1
|
Shen X, Zhang H, Song Z, Dong Y, Ge X, Jin S, Guo S, Zhang P, Fu Y, Zhu Y, Xiao N, Wang D, Cheng J, Xu R, Jiang H. Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair. Bone Res 2025; 13:16. [PMID: 39865079 PMCID: PMC11770102 DOI: 10.1038/s41413-024-00396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025] Open
Abstract
Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury. Importantly, our data demonstrated that the Sonic hedgehog (Shh) signaling was responsible for the transition process initiation, which was strongly activated by c-Jun/SIRT6/BAF170 complex-driven Shh enhancers. Collectively, these findings depict an injury-specific niche signal-mediated Plp1-lineage cells transition towards Gli1+ MSCs and may be instructive for approaches to promote bone regeneration during aging or other bone diseases.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Hang Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Zesheng Song
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yangjiele Dong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Xiao Ge
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Shenghao Jin
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Songsong Guo
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Ping Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yuchi Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Na Xiao
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Dongmiao Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Rongyao Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China.
| | - Hongbing Jiang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Patyal P, Fil D, Wight PA. Plp1 in the enteric nervous system is preferentially expressed during early postnatal development in mouse as DM20, whose expression appears reliant on an intronic enhancer. Front Cell Neurosci 2023; 17:1175614. [PMID: 37293625 PMCID: PMC10244531 DOI: 10.3389/fncel.2023.1175614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Recently, the myelin proteolipid protein gene (Plp1) was shown to be expressed in the glia of the enteric nervous system (ENS) in mouse. However, beyond this, not much is known about its expression in the intestine. To address this matter, we investigated Plp1 expression at the mRNA and protein levels in the intestine of mice at different ages (postnatal days 2, 9, 21, and 88). In this study, we show that Plp1 expression preferentially occurs during early postnatal development, primarily as the DM20 isoform. Western blot analysis indicated that DM20 migrated according to its formula weight when isolated from the intestine. However, mobilities of both PLP and DM20 were faster than expected when procured from the brain. The 6.2hPLP(+)Z/FL transgene, which uses the first half of the human PLP1 gene to drive expression of a lacZ reporter gene, recapitulated the developmental pattern observed with the native gene in the intestine, indicating that it can be used as a proxy for Plp1 gene expression. As such, the relative levels of β-galactosidase (β-gal) activity emanating from the 6.2hPLP(+)Z/FL transgene suggest that Plp1 expression is highest in the duodenum, and decreases successively along the segments, toward the colon. Moreover, removal of the wmN1 enhancer region from the transgene (located within Plp1 intron 1) resulted in a dramatic reduction in both transgene mRNA levels and β-gal activity in the intestine, throughout development, suggesting that this region contains a regulatory element crucial for Plp1 expression. This is consistent with earlier studies in both the central and peripheral nervous systems, indicating that it may be a common (if not universal) means by which Plp1 gene expression is governed.
Collapse
|
3
|
Patyal P, Fil D, Hamdan H, Wight PA. PLP1-lacZ transgenic mice reveal that splice variants containing "human-specific" exons are relatively minor in comparison to the archetypal transcript and that an upstream regulatory element bolsters expression during early postnatal brain development. Front Cell Neurosci 2023; 16:1087145. [PMID: 36713780 PMCID: PMC9875078 DOI: 10.3389/fncel.2022.1087145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Much of what is known about the mechanisms that control the developmental expression of the myelin proteolipid protein gene (PLP1) has been attained through use of transgenic animal models. In this study, we analyzed expression of related transgenes which utilize PLP1 genomic DNA from either human or mouse to drive expression of a lacZ reporter. Human PLP1 (hPLP1) sequence span either the proximal 6.2 or 2.7 kb of 5'-flanking DNA to an internal site in Exon 2, while those from mouse comprise the proximal 2.3 kb of 5'-flanking DNA to an analogous site in Exon 2. Transgenes with hPLP1 sequence were named, in part, to the amount of upstream sequence they have [6.2hPLP(+)Z/FL and 2.7hPLP(+)Z]. The transgene containing mouse sequence is referred to here as mPLP(+)Z, to denote the species origin of PLP1 DNA. Mice which harbor the 6.2hPLP(+)Z/FL transgene were used as a model system to investigate the developmental expression of splice variants that incorporate supplementary exons from what is classically defined as PLP1 intron 1. While expression of the splice variants were detected in brain through RT-PCR analysis, they are present at much lower levels relative to the archetypal (classic) transcript. Additionally, we show that mice which harbor the 6.2hPLP(+)Z/FL transgene demonstrate wide-ranging expression throughout brain at P2, whereas expression of mPLP(+)Z is quite limited at this age. Therefore, we generated new transgenic mouse lines with the 2.7hPLP(+)Z transgene, which contains hPLP1 sequence orthologous to just that in mPLP(+)Z. Of the seven lines analyzed, six showed higher levels of 2.7hPLP(+)Z expression in brain at P21 compared to P2; the other line expressed the transgene, only weakly, at either age. This trend, coupled with the robust expression observed for 6.2hPLP(+)Z/FL at P2, suggests that the distal 3.5 kb of 5'-flanking PLP1 DNA specific to 6.2hPLP(+)Z/FL contains regulatory element(s) important for promoting early postnatal expression in brain.
Collapse
|
4
|
Zhang X, Xiong Q, Lin W, Wang Q, Zhang D, Xu R, Zhou X, Zhang S, Peng L, Yuan Q. Schwann Cells Contribute to Alveolar Bone Regeneration by Promoting Cell Proliferation. J Bone Miner Res 2023; 38:119-130. [PMID: 36331097 DOI: 10.1002/jbmr.4735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The plasticity of Schwann cells (SCs) following nerve injury is a critical feature in the regeneration of peripheral nerves as well as surrounding tissues. Here, we show a pivotal role of Schwann cell-derived cells in alveolar bone regeneration through the specific ablation of proteolipid protein 1 (Plp)-expressing cells and the transplantation of teased nerve fibers and associated cells. With inducible Plp specific genetic tracing, we observe that Plp+ cells migrate into wounded alveolar defect and dedifferentiate into repair SCs. Notably, these cells barely transdifferentiate into osteogenic cell lineage in both SCs tracing model and transplant model, but secret factors to enhance the proliferation of alveolar skeletal stem cells (aSSCs). As to the mechanism, this effect is associated with the upregulation of extracellular matrix (ECM) receptors and receptor tyrosine kinases (RTKs) signaling and the downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase-protein kinase B (PI3K-Akt) pathway. Collectively, our data demonstrate that SCs dedifferentiate after neighboring alveolar bone injury and contribute to bone regeneration mainly by a paracrine function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Peng
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Hamdan H, Patyal P, Kockara NT, Wight PA. The wmN1 enhancer region in intron 1 is required for expression of human PLP1. Glia 2018; 66:1763-1774. [PMID: 29683207 DOI: 10.1002/glia.23339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/10/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X-linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene. To address this, transgenic mice were generated which utilize human PLP1 (hPLP1) sequences (proximal 6.2 kb of 5'-flanking DNA to the first 38 bp of exon 2) to drive expression of a lacZ reporter cassette. LoxP sites were incorporated around a 1.5-kb section of hPLP1 intron 1 since it contains sequence orthologous to the wmN1 region from mouse which, previously, was shown to augment expression of a minimally-promoted transgene coincident with the active myelination period of CNS development. Eight transgenic lines were generated with the parental, 6.2hPLP(+)Z/FL, transgene. All lines expressed the transgene appropriately in brain as evidenced by staining with X-gal in white matter regions and olfactory bulb. Removal of the "wmN1" region from 6.2hPLP(+)Z/FL with a ubiquitously expressed Cre-driver caused a dramatic reduction in transgene activity. These results demonstrate for the first time that the wmN1 enhancer region: (1) is functional in hPLP1; (2) works in collaboration with its native promoter-not just a basal heterologous promoter; (3) is required for high levels of hPLP1 gene activity; (4) has a broader effect, both spatially and temporally, than originally projected with mPlp1.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
6
|
Yang Y, Kimura-Ohba S, Thompson JF, Salayandia VM, Cossé M, Raz L, Jalal FY, Rosenberg GA. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury. Neurobiol Dis 2018; 114:95-110. [PMID: 29486300 DOI: 10.1016/j.nbd.2018.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/29/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment is a major cause of dementia caused by chronic hypoxia, producing progressive damage to white matter (WM) secondary to blood-brain barrier (BBB) opening and vascular dysfunction. Tight junction proteins (TJPs), which maintain BBB integrity, are lost in acute ischemia. Although angiogenesis is critical for neurovascular remodeling, less is known about its role in chronic hypoxia. To study the impact of TJP degradation and angiogenesis during pathological progression of WM damage, we used the spontaneously hypertensive/stroke prone rats with unilateral carotid artery occlusion and Japanese permissive diet to model WM damage. MRI and IgG immunostaining showed regions with BBB damage, which corresponded with decreased endothelial TJPs, claudin-5, occludin, and ZO-1. Affected WM had increased expression of angiogenic factors, Ki67, NG2, VEGF-A, and MMP-3 in vascular endothelial cells and pericytes. To facilitate the study of angiogenesis, we treated rats with minocycline to block BBB disruption, reduce WM lesion size, and extend survival. Minocycline-treated rats showed increased VEGF-A protein, TJP formation, and oligodendrocyte proliferation. We propose that chronic hypoxia disrupts TJPs, increasing vascular permeability, and initiating angiogenesis in WM. Minocycline facilitated WM repair by reducing BBB damage and enhancing expression of TJPs and angiogenesis, ultimately preserving oligodendrocytes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Memory and Aging Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Shihoko Kimura-Ohba
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jeffrey F Thompson
- Memory and Aging Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Victor M Salayandia
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Melissa Cossé
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Limor Raz
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Fakhreya Y Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Memory and Aging Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Wight PA. Effects of Intron 1 Sequences on Human PLP1 Expression: Implications for PLP1-Related Disorders. ASN Neuro 2017; 9:1759091417720583. [PMID: 28735559 PMCID: PMC5528184 DOI: 10.1177/1759091417720583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alterations in the myelin proteolipid protein gene ( PLP1) may result in rare X-linked disorders in humans such as Pelizaeus-Merzbacher disease and spastic paraplegia type 2. PLP1 expression must be tightly regulated since null mutations, as well as elevated PLP1 copy number, both lead to disease. Previous studies with Plp1-lacZ transgenic mice have demonstrated that mouse Plp1 ( mPlp1) intron 1 DNA (which accounts for slightly more than half of the gene) is required for the mPlp1 promoter to drive significant levels of reporter gene expression in brain. However not much is known about the mechanisms that control expression of the human PLP1 gene ( hPLP1). Therefore this review will focus on sequences in hPLP1 intron 1 DNA deemed important for hPLP1 gene activity as well as a couple of "human-specific" supplementary exons within the first intron which are utilized to generate novel splice variants, and the potential role that these sequences may play in PLP1-linked disorders.
Collapse
Affiliation(s)
- Patricia A Wight
- 1 Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
8
|
Kitada M, Takeda K, Dezawa M. Regulation of DM-20 mRNA expression and intracellular translocation of glutathione-S-transferase pi isoform during oligodendrocyte differentiation in the adult rat spinal cord. Histochem Cell Biol 2016; 146:45-57. [PMID: 26921198 DOI: 10.1007/s00418-016-1421-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Kazuya Takeda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Faculty of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
9
|
Takeda K, Dezawa M, Kitada M. The expression of PLP/DM-20 mRNA is restricted to the oligodendrocyte-lineage cells in the adult rat spinal cord. Histochem Cell Biol 2015; 145:147-61. [PMID: 26563642 DOI: 10.1007/s00418-015-1384-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/28/2022]
Abstract
Proteolipid protein (PLP) is the major component of myelin; its gene encodes two major splicing variants: PLP and DM-20. Compared with PLP, DM-20 lacks the amino acids encoded by exon IIIb. The expression of PLP/DM-20 in cells outside the oligodendrocyte-lineage is unclear. To address this issue, we analyzed the detailed expression pattern of PLP/DM-20 mRNA in the adult rat spinal cord by in situ hybridization (ISH) with a cRNA probe complementary to DM-20 mRNA, which has been used to detect both PLP and DM-20 both mRNA. ISH did not label the cells expressing NeuN nor glial fibrillary acidic protein but detected those expressing Olig2, indicating that PLP/DM-20 mRNA are expressed only in oligodendrocyte-lineage cells. This cell population was expected to contain NG2-expressing oligodendrocyte precursor cells (OPCs), because some exhibited the expression of glutathione S-transferase pi isoform in the nucleus. A recent publication showed that OPCs express PLP but not DM-20 mRNA. However, no OPCs were detected. We performed ISH with a cRNA probe that specifically recognizes PLP mRNA to successfully detect some OPCs. Additionally, OPCs were detected by ISH with a cRNA probe complementary to DM-20 mRNA that was digested via alkaline hydrolysis prior to ISH. These findings collectively demonstrate that PLP and DM-20 mRNA expression is restricted to oligodendrocyte-lineage cells, and imply that the undigested cRNA probe complementary to the full-length DM-20 mRNA sequence only recognizes DM-20 mRNA and not the PLP counterpart when applied to ISH without denaturation/digestion methods.
Collapse
Affiliation(s)
- Kazuya Takeda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Faculty of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
10
|
Hamdan H, Kockara NT, Jolly LA, Haun S, Wight PA. Control of human PLP1 expression through transcriptional regulatory elements and alternatively spliced exons in intron 1. ASN Neuro 2015; 7:7/1/1759091415569910. [PMID: 25694552 PMCID: PMC4342368 DOI: 10.1177/1759091415569910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
These authors contributed equally to this work. Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lee Ann Jolly
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shirley Haun
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
11
|
Pereira GB, Meng F, Kockara NT, Yang B, Wight PA. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination. J Neurochem 2012; 124:454-65. [PMID: 23157328 DOI: 10.1111/jnc.12092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 01/16/2023]
Abstract
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is non-functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene.
Collapse
Affiliation(s)
- Glauber B Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
12
|
Pereira GB, Dobretsova A, Hamdan H, Wight PA. Expression of myelin genes: comparative analysis of Oli-neu and N20.1 oligodendroglial cell lines. J Neurosci Res 2011; 89:1070-8. [PMID: 21472765 PMCID: PMC3088771 DOI: 10.1002/jnr.22625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/07/2011] [Accepted: 01/20/2011] [Indexed: 01/20/2023]
Abstract
The use of immortalized cells has been instrumental as a tool with which to study gene regulation. However, it is crucial to understand the status of a given cell line, especially when investigating the regulation of genes whose expression is developmentally regulated. Several immortalized cell lines have been derived from primary cultures of mouse oligodendrocytes. Two such cell lines, N20.1 and Oli-neu, were characterized here in terms of their relative expression of myelin genes at both the mRNA level and the protein level. Analysis of the splice isoforms expressed by the myelin proteolipid protein (Plp1), myelin basic protein (Mbp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) genes, along with the relative amount of protein expressed by these genes, suggests that the cell lines are representative of immature oligodendrocytes, although Oli-neu cells appear to be farther along the differentiation pathway compared with N20.1 cells. Previous studies have shown that the developmental increase in Plp1 gene expression that occurs during the active myelination period is governed by transcription regulatory elements present within the first intron. The responsiveness of one of these elements, the so-called antisilencer/enhancer (ASE), was investigated in both cell lines. Results presented here suggest that the ASE has a much more potent effect in Oli-neu cells. Thus, the two cell lines appear to be at different stages and will be useful as a means to study transcription regulatory elements whose influence changes during development.
Collapse
Affiliation(s)
- Glauber B. Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Anna Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patricia A. Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
13
|
Sarret C, Combes P, Micheau P, Gelot A, Boespflug-Tanguy O, Vaurs-Barriere C. Novel neuronal proteolipid protein isoforms encoded by the human myelin proteolipid protein 1 gene. Neuroscience 2009; 166:522-38. [PMID: 20036320 DOI: 10.1016/j.neuroscience.2009.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 01/21/2023]
Abstract
The human myelin proteolipid protein 1 gene (hPLP1), which encodes the major structural myelin proteins of the central nervous system (CNS), is classically described as expressed in the oligodendrocytes, the CNS myelinating cells. We identified two new exons in the intron 1 of the hPLP1 gene that lead to the expression of additional mRNA and protein isoforms mainly expressed in neurons instead of oligodendrocytes. Those novel neuronal PLP isoforms are detected as soon as human fetal development and their concomitant expression is specific of the human species. As classical PLP proteins, the novel protein isoforms seem to be addressed to the plasma membrane. These results suggest for the first time that PLP may have functions in humans not only in oligodendrocytes but also in neurons and could be implicated in axono-glial communication. Moreover, this neuronal expression of the hPLP1 gene might explain the neuronal dysfunctions in patients carrying hPLP1 gene mutations.
Collapse
Affiliation(s)
- C Sarret
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, U931, GReD CNRS 6247, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|