1
|
Chen H, Qi Y, Wang Y, Liu J, Lu R, Zhao X, Chen R, Wang Y, Zhu L, Sun S, Hu J, Yang L, An G. LsBLH2-LsOFP6-LsKANT3 module regulates bolting by orchestrating the gibberellin biosynthesis and metabolism in lettuce. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1668-1682. [PMID: 39932895 PMCID: PMC12018825 DOI: 10.1111/pbi.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
Lettuce is one of the most important vegetables worldwide. Bolting time is an important agronomic trait in lettuce production. Premature bolting reduces crop quality and marketability. Here, we genetically clone the LsBLH2 gene controlling bolting time in lettuce. LsBLH2 encodes a BEL1-like homeodomain protein. In the late bolting parent, the LsBLH2 had a 1-bp deletion in exon 1 which leads to a premature stop codon. CRISPR/cas9 knocking out and complementary tests showed that the loss-of-function of LsBLH2 delays bolting in lettuce. ChIP-seq, gene expression and phytohormone analysis showed that LsBLH2 regulates the gibberellin (GA) biosynthesis and metabolism. LsBLH2 binds to the promoter of the LsGA20ox1 and LsGA2ox8 and regulates their expression, leading to the bioactive GA accumulation during the vegetative-to-reproductive phase transition. Both LsOFP6 and LsKNAT3 interact with LsBLH2 and regulate bolting in a LsBLH2-dependent manner. LsOFP6 promotes, while LsKNAT3 suppresses the effects of LsBLH2 on GA biosynthesis during the transition and rosette stage in lettuce, respectively. In summary, the LsBLH2-LsOFP6-LsKANT3 module orchestrates bioactive GA accumulation to regulate bolting in lettuce, which provides insight into the bolting development process and offers new approaches for lettuce breeding to prevent premature bolting.
Collapse
Affiliation(s)
- Haoyu Chen
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | | | - Yong Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jie Liu
- Henan OULAND Seed Industry Co., Ltd.ZhengzhouChina
| | - Ruirui Lu
- Weihui Bureau of Agriculture and Rural AffairsXinxiangChina
| | - Xinhui Zhao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Ruiyu Chen
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yueji Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Shouru Sun
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jianbin Hu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Luming Yang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Guanghui An
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
2
|
Qi Y, Shao W, Chen H, Ahmed T, Zhao X, Wang Y, Zhu L, Sun S, Kuang H, An G. LsKN1 and LsOFP6 synergistically regulate the bolting time by modulating the gibberellin pathway in lettuce. THE NEW PHYTOLOGIST 2025; 246:1049-1065. [PMID: 39611461 DOI: 10.1111/nph.20307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
Bolting time is an important agronomic trait in lettuce (Lactuca sativa) production. Premature bolting significantly reduces crop quality and marketability. Here, we report map-based cloning and characterization of a LsKN1 gene that controls bolting in lettuce. A segregating population was developed by crossing a crisphead-type cultivar with a stem-type cultivar to genetically map and clone the LsKN1 gene. In the late-bolting parent (crisphead), the LsKN1 was activated by a CACTA-like transposon which was inserted into the first exon of LsKN1. Complementation test, overexpression, and CRISPR/cas9 knockout showed that the activated LsKN1 allele (LsKN1TP) delays bolting in lettuce. ChIP-seq and phytohormone analysis demonstrated that LsKN1 regulates gibberellin (GA) biosynthesis and response. LsKN1TP binds to the promoter of the LsGA20ox1 and LsRGA1, and down- and upregulates their expression, respectively. Furthermore, LsRGA1 interacts with LsKN1TP to enhance the repression of GA biosynthesis. LsOFP6 acts as a safeguard, interacting with LsKN1TP to prevent excessive inhibition of GA biosynthesis and response during the vegetative-to-reproductive phase transition. The LsKN1-LsOFP6 module orchestrates the GA pathway to regulate bolting time in lettuce, which provides insight into the bolting development in lettuce and offers valuable genetic resources for breeding lettuce varieties resistant to premature bolting.
Collapse
Affiliation(s)
- Yetong Qi
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Wei Shao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoyu Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xinhui Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghui An
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Liu L, Lu W, Fan S, Yang Y. Genome-wide identification and characterization of the KNOX gene family in Vitis amurensis. PeerJ 2025; 13:e19250. [PMID: 40226548 PMCID: PMC11992975 DOI: 10.7717/peerj.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Background The KNOX (KNOTTED1-like homeobox gene) gene family plays a pivotal role in controlling plant growth, maturation, and morphogenesis. However, the function of KNOX in Vitis amurensis has not yet been reported. This study identified and characterized the entire KNOX gene family in Vitis amurensis. Methods By employing bioinformatic approaches, the phylogenetic relationships, chromosomal positions, gene architectures, conserved motifs, cis-regulatory elements present in promoter regions, and gene expression profiles of KNOX gene family members in Vitis amurensis were identified and analyzed. Results Ten KNOX genes spanning nine chromosomes were discovered, and these genes were subsequently categorized into two distinct subclasses. The promoter regions of members of the KNOX gene family include cis-acting elements that are involved in plant growth, hormonal regulation, and stress and light responses. An examination of the expression profiles of KNOX genes in different tissues of Vitis amurensis revealed that genes in Class I presented tissue-specific expression patterns, whereas genes belonging to Class II presented more ubiquitous expression across various tissues. The expression levels of Vitis amurensis KNOTTED1-like homeobox (VaKNOX)2, VaKNOX3, and VaKNOX5 were highest in fruits. VaKNOX2, VaKNOX3, and VaKNOX5 can serve as candidate genes for enhancing fruit quality. The expression levels of VaKNOX6 and VaKNOX7 were much higher in cold environments than in normal conditions. Through in-depth research into the functions of VaKNOX6 and VaKNOX7, we aimed to improve the cold resistance of grapevine varieties.
Collapse
Affiliation(s)
- Linling Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
4
|
Xie M, Zhang X, Liu K, Qiao Z, Cheng X. Identification and expression analysis of TALE superfamily genes explore their key roles in response to abiotic stress in Brassica napus. BMC PLANT BIOLOGY 2024; 24:1238. [PMID: 39716059 DOI: 10.1186/s12870-024-05953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The three-amino-acid-loop-extension (TALE) superfamily genes are broadly present in plants and play important roles in plant growth, development, and abiotic stress responses. So far, the TALE family in B.napus have not been systematically studied, especially their potential roles in response to abiotic stress. RESULTS In this study, we identified 74 TALE family genes distributed on 19 chromosomes in the B. napus genome using bioinformatics methods. Phylogenetic analysis divided the BnTALE superfamily into two subfamilies, the BEL1-like (BLH/BELL homeodomain) and the KNOX (KNOTTED-like homeodomain) subfamilies. Moreover, the KNOX subfamily could be further categorized into three clades (KNOX Class I, KNOX Class II, and KNOX Class III). BnTALE members in the same subclass or branch of the phylogenetic tree generally showed similar gene structures and conserved domain compositions, which may indicate that they have similar biological functions. The BnTALE promoter regions contained many hormone-related elements and stress response elements. Duplication events identification analysis showed that WGD/segmental duplications were the main drivers of amplification during the evolution of TALE genes, and most of the duplicated BnTALE genes underwent purifying selection pressures during evolution. Potential protein interaction network analysis showed that a total of 12,615 proteins might interact with TALE proteins in B. napus. RNA-seq and qRT-PCR analyses showed that the expression of BnTALE was tissue-differentiated and can be induced by abiotic stresses such as dehydration, cold, and NaCl stress. In addition, weighted gene co-expression network analysis (WGCNA) identified four co-expression modules containing the most BnTALE genes, which would be notably related to dehydration and cold stresses. CONCLUSIONS Our study paves the way for future gene functional research of BnTALE and facilitate their applications in the genetic improvement of B. napus in response to abiotic stresses.
Collapse
Affiliation(s)
- Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430000, China
| | - Xiaojuan Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
| | - Kexin Liu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430000, China.
| |
Collapse
|
5
|
Dierschke T, Levins J, Lampugnani ER, Ebert B, Zachgo S, Bowman JL. Control of sporophyte secondary cell wall development in Marchantia by a Class II KNOX gene. Curr Biol 2024; 34:5213-5222.e5. [PMID: 39447574 DOI: 10.1016/j.cub.2024.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Land plants evolved from an ancestral alga around 470 mya, evolving complex multicellularity in both haploid gametophyte and diploid sporophyte generations. The evolution of water-conducting tissues in the sporophyte generation was crucial for the success of land plants, paving the way for the colonization of a variety of terrestrial habitats. Class II KNOX (KNOX2) genes are major regulators of secondary cell wall formation and seed mucilage (pectin) deposition in flowering plants. Here, we show that, in the liverwort Marchantia polymorpha, loss-of-function alleles of the KNOX2 ortholog, MpKNOX2, or its dimerization partner, MpBELL1, have defects in capsule wall secondary cell wall and spore pectin biosynthesis. Both genes are expressed in the gametophytic calyptra surrounding the sporophyte and exert maternal effects, suggesting intergenerational regulation from the maternal gametophyte to the sporophytic embryo. These findings also suggest the presence of a secondary wall genetic program in the non-vascular liverwort capsule wall, with attributes of secondary walls in vascular tissues.
Collapse
Affiliation(s)
- Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia; Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zurich, 8008 Zurich, Switzerland
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia; School of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sabine Zachgo
- Division of Botany, Osnabrueck University, 49076 Osnabrück, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
6
|
Cao C, Guo S, Deng P, Yang S, Xu J, Hu T, Hu Z, Chen D, Zhang H, Navea IP, Chin JH, Zhang W, Jing W. The BEL1-like homeodomain protein OsBLH4 regulates rice plant height, grain number, and heading date by repressing the expression of OsGA2ox1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1369-1385. [PMID: 38824648 DOI: 10.1111/tpj.16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Gibberellins (GAs) play crucial roles in regulating plant architecture and grain yield of crops. In rice, the inactivation of endogenous bioactive GAs and their precursors by GA 2-oxidases (GA2oxs) regulates stem elongation and reproductive development. However, the regulatory mechanisms of GA2ox gene expression, especially in rice reproductive organs, are unknown. The BEL1-like homeodomain protein OsBLH4, a negative regulatory factor for the rice OsGA2ox1 gene, was identified in this study. Loss of OsBLH4 function results in decreased bioactive GA levels and pleiotropic phenotypes, including reduced plant height, decreased grain number per panicle, and delayed heading date, as also observed in OsGA2ox1-overexpressing plants. Consistent with the mutant phenotype, OsBLH4 was predominantly expressed in shoots and young spikelets; its encoded protein was exclusively localized in the nucleus. Molecular analysis demonstrated that OsBLH4 directly bound to the promoter region of OsGA2ox1 to repress its expression. Genetic assays revealed that OsBLH4 acts upstream of OsGA2ox1 to control rice plant height, grain number, and heading date. Taken together, these results indicate a crucial role for OsBLH4 in regulating rice plant architecture and yield potential via regulation of bioactive GA levels, and provide a potential strategy for genetic improvements of rice.
Collapse
Affiliation(s)
- Chengjuan Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuaiqiang Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ping Deng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Xianghu Laboratory, Hangzhou, China
| | - Shiyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhijuan Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Di Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ian Paul Navea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Wenhua Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Kenesi E, Beöthy-Fehér O, Szőllősi R, Domonkos I, Valkai I, Fehér A. The REPLUMLESS Transcription Factor Controls the Expression of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 Gene Involved in Shoot and Fruit Patterning of Arabidopsis thaliana. Int J Mol Sci 2024; 25:8001. [PMID: 39063242 PMCID: PMC11277442 DOI: 10.3390/ijms25148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The promoter of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 (RLCK VI_A2) gene contains nine binding sites for the REPLUMLESS (RPL) transcription factor. In agreement, the expression of the kinase gene was strongly downregulated in the rpl-4 mutant. Comparing phenotypes of loss-of-function mutants, it was revealed that both genes are involved in stem growth, phyllotaxis, organization of the vascular tissues, and the replum, highlighting potential functional interactions. The expression of the RLCKVI_A2 gene from the constitutive 35S promoter could not complement the rpl-4 phenotypes but exhibited a dominant positive effect on stem growth and affected vascular differentiation and organization. The results also indicated that the number of vascular bundles is regulated independently from stem thickness. Although our study cannot demonstrate a direct link between the RPL and RLVKVI_A2 genes, it highlights the significance of the proper developmental regulation of the RLCKVI_A2 promoter for balanced stem development.
Collapse
Affiliation(s)
- Erzsébet Kenesi
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (E.K.); (O.B.-F.); (I.D.); (I.V.)
| | - Orsolya Beöthy-Fehér
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (E.K.); (O.B.-F.); (I.D.); (I.V.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Réka Szőllősi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary;
| | - Ildikó Domonkos
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (E.K.); (O.B.-F.); (I.D.); (I.V.)
| | - Ildikó Valkai
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (E.K.); (O.B.-F.); (I.D.); (I.V.)
| | - Attila Fehér
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (E.K.); (O.B.-F.); (I.D.); (I.V.)
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
8
|
Jia T, Wang H, Cui S, Li Z, Shen Y, Li H, Xiao G. Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis. PLANT COMMUNICATIONS 2024; 5:100887. [PMID: 38532644 PMCID: PMC11287173 DOI: 10.1016/j.xplc.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
BEL1-LIKE HOMEODOMAIN (BLH) proteins are known to function in various plant developmental processes. However, the role of BLHs in regulating plant cell elongation is still unknown. Here, we identify a BLH gene, GhBLH1, that positively regulates fiber cell elongation. Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter. Knockout of GhFAD7A-1 in cotton significantly reduces fiber length, whereas overexpression of GhFAD7A-1 results in longer fibers. The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer, which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1. Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length, whereas knockout of GhKNOX6 results in longer cotton fibers. An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation. Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation.
Collapse
Affiliation(s)
- Tingting Jia
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyan Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zihan Li
- Geosystems Research Institute, Mississippi State University, Starkville, MS 39762, USA
| | - Yongcui Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hongbin Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
9
|
Liao TJ, Huang T, Xiong HY, Duo JC, Ma JZ, Du MY, Duan RJ. Genome-wide identification, characterization, and evolutionary analysis of the barley TALE gene family and its expression profiles in response to exogenous hormones. FRONTIERS IN PLANT SCIENCE 2024; 15:1421702. [PMID: 38993938 PMCID: PMC11236544 DOI: 10.3389/fpls.2024.1421702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Three-amino-loop-extension (TALE) family belongs to the homeobox gene superfamily and occurs widely in plants, playing a crucial role in regulating their growth and development. Currently, genome-wide analysis of the TALE family has been completed in many plants. However, the systematic identification and hormone response analysis of the TALE gene family in barley are still lacking. In this study, 21 TALE candidate genes were identified in barley, which can be divided into KNOX and BELL subfamilies. Barley TALE members in the same subfamily of the phylogenetic tree have analogically conserved motifs and gene structures, and segmental duplications are largely responsible for the expansion of the HvTALE family. Analysis of TALE orthologous and homologous gene pairs indicated that the HvTALE family has mainly undergone purifying selective pressure. Through spatial structure simulation, HvKNOX5-HvKNOX6 and HvKNOX5-HvBELL11 complexes are all formed through hydrogen bonding sites on both the KNOX2 and homeodomain (HD) domains of HvKNOX5, which may be essential for protein interactions among the HvTALE family members. Expression pattern analyses reveal the potential involvement of most HvTALE genes in responses to exogenous hormones. These results will lay the foundation for regulation and function analyses of the barley TALE gene family in plant growth and development by hormone regulation.
Collapse
Affiliation(s)
- Tian-jiang Liao
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Tao Huang
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Hui-yan Xiong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jie-cuo Duo
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jian-zhi Ma
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Ming-yang Du
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Rui-jun Duan
- College of Eco-environmental Engineering, Qinghai University, Xining, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
10
|
Byrne ME, Imlay E, Ridza NNB. Shaping leaves through TALE homeodomain transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3220-3232. [PMID: 38527334 PMCID: PMC11156807 DOI: 10.1093/jxb/erae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/24/2024] [Indexed: 03/27/2024]
Abstract
The first TALE homeodomain transcription factor gene to be described in plants was maize knotted1 (kn1). Dominant mutations in kn1 disrupt leaf development, with abnormal knots of tissue forming in the leaf blade. kn1 was found to be expressed in the shoot meristem but not in a peripheral region that gives rise to leaves. Furthermore, KN1 and closely related proteins were excluded from initiating and developing leaves. These findings were a prelude to a large body of work wherein TALE homeodomain proteins have been identified as vital regulators of meristem homeostasis and organ development in plants. KN1 homologues are widely represented across land plant taxa. Thus, studying the regulation and mechanistic action of this gene class has allowed investigations into the evolution of diverse plant morphologies. This review will focus on the function of TALE homeodomain transcription factors in leaf development in eudicots. Here, we discuss how TALE homeodomain proteins contribute to a spectrum of leaf forms, from the simple leaves of Arabidopsis thaliana to the compound leaves of Cardamine hirsuta and species beyond the Brassicaceae.
Collapse
Affiliation(s)
- Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Eleanor Imlay
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
11
|
Lu Z, Zhang J, Wang H, Zhang K, Gu Z, Xu Y, Zhang J, Wang M, Han L, Xiang F, Zhou C. Rewiring of a KNOXI regulatory network mediated by UFO underlies the compound leaf development in Medicago truncatula. Nat Commun 2024; 15:2988. [PMID: 38582884 PMCID: PMC10998843 DOI: 10.1038/s41467-024-47362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Class I KNOTTED-like homeobox (KNOXI) genes are parts of the regulatory network that control the evolutionary diversification of leaf morphology. Their specific spatiotemporal expression patterns in developing leaves correlate with the degrees of leaf complexity between simple-leafed and compound-leafed species. However, KNOXI genes are not involved in compound leaf formation in several legume species. Here, we identify a pathway for dual repression of MtKNOXI function in Medicago truncatula. PINNATE-LIKE PENTAFOLIATA1 (PINNA1) represses the expression of MtKNOXI, while PINNA1 interacts with MtKNOXI and sequesters it to the cytoplasm. Further investigations reveal that UNUSUAL FLORAL ORGANS (MtUFO) is the direct target of MtKNOXI, and mediates the transition from trifoliate to pinnate-like pentafoliate leaves. These data suggest a new layer of regulation for morphological diversity in compound-leafed species, in which the conserved regulators of floral development, MtUFO, and leaf development, MtKNOXI, are involved in variation of pinnate-like compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Peanut Research Institute, Qingdao, 266199, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Li Y, Xiong H, Guo H, Zhao L, Xie Y, Gu J, Zhao S, Ding Y, Li H, Zhou C, Fu M, Wang Q, Liu L. Genome-wide characterization of two homeobox families identifies key genes associated with grain-related traits in wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111862. [PMID: 37716191 DOI: 10.1016/j.plantsci.2023.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
Homeodomain proteins encoded by BEL1- and KNAT1-type genes are ubiquitously distributed across plant species and play important roles in growth and development, whereby a comprehensive investigation of their molecular interactions and potential functions in wheat is of great significance. In this study, we systematically investigated the phylogenetic relationships, gene structures, conserved domains, and cis-acting elements of 34 TaBEL and 34 TaKNAT genes in the wheat genome. Our analysis revealed these genes evolved under different selective pressures and showed variable transcript levels in different wheat tissues. Subcellular localization analysis further indicated the proteins encoded by these genes were either exclusively located in the nucleus or both in the nucleus and the cytoplasm. Additionally, a comprehensive protein-protein interaction network was constructed with representative genes in which each TaBEL or TaKNAT proteins interact with at least two partners. The evaluation of wheat mutants identified key genes, including TaBEL-5B, TaBEL-4A.4, and TaKNAT6, which are involved in grain-related traits. Finally, haplotype analysis suggests TaKNAT-6B is associated with grain-related traits and is preferentially selected among a large set of wheat accessions. Our study provides important information on BEL1- and KNAT1-type gene families in wheat, and lays the foundation for functional research in the future.
Collapse
Affiliation(s)
- Yuting Li
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuping Ding
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiyuan Li
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyun Zhou
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meiyu Fu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingguo Wang
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Tao X, Zhao Y, Ma L, Wu J, Zeng R, Jiao J, Li R, Ma W, Lian Y, Wang W, Pu Y, Yang G, Liu L, Li X, Sun W. Cloning and functional analysis of the BrCUC2 gene in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2023; 14:1274567. [PMID: 37965013 PMCID: PMC10642757 DOI: 10.3389/fpls.2023.1274567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
The CUP-SHAPED COTYLEDON2 (CUC2) gene plays an important role in the formation of apical meristem and organ edges in plants. The apical meristematic tissue of Brassica rapa (B. rapa) is associated with cold resistance, however, the role of the CUC2 gene in cold resistance of B.rapa is unclear. In this study, we used bioinformatics software to analyze the structure of BrCUC2 gene, real-time fluorescence quantitative PCR to detect the expression level of BrCUC2, constructed transgenic Arabidopsis thaliana by the flower dipping method and subcellular localization for functional validation. The results showed that, we isolated a 1104 bp open reading frame of BrCUC2 from the winter B. rapa cultivar 'Longyou 7'. The BrCUC2 contains a highly conserved domain belonging to the NAM superfamily. Its homologus CUC genes contain similar conserved motifs and are closely related to Brassica oleracea (B.oleracea), and the N-terminal of amino acid sequence contains NAC domain. BrCUC2 protein was localized in the nucleus and self-activation tests showed that pGBKT7-BrCUC2 had self-activation. Tissue-specific expression analysis and promoter β-Glucuronidase (GUS) activity showed that BrCUC2 had high expression levels in B. rapa growth points and A. thaliana leaf edges, stems and growth points. After low-temperature stress, BrCUC2 showed greater expression in 'Longyou 7,' which presents strong cold resistance and concave growth points, than in 'Longyou 99,' which presents weak cold resistance and protruding growth points. BrCUC2 promoter contains multiple elements related to stress responses. BrCUC2 overexpression revealed that the phenotype did not differ from that of the wild type during the seedling stage but showed weak growth and a dwarf phenotype during the flowering and mature stages. After low-temperature treatment, the physiological indexes and survival rate of BrCUC2-overexpression lines of Arabidopsis thaliana (A. thaliana) were better than those of the wild type within 12 h, although differences were not observed after 24 h. These results showed that BrCUC2 improved the low-temperature tolerance of transgenic A. thaliana within a short time. It can provide a foundation for the study of cold resistance in winter B. rapa.
Collapse
Affiliation(s)
- Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Yuhong Zhao
- Gansu Yasheng Agricultural Research Institute Co. Ltd, Crop Office, Lanzhou, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Rui Zeng
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - JinTang Jiao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Rong Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Weiming Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Yintao Lian
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Yu J, Song G, Guo W, Le L, Xu F, Wang T, Wang F, Wu Y, Gu X, Pu L. ZmBELL10 interacts with other ZmBELLs and recognizes specific motifs for transcriptional activation to modulate internode patterning in maize. THE NEW PHYTOLOGIST 2023; 240:577-596. [PMID: 37583092 DOI: 10.1111/nph.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 08/17/2023]
Abstract
Plant height is an important agronomic trait that affects crop yield. Elucidating the molecular mechanism underlying plant height regulation is also an important question in developmental biology. Here, we report that a BELL transcription factor, ZmBELL10, positively regulates plant height in maize (Zea mays). Loss of ZmBELL10 function resulted in shorter internodes, fewer nodes, and smaller kernels, while ZmBELL10 overexpression increased plant height and hundred-kernel weight. Transcriptome analysis and chromatin immunoprecipitation followed by sequencing showed that ZmBELL10 recognizes specific sequences in the promoter of its target genes and activates cell division- and cell elongation-related gene expression, thereby influencing node number and internode length in maize. ZmBELL10 interacted with several other ZmBELL proteins via a spatial structure in its POX domain to form protein complexes involving ZmBELL10. All interacting proteins recognized the same DNA sequences, and their interaction with ZmBELL10 increased target gene expression. We identified the key residues in the POX domain of ZmBELL10 responsible for its protein-protein interactions, but these residues did not affect its transactivation activity. Collectively, our findings shed light on the functions of ZmBELL10 protein complexes and provide potential targets for improving plant architecture and yield in maize.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shangrao Normal University, Shangrao, 334001, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yue Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
16
|
Matoušek J, Wüsthoff KP, Steger G. "Pathomorphogenic" Changes Caused by Citrus Bark Cracking Viroid and Transcription Factor TFIIIA-7ZF Variants Support Viroid Propagation in Tobacco. Int J Mol Sci 2023; 24:ijms24097790. [PMID: 37175498 PMCID: PMC10178017 DOI: 10.3390/ijms24097790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Viroids are small, non-coding, pathogenic RNAs with the ability to disturb plant developmental processes. This dysregulation redirects the morphogenesis of plant organs, significantly impairing their functionality. Citrus bark cracking viroid (CBCVd) causes detrimental developmental distortions in infected hops (Humulus lupulus) and causes significant economic losses. CBCVd can infect cells and tissues of the model plant tobacco (Nicotiana tabacum), provided it is delivered via transgenesis. The levels of CBCVd in tobacco were enhanced in plant hybrids expressing CBCVd cDNAs and either the tobacco or hop variant of TFIIIA-7ZF, a viroid-mediated splicing derivative of transcription factor IIIA, which is important for viroid replication by DNA-dependent RNA polymerase II. The TFIIIA-7ZF variants can change the tobacco morphogenesis if expressed in leaves and shoots. In addition to the splitting of shoots, the "pathomorphogenic" network in hybrid plants expressing CBCVd and HlTFIIIA-7ZF induced leaf fusions and malformations. Moreover, CBCVd can dramatically change another morphogenesis into teratomic and petal-like tissues if propagated above some limit in young transgenic tobacco microspores and anthers. By comparative RNA profiling of transgenic tobacco shoots bearing TFIIIA-7ZFs and CBCVd-transformed/infected anthers, we found a differential expression of many genes at p < 0.05. As the main common factor showing the differential up-regulation in shoot and anther tissues, a LITTLE ZIPPER 2-like transcription factor was found. We propose that this factor, which can interact as a competitive inhibitor of the also dysregulated homeobox-leucin zipper family protein (HD-ZIPIII) in apical meristem, is essential for a network responsible for some morphological changes and modifications of plant degradome within shoot meristem regulation and secondary xylem differentiation.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Kevin P Wüsthoff
- Institut für Pysikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Gerhard Steger
- Institut für Pysikalische Biologie, Heinrich Heine University Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
17
|
An G, Yu C, Yan C, Wang M, Zhang W, Jia Y, Shi C, Larkin RM, Chen J, Lavelle D, Michelmore RW, Kuang H. Loss-of-function of SAWTOOTH 1 affects leaf dorsiventrality genes to promote leafy heads in lettuce. THE PLANT CELL 2022; 34:4329-4347. [PMID: 35916734 PMCID: PMC9614500 DOI: 10.1093/plcell/koac234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underlying leafy heads in vegetables are poorly understood. Here, we cloned a quantitative trait locus (QTL) controlling leafy heads in lettuce (Lactuca sativa). The QTL encodes a transcription factor, SAWTOOTH 1 (LsSAW1), which has a BEL1-like homeodomain and is a homolog of Arabidopsis thaliana. A 1-bp deletion in Lssaw1 contributes to the development of leafy heads. Laser-capture microdissection and RNA-sequencing showed that LsSAW1 regulates leaf dorsiventrality and loss-of-function of Lssaw1 downregulates the expression of many adaxial genes but upregulates abaxial genes. LsSAW1 binds to the promoter region of the adaxial gene ASYMMETRIC LEAVES 1 (LsAS1) to upregulate its expression. Overexpression of LsAS1 compromised the effects of Lssaw1 on heading. LsSAW1 also binds to the promoter region of the abaxial gene YABBY 1 (LsYAB1), but downregulates its expression. Overexpression of LsYAB1 led to bending leaves in LsSAW1 genotypes. LsSAW1 directly interacts with KNOTTED 1 (LsKN1), which is necessary for leafy heads in lettuce. RNA-seq data showed that LsSAW1 and LsKN1 exert antagonistic effects on the expression of thousands of genes. LsSAW1 compromises the ability of LsKN1 to repress LsAS1. Our results suggest that downregulation or loss-of-function of adaxial genes and upregulation of abaxial genes allow for the development of leafy heads.
Collapse
Affiliation(s)
- Guanghui An
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchun Yu
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenghuan Yan
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglu Wang
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Jia
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dean Lavelle
- Genome Center and Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Hanhui Kuang
- Key Laboratory of Horticultural Plant Biology and Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Fang SC, Chen JC, Chang PY, Lin HY. Co-option of the SHOOT MERISTEMLESS network regulates protocorm-like body development in Phalaenopsis aphrodite. PLANT PHYSIOLOGY 2022; 190:127-145. [PMID: 35258627 PMCID: PMC9434259 DOI: 10.1093/plphys/kiac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 06/02/2023]
Abstract
The protocorm is a structure that is formed upon germination of an orchid seed. It lacks cotyledons and is ovoid in shape. The protocorm-like body (PLB), on the other hand, is a protocorm-like organ induced from somatic tissues. PLBs have been widely used for orchid micropropagation. Because of its unique structure and its application in the orchid industry, PLB development has drawn considerable interest from orchid and developmental biologists. Our previous genome-wide comparative transcriptome study demonstrated that protocorms and PLBs share similar molecular signatures and suggested that SHOOT MERISTEMLESS (STM)-dependent organogenesis is important for PLB development. Here, we show that overexpression of Phalaenopsis aphrodite STM (PaSTM) greatly enhances PLB regeneration from vegetative tissue-based explants of Phalaenopsis orchids, confirming its regulatory role in PLB development. Expression of PaSTM restored shoot meristem function of the Arabidopsis (Arabidopsis thaliana) stm-2 mutant. Moreover, we identified class S11 MYB transcription factors (TFs) as targets downstream of PaSTM. A cis-acting element, TTGACT, identified in the promoters of S11 MYB TFs was found to be important for PaSTM binding and activation. Overexpression of PaSTM or its downstream targets, PaMYB13, PaMYB14, and PaMYB17, enhanced de novo shoot regeneration in Arabidopsis, indicating the active role of the PaSTM-S11 PaMYB module in organogenesis. In summary, our data demonstrate that PaSTM is important for PLB development. The STM-S11 MYB regulatory module is evolutionarily conserved and may regulate shoot or shoot-related organ development in plants.
Collapse
Affiliation(s)
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pou-Yi Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
19
|
Ezura K, Nakamura A, Mitsuda N. Genome-wide characterization of the TALE homeodomain family and the KNOX-BLH interaction network in tomato. PLANT MOLECULAR BIOLOGY 2022; 109:799-821. [PMID: 35543849 DOI: 10.1007/s11103-022-01277-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/23/2022] [Indexed: 05/05/2023]
Abstract
Comprehensive yeast and protoplast two-hybrid analyses illustrated the protein-protein interaction network of the TALE homeodomain protein family, KNOX and BLH proteins, in tomato leaf and fruit development. KNOTTED-like (KNOX, KN) proteins and BELL1-like (BLH) proteins, which belong to the same TALE homeodomain family, act together by forming KNOX-BLH heterodimer modules. These modules play crucial roles in regulating multiple developmental processes in plants, like organ differentiation. However, despite the increasing knowledge about individual KNOX and BLH functions, a comprehensive view of their functional protein-protein interaction (PPI) network remains elusive in most plants, including tomato (Solanum lycopersicum), an important model plant to study fruit and leaf development. Here, we characterized eight tomato KNOX genes (SlKN1 to SlKN8) and fourteen tomato BLH genes (SlBLH1 to SlBLH14) by expression profiling, co-expression analysis, and PPI network analysis using two-hybrid techniques in yeasts (Y2H) and protoplasts (P2H). We identified 75 pairwise KNOX-BLH interactions, including ten novel interactors of SlKN2/TKN2, a primary class I KNOX protein, and nine novel interactors of SlKN5, a primary class II KNOX protein. Based on these data, we classified KNOX-BLH modules into several categories, which made us infer the order and combination of the KNOX-BLH modules involved in differentiation processes in leaf and fruit. Notably, the co-expression and interaction of SlKN5 and fruit preferentially expressing BLH1-clade paralogs (SlBLH5/SlBEL11 and SlBLH7) suggest their important roles in regulating fruit differentiation. Furthermore, in silico modeling of the KNOX-BLH modules, sequence analysis, and P2H assay identified several residues and a linker region potentially influencing the affinity of BLHs to KNOXs within their conserved dimerization domains. Together, these findings provide insights into the regulatory mechanism of KNOX-BLH modules underlying tomato organ differentiation.
Collapse
Affiliation(s)
- Kentaro Ezura
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan.
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| |
Collapse
|
20
|
Gramzow L, Klupsch K, Fernández-Pozo N, Hölzer M, Marz M, Rensing SA, Theißen G. Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae). BMC PLANT BIOLOGY 2022; 22:340. [PMID: 35836106 PMCID: PMC9281134 DOI: 10.1186/s12870-022-03631-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Katharina Klupsch
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Noé Fernández-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM - CSIC - UMA, Málaga, 29010, Spain
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- Present Address: Methodology and Research Infrastructure/Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, 35043, Marburg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, 79108, Freiburg, Germany
| | - Günter Theißen
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
21
|
Identification of TALE Transcription Factor Family and Expression Patterns Related to Fruit Chloroplast Development in Tomato ( Solanum lycopersicum L.). Int J Mol Sci 2022; 23:ijms23094507. [PMID: 35562896 PMCID: PMC9104321 DOI: 10.3390/ijms23094507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The TALE gene family is an important transcription factor family that regulates meristem formation, organ morphogenesis, signal transduction, and fruit development. A total of 24 genes of the TALE family were identified and analyzed in tomato. The 24 SlTALE family members could be classified into five BELL subfamilies and four KNOX subfamilies. SlTALE genes were unevenly distributed on every tomato chromosome, lacked syntenic gene pairs, and had conserved structures but diverse regulatory functions. Promoter activity analysis showed that cis-elements responsive to light, phytohormone, developmental regulation, and environmental stress were enriched in the promoter of SlTALE genes, and the light response elements were the most abundant. An abundance of TF binding sites was also enriched in the promoter of SlTALE genes. Phenotype identification revealed that the green shoulder (GS) mutant fruits showed significantly enhanced chloroplast development and chlorophyll accumulation, and a significant increase of chlorophyll fluorescence parameters in the fruit shoulder region. Analysis of gene expression patterns indicated that six SlTALE genes were highly expressed in the GS fruit shoulder region, and four SlTALE genes were highly expressed in the parts with less-developed chloroplasts. The protein-protein interaction networks predicted interaction combinations among these SlTALE genes, especially between the BELL subfamilies and the KNOX subfamilies, indicating a complex regulatory network of these SlTALE genes in chloroplast development and green fruit shoulder formation. In conclusion, our result provides detailed knowledge of the SlTALE gene for functional research and the utilization of the TALE gene family in fruit quality improvement.
Collapse
|
22
|
Wu Q, Zhong S, Shi H. MicroProteins: Dynamic and accurate regulation of protein activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:812-820. [PMID: 35060666 DOI: 10.1111/jipb.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Proteins usually assemble oligomers or high-order complexes to increase their efficiency and specificity in biological processes. The dynamic equilibrium of complex formation and disruption imposes reversible regulation of protein function. MicroProteins are small, single-domain proteins that directly bind target protein complexes and disrupt their assembly. Growing evidence shows that microProteins are efficient regulators of protein activity at the post-translational level. In the last few decades, thousands of plant microProteins have been predicted by computational approaches, but only a few have been experimentally validated. Recent studies highlighted the mechanistic working modes of newly-identified microProteins in Arabidopsis and other plant species. Here, we review characterized microProteins, including their biological roles, regulatory targets, and modes of action. In particular, we focus on microProtein-directed allosteric modulation of key components in light signaling pathways, and we summarize the biogenesis and evolutionary trajectory of known microProteins in plants. Understanding the regulatory mechanisms of microProteins is an important step towards potential utilization of microProteins as versatile biotechnological tools in crop bioengineering.
Collapse
Affiliation(s)
- Qingqing Wu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
23
|
Niu X, Fu D. The Roles of BLH Transcription Factors in Plant Development and Environmental Response. Int J Mol Sci 2022; 23:3731. [PMID: 35409091 PMCID: PMC8998993 DOI: 10.3390/ijms23073731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent advancements in plant molecular biology and biotechnology, providing enough, and safe, food for an increasing world population remains a challenge. The research into plant development and environmental adaptability has attracted more and more attention from various countries. The transcription of some genes, regulated by transcript factors (TFs), and their response to biological and abiotic stresses, are activated or inhibited during plant development; examples include, rooting, flowering, fruit ripening, drought, flooding, high temperature, pathogen infection, etc. Therefore, the screening and characterization of transcription factors have increasingly become a hot topic in the field of plant research. BLH/BELL (BEL1-like homeodomain) transcription factors belong to a subfamily of the TALE (three-amino-acid-loop-extension) superfamily and its members are involved in the regulation of many vital biological processes, during plant development and environmental response. This review focuses on the advances in our understanding of the function of BLH/BELL TFs in different plants and their involvement in the development of meristems, flower, fruit, plant morphogenesis, plant cell wall structure, the response to the environment, including light and plant resistance to stress, biosynthesis and signaling of ABA (Abscisic acid), IAA (Indoleacetic acid), GA (Gibberellic Acid) and JA (Jasmonic Acid). We discuss the theoretical basis and potential regulatory models for BLH/BELL TFs' action and provide a comprehensive view of their multiple roles in modulating different aspects of plant development and response to environmental stress and phytohormones. We also present the value of BLHs in the molecular breeding of improved crop varieties and the future research direction of the BLH gene family.
Collapse
Affiliation(s)
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
24
|
Peng W, Yang Y, Xu J, Peng E, Dai S, Dai L, Wang Y, Yi T, Wang B, Li D, Song N. TALE Transcription Factors in Sweet Orange ( Citrus sinensis): Genome-Wide Identification, Characterization, and Expression in Response to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 12:814252. [PMID: 35126435 PMCID: PMC8811264 DOI: 10.3389/fpls.2021.814252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Three-amino-acid-loop-extension (TALE) transcription factors comprise one of the largest gene families in plants, in which they contribute to regulation of a wide variety of biological processes, including plant growth and development, as well as governing stress responses. Although sweet orange (Citrus sinensis) is among the most commercially important fruit crops cultivated worldwide, there have been relatively few functional studies on TALE genes in this species. In this study, we investigated 18 CsTALE gene family members with respect to their phylogeny, physicochemical properties, conserved motif/domain sequences, gene structures, chromosomal location, cis-acting regulatory elements, and protein-protein interactions (PPIs). These CsTALE genes were classified into two subfamilies based on sequence homology and phylogenetic analyses, and the classification was equally strongly supported by the highly conserved gene structures and motif/domain compositions. CsTALEs were found to be unevenly distributed on the chromosomes, and duplication analysis revealed that segmental duplication and purifying selection have been major driving force in the evolution of these genes. Expression profile analysis indicated that CsTALE genes exhibit a discernible spatial expression pattern in different tissues and differing expression patterns in response to different biotic/abiotic stresses. Of the 18 CsTALE genes examined, 10 were found to be responsive to high temperature, four to low temperature, eight to salt, and four to wounding. Moreover, the expression of CsTALE3/8/12/16 was induced in response to infection with the fungal pathogen Diaporthe citri and bacterial pathogen Candidatus Liberibacter asiaticus, whereas the expression of CsTALE15/17 was strongly suppressed. The transcriptional activity of CsTALE proteins was also verified in yeast, with yeast two-hybrid assays indicating that CsTALE3/CsTALE8, CsTALE3/CsTALE11, CsTALE10/CsTALE12, CsTALE14/CsTALE8, CsTALE14/CsTALE11 can form respective heterodimers. The findings of this study could lay the foundations for elucidating the biological functions of the TALE family genes in sweet orange and contribute to the breeding of stress-tolerant plants.
Collapse
Affiliation(s)
- Weiye Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Jing Xu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Erping Peng
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Suming Dai
- Horticulture College, Hunan Agricultural University, Changsha, China
- National Center for Citrus Improvement Changsha, Changsha, China
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Tuyong Yi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Dazhi Li
- Horticulture College, Hunan Agricultural University, Changsha, China
- National Center for Citrus Improvement Changsha, Changsha, China
| | - Na Song
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| |
Collapse
|
25
|
Su S, Hong J, Chen X, Zhang C, Chen M, Luo Z, Chang S, Bai S, Liang W, Liu Q, Zhang D. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2304-2318. [PMID: 34800075 PMCID: PMC8541776 DOI: 10.1111/pbi.13661] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Panicle architecture is a key determinant of grain yield in cereals, but the mechanisms governing panicle morphogenesis and organ development remain elusive. Here, we have identified a quantitative trait locus (qPA1) associated with panicle architecture using chromosome segment substitution lines from parents Nipponbare and 9311. The panicle length, branch number and grain number of Nipponbare were significantly higher than CSSL-9. Through map-based cloning and complementation tests, we confirmed that qPA1 was identical to SD1 (Semi Dwarf1), which encodes a gibberellin 20-oxidase enzyme participating in gibberellic acid (GA) biosynthesis. Transcript analysis revealed that SD1 was widely expressed during early panicle development. Analysis of sd1/osga20ox2 and gnp1/ osga20ox1 single and double mutants revealed that the two paralogous enzymes have non-redundant functions during panicle development, likely due to differences in spatiotemporal expression; GNP1 expression under control of the SD1 promoter could rescue the sd1 phenotype. The DELLA protein SLR1, a component of the GA signalling pathway, accumulated more highly in sd1 plants. We have demonstrated that SLR1 physically interacts with the meristem identity class I KNOTTED1-LIKE HOMEOBOX (KNOX) protein OSH1 to repress OSH1-mediated activation of downstream genes related to panicle development, providing a mechanistic link between gibberellin and panicle architecture morphogenesis.
Collapse
Affiliation(s)
- Su Su
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuwei Chang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- School of Agriculture, Food and WineUniversity of AdelaideUrrbraeSAAustralia
| |
Collapse
|
26
|
VPB1 Encoding BELL-like Homeodomain Protein Is Involved in Rice Panicle Architecture. Int J Mol Sci 2021; 22:ijms22157909. [PMID: 34360677 PMCID: PMC8348756 DOI: 10.3390/ijms22157909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Inflorescence architecture in rice (Oryza sativa) is mainly determined by spikelets and the branch arrangement. Primary branches initiate from inflorescence meristem in a spiral phyllotaxic manner, and further develop into the panicle branches. The branching patterns contribute largely to rice production. In this study, we characterized a rice verticillate primary branch 1(vpb1) mutant, which exhibited a clustered primary branches phenotype. Gene isolation revealed that VPB1 was a allele of RI, that it encoded a BELL-like homeodomain (BLH) protein. VPB1 gene preferentially expressed in the inflorescence and branch meristems. The arrangement of primary branch meristems was disturbed in the vpb1 mutant. Transcriptome analysis further revealed that VPB1 affected the expression of some genes involved in inflorescence meristem identity and hormone signaling pathways. In addition, the differentially expressed gene (DEG) promoter analysis showed that OsBOPs involved in boundary organ initiation were potential target genes of VPB1 protein. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter system further verified that VPB1 protein bound to the promoter of OsBOP1 gene. Overall, our findings demonstrate that VPB1 controls inflorescence architecture by regulating the expression of genes involved in meristem maintenance and hormone pathways and by interacting with OsBOP genes.
Collapse
|
27
|
Yan F, Gong Z, Hu G, Ma X, Bai R, Yu R, Zhang Q, Deng W, Li Z, Wuriyanghan H. Tomato SlBL4 plays an important role in fruit pedicel organogenesis and abscission. HORTICULTURE RESEARCH 2021; 8:78. [PMID: 33790250 PMCID: PMC8012377 DOI: 10.1038/s41438-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 05/21/2023]
Abstract
Abscission, a cell separation process, is an important trait that influences grain and fruit yield. We previously reported that BEL1-LIKE HOMEODOMAIN 4 (SlBL4) is involved in chloroplast development and cell wall metabolism in tomato fruit. In the present study, we showed that silencing SlBL4 resulted in the enlargement and pre-abscission of the tomato (Solanum lycopersicum cv. Micro-TOM) fruit pedicel. The anatomic analysis showed the presence of more epidermal cell layers and no obvious abscission zone (AZ) in the SlBL4 RNAi lines compared with the wild-type plants. RNA-seq analysis indicated that the regulation of abscission by SlBL4 was associated with the altered abundance of genes related to key meristems, auxin transporters, signaling components, and cell wall metabolism. Furthermore, SlBL4 positively affected the auxin concentration in the abscission zone. A dual-luciferase reporter assay revealed that SlBL4 activated the transcription of the JOINTLESS, OVATE, PIN1, and LAX3 genes. We reported a novel function of SlBL4, which plays key roles in fruit pedicel organogenesis and abscission in tomatoes.
Collapse
Affiliation(s)
- Fang Yan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Xuesong Ma
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Runyao Bai
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Ruonan Yu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Hada Wuriyanghan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
28
|
Jeon HW, Byrne ME. SAW homeodomain transcription factors regulate initiation of leaf margin serrations. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1738-1747. [PMID: 33247922 DOI: 10.1093/jxb/eraa554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Plant leaves are the main photosynthetic organ of plants and they occur in an array of different shapes. Leaf shape is determined by morphogenesis whereby patterning of the leaf margin can result in interspaced leaf serrations, lobes, or leaflets, depending on the species, developmental stage, and in some instances the environment. In Arabidopsis, mutations in the homeodomain transcription factors SAW1 and SAW2 result in more prominent leaf margin serrations. Here we show that serrations appear precociously in the saw1 saw2 mutant. The pattern of auxin maxima, and of PIN1 and CUC2 expression, which form a feedback loop that drives serration outgrowth, is altered in saw1 saw2 and correlates with precocious serration initiation. SAW1 is not expressed in the outer epidermal cell layer where PIN1 convergence points generate auxin maxima. Instead, SAW1 is expressed on the adaxial side of the leaf and expression in this domain is sufficient for function. We suggest that SAW1 and SAW2 repress serration initiation and outgrowth by promoting the transition to a determinate fate in the leaf margin.
Collapse
Affiliation(s)
- Hyung-Woo Jeon
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Mary E Byrne
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
29
|
Zhang X, Zhao J, Wu X, Hu G, Fan S, Ma Q. Evolutionary Relationships and Divergence of KNOTTED1-Like Family Genes Involved in Salt Tolerance and Development in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:774161. [PMID: 34970288 PMCID: PMC8712452 DOI: 10.3389/fpls.2021.774161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 05/16/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiangyuan Wu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Shuli Fan,
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Qifeng Ma,
| |
Collapse
|
30
|
Garrido AN, Supijono E, Boshara P, Douglas SJ, Stronghill PE, Li B, Nambara E, Kliebenstein DJ, Riggs CD. flasher, a novel mutation in a glucosinolate modifying enzyme, conditions changes in plant architecture and hormone homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1989-2006. [PMID: 32529723 DOI: 10.1111/tpj.14878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Meristem function is underpinned by numerous genes that affect hormone levels, ultimately controlling phyllotaxy, the transition to flowering and general growth properties. Class I KNOX genes are major contributors to this process, promoting cytokinin biosynthesis but repressing gibberellin production to condition a replication competent state. We identified a suppressor mutant of the KNOX1 mutant brevipedicellus (bp) that we termed flasher (fsh), which promotes stem and pedicel elongation, suppresses early senescence, and negatively affects reproductive development. Map-based cloning and complementation tests revealed that fsh is due to an E40K change in the flavin monooxygenase GS-OX5, a gene encoding a glucosinolate (GSL) modifying enzyme. In vitro enzymatic assays revealed that fsh poorly converts substrate to product, yet the levels of several GSLs are higher in the suppressor line, implicating FSH in feedback control of GSL flux. FSH is expressed predominantly in the vasculature in patterns that do not significantly overlap those of BP, implying a non-cell autonomous mode of meristem control via one or more GSL metabolites. Hormone analyses revealed that cytokinin levels are low in bp, but fsh restores cytokinin levels to near normal by activating cytokinin biosynthesis genes. In addition, jasmonate levels in the fsh suppressor are significantly lower than in bp, which is likely due to elevated expression of JA inactivating genes. These observations suggest the involvement of the GSL pathway in generating one or more negative effectors of growth that influence inflorescence architecture and fecundity by altering the balance of hormonal regulators.
Collapse
Affiliation(s)
- Ameth N Garrido
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Esther Supijono
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Peter Boshara
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Scott J Douglas
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Patti E Stronghill
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Baohua Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - C Daniel Riggs
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
31
|
Establishment of the Embryonic Shoot Meristem Involves Activation of Two Classes of Genes with Opposing Functions for Meristem Activities. Int J Mol Sci 2020; 21:ijms21165864. [PMID: 32824181 PMCID: PMC7461597 DOI: 10.3390/ijms21165864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
The shoot meristem, a stem-cell-containing tissue initiated during plant embryogenesis, is responsible for continuous shoot organ production in postembryonic development. Although key regulatory factors including KNOX genes are responsible for stem cell maintenance in the shoot meristem, how the onset of such factors is regulated during embryogenesis is elusive. Here, we present evidence that the two KNOX genes STM and KNAT6 together with the two other regulatory genes BLR and LAS are functionally important downstream genes of CUC1 and CUC2, which are a redundant pair of genes that specify the embryonic shoot organ boundary. Combined expression of STM with any of KNAT6, BLR, and LAS can efficiently rescue the defects of shoot meristem formation and/or separation of cotyledons in cuc1cuc2 double mutants. In addition, CUC1 and CUC2 are also required for the activation of KLU, a cytochrome P450-encoding gene known to restrict organ production, and KLU counteracts STM in the promotion of meristem activity, providing a possible balancing mechanism for shoot meristem maintenance. Together, these results establish the roles for CUC1 and CUC2 in coordinating the activation of two classes of genes with opposite effects on shoot meristem activity.
Collapse
|
32
|
Wang N, Bagdassarian KS, Doherty RE, Kroon JT, Connor KA, Wang XY, Wang W, Jermyn IH, Turner SR, Etchells JP. Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue. Development 2019; 146:dev.177105. [PMID: 31043420 DOI: 10.1242/dev.177105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
In plants, cells do not migrate. Tissues are frequently arranged in concentric rings; thus, expansion of inner layers is coordinated with cell division and/or expansion of cells in outer layers. In Arabidopsis stems, receptor kinases, PXY and ER, genetically interact to coordinate vascular proliferation and organisation via inter-tissue signalling. The contribution of PXY and ER paralogues to stem patterning is not known, nor is their function understood in hypocotyls, which undergo considerable radial expansion. Here, we show that removal of all PXY and ER gene-family members results in profound cell division and organisation defects. In hypocotyls, these plants failed to transition to true radial growth. Gene expression analysis suggested that PXY and ER cross- and inter-family transcriptional regulation occurs, but it differs between stem and hypocotyl. Thus, PXY and ER signalling interact to coordinate development in a distinct manner in different organs. We anticipate that such specialised local regulatory relationships, where tissue growth is controlled via signals moving across tissue layers, may coordinate tissue layer expansion throughout the plant body.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.,College of Life Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | | | - Rebecca E Doherty
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Johannes T Kroon
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Katherine A Connor
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xiao Y Wang
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Wei Wang
- College of Life Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Ian H Jermyn
- Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Simon R Turner
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
33
|
Zhao K, Zhang X, Cheng Z, Yao W, Li R, Jiang T, Zhou B. Comprehensive analysis of the three-amino-acid-loop-extension gene family and its tissue-differential expression in response to salt stress in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:1-12. [PMID: 30639784 DOI: 10.1016/j.plaphy.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 05/11/2023]
Abstract
The three-amino-acid-loop-extension (TALE) transcription factor gene family is widely present in plants and plays an important role in its growth and development. However, studies on the gene family are limited in poplar. In this study, we investigated 35 TALE gene family members in terms of their evolutionary relationship, classification, physicochemical properties, gene structures, and protein motifs. We divided the genes into four classes, based on their protein sequences similarity. The members from each class share similar gene structures and motif compositions. Evidence from transcript profiling indicated that the majority of the TALE genes exhibited distinct expression patterns over leaf, stem, and root tissues. Out of the 35 genes, 17 genes are highly expressed in stems, suggesting that the TALE gene family may play an important role in secondary growth and wood formation. Furthermore, out of the 35 genes, 11 genes are responsive to salt stress, and the spatio-temporal expression patterns of these 11 genes under salt stress were analysed using RT-qPCR. Yeast two-hybridization analysis indicated that poplar TALE proteins from different classes can form heterodimers. These results lay the foundation for future studies on biological functions of poplar TALE genes.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China; Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Renhua Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
34
|
Joo S, Wang MH, Lui G, Lee J, Barnas A, Kim E, Sudek S, Worden AZ, Lee JH. Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol 2018; 16:136. [PMID: 30396330 PMCID: PMC6219170 DOI: 10.1186/s12915-018-0605-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background Complex multicellularity requires elaborate developmental mechanisms, often based on the versatility of heterodimeric transcription factor (TF) interactions. Homeobox TFs in the TALE superclass are deeply embedded in the gene regulatory networks that orchestrate embryogenesis. Knotted-like homeobox (KNOX) TFs, homologous to animal MEIS, have been found to drive the haploid-to-diploid transition in both unicellular green algae and land plants via heterodimerization with other TALE superclass TFs, demonstrating remarkable functional conservation of a developmental TF across lineages that diverged one billion years ago. Here, we sought to delineate whether TALE-TALE heterodimerization is ancestral to eukaryotes. Results We analyzed TALE endowment in the algal radiations of Archaeplastida, ancestral to land plants. Homeodomain phylogeny and bioinformatics analysis partitioned TALEs into two broad groups, KNOX and non-KNOX. Each group shares previously defined heterodimerization domains, plant KNOX-homology in the KNOX group and animal PBC-homology in the non-KNOX group, indicating their deep ancestry. Protein-protein interaction experiments showed that the TALEs in the two groups all participated in heterodimerization. Conclusions Our study indicates that the TF dyads consisting of KNOX/MEIS and PBC-containing TALEs must have evolved early in eukaryotic evolution. Based on our results, we hypothesize that in early eukaryotes, the TALE heterodimeric configuration provided transcription-on switches via dimerization-dependent subcellular localization, ensuring execution of the haploid-to-diploid transition only when the gamete fusion is correctly executed between appropriate partner gametes. The TALE switch then diversified in the several lineages that engage in a complex multicellular organization. Electronic supplementary material The online version of this article (10.1186/s12915-018-0605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Gary Lui
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Barnas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
Liu L, Li C, Song S, Teo ZWN, Shen L, Wang Y, Jackson D, Yu H. FTIP-Dependent STM Trafficking Regulates Shoot Meristem Development in Arabidopsis. Cell Rep 2018; 23:1879-1890. [DOI: 10.1016/j.celrep.2018.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/04/2017] [Accepted: 04/05/2018] [Indexed: 10/16/2022] Open
|
36
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. Duplication and Diversification of REPLUMLESS - A Case Study in the Papaveraceae. FRONTIERS IN PLANT SCIENCE 2018; 9:1833. [PMID: 30619406 PMCID: PMC6299025 DOI: 10.3389/fpls.2018.01833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/26/2018] [Indexed: 05/17/2023]
Abstract
There is a vast amount of fruit morphological diversity in terms of their texture, the number of carpels, if those carpels are fused or not and how fruits open to disperse the seeds. Arabidopsis thaliana, a model eudicot, has a dry bicarpellate silique, when the fruit matures, the two valves fall apart through the dehiscence zone leaving the seeds attached to the remaining medial tissue, called the replum. Proper replum development in A. thaliana is mediated by REPLUMLESS (RPL), a TALE Homeodomain protein. RPL represses the valve margin genetic program and the downstream dehiscence zone formation in the medial tissue of the siliques and RPL orthologs have conserved roles across the Brassicaceae eudicots. A RPL homolog, qSH1, has been studied in rice, a monocot, and plays a role in fruit shedding making it difficult to predict functional evolution of this gene lineage across angiosperms. Although RPL orthologs have been identified across all angiosperms, expression and functional analyses are scarce. In order to fill the phylogenetic gap between the Brassicaceae and monocots we have characterized the expression patterns of RPL homologs in two poppies with different fruit types, Bocconia frutescens with operculate valvate dehiscence and a persistent medial tissue, similar to a replum, and Papaver somniferum, a poppy with persistent medial tissue in between the multicarpellate gynoecia. We found that RPL homologs in Papaveraceae have broad expression patterns during plant development; in the shoot apical meristem, during flowering transition and in many floral organs, especially the carpels. These patterns are similar to those of RPL in A. thaliana. However, our results suggest that RPL does not have conserved roles in the maintenance of medial persistent tissues of fruits but may be involved with establishing the putative dehiscence zone in dry poppy fruits.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY, United States
- The Graduate Center, City University of New York, New York, NY, United States
| | | | - Barbara A. Ambrose
- New York Botanical Garden, Bronx, NY, United States
- *Correspondence: Barbara A. Ambrose,
| |
Collapse
|
37
|
Woerlen N, Allam G, Popescu A, Corrigan L, Pautot V, Hepworth SR. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root. PLANTA 2017; 245:1079-1090. [PMID: 28204875 DOI: 10.1007/s00425-017-2663-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/08/2017] [Indexed: 05/27/2023]
Abstract
Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots. Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.
Collapse
Affiliation(s)
- Natalie Woerlen
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Institut Jean-Pierre Bourgin, UMR1318, INRA, Agro Paris Tech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Gamalat Allam
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Adina Popescu
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Institut Jean-Pierre Bourgin, UMR1318, INRA, Agro Paris Tech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Laura Corrigan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Véronique Pautot
- Institut Jean-Pierre Bourgin, UMR1318, INRA, Agro Paris Tech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Shelley R Hepworth
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
38
|
Cai H, Zhao L, Wang L, Zhang M, Su Z, Cheng Y, Zhao H, Qin Y. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. THE NEW PHYTOLOGIST 2017; 214:1579-1596. [PMID: 28295392 DOI: 10.1111/nph.14521] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 05/02/2023]
Abstract
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.
Collapse
Affiliation(s)
- Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Zhenxia Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Heming Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education & Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian Province, China
| |
Collapse
|
39
|
Ghate TH, Sharma P, Kondhare KR, Hannapel DJ, Banerjee AK. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato. PLANT MOLECULAR BIOLOGY 2017; 93:563-578. [PMID: 28084609 DOI: 10.1007/s11103-016-0582-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/22/2016] [Indexed: 05/04/2023]
Abstract
We demonstrate that RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5 in potato. Both these RNAs appear to inhibit tuber growth by repressing the activity of target genes of StBEL5 in potato. Moreover, upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short days in leaves and stolons. Steady-state levels of their mRNAs were also enhanced by short-day conditions in selective organs. There are thirteen functional BEL1-like genes in potato that encode for a family of transcription factors (TF) ubiquitous in the plant kingdom. These BEL1 TFs work in tandem with KNOTTED1-types to regulate the expression of numerous target genes involved in hormone metabolism and growth processes. One of the StBELs, StBEL5, functions as a long-distance mRNA signal that is transcribed in leaves and moves into roots and stolons to stimulate growth. The two most closely related StBELs to StBEL5 are StBEL11 and -29. Together these three genes make up more than 70% of all StBEL transcripts present throughout the potato plant. They share a number of common features, suggesting they may be co-functional in tuber development. Upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short-days in leaves and stolons. Steady-state levels of their mRNAs were also enhanced by short-day conditions in specific organs. Using a transgenic approach and heterografting experiments, we show that both these StBELs inhibit growth in correlation with the long distance transport of their mRNAs from leaves to roots and stolons, whereas suppression lines of these two RNAs exhibited enhanced tuber yields. In summary, our results indicate that the RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5. Both these RNAs appear to inhibit growth in tubers by repressing the activity of target genes of StBEL5.
Collapse
Affiliation(s)
- Tejashree H Ghate
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Pooja Sharma
- Plant Biology Major, Iowa State University, 253 Horticulture Hall, Ames, IA, 50011-1100, USA
| | - Kirtikumar R Kondhare
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - David J Hannapel
- Plant Biology Major, Iowa State University, 253 Horticulture Hall, Ames, IA, 50011-1100, USA
| | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India.
| |
Collapse
|
40
|
Takagi M, Sakamoto T, Suzuki R, Nemoto K, Obayashi T, Hirakawa T, Matsunaga TM, Kurihara D, Nariai Y, Urano T, Sawasaki T, Matsunaga S. Plant Aurora kinases interact with and phosphorylate transcription factors. JOURNAL OF PLANT RESEARCH 2016; 129:1165-1178. [PMID: 27734173 DOI: 10.1007/s10265-016-0860-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/18/2016] [Indexed: 05/27/2023]
Abstract
Aurora kinase (AUR) is a well-known mitotic serine/threonine kinase that regulates centromere formation, chromosome segregation, and cytokinesis in eukaryotes. In addition to regulating mitotic events, AUR has been shown to regulate protein dynamics during interphase in animal cells. In contrast, there has been no identification and characterization of substrates and/or interacting proteins during interphase in plants. The Arabidopsis thaliana genome encodes three AUR paralogues, AtAUR1, AtAUR2, and AtAUR3. Among them, AtAUR1 and AtAUR2 are considered to function redundantly. Here, we confirmed that both AtAUR1 and AtAUR3 are localized in the nucleus and cytoplasm during interphase, suggesting that they have functions during interphase. To identify novel interacting proteins, we used AlphaScreen to target 580 transcription factors (TFs) that are mainly functional during interphase, using recombinant A. thaliana TFs and AtAUR1 or AtAUR3. We found 133 and 32 TFs had high potential for interaction with AtAUR1 and AtAUR3, respectively. The highly AtAUR-interacting TFs were involved in various biological processes, suggesting the functions of the AtAURs during interphase. We found that AtAUR1 and AtAUR3 showed similar interaction affinity to almost all TFs. However, in some cases, the interaction affinity differed substantially between the two AtAUR homologues. These results suggest that AtAUR1 and AtAUR3 have both redundant and distinct functions through interactions with TFs. In addition, database analysis revealed that most of the highly AtAUR-interacting TFs contained a detectable phosphopeptide that was consistent with the consensus motifs for human AURs, suggesting that these TFs are substrates of the AtAURs. The AtAURs phosphorylated several highly interacting TFs in the AlphaScreen in vitro. Overall, in line with the regulation of TFs through interaction, our results indicate the possibility of phosphoregulation of several TFs by the AtAURs (280/300).
Collapse
Affiliation(s)
- Mai Takagi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ritsuko Suzuki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Keiichirou Nemoto
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 791-8577, Japan
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, 980-8679, Japan
| | - Takeshi Hirakawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoko M Matsunaga
- Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, JST ERATO Higashiyama Live-Holonics Project, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuko Nariai
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane, 693-8501, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 791-8577, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
41
|
Nieminen K, Blomster T, Helariutta Y, Mähönen AP. Vascular Cambium Development. THE ARABIDOPSIS BOOK 2015; 13:e0177. [PMID: 26078728 PMCID: PMC4463761 DOI: 10.1199/tab.0177] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species.
Collapse
Affiliation(s)
- Kaisa Nieminen
- Natural Resources Institute Finland (Luke), Green Technology, Vantaa 01301, Finland
| | - Tiina Blomster
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
- Cardiff University Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Ari Pekka Mähönen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
42
|
Zhao M, Yang S, Chen CY, Li C, Shan W, Lu W, Cui Y, Liu X, Wu K. Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture. PLoS Genet 2015; 11:e1005125. [PMID: 25822547 PMCID: PMC4379049 DOI: 10.1371/journal.pgen.1005125] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
BREVIPEDICELLUS (BP or KNAT1), a class-I KNOTTED1-like homeobox (KNOX) transcription factor in Arabidopsis thaliana, contributes to shaping the normal inflorescence architecture through negatively regulating other two class-I KNOX genes, KNAT2 and KNAT6. However, the molecular mechanism of BP-mediated transcription regulation remains unclear. In this study, we showed that BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) both in vitro and in vivo. Loss-of-function BRM mutants displayed inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes, a phenotype similar to the bp mutants. Furthermore, the transcript levels of KNAT2 and KNAT6 were elevated in brm-3, bp-9 and brm-3 bp-9 double mutants. Increased histone H3 lysine 4 tri-methylation (H3K4me3) levels were detected in brm-3, bp-9 and brm-3 bp-9 double mutants. Moreover, BRM and BP co-target to KNAT2 and KNAT6 genes, and BP is required for the binding of BRM to KNAT2 and KNAT6. Taken together, our results indicate that BP interacts with the chromatin remodeling factor BRM to regulate the expression of KNAT2 and KNAT6 in control of inflorescence architecture. BP is a class-I KNOX transcription factor that controls normal inflorescence architecture development by repressing the expression of two KNOX genes, KNAT2 and KNAT6. In this study, we showed that Arabidopsis BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRM. brm and bp mutants displayed similar inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes. Furthermore, BP and BRM co-target to KNAT2 and KNAT6 genes and repress their expression. This work reveals a new regulatory mechanism that BP associates with BRM in control of inflorescence architecture development.
Collapse
Affiliation(s)
- Minglei Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chenlong Li
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/ Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, China
| | - Yuhai Cui
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Ontario, Canada
- Department of Biology, Western University, London, Ontario, Canada
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (XL); (KW)
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (XL); (KW)
| |
Collapse
|
43
|
Johnston R, Wang M, Sun Q, Sylvester AW, Hake S, Scanlon MJ. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. THE PLANT CELL 2014; 26:4718-32. [PMID: 25516601 PMCID: PMC4311207 DOI: 10.1105/tpc.114.132688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Development of multicellular organisms proceeds via the correct interpretation of positional information to establish boundaries that separate developmental fields with distinct identities. The maize (Zea mays) leaf is an ideal system to study plant morphogenesis as it is subdivided into a proximal sheath and a distal blade, each with distinct developmental patterning. Specialized ligule and auricle structures form at the blade-sheath boundary. The auricles act as a hinge, allowing the leaf blade to project at an angle from the stem, while the ligule comprises an epidermally derived fringe. Recessive liguleless1 mutants lack ligules and auricles and have upright leaves. We used laser microdissection and RNA sequencing to identify genes that are differentially expressed in discrete cell/tissue-specific domains along the proximal-distal axis of wild-type leaf primordia undergoing ligule initiation and compared transcript accumulation in wild-type and liguleless1-R mutant leaf primordia. We identified transcripts that are specifically upregulated at the blade-sheath boundary. A surprising number of these "ligule genes" have also been shown to function during leaf initiation or lateral branching and intersect multiple hormonal signaling pathways. We propose that genetic modules utilized in leaf and/or branch initiation are redeployed to regulate ligule outgrowth from leaf primordia.
Collapse
Affiliation(s)
- Robyn Johnston
- Section of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Minghui Wang
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Anne W Sylvester
- Department of Developmental Genetics, University of Wyoming, Laramie, Wyoming 82071
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, California 94720
| | - Michael J Scanlon
- Section of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
44
|
Liu Y, You S, Taylor-Teeples M, Li WL, Schuetz M, Brady SM, Douglas CJ. BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA. THE PLANT CELL 2014; 26:4843-61. [PMID: 25490916 PMCID: PMC4311193 DOI: 10.1105/tpc.114.128322] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 05/17/2023]
Abstract
The TALE homeodomain transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is part of a regulatory network governing the commitment to secondary cell wall biosynthesis of Arabidopsis thaliana, where it contributes to negative regulation of this process. Here, we report that BLH6, a BELL1-LIKE HOMEODOMAIN protein, specifically interacts with KNAT7, and this interaction influences secondary cell wall development. BLH6 is a transcriptional repressor, and BLH6-KNAT7 physical interaction enhances KNAT7 and BLH6 repression activities. The overlapping expression patterns of BLH6 and KNAT7 and phenotypes of blh6, knat7, and blh6 knat7 loss-of-function mutants are consistent with the existence of a BLH6-KNAT7 heterodimer that represses commitment to secondary cell wall biosynthesis in interfascicular fibers. BLH6 and KNAT7 overexpression results in thinner interfascicular fiber secondary cell walls, phenotypes that are dependent on the interacting partner. A major impact of the loss of BLH6 and KNAT7 function is enhanced expression of the homeodomain-leucine zipper transcription factor REVOLUTA/INTERFASCICULAR FIBERLESS1 (REV/IFL1). BLH6 and KNAT7 bind to the REV promoter and repress REV expression, while blh6 and knat7 interfascicular fiber secondary cell wall phenotypes are suppressed in blh6 rev and knat7 rev double mutants, suggesting that BLH6/KNAT7 signaling acts through REV as a direct target.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Shijun You
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Mallorie Taylor-Teeples
- Department of Plant Biology, UC Davis, Davis, California 95616 Genome Center, UC Davis, Davis, California 95616
| | - Wenhua L Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Siobhan M Brady
- Department of Plant Biology, UC Davis, Davis, California 95616 Genome Center, UC Davis, Davis, California 95616
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
45
|
Frank MH, Scanlon MJ. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol Biol Evol 2014; 32:355-67. [PMID: 25371433 DOI: 10.1093/molbev/msu303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed.
Collapse
|
46
|
Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J, Lozano-Sotomayor P, Greco R, Ballester P, Balanzá V, Kuijt SJH, Meijer AH, Pereira A, Ferrándiz C, de Folter S. The NTT transcription factor promotes replum development in Arabidopsis fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:69-81. [PMID: 25039392 DOI: 10.1111/tpj.12617] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 05/21/2023]
Abstract
Fruits are complex plant structures that nurture seeds and facilitate their dispersal. The Arabidopsis fruit is termed silique. It develops from the gynoecium, which has a stigma, a style, an ovary containing the ovules, and a gynophore. Externally, the ovary consists of two valves, and their margins lay adjacent to the replum, which is connected to the septum that internally divides the ovary. In this work we describe the role for the zinc-finger transcription factor NO TRANSMITTING TRACT (NTT) in replum development. NTT loss of function leads to reduced replum width and cell number, whereas increased expression promotes replum enlargement. NTT activates the homeobox gene BP, which, together with RPL, is important for replum development. In addition, the NTT protein is able to bind the BP promoter in yeast, and when this binding region is not present, NTT fails to activate BP in the replum. Furthermore, NTT interacts with itself and different proteins involved in fruit development: RPL, STM, FUL, SHP1 and SHP2 in yeast and in planta. Moreover, its genetic interactions provide further evidence about its biological relevance in replum development.
Collapse
Affiliation(s)
- Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, A.P. 629, CP 36821 Irapuato, Guanajuato, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sharma P, Lin T, Grandellis C, Yu M, Hannapel DJ. The BEL1-like family of transcription factors in potato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:709-23. [PMID: 24474812 PMCID: PMC3904721 DOI: 10.1093/jxb/ert432] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BEL1-type proteins are ubiquitous plant transcription factors in the three-amino-acid-loop-extension superfamily. They interact with KNOTTED1-like proteins, and function as heterodimers in both floral and vegetative development. Using the yeast two-hybrid system with POTATO HOMEOBOX1 (POTH1) as the bait, seven BEL1-type proteins were originally identified. One of these genes, designated StBEL5, has transcripts that move long distances in the plant and enhance tuberization and root growth. Using the potato genome database, 13 active BEL1-like genes were identified that contain the conserved homeobox domain and the BELL domain, both of which are essential for the function of BEL1-type proteins. Phylogenetic analysis of the StBEL family demonstrated a degree of orthology with the 13 BEL1-like genes of Arabidopsis. A profile of the gene structure of the family revealed conservation of the length and splicing patterns of internal exons that encode key functional domains. Yeast two-hybrid experiments with KNOTTED1-like proteins and the new StBELs confirmed the interactive network between these two families. Analyses of RNA abundance patterns clearly showed that three StBEL genes, BEL5, -11, and -29, make up approximately two-thirds of the total transcript values for the entire family. Among the 10 organs evaluated here, these three genes exhibited the 12 greatest transcript abundance values. Using a phloem-transport induction system and gel-shift assays, transcriptional cross-regulation within the StBEL family was confirmed. Making use of the potato genome and current experimental data, a comprehensive profile of the StBEL family is presented in this study.
Collapse
Affiliation(s)
- Pooja Sharma
- Plant Biology Major, Iowa State University, Ames, IA 50011, USA
| | - Tian Lin
- Plant Biology Major, Iowa State University, Ames, IA 50011, USA
| | - Carolina Grandellis
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr Hector N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mei Yu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - David J. Hannapel
- Plant Biology Major, Iowa State University, Ames, IA 50011, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Arnaud N, Pautot V. Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. FRONTIERS IN PLANT SCIENCE 2014; 5:93. [PMID: 24688486 PMCID: PMC3960571 DOI: 10.3389/fpls.2014.00093] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/25/2014] [Indexed: 05/17/2023]
Abstract
Carpels are leaf-like structures that bear ovules, and thus play a crucial role in the plant life cycle. In angiosperms, carpels are the last organs produced by the floral meristem and they differentiate a specialized meristematic tissue from which ovules develop. Members of the three-amino-acid-loop-extension (TALE) class of homeoproteins constitute major regulators of meristematic activity. This family contains KNOTTED-like (KNOX) and BEL1-like (BLH or BELL) homeodomain proteins, which function as heterodimers. KNOX proteins can have different BELL partners, leading to multiple combinations with distinct activities, and thus regulate many aspects of plant morphogenesis, including gynoecium development. TALE proteins act primarily through direct regulation of hormonal pathways and key transcriptional regulators. This review focuses on the contribution of TALE proteins to gynoecium development and connects TALE transcription factors to carpel gene regulatory networks.
Collapse
Affiliation(s)
- Nicolas Arnaud
- UMR 1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin Versailles, France
| | - Véronique Pautot
- UMR 1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Institut Jean-Pierre Bourgin Versailles, France
| |
Collapse
|
49
|
Pabón-Mora N, Wong GKS, Ambrose BA. Evolution of fruit development genes in flowering plants. FRONTIERS IN PLANT SCIENCE 2014; 5:300. [PMID: 25018763 PMCID: PMC4071287 DOI: 10.3389/fpls.2014.00300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/07/2014] [Indexed: 05/18/2023]
Abstract
The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
- *Correspondence: Natalia Pabón-Mora, Instituto de Biología, Universidad de Antioquia, Calle 70 No 52-21, AA 1226 Medellín, Colombia e-mail:
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of AlbertaEdmonton, AB, Canada
- Department of Medicine, University of AlbertaEdmonton, AB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | | |
Collapse
|
50
|
Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol 2013; 9:654. [PMID: 23549482 PMCID: PMC3658276 DOI: 10.1038/msb.2013.8] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/18/2013] [Indexed: 01/16/2023] Open
Abstract
In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.
Collapse
|