In addition, Cu2-xSe-TPP NPs can regulate the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, promote Aβ phagocytosis and reshape the AD inflammatory microenvironment, thus effectively attenuating AD neuropathology and rescuing cognitive deficits in AD model mice. Taken together, this strategy preventing mitochondrial damage and remodeling the inflammatory microenvironment will provide a new perspective for AD therapy.
Collapse
Affiliation(s)
- Liqiang Wang
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China; College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Qianyu Cai
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Yutong Chen
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Zhi Jia
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Qiongmei Mai
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China
| | - Jie Liu
- College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China.
| |
Collapse
|
2
|
Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024; 21:e00292. [PMID: 38241161 PMCID: PMC10903104 DOI: 10.1016/j.neurot.2023.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Recent advances in understanding the role of mitochondrial dysfunction in neurodegenerative diseases have expanded the opportunities for neurotherapeutics targeting mitochondria to alleviate symptoms and slow disease progression. In this review, we offer a historical account of advances in mitochondrial biology and neurodegenerative disease. Additionally, we summarize current knowledge of the normal physiology of mitochondria and the pathogenesis of mitochondrial dysfunction, the role of mitochondrial dysfunction in neurodegenerative disease, current therapeutics and recent therapeutic advances, as well as future directions for neurotherapeutics targeting mitochondrial function. A focus is placed on reactive oxygen species and their role in the disruption of telomeres and their effects on the epigenome. The effects of mitochondrial dysfunction in the etiology and progression of Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease are discussed in depth. Current clinical trials for mitochondria-targeting neurotherapeutics are discussed.
Collapse
Affiliation(s)
- Madelyn M Klemmensen
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA
| | - Seth H Borrowman
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Colin Pearce
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Benjamin Pyles
- Aper Funis Research, Union River Innovation Center, Ellsworth, ME 04605, USA
| | - Bharatendu Chandra
- University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA 52242, USA; Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Bandiwadekar A, Khot KB, Gopan G, Jose J. Microneedles: A Versatile Drug Delivery Carrier for Phytobioactive Compounds as a Therapeutic Modulator for Targeting Mitochondrial Dysfunction in the Management of Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1110-1128. [PMID: 36237157 PMCID: PMC10964109 DOI: 10.2174/1570159x20666221012142247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND, and it-increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. The drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micronsized drug delivery needles that are self-administrable. It can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for the phytoactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University), Mangalore, 575018, India
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University), Mangalore, 575018, India
| | - Gopika Gopan
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University), Mangalore, 575018, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University), Mangalore, 575018, India
| |
Collapse
|
4
|
Puranik N, Yadav D, Song M. Advancements in the Application of Nanomedicine in Alzheimer's Disease: A Therapeutic Perspective. Int J Mol Sci 2023; 24:14044. [PMID: 37762346 PMCID: PMC10530821 DOI: 10.3390/ijms241814044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (D.Y.)
| |
Collapse
|
5
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
6
|
A Perspective on the Link between Mitochondria-Associated Membranes (MAMs) and Lipid Droplets Metabolism in Neurodegenerative Diseases. BIOLOGY 2023; 12:biology12030414. [PMID: 36979106 PMCID: PMC10045954 DOI: 10.3390/biology12030414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria interact with the endoplasmic reticulum (ER) through contacts called mitochondria-associated membranes (MAMs), which control several processes, such as the ER stress response, mitochondrial and ER dynamics, inflammation, apoptosis, and autophagy. MAMs represent an important platform for transport of non-vesicular phospholipids and cholesterol. Therefore, this region is highly enriched in proteins involved in lipid metabolism, including the enzymes that catalyze esterification of cholesterol into cholesteryl esters (CE) and synthesis of triacylglycerols (TAG) from fatty acids (FAs), which are then stored in lipid droplets (LDs). LDs, through contact with other organelles, prevent the toxic consequences of accumulation of unesterified (free) lipids, including lipotoxicity and oxidative stress, and serve as lipid reservoirs that can be used under multiple metabolic and physiological conditions. The LDs break down by autophagy releases of stored lipids for energy production and synthesis of membrane components and other macromolecules. Pathological lipid deposition and autophagy disruption have both been reported to occur in several neurodegenerative diseases, supporting that lipid metabolism alterations are major players in neurodegeneration. In this review, we discuss the current understanding of MAMs structure and function, focusing on their roles in lipid metabolism and the importance of autophagy in LDs metabolism, as well as the changes that occur in neurogenerative diseases.
Collapse
|
7
|
Jia TT, Zhang Y, Hou JT, Niu H, Wang S. H 2S-based fluorescent imaging for pathophysiological processes. Front Chem 2023; 11:1126309. [PMID: 36778034 PMCID: PMC9911449 DOI: 10.3389/fchem.2023.1126309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide (H2S), as an important endogenous signaling molecule, plays a vital role in many physiological processes. The abnormal behaviors of hydrogen sulfide in organisms may lead to various pathophysiological processes. Monitoring the changes in hydrogen sulfide is helpful for pre-warning and treating these pathophysiological processes. Fluorescence imaging techniques can be used to observe changes in the concentration of analytes in organisms in real-time. Therefore, employing fluorescent probes imaging to investigate the behaviors of hydrogen sulfide in pathophysiological processes is vital. This paper reviews the design strategy and sensing mechanisms of hydrogen sulfide-based fluorescent probes, focusing on imaging applications in various pathophysiological processes, including neurodegenerative diseases, inflammation, apoptosis, oxidative stress, organ injury, and diabetes. This review not only demonstrates the specific value of hydrogen sulfide fluorescent probes in preclinical studies but also illuminates the potential application in clinical diagnostics.
Collapse
Affiliation(s)
- Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Yuanyuan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shan Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
9
|
Buchke S, Sharma M, Bora A, Relekar M, Bhanu P, Kumar J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life (Basel) 2022; 12:657. [PMID: 35629325 PMCID: PMC9144057 DOI: 10.3390/life12050657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Apart from ATP generation, mitochondria are involved in a wide range of functions, making them one of the most prominent organelles of the human cell. Mitochondrial dysfunction is involved in the pathophysiology of several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, and metabolic disorders. This makes it a target for a variety of therapeutics for the diagnosis and treatment of these diseases. The use of nanoparticles to target mitochondria has significant importance in modern times because they provide promising ways to deliver drug payloads to the mitochondria by overcoming challenges, such as low solubility and poor bioavailability, and also resolve the issues of the poor biodistribution of drugs and pharmacokinetics with increased specificity. This review assesses nanoparticle-based drug-delivery systems, such as liposomes, DQAsome, MITO-Porters, micelles, polymeric and metal nanocarriers, as well as quantum dots, as mitochondria-targeted strategies and discusses them as a treatment for mitochondrial disorders.
Collapse
Affiliation(s)
- Sakshi Buchke
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Muskan Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Anusuiya Bora
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam Road, Katpadi, Vellore 632014, India;
| | - Maitrali Relekar
- KEM Hospital Research Centre, KEM Hospital, Rasta Peth, Pune 411011, India;
| | - Piyush Bhanu
- Xome Life Sciences, Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India
| |
Collapse
|
10
|
Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases. EXPLORATION (BEIJING, CHINA) 2021; 1:20210115. [PMID: 37323688 PMCID: PMC10191038 DOI: 10.1002/exp.20210115] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) are a class of heterogeneous diseases that includes Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Mitochondria play an important role in oxidative balance and metabolic activity of neurons; therefore, mitochondrial dysfunction is associated with NDs and mitochondria are considered a potential treatment target for NDs. Several obstacles, including the blood-brain barrier (BBB) and cell/mitochondrial membranes, reduce the efficiency of drug entry into the target lesions. Therefore, a variety of neuron mitochondrial targeting strategies has been developed. Among them, nanotechnology-based treatments show especially promising results. Owing to their adjustable size, appropriate charge, and lipophilic surface, nanoparticles (NPs) are the ideal theranostic system for crossing the BBB and targeting the neuronal mitochondria. In this review, we discussed the role of dysfunctional mitochondria in ND pathogenesis as well as the physiological barriers to various treatment strategies. We also reviewed the use and advantages of various NPs (including organic, inorganic, and biological membrane-coated NPs) for the treatment and diagnosis of NDs. Finally, we summarized the evidence and possible use for the promising role of NP-based theranostic systems in the treatment of mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Han Yang
- School of Life and Health ScienceThe Chinese University of Hong KongShenzhenP. R. China
| | - Daohe Wei
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xinhui Zhang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jian Wang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Xiaoli Wu
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| | - Jin Chang
- School of Life SciencesTianjin University92 Weijin Road, Nankai DistrictTianjinP. R. China
| |
Collapse
|
11
|
Drabik K, Piecyk K, Wolny A, Szulc-Dąbrowska L, Dębska-Vielhaber G, Vielhaber S, Duszyński J, Malińska D, Szczepanowska J. Adaptation of mitochondrial network dynamics and velocity of mitochondrial movement to chronic stress present in fibroblasts derived from patients with sporadic form of Alzheimer's disease. FASEB J 2021; 35:e21586. [PMID: 33960016 DOI: 10.1096/fj.202001978rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Only 10% of all cases are familial form, the remaining 90% are sporadic form with unknown genetic background. The etiology of sporadic AD is still not fully understood. Pathogenesis and pathobiology of this disease are limited due to the limited number of experimental models. We used primary culture of fibroblasts derived from patients diagnosed with sporadic form of AD for investigation of dynamic properties of mitochondria, including fission-fusion process and localization of mitochondria within the cell. We observed differences in mitochondrial network organization with decreased mitochondrial transport velocity, and a drop in the frequency of fusion-fission events. These studies show how mitochondrial dynamics adapt to the conditions of long-term mitochondrial stress that prevails in cells of sporadic form of AD.
Collapse
Affiliation(s)
| | - Karolina Piecyk
- Nencki Institute of Experimental Biology, Warsaw, Poland.,Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Artur Wolny
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Lidia Szulc-Dąbrowska
- Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | | | | | | |
Collapse
|
12
|
Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094850. [PMID: 34063708 PMCID: PMC8125007 DOI: 10.3390/ijms22094850] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of age-related neurodegeneration and cognitive impairment, and there are currently no broadly effective therapies. The underlying pathogenesis is complex, but a growing body of evidence implicates mitochondrial dysfunction as a common pathomechanism involved in many of the hallmark features of the AD brain, such as formation of amyloid-beta (Aβ) aggregates (amyloid plaques), neurofibrillary tangles, cholinergic system dysfunction, impaired synaptic transmission and plasticity, oxidative stress, and neuroinflammation, that lead to neurodegeneration and cognitive dysfunction. Indeed, mitochondrial dysfunction concomitant with progressive accumulation of mitochondrial Aβ is an early event in AD pathogenesis. Healthy mitochondria are critical for providing sufficient energy to maintain endogenous neuroprotective and reparative mechanisms, while disturbances in mitochondrial function, motility, fission, and fusion lead to neuronal malfunction and degeneration associated with excess free radical production and reduced intracellular calcium buffering. In addition, mitochondrial dysfunction can contribute to amyloid-β precursor protein (APP) expression and misprocessing to produce pathogenic fragments (e.g., Aβ1-40). Given this background, we present an overview of the importance of mitochondria for maintenance of neuronal function and how mitochondrial dysfunction acts as a driver of cognitive impairment in AD. Additionally, we provide a brief summary of possible treatments targeting mitochondrial dysfunction as therapeutic approaches for AD.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sehwan Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|
13
|
Yang D, Ying J, Wang X, Zhao T, Yoon S, Fang Y, Zheng Q, Liu X, Yu W, Hua F. Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential Target for Neurodegenerative Disease. Front Neurosci 2021; 15:654785. [PMID: 33912006 PMCID: PMC8072049 DOI: 10.3389/fnins.2021.654785] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
In neurodegenerative diseases, neurodegeneration has been related to several mitochondrial dynamics imbalances such as excessive fragmentation of mitochondria, impaired mitophagy, and blocked mitochondria mitochondrial transport in axons. Mitochondria are dynamic organelles, and essential for energy conversion, neuron survival, and cell death. As mitochondrial dynamics have a significant influence on homeostasis, in this review, we mainly discuss the role of mitochondrial dynamics in several neurodegenerative diseases. There is evidence that several mitochondrial dynamics-associated proteins, as well as related pathways, have roles in the pathological process of neurodegenerative diseases with an impact on mitochondrial functions and metabolism. However, specific pathological mechanisms need to be better understood in order to propose new therapeutic strategies targeting mitochondrial dynamics that have shown promise in recent studies.
Collapse
Affiliation(s)
- Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiancheng Zhao
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sungtae Yoon
- Helping Minds International Charitable Foundation, New York, NY, United States
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther 2021; 219:107705. [PMID: 33039420 PMCID: PMC7887032 DOI: 10.1016/j.pharmthera.2020.107705] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent some of the most devastating neurological disorders, characterized by progressive loss of the structure and function of neurons. Current therapy for neurodegenerative disorders is limited to symptomatic treatment rather than disease modifying interventions, emphasizing the desperate need for improved approaches. Abundant evidence indicates that impaired mitochondrial function plays a crucial role in pathogenesis of many neurodegenerative diseases and so biochemical factors in mitochondria are considered promising targets for pharmacological-based therapies. Peroxisome proliferator-activated receptors-γ (PPARγ) are ligand-inducible transcription factors involved in regulating various genes including peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC1α). This review summarizes the evidence supporting the ability of PPARγ-PGC1α to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in neurons and provide directions for future work to explore the potential benefit of targeting mitochondrial biogenesis in neurodegenerative disorders. We have highlighted key roles of NRF2, uncoupling protein-2 (UCP2), and paraoxonase-2 (PON2) signaling in mediating PGC1α-induced mitochondrial biogenesis. In addition, the status of PPARγ modulators being used in clinical trials for Parkinson's disease (PD), Alzheimer's disease (AD) and Huntington's disease (HD) has been compiled. The overall purpose of this review is to update and critique our understanding of the role of PPARγ-PGC1α-NRF2 in the induction of mitochondrial biogenesis together with suggestions for strategies to target PPARγ-PGC1α-NRF2 signaling in order to combat mitochondrial dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jennifer K Blackburn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Han Y, Chu X, Cui L, Fu S, Gao C, Li Y, Sun B. Neuronal mitochondria-targeted therapy for Alzheimer's disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 2021; 27:502-518. [PMID: 32228100 PMCID: PMC7170363 DOI: 10.1080/10717544.2020.1745328] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS)-induced neuronal mitochondrial dysfunction is a key pathologic factor in sporadic Alzheimer’s disease (AD). Neuronal mitochondria have been proposed to be a promising therapeutic target for AD, especially for the failures of phase III clinical trials on conventional amyloid-β (Aβ) targeted therapy. However, the efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge due to the complicated physiological environment. Recently, biomaterials-based nanomedicine has been widely investigated for the treatment of AD. Herein, we devised a strategy for functional antioxidant delivery to neuronal mitochondria by loading antioxidants into red blood cell (RBC) membrane-coated nanostructured lipid carriers (NLC) bearing rabies virus glycoprotein (RVG29) and triphenylphosphine cation (TPP) molecules attached to the RBC membrane surface (RVG/TPP NPs@RBCm). With the advantage of suitable physicochemical properties of NLC and unique biological functions of the RBC membrane, RVG/TPP NPs@RBCm are stabilized and enabled sustained drug release, providing improved biocompatibility and long-term circulation. Under the synergistic effects of RVG29 and TPP, RVG/TPP NPs@RBCm can not only penetrate the blood–brain barrier (BBB) but also target neuron cells and further localize in the mitochondria. After encapsulating Resveratrol (RSV) as the model antioxidant, the data demonstrated that RVG/TPP-RSV NPs@RBCm can relieve AD symptoms by mitigating Aβ-related mitochondrial oxidative stress both in vitro and in vivo. The memory impairment in APP/PS1 mice is significantly improved following the systemic administration of RVG/TPP-RSV NPs@RBCm. In conclusion, intravenous neuronal mitochondria-targeted dual-modified novel biomimetic nanosystems are a promising therapeutic candidate for ROS-induced mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Yang Han
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xiaoyang Chu
- Department of stomatology, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Lin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Shiyao Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, PR China.,Instituto National de Investigação Agrária e Veterinária, I.P., Pólo Dois Portos, Dois Portos, Portugal
| |
Collapse
|
16
|
Is There Justification to Treat Neurodegenerative Disorders by Repurposing Drugs? The Case of Alzheimer's Disease, Lithium, and Autophagy. Int J Mol Sci 2020; 22:ijms22010189. [PMID: 33375448 PMCID: PMC7795249 DOI: 10.3390/ijms22010189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Lithium is the prototype mood-stabilizer used for acute and long-term treatment of bipolar disorder. Cumulated translational research of lithium indicated the drug's neuroprotective characteristics and, thereby, has raised the option of repurposing it as a drug for neurodegenerative diseases. Lithium's neuroprotective properties rely on its modulation of homeostatic mechanisms such as inflammation, mitochondrial function, oxidative stress, autophagy, and apoptosis. This myriad of intracellular responses are, possibly, consequences of the drug's inhibition of the enzymes inositol-monophosphatase (IMPase) and glycogen-synthase-kinase (GSK)-3. Here we review lithium's neurobiological properties as evidenced by its neurotrophic and neuroprotective properties, as well as translational studies in cells in culture, in animal models of Alzheimer's disease (AD) and in patients, discussing the rationale for the drug's use in the treatment of AD.
Collapse
|
17
|
Jayatunga DPW, Hone E, Bharadwaj P, Garg M, Verdile G, Guillemin GJ, Martins RN. Targeting Mitophagy in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1273-1297. [PMID: 33285629 DOI: 10.3233/jad-191258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform many essential cellular functions including energy production, calcium homeostasis, transduction of metabolic and stress signals, and mediating cell survival and death. Maintaining viable populations of mitochondria is therefore critical for normal cell function. The selective disposal of damaged mitochondria, by a pathway known as mitophagy, plays a key role in preserving mitochondrial integrity and quality. Mitophagy reduces the formation of reactive oxygen species and is considered as a protective cellular process. Mitochondrial dysfunction and deficits of mitophagy have important roles in aging and especially in neurodegenerative disorders such as Alzheimer's disease (AD). Targeting mitophagy pathways has been suggested to have potential therapeutic effects against AD. In this review, we aim to briefly discuss the emerging concepts on mitophagy, molecular regulation of the mitophagy process, current mitophagy detection methods, and mitophagy dysfunction in AD. Finally, we will also briefly examine the stimulation of mitophagy as an approach for attenuating neurodegeneration in AD.
Collapse
Affiliation(s)
- Dona P W Jayatunga
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Manohar Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
18
|
Han Y, Gao C, Wang H, Sun J, Liang M, Feng Y, Liu Q, Fu S, Cui L, Gao C, Li Y, Yang Y, Sun B. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer's disease mice. Bioact Mater 2020; 6:529-542. [PMID: 32995678 PMCID: PMC7492821 DOI: 10.1016/j.bioactmat.2020.08.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neuronal mitochondrial dysfunction caused by excessive reactive oxygen species (ROS) is an early event of sporadic Alzheimer's disease (AD), and considered to be a key pathologic factor in the progression of AD. The targeted delivery of the antioxidants to mitochondria of injured neurons in brain is a promising therapeutic strategy for AD. A safe and effective drug delivery system (DDS) which is able to cross the blood-brain barrier (BBB) and target neuronal mitochondria is necessary. Recently, bioactive materials-based DDS has been widely investigated for the treatment of AD. Herein, we developed macrophage (MA) membrane-coated solid lipid nanoparticles (SLNs) by attaching rabies virus glycoprotein (RVG29) and triphenylphosphine cation (TPP) molecules to the surface of MA membrane (RVG/TPP-MASLNs) for functional antioxidant delivery to neuronal mitochondria. According to the results, MA membranes camouflaged the SLNs from being eliminated by RES-rich organs by inheriting the immunological characteristics of macrophages. The unique properties of the DDS after decoration with RVG29 on the surface was demonstrated by the ability to cross the BBB and the selective targeting to neurons. After entering the neurons in CNS, TPP further lead the DDS to mitochondria driven by electric charge. The Genistein (GS)- encapsulated DDS (RVG/TPP-MASLNs-GS) exhibited the most favorable effects on reliveing AD symptoms in vitro and in vivo by the synergies gained from the combination of MA membranes, RVG29 and TPP. These results demonstrated a promising therapeutic candidate for delaying the progression of AD via neuronal mitochondria-targeted delivery by the designed biomimetic nanosystems. MA membranes inherited the immunological properties of macrophages, providing RVG/TPP-MASLNs with enhanced RES evasion. RVG/TPP-MASLNs combined the advantages of RVG29, TPP and MA, greatly improving the efficiency for brain targeting delivery. The biomimetic nanosystems effectively improve the curative effect of genistein on the symptoms of AD mice with biosafety.
Collapse
Affiliation(s)
- Yang Han
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Chunhong Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Hao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Meng Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Ye Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Qianqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Shiyao Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Lin Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, PR China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 10016, PR China.,Instituto National de Investigação Agrária e Veterinária, I.P., Pólo Dois Portos, Quinta da Almoinha, Dois Portos, 2565-191, Portugal
| |
Collapse
|
19
|
The distinctive role of tau and amyloid beta in mitochondrial dysfunction through alteration in Mfn2 and Drp1 mRNA Levels: A comparative study in Drosophila melanogaster. Gene 2020; 754:144854. [PMID: 32525045 DOI: 10.1016/j.gene.2020.144854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Aggregation of Aβ42 and hyperphosphorylated tau are two major hallmarks of AD. Whether different forms of tau (soluble or hyperphosphorylated) or Aβ are the main culprit in the events observed in AD is still under investigation. Here, we examined the effect of wild-type, prone to hyperphosphorylation and hyperphosphorylated tau, and also Aβ42 peptide on the brain antioxidant defense system and two mitochondrial genes, Marf (homologous to human MFN2) and Drp1 involved in mitochondrial dynamics in transgenic Drosophila melanogaster. AD is an age associated disease. Therefore, the activity of antioxidant agents, CAT, SOD, and GSH levels and the mRNA levels of Marf and Drp1 were assessed in different time points of the flies lifespan. Reduction in cognitive function and antioxidant activity was observed in all transgenic flies at any time point. The most and the least effect on the eye phenotype was exerted by hyperphosphorylated tau and Aβ42, respectively. In addition, the most remarkable alteration in Marf and Drp1 mRNA levels was observed in transgenic flies expressing hyperphosphorylated tau when pan neuronal expression of transgenes was applied. However, when the disease causing gene expression was confined to the mushroom body, Marf and Drp1 mRNA levels alteration was more prominent in tauWT and tauE14 transgenic flies, respectively. In conclusion, in spite of antioxidant deficiency caused by different types of tau and Aβ42, it seems that tau exerts more toxic effect on the eye phenotype and mitochondrial genes regulation (Marf and Drp1). Moreover, different mechanisms seem to be involved in mitochondrial genes dysregulation when Aβ or various forms of tau are expressed.
Collapse
|
20
|
Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Mol Neurobiol 2020; 57:2959-2980. [PMID: 32445085 DOI: 10.1007/s12035-020-01926-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Although the pathogenesis of neurodegenerative diseases is still widely unclear, various mechanisms have been proposed and several pieces of evidence are supportive for an important role of mitochondrial dysfunction. The present review provides a comprehensive and up-to-date overview about the role of mitochondria in the two most common neurodegenerative disorders: Alzheimer's disease (AD) and Parkinson's disease (PD). Mitochondrial involvement in AD is supported by clinical features like reduced glucose and oxygen brain metabolism and by numerous microscopic and molecular findings, including altered mitochondrial morphology, impaired respiratory chain function, and altered mitochondrial DNA. Furthermore, amyloid pathology and mitochondrial dysfunction seem to be bi-directionally correlated. Mitochondria have an even more remarkable role in PD. Several hints show that respiratory chain activity, in particular complex I, is impaired in the disease. Mitochondrial DNA alterations, involving deletions, point mutations, depletion, and altered maintenance, have been described. Mutations in genes directly implicated in mitochondrial functioning (like Parkin and PINK1) are responsible for rare genetic forms of the disease. A close connection between alpha-synuclein accumulation and mitochondrial dysfunction has been observed. Finally, mitochondria are involved also in atypical parkinsonisms, in particular multiple system atrophy. The available knowledge is still not sufficient to clearly state whether mitochondrial dysfunction plays a primary role in the very initial stages of these diseases or is secondary to other phenomena. However, the presented data strongly support the hypothesis that whatever the initial cause of neurodegeneration is, mitochondrial impairment has a critical role in maintaining and fostering the neurodegenerative process.
Collapse
Affiliation(s)
- Giacomo Monzio Compagnoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Neurology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, Khurana Laboratory, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Neuroscience Section, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, Feng Y, Wang H, Yang M, Li Z, Yang Y, Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater 2020; 108:285-299. [PMID: 32251785 DOI: 10.1016/j.actbio.2020.03.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Biomimetic nanotechnology represents a promising approach for the delivery of therapeutic agents for the treatment of complex diseases. Recently, neuronal mitochondria have been proposed to serve as a promising therapeutic target for sporadic Alzheimer's disease (AD). However, the efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge due to the complicated physiological and pathological environment. Herein, we devised and tested a strategy for functional antioxidant delivery to neuronal mitochondria by loading antioxidants into red blood cell (RBC) membrane-camouflaged human serum albumin nanoparticles bearing T807 and triphenylphosphine (TPP) molecules attached to the RBC membrane surface (T807/TPP-RBC-NPs). With the advantage of the suitable physicochemical properties of the nanoparticles and the unique biological functions of the RBC membrane, the T807/TPP-RBC-NPs are stabilized and promote sustained drug release, providing improved biocompatibility and long-term circulation. Under the synergistic effects of T807 and TPP, T807/TPP-RBC-NPs can not only penetrate the blood-brain barrier (BBB) but also target nerve cells and further localize in the mitochondria. After encapsulating curcumin (CUR) as the model antioxidant, the research data demonstrated that CUR-loaded T807/TPP-RBC-NPs can relieve AD symptoms by mitigating mitochondrial oxidative stress and suppressing neuronal death both in vitro and in vivo. In conclusion, the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems provides an effective drug delivery platform for brain diseases. STATEMENT OF SIGNIFICANCE: The efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge for drug delivery due to the complicated physiological and pathological environment. To address this need, various types of nanovessels have been fabricated using a variety of materials in the last few decades. However, problems with the synthetic materials still exist and even cause toxicology issues. New findings in nanomedicine are promoting the development of biomaterials. Herein, we designed a red blood cell (RBC) membrane-coated human serum albumin nanoparticle dual-modified with T807 and TPP (T807/TPP-RBC-NPs) to accomplish these objectives. After encapsulating curcumin as the model drug, the research data demonstrated that the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems are a promising therapeutic candidate for mitochondrial dysfunction in Alzheimer's disease (AD).
Collapse
|
22
|
Cheng Y, Buchan M, Vitanova K, Aitken L, Gunn-Moore FJ, Ramsay RR, Doherty G. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. J Neurochem 2020; 155:191-206. [PMID: 32157699 DOI: 10.1111/jnc.15003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aβ1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ying Cheng
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Matthew Buchan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Karina Vitanova
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Laura Aitken
- School of Biology, University of St Andrews, St Andrews, UK
| | | | - Rona R Ramsay
- School of Biology, University of St Andrews, St Andrews, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
23
|
Bhute S, Sarmah D, Datta A, Rane P, Shard A, Goswami A, Borah A, Kalia K, Dave KR, Bhattacharya P. Molecular Pathogenesis and Interventional Strategies for Alzheimer's Disease: Promises and Pitfalls. ACS Pharmacol Transl Sci 2020; 3:472-488. [PMID: 32566913 DOI: 10.1021/acsptsci.9b00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a debilitating disorder characterized by age-related dementia, which has no effective treatment to date. β-Amyloid depositions and hyperphosphorylated tau proteins are the main pathological hallmarks, along with oxidative stress, N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, and low levels of acetylcholine. Current pharmacotherapy for AD only provides symptomatic relief and limited improvement in cognitive functions. Many molecules have been explored that show promising outcomes in AD therapy and can regulate cellular survival through different pathways. To have a vivid approach to strategize the treatment regimen, AD physiopathology should be better explained considering diverse etiological factors in conjunction with biochemical disturbances. This Review attempts to discuss different disease modification approaches and address the novel therapeutic targets of AD that might pave the way for new drug discovery using the well-defined targets for therapy of the disease.
Collapse
Affiliation(s)
- Shashikala Bhute
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Pallavi Rane
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Avirag Goswami
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania 19141, United States
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam-788011, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology,National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
24
|
Clement A, Wiborg O, Asuni AA. Steps Towards Developing Effective Treatments for Neuropsychiatric Disturbances in Alzheimer's Disease: Insights From Preclinical Models, Clinical Data, and Future Directions. Front Aging Neurosci 2020; 12:56. [PMID: 32210790 PMCID: PMC7068814 DOI: 10.3389/fnagi.2020.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. It is mostly known for its devastating effect on memory and learning but behavioral alterations commonly known as neuropsychiatric disturbances (NPDs) are also characteristics of the disease. These include apathy, depression-like behavior, and sleep disturbances, and they all contribute to an increased caregiver burden and earlier institutionalization. The interaction between NPDs and AD pathology is not well understood, but the consensus is that they contribute to disease progression and faster decline. Consequently, recognizing and treating NPDs might improve AD pathology and increase the quality of life for both patients and caregivers. In this review article, we examine previous and current literature on apathy, depressive symptoms, and sleep disturbances in AD patients and preclinical AD mechanistic models. We hypothesize that tau accumulation, beta-amyloid (Aβ) aggregation, neuroinflammation, mitochondrial damage, and loss of the locus coeruleus (LC)-norepinephrine (NE) system all collectively impact the development of NPDs and contribute synergistically to AD pathology. Targeting more than one of these processes might provide the most optimal strategy for treating NPDs and AD. The development of such clinical approaches would be preceded by preclinical studies, for which robust and reliable mechanistic models of NPD-like behavior are needed. Thus, developing effective preclinical research models represents an important step towards a better understanding of NPDs in AD.
Collapse
Affiliation(s)
- Amalie Clement
- Laboratory of Neurobiology, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Physiology and Symptoms, H. Lundbeck A/S, Copenhagen, Denmark
| | - Ove Wiborg
- Laboratory of Neurobiology, Department of Health, Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ayodeji A. Asuni
- Department of Physiology and Symptoms, H. Lundbeck A/S, Copenhagen, Denmark
| |
Collapse
|
25
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
26
|
De Mario A, Peggion C, Massimino ML, Norante RP, Zulian A, Bertoli A, Sorgato MC. The Link of the Prion Protein with Ca 2+ Metabolism and ROS Production, and the Possible Implication in Aβ Toxicity. Int J Mol Sci 2019; 20:ijms20184640. [PMID: 31546771 PMCID: PMC6770541 DOI: 10.3390/ijms20184640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023] Open
Abstract
The cellular prion protein (PrPC) is an ubiquitous cell surface protein mostly expressed in neurons, where it localizes to both pre- and post-synaptic membranes. PrPC aberrant conformers are the major components of mammalian prions, the infectious agents responsible for incurable neurodegenerative disorders. PrPC was also proposed to bind aggregated misfolded proteins/peptides, and to mediate their neurotoxic signal. In spite of long-lasting research, a general consensus on the precise pathophysiologic mechanisms of PrPC has not yet been reached. Here we review our recent data, obtained by comparing primary neurons from PrP-expressing and PrP-knockout mice, indicating a central role of PrPC in synaptic transmission and Ca2+ homeostasis. Indeed, by controlling gene expression and signaling cascades, PrPC is able to optimize glutamate secretion and regulate Ca2+ entry via store-operated channels and ionotropic glutamate receptors, thereby protecting neurons from threatening Ca2+ overloads and excitotoxicity. We will also illustrate and discuss past and unpublished results demonstrating that Aβ oligomers perturb Ca2+ homeostasis and cause abnormal mitochondrial accumulation of reactive oxygen species by possibly affecting the PrP-dependent downregulation of Fyn kinase activity.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Caterina Peggion
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Maria Lina Massimino
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Rosa Pia Norante
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Alessandra Zulian
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy.
| | - Maria Catia Sorgato
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
27
|
Kumar Thakur A, Kamboj P, Goswami K, Ahuja K. Pathophysiology and management of alzheimer’s disease: an overview. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/japlr.2018.07.00230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Khoury R, Patel K, Gold J, Hinds S, Grossberg GT. Recent Progress in the Pharmacotherapy of Alzheimer's Disease. Drugs Aging 2018; 34:811-820. [PMID: 29116600 DOI: 10.1007/s40266-017-0499-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is the most common major neurocognitive disorder with substantial social and economic impacts. This article is an update on current pharmacotherapy, advancements in biomarker use, and drugs in the pipeline for this disease. To date, no new drug has qualified to be added to the current therapeutic arsenal comprising cholinesterase inhibitors and the NMDA receptor antagonist memantine. Drugs in the pipeline include symptomatic therapies that are neurotransmitter-based, but mostly disease-modifying therapies. The latter have yielded disappointing results by focusing mainly on the two pathophysiological hallmarks of Alzheimer's disease: Aβ amyloid deposits and tau protein aggregates forming neurofibrillary tangles. These unsuccessful trials may have resulted from studying these drugs 'too late' relative to Alzheimer's disease onset, in addition to focusing only on the amyloid cascade. In fact, Alzheimer's disease is a complex multifactorial disease. Combining different biomarkers might enhance our ability to identify those patients most at risk of developing the disease, and better predict their conversion rates. Furthermore, adopting an integrative treatment approach by targeting additional pathophysiological pathways in Alzheimer's disease such as inflammation and oxidative stress could be the key to better outcomes in Alzheimer's disease pharmacotherapy research.
Collapse
Affiliation(s)
- Rita Khoury
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA.
| | - Kush Patel
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - Jake Gold
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - Stephanie Hinds
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - George T Grossberg
- Division of Geriatric Psychiatry, St. Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| |
Collapse
|
29
|
The Bioinformatic Analysis of the Dysregulated Genes and MicroRNAs in Entorhinal Cortex, Hippocampus, and Blood for Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9084507. [PMID: 29359159 PMCID: PMC5735586 DOI: 10.1155/2017/9084507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023]
Abstract
Aim The incidence of Alzheimer's disease (AD) has been increasing in recent years, but there exists no cure and the pathological mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new biomarkers, potential therapeutic targets, and drugs for AD. Methods We downloaded the microarray data of entorhinal cortex (EC) and hippocampus (HIP) of AD and controls from Gene Expression Omnibus (GEO) database, and then the differentially expressed genes (DEGs) in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers related to gene expression in brain. Results We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD treatment. Conclusion These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.
Collapse
|
30
|
Kim DI, Lee KH, Oh JY, Kim JS, Han HJ. Relationship Between β-Amyloid and Mitochondrial Dynamics. Cell Mol Neurobiol 2017; 37:955-968. [PMID: 27766447 PMCID: PMC11482120 DOI: 10.1007/s10571-016-0434-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/13/2016] [Indexed: 01/29/2023]
Abstract
Mitochondria as dynamic organelles undergo morphological changes through the processes of fission and fusion which are major factors regulating their functions. A disruption in the balance of mitochondrial dynamics induces functional disorders in mitochondria such as failed energy production and the generation of reactive oxygen species, which are closely related to pathophysiological changes associated with Alzheimer's disease (AD). Recent studies have demonstrated a relationship between abnormalities in mitochondrial dynamics and impaired mitochondrial function, clarifying the effects of morphofunctional aberrations which promote neuronal cell death in AD. Several possible signaling pathways have been suggested for a better understanding of the mechanism behind the key molecules regulating mitochondrial morphologies. However, the exact machinery involved in mitochondrial dynamics still has yet to be elucidated. This paper reviews the current knowledge on signaling mechanisms involved in mitochondrial dynamics and the significance of mitochondrial dynamics in controlling associated functions in neurodegenerative diseases, particularly in AD.
Collapse
Affiliation(s)
- Dah Ihm Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ki Hoon Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|