1
|
Hart M, Diener C, Rheinheimer S, Kehl T, Keller A, Lenhof HP, Meese E. Expanding the immune-related targetome of miR-155-5p by integrating time-resolved RNA patterns into miRNA target prediction. RNA Biol 2025; 22:1-9. [PMID: 39760255 PMCID: PMC11730359 DOI: 10.1080/15476286.2025.2449775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approximately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the analysis of miRNA-regulated cellular networks.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University (USAAR), Homburg, Germany
- Center of Human and Molecular Biology (ZHMB), Saarland University (USAAR), Saarbrücken, Germany
| | - Caroline Diener
- Institute of Human Genetics, Saarland University (USAAR), Homburg, Germany
| | | | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University (USAAR), Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University (USAAR), Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University (USAAR), Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University (USAAR), Homburg, Germany
| |
Collapse
|
2
|
Papadopoulos KI, Papadopoulou A, Aw TC. MicroRNA-155 modulation by renin-angiotensin system inhibitors may underlie their enigmatic role in COVID-19. World J Exp Med 2025; 15:100748. [DOI: 10.5493/wjem.v15.i2.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) infection course differs between the young and healthy and the elderly with co-morbidities. In the latter a potentially lethal coronavirus disease 2019 (COVID-19) cytokine storm has been described with an unrestrained renin-angiotensin (Ang) system (RAS). RAS inhibitors [Ang converting enzyme inhibitors and Ang II type 1 receptor (AT1R) blockers] while appearing appropriate in COVID-19, display enigmatic effects ranging from protection to harm. MicroRNA-155 (miR-155)-induced translational repression of key cardiovascular (CV) genes (i.e., AT1R) restrains SARS-CoV-2-engendered RAS hyperactivity to tolerable and SARS-CoV-2-protective CV phenotypes supporting a protective erythropoietin (EPO) evolutionary landscape. MiR-155’s disrupted repression of the AT1R 1166C-allele associates with adverse CV and COVID-19 outcomes, confirming its decisive role in RAS modulation. RAS inhibition disrupts this miR-155-EPO network by further lowering EPO and miR-155 in COVID-19 with co-morbidities, thereby allowing unimpeded RAS hyperactivity to progress precariously. Current pharmacological interventions in COVID-19 employing RAS inhibition should consider these complex but potentially detrimental miR-155/EPO-related effects.
Collapse
Affiliation(s)
| | - Alexandra Papadopoulou
- Department of Occupational and Environmental Health Services, Feelgood Lund, Lund 223-63, Skåne, Sweden
| | - Tar Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
3
|
Li W, Yang C, Xu J, Ran D, Wang C. MIR155HG suppresses the osteogenic differentiation of bone marrow mesenchymal stem cells through regulating miR-155-5p and DKK1 expression. J Orthop Surg Res 2025; 20:392. [PMID: 40251598 PMCID: PMC12008851 DOI: 10.1186/s13018-025-05798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that non-coding RNAs, including the lncRNA MIR155HG, are involved in the pathogenesis of postmenopausal osteoporosis (PMOP). In the current study, we studied MIR155HG function in regulation of osteogenic differentiation and tried to reveal the underlying mechanisms. METHODS Forty blood samples taken from 20 PMOP patients (PMOP group) and 20 postmenopausal individuals without osteoporosis (control group) were used to compare the contents of MIR155HG and miR-155-5p via RT-PCR. Alizarin red S staining and ALP staining were used to evaluate the osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs). RESULTS Elevated levels of MIR155HG and miR-155-5p were observed in the blood samples of the PMOP group. Upregulation of MIR155HG resulted in decreased expression of OPN, OSX, ALP, RUNX2 and β-catenin but increased DKK1 expression, together with decreased Alizarin red S + and ALP + staining areas. However, downregulation of DKK1 did not obviously change the above indices induced by MIR155HG upregulation. Further experiments revealed that MIR155HG caused an increase in the expression of miR-155-5p, which also serves as an inhibitor of the osteogenic differentiation of BMSCs through binding to β-catenin. Consistent with DKK1 knockdown, downregulation of miR-155-5p only also did not obviously reverse the repressive effect of MIR155HG on osteoblastic differentiation, but downregulation of DKK1 and miR-155-5p synchronously restored the osteogenic differentiation ability of BMSCs suppressed by MIR155HG overexpression. CONCLUSION MIR155HG suppressed the osteoblastic differentiation of BMSCs by regulating miR-155-5p and DKK1 expression. Either inhibition of miR-155-5p and DKK1 or direct suppression of MIR155HG may be effective approaches for treating PMOP.
Collapse
Affiliation(s)
- Weimin Li
- Department of Orthopedic, The Fourth People's Hospital of Guiyang, Guiyang Guizhou, 550002, China
| | - Cheng Yang
- Department of Orthopedic, Guizhou Hospital of Beijing Jishuitan Hospital, Guiyang Guizhou, 550014, China
| | - Jiamu Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Dongcheng Ran
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Chunqing Wang
- Department of Traumatology and Orthopedics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, China.
| |
Collapse
|
4
|
Lin CW, Lu JW, Chuang CY, Hsieh WY, Tsai YJ, Yang SF, Lin SH. Clinical significance of long non-coding RNA MIR155HG genetic variants and susceptibility to oral cancer. Sci Rep 2025; 15:9956. [PMID: 40121375 PMCID: PMC11929850 DOI: 10.1038/s41598-025-94661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Oral cancer is a malignant disease with a notably high incidence rate in Taiwan. Recent reports have revealed that MIR155HG polymorphisms play a crucial role in the development of tumorigenesis in human cancers. The objective of this study was to investigate the role of MIR155HG polymorphisms in susceptibility to oral cancer among individuals in the Taiwanese Han population. In this study, we recruited 1316 oral cancer patients and controls to investigate the allelic discrimination of MIR155HG polymorphisms. Genotyping was performed using a TaqMan allelic discrimination test. The association of MIR155HG polymorphism rs1893650 with oral cancer susceptibility was found to be significant, unlike rs928883, rs767649, rs72014506, and rs4143370. Moreover, when compared to the homozygous TT genotype, the C alleles of rs1893650 polymorphism showed a significant correlation with cell differentiation grade in oral cancer patients (p = 0.019). Additionally, in oral cancer patients who chew betel quid, the C alleles of the rs1893650 polymorphism was significantly associated with lymph node metastasis and cell differentiation grade compared to those with the homozygous TT genotype. It was concluded that the rs1893650 polymorphism significantly increased the likelihood of developing oral cancer. Further large-scale studies involving diverse ethnic populations and clinicopathological characteristics are required to confirm these results. This research paves the way for new approaches in the detection and diagnosis of oral cancer, enabling early prevention of this disease.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jeng-Wei Lu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Faculty of Health and Medical Sciences, Rigshospitalet/National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chun-Yi Chuang
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | - Yun-Jung Tsai
- Translational pathology core laboratory, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
5
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
6
|
Pacheco NL, Hooten NN, Wu SF, Mensah-Bonsu M, Zhang Y, Chitrala KN, De S, Mode NA, Ezike N, Moody DLB, Zonderman AB, Evans MK. Genome-wide transcriptome differences associated with perceived discrimination in an urban, community-dwelling middle-aged cohort. FASEB J 2025; 39:e70366. [PMID: 39887814 PMCID: PMC11874777 DOI: 10.1096/fj.202402000r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Discrimination is a social adversity that is linked to several age-related outcomes. However, the molecular drivers of these observations are poorly understood. Social adverse factors are associated with proinflammatory and interferon gene expression, but little is known about whether additional genes are associated with discrimination among both African American and White adults. In this study, we examined how perceived discrimination in African American and White adults was associated with genome-wide transcriptome differences using RNA sequencing. Perceived discrimination was measured based on responses to self-reported lifetime discrimination and racial discrimination. Differential gene expression and pathway analysis were conducted in a cohort (N = 59) stratified by race, sex, and overall discrimination level. We found 28 significantly differentially expressed genes associated with race among those reporting high discrimination. Several of the upregulated genes for African American versus White adults reporting discrimination were related to immune function IGLV2-11, S100B, IGKV3-20, and IGKV4-1; the most significantly downregulated genes were associated with immune modulation and cancer, LUCAT1, THBS1, and ARPIN. The most enriched gene ontology biological process between African American and White men reporting high discrimination was the regulation of cytokine biosynthetic processes. The immune response biological process was significantly lower for African American women compared to White women reporting high discrimination. Discrimination was associated with the expression of small nucleolar RNAs, long noncoding RNAs, and microRNAs associated with energy homeostasis, cancer, and actin. Understanding the pathways through which adverse social factors like discrimination are associated with gene expression is crucial in advancing knowledge of age-related health disparities.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Sharon F. Wu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106
| | - Maame Mensah-Bonsu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
- Center of Neural Science, College of Arts and Sciences, New York University, New York City, NY 10012
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Kumaraswamy Naidu Chitrala
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Nicolle A. Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Danielle L. Beatty Moody
- School of Social Work, Rutgers University, State University of New Jersey, New Brunswick, NJ 08901
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
7
|
Yang P, Rong X, Gao Z, Wang J, Liu Z. Metabolic and epigenetic regulation of macrophage polarization in atherosclerosis: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107588. [PMID: 39778637 DOI: 10.1016/j.phrs.2025.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoling Rong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhechang Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Mazgutova N, Witvrouwen I, Czippelova B, Turianikova Z, Cernanova Krohova J, Kosutova P, Kuricova M, Cierny D, Mikolka P, Van Craenenbroeck E, Javorka M. Involvement of circulating microRNAs in the pathogenesis of atherosclerosis in young patients with obesity. Physiol Res 2024; 73:S755-S769. [PMID: 39808176 PMCID: PMC11827058 DOI: 10.33549/physiolres.935467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/05/2024] [Indexed: 01/18/2025] Open
Abstract
Obesity is considered an important factor contributing to the development of atherosclerosis. Inflammation plays a key role in endothelial dysfunction (ED), an initial stage of the atherosclerotic process. Several microRNAs (miRNAs) may play an important role in the inflammatory process, but there is a lack of information about their participation in the early stages of atherosclerosis development in patients with obesity. We aimed to assess the relations between plasma concentration of selected miRNAs, ED evaluated by reactive hyperemia index (RHI), inflammatory markers and other factors involved in the pathogenesis of atherosclerosis in adolescents and young adults with obesity. Participants (30 males, 30 females; aged 15 25 years) were divided into two groups: those with overweight/obesity (OW/O) (20 males, 20 females) and controls (C) (10 males, 10 females). The plasma concentrations of inflammatory markers, cytokines, adipocytokines, markers of lipid profile and glucose metabolism and selected miRNAs (miR 92, 126, -146a, -155) were analyzed. No significant differences in any of the miRNAs were found between the groups. MiR-146a correlated positively with RHI. Dividing the group by sex showed more significant associations between miRNA and analyzed parameters (IL-6, fasting glycemia) in men. Several observed correlations indicate a potential role of miRNAs in inflammation, the atherosclerotic process and glycemic control, primarily in male subjects with obesity. The relatively low number of observed associations between assessed parameters related to obesity and the pathogenesis of its complications could be attributed to the early stage of the atherosclerotic process in young subjects with obesity, where only subtle abnormalities are expectedly found. Key words Endothelial dysfunction, Atherosclerosis, Obesity, MicroRNA, Reactive hyperemia index.
Collapse
Affiliation(s)
- N Mazgutova
- Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang X, Zhang Y. Multi-omics joint screening of biomarkers related to M2 macrophages in gastric cancer. Discov Oncol 2024; 15:738. [PMID: 39623254 PMCID: PMC11612128 DOI: 10.1007/s12672-024-01623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Due to high mortality rate and limited treatments in gastric cancer (GC), call for deeper exploration of M2 macrophages as biomarkers is needed. METHODS The data for this study were obtained from the Gene Expression Omnibus (GEO) and Genomic Data Commons (GDC). The Seurat package was utilized for single-cell RNA sequencing (scRNA-seq) analysis. FindAllMarkers was used to identify genes highly expressed among different cell subsets. DESeq2 package was leveraged to screen differentially expressed genes (DEGs), while limma package was utilized for identifying differentially expressed proteins (DEPs). Enrichment analyses of the genes were conducted using KOBAS-i database. MultipleROC was applied to evaluate the diagnostic potential of biomarkers, and rms package was utilized to construct diagnostic models. hTFtarget database was utilized to predict potential transcription factors (TFs). Finally, cell-based assays were performed to validate the expression and potential biological functions of the screened key markers. RESULTS This study found that M2 macrophages were enriched in protein, endoplasmic reticulum, and virus-related pathways. A total of 4146 DEGs and 1946 DEPs were obtained through screening, with 254 common DEGs/DEPs. The results of gene function enrichment analysis suggested that it may affect the occurrence and development of GC through DNA replication and cell cycle. This study identified three biomarkers, HSPH1, HSPD1, and IFI30, and constructed a diagnostic model based on these three genes. The AUC value greater than 0.8 proved the reliability of the model. Through screening TFs, SPI1 and KLF5 were found to be the common TFs for the three biomarkers. The expression of the three genes IFI30, HSPD1 and HSPH1 was up-regulated in GC cells, and IFI30 may play a facilitating role in the migration and invasion of GC cells. CONCLUSION This study identified three biomarkers and constructed a diagnostic model, providing a new perspective for the research and treatment of GC.
Collapse
Affiliation(s)
- Xilong Wang
- Tumor Hematology Department, Liaoyang Central Hospital, Liaoyang, 111000, China
| | - Ying Zhang
- General Surgery Department, Liaoyang Central Hospital, Liaoyang, 111000, China.
| |
Collapse
|
10
|
Yang W, Li Q, Wang F, Zhang X, Zhang X, Wang M, Xue D, Zhao Y, Tang L. Exosomal miR-155-5p promote the occurrence of carotid atherosclerosis. J Cell Mol Med 2024; 28:e70187. [PMID: 39495676 PMCID: PMC11534067 DOI: 10.1111/jcmm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Periodontitis is a significant independent risk factor for atherosclerosis. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the effect of exosomes-miR-155-5p derived from periodontal endothelial cells on atherosclerosis in vitro and in vivo. Higher expression of miR-155-5p was detected in the plasma exosomes of patients with chronic periodontitis (CP) and carotid atherosclerosis (CAS) compared to patients with CP. Also, the expression level of miR-155-5p was associated with the severity of CP. miR-155-5p-enriched exosomes from HUVECs increased the angiogenesis and permeability of HAECs and promoted the expression of angiogenesis, permeability, and inflammation genes. Along with the overexpression or inhibition of miR-155-5p, the biological effect of HUVECs-derived exosomes on HAECs changed correspondingly. In ApoE-/- mouse models, miR-155-5p-enriched exosomes promoted the occurrence of carotid atherosclerosis by increasing permeable and angiogenic activity. Collectively, these findings highlight a molecular mechanism of periodontitis in CAS, uncovering exosomal miR-155-5p derived periodontitis affecting carotid endothelial cells in an 'exosomecrine' manner. Exosomal miR-155-5p may be used as a biomarker and target for clinical intervention to control this intractable disease in future, and the graphic abstract was shown in Figure S1.
Collapse
Affiliation(s)
- Wen‐Wen Yang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Xiang Li
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Fei Wang
- Department of Vascular Surgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin‐Ran Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xian‐Li Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dong Xue
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Zhao
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lu Tang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Fang Q, Cai Y, Chi J, Yang Y, Chen Q, Chen L, Zhang J, Ke J, Wu Y, He X. Silencing miR-155-5p alleviates hippocampal damage in kainic acid-induced epileptic rats via the Dusp14/MAPK pathway. Brain Res Bull 2024; 217:111057. [PMID: 39209069 DOI: 10.1016/j.brainresbull.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Epilepsy with recurrent seizures is characterized by neuronal damage and glial proliferation induced by brain inflammation. Recurrent seizures can lead to changes in the microRNA (miRNA) spectrum, significantly influencing the inflammatory response of microglia. MiR-155-5p, as a pro-inflammatory miRNA, is increased in the epileptic brain. However, its specific role in acute seizures remains unknown. The study aimed to develop a new strategy for treating epilepsy by investigating how silencing of miR-155-5p initiated its anticonvulsive mechanism. The level of miR-155-5p was up-regulated in the hippocampus of epileptic immature rats induced by kainic acid (KA). The use of antago-miR-155-5p exerted significant beneficial effects on the seizure scores, brain discharges and cognition in immature rats following KA-induced epilepsy. Antago-miR-155-5p also inhibited neuron damage and microglial activation. Moreover, the silencing of miR-155-5p significantly inhibited the Dual-specificity phosphatase 14 (Dusp14)/ mitogen-activated protein kinase (MAPK) axis in vivo. MiR-155-5p interacted with dusp14 to regulate MAPK signaling way expression, verified by a dual-luciferase reporter assay. The results suggested that the silencing of miR-155-5p might reduce hippocampal damage in epileptic immature rats induced by KA via Dusp14/MAPK signaling way. This implied that miR-155-5p could serve as a therapeutic tool to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiali Chi
- Department of Pediatrics, Ningde Normal University, NingDe, Ningde, Fujian 352000, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Libin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiuyun Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Yanchen Wu
- Department of Pediatrics, Ningde Maternal and Child Health Hospital, Ningde, Fujian 352000, China
| | - Xiaoshuang He
- Department of Pediatrics, Fuzhou First General Hospital with Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
12
|
Gonzalez-Candia A, Figueroa EG, Krause BJ. Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. Biochem Pharmacol 2024; 228:116318. [PMID: 38801924 DOI: 10.1016/j.bcp.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Esteban G Figueroa
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
13
|
Tom WA, Chandel DS, Jiang C, Krzyzanowski G, Fernando N, Olou A, Fernando MR. Genotype Characterization and MiRNA Expression Profiling in Usher Syndrome Cell Lines. Int J Mol Sci 2024; 25:9993. [PMID: 39337481 PMCID: PMC11432263 DOI: 10.3390/ijms25189993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein-Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.
Collapse
Affiliation(s)
- Wesley A Tom
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Dinesh S Chandel
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Chao Jiang
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Gary Krzyzanowski
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Nirmalee Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Appolinaire Olou
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - M Rohan Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| |
Collapse
|
14
|
Li C, Zhao W, Zhou H, Wu J, Huo Y, Jiang D, Ji X, Liu K, Xu Q, Li W. Functional Mutations in the microRNA-155 Promoter Modulate its Transcription Efficiency and Expression. Mol Biotechnol 2024; 66:2262-2272. [PMID: 37624482 DOI: 10.1007/s12033-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Limited research has been conducted on porcine miR-155 promoters, and previous study from our group have identified two haplotypes (TT and CC) in different pig breeds, each associated with five fully linked mutation sites within or near the miR-155 gene (Li et al. Dev Comp Immunol 39(1):110-116, 2013). In this study, the promoter region of porcine miR-155 was screened, and two important transcription factors, Foxp3 and RelA, were identified. The binding ability of Foxp3 protein was found to be affected by the first mutation site (A/C) using EMSA analysis. In vitro experiments revealed that the expression level of miR-155 was significantly higher in the C haplotype compared to the T haplotype. Additionally, northern blotting assays indicated that both the first mutation site (A/C) and the fourth mutation site (G/T) had a significant impact on miR-155 expression levels. These findings provide further insights into the transcriptional regulation of porcine miR-155 and identify crucial mutation sites that influence miR-155 expression. This knowledge can serve as a basis for identifying potential molecular markers associated with disease resistance in swine.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Wanxia Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Huijie Zhou
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Yong Huo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Dongfeng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Xiangbo Ji
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Kun Liu
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wantao Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| |
Collapse
|
15
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Salama RM, Darwish SF, Yehia R, Eissa N, Elmongy NF, Abd-Elgalil MM, Schaalan MF, El Wakeel SA. Apilarnil exerts neuroprotective effects and alleviates motor dysfunction by rebalancing M1/M2 microglia polarization, regulating miR-155 and miR-124 expression in a rotenone-induced Parkinson's disease rat model. Int Immunopharmacol 2024; 137:112536. [PMID: 38909495 DOI: 10.1016/j.intimp.2024.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Microglial activation contributes to the neuropathology of Parkinson's disease (PD). Inhibiting M1 while simultaneously boosting M2 microglia activation may therefore be a potential treatment for PD. Apilarnil (API) is a bee product produced from drone larvae. Recent research has demonstrated the protective effects of API on multiple body systems. Nevertheless, its impact on PD or the microglial M1/M2 pathway has not yet been investigated. Thus, we intended to evaluate the dose-dependent effects of API in rotenone (ROT)-induced PD rat model and explore the role of M1/M2 in mediating its effect. Seventy-two Wistar rats were equally grouped as; control, API, ROT, and groups in which API (200, 400, and 800 mg/kg, p.o.) was given simultaneously with ROT (2 mg/kg, s.c.) for 28 days. The high dose of API (800 mg/kg) showed enhanced motor function, higher expression of tyrosine hydroxylase and dopamine levels, less dopamine turnover and α-synuclein expression, and a better histopathological picture when compared to the ROT group and the lower two doses. API's high dose exerted its neuroprotective effects through abridging the M1 microglial activity, illustrated in the reduced expression of miR-155, Iba-1, CD36, CXCL10, and other pro-inflammatory markers' levels. Inversely, API high dose enhanced M2 microglial activity, witnessed in the elevated expression of miR-124, CD206, Ym1, Fizz1, arginase-1, and other anti-inflammatory indices, in comparison to the diseased group. To conclude, our study revealed a novel neuroprotective impact for API against experimentally induced PD, where the high dose showed the highest protection via rebalancing M1/M2 polarization.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Rana Yehia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, British University in Egypt (BUE), Cairo, Egypt.
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates.
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mona M Abd-Elgalil
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | - Mona F Schaalan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
17
|
Yamaoka B, Nagasaki-Maeoka E, Uekusa S, Muto-Fujita E, Abe N, Fujiwara K, Koshinaga T, Uehara S. NRP1 knockdown inhibits the invasion and migration of rhabdoid tumor of the kidney cells. Pediatr Surg Int 2024; 40:221. [PMID: 39133317 PMCID: PMC11319361 DOI: 10.1007/s00383-024-05808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE The aim of this study was to detect candidate oncogenes of rhabdoid tumor of the kidney (RTK) and evaluate their roles in RTK in vitro. METHODS An integrated analysis of messenger RNA (mRNA) and microRNA (miRNA) sequencing was performed to determine the expression profile of exosome-derived miRNAs and mRNAs in human RTK-derived cell lines and a human embryonic renal cell line. A Gene Ontology enrichment analysis was performed to analyze the functional characteristics of differentially expressed mRNAs in RTK cells. Matrigel invasion and wound-healing assays were performed to evaluate the cell invasion and migration abilities. RESULTS Forty mRNAs were highly expressed in RTK cells targeted by exosomal miRNAs, the expression of which was lower in RTK cells than in the controls. These mRNAs were primarily related to cell adhesion. Of these mRNAs, we selected neuropilin 1 (NRP1) as a candidate oncogene because its upregulated expression is associated with a poor prognosis of several types of tumors. RTK cells in which NRP1 had been knocked down exhibited decreased invasive and migratory abilities. CONCLUSION Our study indicates that NRP1 acts as an oncogene by promoting the invasion and migration of RTK cells and that it could serve as a therapeutic target.
Collapse
Affiliation(s)
- Bin Yamaoka
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Eri Nagasaki-Maeoka
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan.
- Department of Pediatric Surgery, Jichi Medical University, Saitama Medical Center, 1-847, Amanumacho, Omiya, Saitama, 330-8503, Japan.
| | - Shota Uekusa
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Eri Muto-Fujita
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Naoko Abe
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Kyoko Fujiwara
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Itabashi, Tokyo, 173-0032, Japan
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan
| | - Shuichiro Uehara
- Department of Pediatric Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-0032, Japan.
| |
Collapse
|
18
|
Liu G, Shi H, Zheng H, Kong W, Cheng X, Deng L. Circular RNA NFIX Functions as an Oncogene in Non-Small Cell Lung Cancer by Modulating the miR-214-3p/TRIAP1 Axis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13801. [PMID: 39135128 PMCID: PMC11319089 DOI: 10.1111/crj.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND circRNA NFIX has been shown to exist as an oncogene in glioma. But its expression and role in NSCLC (non-small cell lung cancer) are still unclear. This research aimed to discover the expression and function of circRNA NFIX in NSCLC. METHODS In this research, qRT-PCR was utilized to investigate the expression levels of circRNA NFIX, miRNA-214-3p, and TRIAP1 in NSCLC tissues and cell lines. The binding sites between circRNA NFIX/TRIAP1 and miRNA-214-3p were predicted using the Starbase. These interactions were further validated using a double luciferase reporter assay. Cell proliferation and apoptosis were assessed through MTT and flow cytometry, respectively. The expression of apoptosis-related proteins was measured by western blot assay. RESULTS miRNA-214-3p could link with circRNA NFIX. circRNA NFIX was upregulated, while miRNA-214-3p was downregulated in NSCLC cell lines and clinical samples. Besides, suppression of circRNA NFIX repressed cell proliferation and induced apoptosis in NSCLC cells by upregulating miRNA-214-3p expression. Besides, the data indicated that TRIAP1 was a target of miRNA-214-3p, and it was negatively regulated by miRNA-214-3p in NSCLC cells. The excessive expression of miRNA-214-3p suppressed NSCLC cell proliferation and increased apoptosis. In addition, overexpression of TRIAP1 significantly reversed the effects on NSCLC cells caused by miRNA-214-3p mimic. CONCLUSION circRNA NFIX silencing repressed the proliferation of NSCLC cells and induced cell apoptosis by regulating the miR-214-3p/TRIAP1 axis, which was a potential diagnostic and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Guohua Liu
- Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Qiqihar Medical CollegeQiqiharChina
| | - Hanbing Shi
- Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Qiqihar Medical CollegeQiqiharChina
| | - Hongyan Zheng
- Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Qiqihar Medical CollegeQiqiharChina
| | - Weili Kong
- Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Qiqihar Medical CollegeQiqiharChina
| | - Xinyue Cheng
- Department of Respiratory and Critical Care MedicineThe Third Affiliated Hospital of Qiqihar Medical CollegeQiqiharChina
| | - Liling Deng
- Department of PediatricsThe Third Affiliated Hospital of Qiqihar Medical CollegeQiqiharChina
| |
Collapse
|
19
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
20
|
Abulsoud AI, Elshaer SS, Rizk NI, Khaled R, Abdelfatah AM, Aboelyazed AM, Waseem AM, Bashier D, Mohammed OA, Elballal MS, Mageed SSA, Elrebehy MA, Zaki MB, Elesawy AE, El-Dakroury WA, Abdel-Reheim MA, Saber S, Doghish AS. Unraveling the miRNA Puzzle in Atherosclerosis: Revolutionizing Diagnosis, Prognosis, and Therapeutic Approaches. Curr Atheroscler Rep 2024; 26:395-410. [PMID: 38869707 DOI: 10.1007/s11883-024-01216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE OF REVIEW To eradicate atherosclerotic diseases, novel biomarkers, and future therapy targets must reveal the burden of early atherosclerosis (AS), which occurs before life-threatening unstable plaques form. The chemical and biological features of microRNAs (miRNAs) make them interesting biomarkers for numerous diseases. We summarized the latest research on miRNA regulatory mechanisms in AS progression studies, which may help us use miRNAs as biomarkers and treatments for difficult-to-treat diseases. RECENT FINDINGS Recent research has demonstrated that miRNAs have a regulatory function in the observed changes in gene and protein expression during atherogenesis, the process that leads to atherosclerosis. Several miRNAs play a role in the development of atherosclerosis, and these miRNAs could potentially serve as non-invasive biomarkers for atherosclerosis in various regions of the body. These miRNAs have the potential to serve as biomarkers and targets for early treatment of atherosclerosis. The start and development of AS require different miRNAs. It reviews new research on miRNAs affecting endothelium, vascular smooth muscle, vascular inflammation, lipid retention, and cholesterol metabolism in AS. A miRNA gene expression profile circulates with AS everywhere. AS therapies include lipid metabolism, inflammation reduction, and oxidative stress inhibition. Clinical use of miRNAs requires tremendous progress. We think tiny miRNAs can enable personalized treatment.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Ahmed M Aboelyazed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Aly M Waseem
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Biochemistry, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, 11961, Shaqra, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
21
|
Yin Z, Zhang J, Qin J, Guo L, Guo Q, Kang W, Ma C, Chen L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: a review. Front Pharmacol 2024; 15:1447677. [PMID: 39130633 PMCID: PMC11310034 DOI: 10.3389/fphar.2024.1447677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Edible fungus polysaccharides have garnered significant attention from scholars due to their safety and potential anti-inflammatory activity. However, comprehensive summaries of their anti-inflammatory properties are still rare. This paper provides a detailed overview of the anti-inflammatory effects and mechanisms of these polysaccharides, as well as their impact on inflammation-related diseases. Additionally, the relationship between their structure and anti-inflammatory activity is discussed. It is believed that this review will greatly enhance the understanding of the application of edible fungus polysaccharides in anti-inflammatory treatments, thereby significantly promoting the development and utilization of edible fungi.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Jingjing Qin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Lin Guo
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Wenyi Kang
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
22
|
Golovina E, Heizer T, Daumova L, Bajecny M, Fontana S, Griggio V, Jones R, Coscia M, Riganti C, Savvulidi Vargova K. MiR-155 deficiency and hypoxia results in metabolism switch in the leukemic B-cells. Cancer Cell Int 2024; 24:251. [PMID: 39020347 PMCID: PMC11256420 DOI: 10.1186/s12935-024-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Hypoxia represents one of the key factors that stimulates the growth of leukemic cells in their niche. Leukemic cells in hypoxic conditions are forced to reprogram their original transcriptome, miRNome, and metabolome. How the coupling of microRNAs (miRNAs)/mRNAs helps to maintain or progress the leukemic status is still not fully described. MiRNAs regulate practically all biological processes within cells and play a crucial role in the development/progression of leukemia. In the present study, we aimed to uncover the impact of hsa-miR-155-5p (miR-155, MIR155HG) on the metabolism, proliferation, and mRNA/miRNA network of human chronic lymphocytic leukemia cells (CLL) in hypoxic conditions. As a model of CLL, we used the human MEC-1 cell line where we deleted mature miR-155 with CRISPR/Cas9. We determined that miR-155 deficiency in leukemic MEC-1 cells results in lower proliferation even in hypoxic conditions in comparison to MEC-1 control cells. Additionally, in MEC-1 miR-155 deficient cells we observed decreased number of populations of cells in S phase. The miR-155 deficiency under hypoxic conditions was accompanied by an increased apoptosis. We detected a stimulatory effect of miR-155 deficiency and hypoxia at the level of gene expression, seen in significant overexpression of EGLN1, GLUT1, GLUT3 in MEC-1 miR-155 deficient cells. MiR-155 deficiency and hypoxia resulted in increase of glucose and lactate uptake. Pyruvate, ETC and ATP were reduced. To conclude, miR-155 deficiency and hypoxia affects glucose and lactate metabolism by stimulating the expression of glucose transporters as GLUT1, GLUT3, and EGLN1 [Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2)] genes in the MEC-1 cells.
Collapse
Affiliation(s)
- Elena Golovina
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Daumova
- Institute Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Martin Bajecny
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simona Fontana
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Valentina Griggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Rebecca Jones
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Marta Coscia
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Chiara Riganti
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
23
|
Wang M, Xu B, Xie Y, Yao G, Chen Y. Mir155hg Accelerates Hippocampal Neuron Injury in Convulsive Status Epilepticus by Inhibiting Microglial Phagocytosis. Neurochem Res 2024; 49:1782-1793. [PMID: 38555337 DOI: 10.1007/s11064-024-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
Convulsive status epilepticus (CSE) is a common critical neurological condition that can lead to irreversible hippocampal neuron damage and cognitive dysfunction. Multiple studies have demonstrated the critical roles that long non-coding RNA Mir155hg plays in a variety of diseases. However, less is known about the function and mechanism of Mir155hg in CSE. Here we investigate and elucidate the mechanism underlying the contribution of Mir155hg to CSE-induced hippocampal neuron injury. By applying high-throughput sequencing, we examined the expression of differentially expressed genes in normal and CSE rats. Subsequent RT-qPCR enabled us to measure the level of Mir155hg in rat hippocampal tissue. Targeted knockdown of Mir155hg was achieved by the AAV9 virus. Additionally, we utilized HE and Tunel staining to evaluate neuronal injury. Immunofluorescence (IF), Golgi staining, and brain path clamping were also used to detect the synaptic plasticity of hippocampal neurons. Finally, through IF staining and Sholl analysis, we assessed the degree of microglial phagocytic function. It was found that the expression of Mir155hg was elevated in CSE rats. HE and Tunel staining results showed that Mir155hg knockdown suppressed the hippocampal neuron loss and apoptosis followed CSE. IF, Golgi staining and brain path clamp data found that Mir155hg knockdown enhanced neuronal synaptic plasticity. The results from IF staining and Sholl analysis showed that Mir155hg knockdown enhanced microglial phagocytosis. Our findings suggest that Mir155hg promotes CSE-induced hippocampal neuron injury by inhibiting microglial phagocytosis.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Binyuan Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yangmei Xie
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ge Yao
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
24
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. Protein phosphatase 2A modulation and connection with miRNAs and natural products. ENVIRONMENTAL TOXICOLOGY 2024; 39:3612-3627. [PMID: 38491812 DOI: 10.1002/tox.24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Garley M, Nowak K, Jabłońska E. Neutrophil microRNAs. Biol Rev Camb Philos Soc 2024; 99:864-877. [PMID: 38148491 DOI: 10.1111/brv.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils are considered 'first-line defence' cells as they can be rapidly recruited to the site of the immune response. As key components of non-specific immune mechanisms, neutrophils use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to fight pathogens. Recently, immunoregulatory abilities of neutrophils associated with the secretion of several mediators, including cytokines and extracellular vesicles (EVs) containing, among other components, microRNAs (miRNAs), have also been reported. EVs are small structures released by cells into the extracellular space and are present in all body fluids. Microvesicles show the composition and status of the releasing cell, its physiological state, and pathological changes. Currently, EVs have gained immense scientific interest as they act as transporters of epigenetic information in intercellular communication. This review summarises findings from recent scientific reports that have evaluated the utility of miRNA molecules as biomarkers for effective diagnostics or even as start-points for new therapeutic strategies in neutrophil-mediated immune reactions. In addition, this review describes the current state of knowledge on miRNA molecules, which are endogenous regulators of gene expression besides being involved in the regulation of the immune response.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| |
Collapse
|
27
|
Moawad AM, Awady S, Ali AAER, Abdelgwad M, Belal S, Taha SHN, Mohamed MI, Hassan FM. Phthalate Exposure and Coronary Heart Disease: Possible Implications of Oxidative Stress and Altered miRNA Expression. Chem Res Toxicol 2024; 37:723-730. [PMID: 38636967 DOI: 10.1021/acs.chemrestox.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The relationship between phthalate exposure and coronary heart disease (CHD) is still unclear. This study aimed to investigate the association between phthalate exposure and CHD and determine the possible atherogenic mechanisms of phthalates by assessing oxidative stress and altering miRNA expression. This case-control study included 110 participants (55 CHD patients and 55 healthy controls). The levels of oxidative stress markers, malondialdehyde (MDA), and superoxide dismutase (SOD), and the expression of miRNA-155 (miR-155) and miRNA-208a (miR-208a), were measured and correlated with the urinary mono-2-ethylhexyl phthalate (MEHP). Highly significant differences were detected between the CHD cases and the control group regarding MEHP, MDA, SOD, miR-155, and miR-208a (p-value < 0.001). Spearman correlations revealed a significant positive correlation between MDA and MEHP in urine (P = 0.001 and rs = 0.316) and a significant negative correlation between SOD and MEHP in urine (P < 0.001 and rs = -0.345). Furthermore, significant positive correlations were observed between miR-155 and urinary MEHP (P = 0.001 and rs = 0.318) and miR-208a and urinary MEHP (P < 0.001 and rs = -0.352). This study revealed an association between phthalate exposure, as indicated by urinary MEHP and CHD; altered expression of miR-155 and miR-208a and oxidative stress could be the fundamental mechanisms.
Collapse
Affiliation(s)
- Asmaa Mohammad Moawad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Sara Awady
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Abla Abd El Rahman Ali
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Marwa Abdelgwad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Soliman Belal
- Department of Critical Care, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Sarah Hamed N Taha
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Marwa Issak Mohamed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Fatma Mohamed Hassan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| |
Collapse
|
28
|
Eshraghi R, Rafiei M, Hadian Jazi Z, Shafie D, Raisi A, Mirzaei H. MicroRNA-155 and exosomal microRNA-155: Small pieces in the cardiovascular diseases puzzle. Pathol Res Pract 2024; 257:155274. [PMID: 38626659 DOI: 10.1016/j.prp.2024.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
MicroRNAs (miRs, miRNAs) are known to have a part in various human illnesses, such as those related to the heart. One particular miRNA, miR-155, has been extensively studied and has been found to be involved in hematopoietic lineage differentiation, immunity, viral infections, inflammation, as well as vascular remodeling. These processes have all been connected to cardiovascular diseases, including heart failure, diabetic heart disease, coronary artery disease, and abdominal aortic aneurysm. The impacts of miR-155 depend on the type of cell it is acting on and the specific target genes involved, resulting in different mechanisms of disease. Although, the exact part of miR-155 in cardiovascular illnesses is yet not fully comprehended, as some studies have shown it to promote the development of atherosclerosis while others have shown it to prevent it. As a result, to comprehend the underlying processes of miR-155 in cardiovascular disorders, further thorough study is required. It has been discovered that exosomes that could be absorbed by adjacent or distant cells, control post-transcriptional regulation of gene expression by focusing on mRNA. Exosomal miRNAs have been found to have a range of functions, including participating in inflammatory reactions, cell movement, growth, death, autophagy, as well as epithelial-mesenchymal transition. An increasing amount of research indicates that exosomal miRNAs are important for cardiovascular health and have a major role in the development of a number of cardiovascular disorders, including pulmonary hypertension, atherosclerosis, acute coronary syndrome, heart failure, and myocardial ischemia-reperfusion injury. Herein the role of miR-155 and its exosomal form in heart diseases are summarized.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hadian Jazi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Cardiology/Heart Failure and Transplantation, Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
29
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
30
|
Wen S, Zhao P, Chen S, Deng B, Fang Q, Wang J. The impact of MCCK1, an inhibitor of IKBKE kinase, on acute B lymphocyte leukemia cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5164-5180. [PMID: 38872531 DOI: 10.3934/mbe.2024228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a malignant blood disorder, particularly detrimental to children and adolescents, with recurrent or unresponsive cases contributing significantly to cancer-associated fatalities. IKBKE, associated with innate immunity, tumor promotion, and drug resistance, remains poorly understood in the context of B-ALL. Thus, this research aimed to explore the impact of the IKBKE inhibitor MCCK1 on B-ALL cells. The study encompassed diverse experiments, including clinical samples, in vitro and in vivo investigations. Quantitative real-time fluorescence PCR and protein blotting revealed heightened IKBKE mRNA and protein expression in B-ALL patients. Subsequent in vitro experiments with B-ALL cell lines demonstrated that MCCK1 treatment resulted in reduced cell viability and survival rates, with flow cytometry indicating cell cycle arrest. In vivo experiments using B-ALL mouse tumor models substantiated MCCK1's efficacy in impeding tumor proliferation. These findings collectively suggest that IKBKE, found to be elevated in B-ALL patients, may serve as a promising drug target, with MCCK1 demonstrating potential for inducing apoptosis in B-ALL cells both in vitro and in vivo.
Collapse
Affiliation(s)
| | - Peng Zhao
- Hematology Department, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Siyu Chen
- The Second Affiliated Hospital, The Third Military Medical University, Chongqing 400000, China
| | - Bo Deng
- Guizhou Medical University, Guiyang 550004, China
| | - Qin Fang
- Pharmacy Department, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jishi Wang
- Hematology Department, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
31
|
Neidemire-Colley L, Khanal S, Braunreiter KM, Gao Y, Kumar R, Snyder KJ, Weber MA, Surana S, Toirov O, Karunasiri M, Duszynski ME, Chi M, Malik P, Kalyan S, Chan WK, Naeimi Kararoudi M, Choe HK, Garzon R, Ranganathan P. CRISPR/Cas9 deletion of MIR155HG in human T cells reduces incidence and severity of acute GVHD in a xenogeneic model. Blood Adv 2024; 8:947-958. [PMID: 38181781 PMCID: PMC10877121 DOI: 10.1182/bloodadvances.2023010570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
ABSTRACT Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Using preclinical mouse models of disease, previous work in our laboratory has linked microRNA-155 (miR-155) to the development of acute GVHD. Transplantation of donor T cells from miR-155 host gene (MIR155HG) knockout mice prevented acute GVHD in multiple murine models of disease while maintaining critical graft-versus-leukemia (GVL) response, necessary for relapse prevention. In this study, we used clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 genome editing to delete miR-155 in primary T cells (MIR155HGΔexon3) from human donors, resulting in stable and sustained reduction in expression of miR-155. Using the xenogeneic model of acute GVHD, we show that NOD/SCID/IL2rγnull (NSG) mice receiving MIR155HGΔexon3 human T cells provide protection from lethal acute GVHD compared with mice that received human T cells with intact miR-155. MIR155HGΔexon3 human T cells persist in the recipients displaying decreased proliferation potential, reduced pathogenic T helper-1 cell population, and infiltration into GVHD target organs, such as the liver and skin. Importantly, MIR155HGΔexon3 human T cells retain GVL response significantly improving survival in an in vivo model of xeno-GVL. Altogether, we show that CRISPR/Cas9-mediated deletion of MIR155HG in primary human donor T cells is an innovative approach to generate allogeneic donor T cells that provide protection from lethal GVHD while maintaining robust antileukemic response.
Collapse
Affiliation(s)
- Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Shrijan Khanal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
| | - Kara M. Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Rathan Kumar
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Katiri J. Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Biological Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Margot A. Weber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Simran Surana
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Olimjon Toirov
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Malith Karunasiri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Molly E. Duszynski
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mengna Chi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonu Kalyan
- Department of Pathology, New York University Langone Health, Long Island, NY
| | - Wing K. Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Hannah K. Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ramiro Garzon
- Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
32
|
Sun J, Yang R, Fu J, Huo D, Qu X, Tan C, Chen H, Wang X. TGFβ1-induced hedgehog signaling suppresses the immune response of brain microvascular endothelial cells elicited by meningitic Escherichia coli. Cell Commun Signal 2024; 22:123. [PMID: 38360663 PMCID: PMC10868028 DOI: 10.1186/s12964-023-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Meningitic Escherichia coli (E. coli) is the major etiological agent of bacterial meningitis, a life-threatening infectious disease with severe neurological sequelae and high mortality. The major cause of central nervous system (CNS) damage and sequelae is the bacterial-induced inflammatory storm, where the immune response of the blood-brain barrier (BBB) is crucial. METHODS Western blot, real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and dual-luciferase reporter assay were used to investigate the suppressor role of transforming growth factor beta 1 (TGFβ1) in the immune response of brain microvascular endothelial cells elicited by meningitic E. coli. RESULT In this work, we showed that exogenous TGFβ1 and induced noncanonical Hedgehog (HH) signaling suppressed the endothelial immune response to meningitic E. coli infection via upregulation of intracellular miR-155. Consequently, the increased miR-155 suppressed ERK1/2 activation by negatively regulating KRAS, thereby decreasing IL-6, MIP-2, and E-selectin expression. In addition, the exogenous HH signaling agonist SAG demonstrated promising protection against meningitic E. coli-induced neuroinflammation. CONCLUSION Our work revealed the effect of TGFβ1 antagonism on E. coli-induced BBB immune response and suggested that activation of HH signaling may be a potential protective strategy for future bacterial meningitis therapy. Video Abstract.
Collapse
Affiliation(s)
- Jinrui Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiyang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Dong Huo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
33
|
Tao S, Cui D, Cheng H, Liu X, Jiang Z, Chen H, Gao Y. High expression of TBRG4 in relation to unfavorable outcome and cell ferroptosis in hepatocellular carcinoma. BMC Cancer 2024; 24:194. [PMID: 38347489 PMCID: PMC10860303 DOI: 10.1186/s12885-024-11943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of malignant liver tumor with poor prognosis. In this study, we investigated the expression of transforming growth factor beta regulator 4 (TBRG4) in HCC and its effects on the proliferation, invasion, and metastasis of HCC cells, and analyzed the possible molecular mechanisms. METHOD Downloading the expression and clinical information of HCC samples in the TCGA database, analyzing the expression differences of TBRG4 by bioinformatics methods, analyzing the clinical relevance and prognostic significance. Performing GO, KEGG and GSEA enrichment analysis on the TBRG4-related gene set in patient HCC tissues. Applying cell counting, scratch test and Transwell experiment to study the biological function of TBRG4 in HCC. Mitochondrial membrane potential, apoptosis and ROS levels were evaluated to assess cell iron death. Western blot, RT-PCR, laser confocal microscopy and co-immunoprecipitation were used to detect and analyze the downstream signaling pathways and interacting molecules of TBRG4. RESULTS Bioinformatics analysis revealed that TBRG4 was abnormally highly expressed in HCC tumor tissues and was associated with poor prognosis and metastasis in HCC patients. GO and KEGG functional enrichment analysis showed that TBRG4 was related to oxidative stress and NADH dehydrogenase (ubiquinone) activity. GSEA enrichment analysis showed that TBRG4 was associated with Beta catenin independent wnt signaling and B cell receptor. Functional experiments confirmed that knocking down TBRG4 could inhibit the proliferation, migration, and invasion of HCC cells. Mechanistically, TBRG4 inhibited the function of HCC cells through the DDX56/p-AKT/GSK3β signaling pathway. In addition, interference with TBRG4 expression could reduce the mitochondrial membrane potential and accumulate ROS in HCC cells, leading to increased ferroptosis. Co-IP analysis showed that TBRG4 specifically bound to Beclin1. CONCLUSION TBRG4 is highly expressed in HCC tumor tissues and is associated with poor prognosis. It may regulate the proliferation, invasion, and metastasis of HCC cells through the DDX56/p-AKT/GSK3β signaling pathway. TBRG4 may interact with Beclin1 to regulate the ferroptosis of HCC cells.
Collapse
Affiliation(s)
- Shanchun Tao
- Blood Transfusion Department, Fuyang Normal University Affiliated Second Hospital, Fuyang, Anhui, 236000, China
| | - Di Cui
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Huimin Cheng
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Xiaofei Liu
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Zhaobin Jiang
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Hongwei Chen
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, 236037, China.
| | - Yong Gao
- Department of Clinical Laboratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, Fuyang, Anhui, 236015, China.
| |
Collapse
|
34
|
Dong B, Li C, Xu X, Wang Y, Li Y, Li X. LncRNA LINC01123 promotes malignancy of ovarian cancer by targeting hsa-miR-516b-5p/VEGFA. Genes Genomics 2024; 46:231-239. [PMID: 37728844 DOI: 10.1007/s13258-023-01440-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a critical role in the development of ovarian cancer (OC). OBJECTIVE The study aimed to determine the role of LncRNA LINC01123 in OC bio-progression, which is upregulated in OC tissues during OC progression. METHODS Bioinformatics methods, GEPIA, and qRT-PCR were used to reveal the level and correlation of LINC01123, hsa-miR-516b-5p, and VEGFA, in OC cell lines. MTT, EdU, TUNEL, and Transwell assays were performed to assess the bioactivity of OC cell. Target sites of LINC01123 and hsa-miR-516b-5p were predicted using Starbase, and the potential linkage points of VEGFA and hsa-miR-516b-5p were predicted using TargetScan. These sites and linkage points were confirmed by double luciferase reporter assay. RESULTS LINC01123 was upregulated in OC cell lines and LINC01123 silencing suppressed the proliferation and metastasis of OC cells, but promoted cell apoptosis. hsa-miR-516b-5p was linked to LINC01123 and. VEGFA was downstream of hsa-miR-516b-5p. Importantly, silencing of hsa-miR-516b-5p reversed the inhibitory impact of si-LINC01123. The result of hsa-miR-516b-5p inhibitor + si-LINC01123 co-transfection were rescued by si-VEGFA. CONCLUSION LINC01123 promotes OC development by dampening miR-516b-5p function, and may be a novel target for treating OC.
Collapse
Affiliation(s)
- Bing Dong
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China.
| | - Cuiping Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xiaomeng Xu
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yan Wang
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Yuewen Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| | - Xingmei Li
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, No. 27, Taishun Street, Tiefeng, Qiqihar, 161000, Heilongjiang, China
| |
Collapse
|
35
|
Cui J, Wang H, Liu S, Zhao Y. New Insights into Roles of IL-7R Gene as a Therapeutic Target Following Intracerebral Hemorrhage. J Inflamm Res 2024; 17:399-415. [PMID: 38260810 PMCID: PMC10802176 DOI: 10.2147/jir.s438205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke leading to high rates of morbidity and mortality in adults. Recent studies showed that immune and inflammatory responses might play essential roles in secondary brain injury. The purpose of this article was to provide a reference for further therapeutic strategies for ICH patients. Methods GSE206971 and GSE216607 datasets from the gene expression omnibus (GEO) database were used to screen the highly immune-related differentally expressed genes (IRDEGs). We used the CIBERSORT algorithm to assess the level of immune signatures infiltration and got the possible function of IRDEGs which was analyzed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Protein-protein interaction (PPI) networks and six hub genes were identified in the Cytoscape plug-in. GSVA algorithm was performed to evaluate the potential pathways of six hub genes in ICH samples. The expression level of IL-7R chosen from six hub genes was further validated by Western blotting. The cell models of ICH were established for the research of IL-7/IL-7R signaling way. Results A total of six hub genes (ITGAX, ITGAM, CCR2, CD28, SELL, and IL-7R) were identified. IL-7R was highly expressed in the mice ICH group, as shown by immunoblotting. Next, we constructed ICH cell models in RAW264.7 cells and BV2 cells. After treatment with IL-7, iNOS expression (M1 marker) was greatly inhibited while Arg-1(M2 marker) was enhanced, and it might function via the JAK3/STAT5 signaling pathway. Conclusion The hypothesis is proposed that the IL-7/IL-7R signaling pathway might regulate the inflammatory process following ICH by regulating microglia polarization. Our study is limited and requires more in-depth experimental confirmation.
Collapse
Affiliation(s)
- Jie Cui
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Hongbin Wang
- Department of Emergency, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, 214400, People’s Republic of China
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| | - Shiyao Liu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, People’s Republic of China
| |
Collapse
|
36
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
37
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Rawat S, Dhaundhiyal K, Dhramshaktu IS, Hussain MS, Gupta G. Targeting Toll-Like Receptors for the Treatment of Lung Cancer. IMMUNOTHERAPY AGAINST LUNG CANCER 2024:247-264. [DOI: 10.1007/978-981-99-7141-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
39
|
Leavenworth JD, Yusuf N, Hassan Q. K-Homology Type Splicing Regulatory Protein: Mechanism of Action in Cancer and Immune Disorders. Crit Rev Eukaryot Gene Expr 2024; 34:75-87. [PMID: 37824394 PMCID: PMC11003564 DOI: 10.1615/critreveukaryotgeneexpr.2023048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
K homology-type splicing regulatory protein (KSRP) is emerging as a key player in cancer biology, and immunology. As a single-strand nucleic acid binding protein it functions in both transcriptional and post-transcriptional regulation, while facilitating multiple stages of RNA metabolism to affect proliferation and control cell fate. However, it must interact with other proteins to determine the fate of its bound substrate. Here we provide an minireview of this important regulatory protein and describe its complex subcellular functions to affect RNA metabolism, stability, miRNA biogenesis and maturation, stress granule function, metastasis, and inflammatory processes.
Collapse
Affiliation(s)
- Jonathan D. Leavenworth
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
40
|
Jiao Y, Mi S, Li X, Liu Y, Han N, Xu J, Liu Y, Li S, Guo L. MicroRNA-155 targets SOCS1 to inhibit osteoclast differentiation during orthodontic tooth movement. BMC Oral Health 2023; 23:955. [PMID: 38041017 PMCID: PMC10693016 DOI: 10.1186/s12903-023-03443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND MicroRNA-155 (miR-155) is a multifunctional miRNA whose expression is known to be involved in a range of physiological and pathological processes. Its association with several oral diseases has been established. However, the specific role of miR-155 in orthodontic tooth movement remains unclear. In this study, we investigated the impact of miR-155 on osteoclast differentiation and orthodontic tooth movement models, aiming to explore the underlying mechanisms. METHODS In this experiment, we utilized various agents including miR-155 mimic, miR-155 inhibitor, as well as non-specific sequences (NC mimic & NC inhibitor) to treat murine BMMNCs. Subsequently, osteoclast induction (OC) was carried out to examine the changes in the differentiation ability of monocytes under different conditions. To assess these changes, we employed RT-PCR, Western blotting, and TRAP staining techniques. For the orthodontic tooth movement model in mice, the subjects were divided into two groups: the NaCl group (injected with saline solution) and the miR-155 inhibitor group (injected with AntagomiR-155). We observed the impact of orthodontic tooth movement using stereoscopic microscopy, micro-CT, and HE staining. Furthermore, we performed RT-PCR and Western blotting analyses on the tissues surrounding the moving teeth. Additionally, we employed TargetScan to predict potential target genes of miR-155. RESULTS During osteoclast induction of BMMNCs, the expression of miR-155 exhibited an inverse correlation with osteoclast-related markers. Overexpression of miR-155 led to a decrease in osteoclast-related indexes, whereas underexpression of miR-155 increased those indexes. In the mouse orthodontic tooth movement model, the rate of tooth movement was enhanced following injection of the miR-155 inhibitor, leading to heightened osteoclast activity. TargetScan analysis identified SOCS1 as a target gene of miR-155. CONCLUSIONS Our results suggest that miR-155 functions as an inhibitor of osteoclast differentiation, and it appears to regulate osteoclasts during orthodontic tooth movement. The regulatory mechanism of miR-155 in this process involves the targeting of SOCS1.
Collapse
Affiliation(s)
- Yao Jiao
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
| | - Sicong Mi
- Department of Stomatology, Air Force Medical Center, PLA, The Fourth Military Medical University, Beijing, 100142, P. R. China
| | - Xiaoyan Li
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Yitong Liu
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Nannan Han
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Junji Xu
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Yi Liu
- Department of Periodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, P. R. China
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, P. R. China.
| | - Lijia Guo
- Department of Orthodontics (WangFuJing Campus), School of Stomatology, Capital Medical University, Scylla alley No.11, Beijing, 100006, P. R. China.
| |
Collapse
|
41
|
Gareev I, de Jesus Encarnacion Ramirez M, Goncharov E, Ivliev D, Shumadalova A, Ilyasova T, Wang C. MiRNAs and lncRNAs in the regulation of innate immune signaling. Noncoding RNA Res 2023; 8:534-541. [PMID: 37564295 PMCID: PMC10410465 DOI: 10.1016/j.ncrna.2023.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
The detection and defense against foreign agents and pathogens by the innate immune system is a crucial mechanism in the body. A comprehensive understanding of the signaling mechanisms involved in innate immunity is essential for developing effective diagnostic tools and therapies for infectious diseases. Innate immune response is a complex process involving recognition of pathogens through receptors, activation of signaling pathways, and cytokine production, which are all crucial for deploying appropriate countermeasures. Non-coding RNAs (ncRNAs) are vital regulators of the immune response during infections, mediating the body's defense mechanisms. However, an overactive immune response can lead to tissue damage, and maintaining immune homeostasis is a complex process in which ncRNAs play a significant role. Recent studies have identified microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as key players in controlling gene expression in innate immune pathways, thereby participating in antiviral defenses, tumor immunity, and autoimmune diseases. MiRNAs act by regulating host defense mechanisms against viruses, bacteria, and fungi by targeting mRNA at the post-transcriptional level, while lncRNAs function as competing RNAs, blocking the binding of miRNAs to mRNA. This review provides an overview of the regulatory role of miRNAs and lncRNAs in innate immunity and its mechanisms, as well as highlights potential future research directions, including the expression and maturation of new ncRNAs and the conservation of ncRNAs in evolution.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Manuel de Jesus Encarnacion Ramirez
- Department of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Evgeniy Goncharov
- Traumatology and Orthopedics Center, Central Clinical Hospital of the Russian Academy of Sciences, 117593, Moscow, Russia
| | - Denis Ivliev
- Department of Neurosurgery, Smolensk State Medical University of the Ministry of Health of the Russian Federation, Smolensk, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
42
|
Abdalla AE, Alanazi A, Abosalif KOA, Alameen AAM, Junaid K, Manni E, Talha AA, Ejaz H. MicroRNA-155, a double-blade sword regulator of innate tuberculosis immunity. Microb Pathog 2023; 185:106438. [PMID: 37925110 DOI: 10.1016/j.micpath.2023.106438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Tuberculosis (TB) is a chronic, life-threatening disease caused by unusual facultative intracellular bacteria, Mycobacterium tuberculosis. This bacterium has unique resistance to many antimicrobial agents and has become a major global health concern due to emerging multidrug-resistant strains. Additionally, it has developed multiple schemes to exploit host immune signaling and establish long-term survival within host tissues. Thus, understanding the pathways that govern the crosstalk between the bacterium and the immune system could provide a new avenue for therapeutic interventions. MicroRNAs (miRs) are short, noncoding, and regulator RNA molecules that control the expression of cellular genes by targeting their mRNAs post-transcriptionally. MiR-155 is one of the most crucial miR in shaping the host immune defenses against M. tuberculosis. MiR-155 is remarkably downregulated in patients with clear clinical TB symptoms in comparison with latently infected patients and/or healthy individuals, thereby implicating its role in controlling M. tuberculosis infection. However, functional probing of miR-155 suggests dual effects in regulating the host's innate defenses in response to mycobacterial infection. This review provides comprehensive knowledge and future perspectives regarding complex signaling pathways that mediated miR-155 expression during M. tuberculosis infections. Moreover, miR-155-targeting signaling orchestrates inflammatory mediators' production, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Albadawi Abdelbagi Talha
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|
43
|
Catanzaro G, Conte F, Trocchianesi S, Splendiani E, Bimonte VM, Mocini E, Filardi T, Po A, Besharat ZM, Gentile MC, Paci P, Morano S, Migliaccio S, Ferretti E. Network analysis identifies circulating miR-155 as predictive biomarker of type 2 diabetes mellitus development in obese patients: a pilot study. Sci Rep 2023; 13:19496. [PMID: 37945677 PMCID: PMC10636008 DOI: 10.1038/s41598-023-46516-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Obesity is the main risk factor for many non-communicable diseases. In clinical practice, unspecific markers are used for the determination of metabolic alterations and inflammation, without allowing the characterization of subjects at higher risk of complications. Circulating microRNAs represent an attractive approach for early screening to identify subjects affected by obesity more at risk of developing connected pathologies. The aim of this study was the identification of circulating free and extracellular vesicles (EVs)-embedded microRNAs able to identify obese patients at higher risk of type 2 diabetes (DM2). The expression data of circulating microRNAs derived from obese patients (OB), with DM2 (OBDM) and healthy donors were combined with clinical data, through network-based methodology implemented by weighted gene co-expression network analysis. The six circulating microRNAs overexpressed in OBDM patients were evaluated in a second group of patients, confirming the overexpression of miR-155-5p in OBDM patients. Interestingly, the combination of miR-155-5p with serum levels of IL-8, Leptin and RAGE was useful to identify OB patients most at risk of developing DM2. These results suggest that miR-155-5p is a potential circulating biomarker for DM2 and that the combination of this microRNA with other inflammatory markers in OB patients can predict the risk of developing DM2.
Collapse
Affiliation(s)
- Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "A. Ruberti" (IASI), National Research Council (CNR), 00185, Rome, Italy
| | - Sofia Trocchianesi
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Elena Splendiani
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Viviana Maria Bimonte
- Department of Movement, Human and Health Sciences, University of Foro Italico, 00135, Rome, Italy
| | - Edoardo Mocini
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Tiziana Filardi
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Cristina Gentile
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University, 00161, Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Foro Italico, 00135, Rome, Italy.
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
44
|
Barros Ferreira L, Ashander LM, Appukuttan B, Ma Y, Williams KA, Smith JR. Expression of Long Non-Coding RNAs in Activated Human Retinal Vascular Endothelial Cells. Ocul Immunol Inflamm 2023; 31:1813-1818. [PMID: 36194865 DOI: 10.1080/09273948.2022.2122512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/03/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE Retinal endothelial cell activation is a central event in non-infectious posterior uveitis. There is recent interest in long non-coding (lnc)RNA-targeted therapeutics for retinal diseases. We aimed to identify human retinal endothelial cell lncRNAs that might be involved in activation. METHODS Eleven candidate lncRNAs were identified: GAS5, KCNQ1OT1, LINC00294, MALAT1, MEG3, MIR155HG, NEAT1, NORAD, OIP5-AS1, SENCR, TUG1. Expression was assessed by RT-PCR in human retinal endothelial cells, at baseline and following activation with interleukin (IL)-1β and tumor necrosis factor (TNF)-α. RESULTS IL-1β significantly upregulated MEG3 and SENCR at 4 and 24 hours; LINC00294, NORAD, OIP5-AS1 and TUG1 at 24 hours; and MIR155HG at 4, 24 and 48 hours; but downregulated GAS5 at 24 and 48 hours. TNF-α significantly upregulated KCNQ1OT1, LINC00294, MEG3, NORAD and SENCR at 4 hours; SENCR and TUG1 at 24 hours; and MIR155HG at all time points. CONCLUSIONS Future studies involving manipulation of MIR155HG may be warranted to explore potential therapeutic applications for non-infectious posterior uveitis.
Collapse
Affiliation(s)
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Binoy Appukuttan
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Keryn A Williams
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
45
|
Wang G, Gao X, Sun Z, He T, Huang C, Li S, Long H. Circular RNA SMARCA5 inhibits cholangiocarcinoma via microRNA-95-3p/tumor necrosis factor receptor associated factor 3 axis. Anticancer Drugs 2023; 34:1002-1009. [PMID: 36727735 PMCID: PMC10501356 DOI: 10.1097/cad.0000000000001487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/16/2022] [Indexed: 02/03/2023]
Abstract
Enhancing research indicatedthat circular RNA (circRNA) acted a critical part in cholangiocarcinoma (CHOL) development. This research aims to discover the role of circRNA SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 5 (SMARCA5) in CHOL bio-progression, which has been proved to be downregulated in CHOL tissues. In this study, quantitative reverse transcription polymerase chain reaction was used to reveal the level and linkage of circRNA SMARCA5, miRNA-95-3p and TNF receptor-associated factor 3 gene (TRAF3) in CHOL tissues and cancer cells. The target sites of circRNA SMARCA5 and miRNA-95-3p were forecast by Starbase, and Targetscan was conducted to forecast the potential linkage points of TRAF3 and miRNA-95-3p, and which is affirmed by double luciferase reporter assay. CCK-8 and flow cytometry assay was carried to indicate cell viability. And apoptosis-related protein was counted by caspase3 activity and Western blot assay. CircRNA SMARCA5 was downregulated in CHOL cell lines and cancer samples. Besides, over-expression of SMARCA5 inhibited cell growth and promoted apoptotic rate. Dual-luciferase reporter assays presented that miRNA-95-3p could link with circRNA SMARCA5. Moreover, miRNA-95-3p was discovered highly expressed in CHOL. Interference of miRNA-95-3p repressed cell proliferation and raised the apoptosis. Importantly, TRAF3 was validated to be a downstream of miRNA-95-3p. Strengthen of miRNA-95-3p reversed the inhibitory impact of circRNA SMARCA5-plasmid transfection, and the results of miRNA-95-3p inhibitor were reversed by si-TRAF3. CircRNA SMARCA5 is involved in CHOL development by interosculating miRNA-95-3p/TRAF3 axis and may become a novel approach for treating CHOL.
Collapse
Affiliation(s)
- Guangxin Wang
- Department of General Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University)
| | - Xia Gao
- Department of Oncology, Wuhan Asia General Hospital, Wuhan, China
| | - Zhijun Sun
- Department of General Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University)
| | - Tianyou He
- Department of General Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University)
| | - Chaogang Huang
- Department of General Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University)
| | - Shouwei Li
- Department of General Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University)
| | - Haocheng Long
- Department of General Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University)
| |
Collapse
|
46
|
Moutabian H, Radi UK, Saleman AY, Adil M, Zabibah RS, Chaitanya MNL, Saadh MJ, Jawad MJ, Hazrati E, Bagheri H, Pal RS, Akhavan-Sigari R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol Res Pract 2023; 250:154789. [PMID: 37741138 DOI: 10.1016/j.prp.2023.154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023]
Abstract
Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mv N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | | | - Ebrahi Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
47
|
Gandy S, Ehrlich ME. miR155, TREM2, INPP5D: Disease stage and cell type are essential considerations when targeting clinical interventions based on mouse models of Alzheimer's amyloidopathy. J Neuroinflammation 2023; 20:214. [PMID: 37749581 PMCID: PMC10518910 DOI: 10.1186/s12974-023-02895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Studies of microglial gene manipulation in mouse models of Alzheimer's disease (AD) amyloidopathy can cause unpredictable effects on various key endpoints, including amyloidosis, inflammation, neuritic dystrophy, neurodegeneration, and learning behavior. In this Correspondence, we discuss three examples, microRNA 155 (miR155), TREM2, and INPP5D, in which observed results have been difficult to reconcile with predicted results based on precedent, because these six key endpoints do not reliably track together. The pathogenesis of AD involves multiple cell types and complex events that may change with disease stage. We propose that cell-type targeting and timing of intervention are responsible for the sometimes impossibility of predicting whether any prospective therapeutic intervention should aim at increasing or decreasing the level or activity of a particular molecular target.
Collapse
Affiliation(s)
- Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
48
|
Papadopoulos KI, Papadopoulou A, Aw TC. MicroRNA-155 mediates endogenous angiotensin II type 1 receptor regulation: implications for innovative type 2 diabetes mellitus management. World J Diabetes 2023; 14:1334-1340. [PMID: 37771329 PMCID: PMC10523232 DOI: 10.4239/wjd.v14.i9.1334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 09/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a lifelong condition and a threat to human health. Thorough understanding of its pathogenesis is acutely needed in order to devise innovative, preventative, and potentially curative pharmacological interventions. MicroRNAs (miRNA), are small, non-coding, one-stranded RNA molecules, that can target and silence around 60% of all human genes through translational repression. MiR-155 is an ancient, evolutionarily well-conserved miRNA, with distinct expression profiles and multifunctionality, and a target repertoire of over 241 genes involved in numerous physiological and pathological processes including hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular conditions, and particularly diabetes mellitus. MiR-155 Levels are progressively reduced in aging, obesity, sarcopenia, and T2DM. Thus, the loss of coordinated repression of multiple miR-155 targets acting as negative regulators, such as C/EBPβ, HDAC4, and SOCS1 impacts insulin signaling, deteriorating glucose homeostasis, and causing insulin resistance (IR). Moreover, deranged regulation of the renin angiotensin aldo-sterone system (RAAS) through loss of Angiotensin II Type 1 receptor downregulation, and negated repression of ETS-1, results in unopposed detrimental Angiotensin II effects, further promoting IR. Finally, loss of BACH1 and SOCS1 repression abolishes cytoprotective, anti-oxidant, anti-apoptotic, and anti-inflammatory cellular pathways, and promotes β-cell loss. In contrast to RAAS inhibitor treatments that further decrease already reduced miR-155 Levels, strategies to increase an ailing miR-155 production in T2DM, e.g., the use of metformin, mineralocorticoid receptor blockers (spironolactone, eplerenone, finerenone), and verapamil, alone or in various combinations, represent current treatment options. In the future, direct tissue delivery of miRNA analogs is likely.
Collapse
Affiliation(s)
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Lund 223-63, Skåne, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore 529889, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore, Singapore
| |
Collapse
|
49
|
Farhana A, Alsrhani A, Rasheed N, Rasheed Z. Gold nanoparticles attenuate the interferon-γ induced SOCS1 expression and activation of NF-κB p65/50 activity via modulation of microRNA-155-5p in triple-negative breast cancer cells. Front Immunol 2023; 14:1228458. [PMID: 37720228 PMCID: PMC10500308 DOI: 10.3389/fimmu.2023.1228458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Objective Triple-negative breast cancer (TNBC) is a very aggressive form of cancer that grows and spreads very fast and generally relapses. Therapeutic options of TNBC are limited and still need to be explored completely. Gold nanoparticles conjugated with citrate (citrate-AuNPs) are reported to have anticancer potential; however, their role in regulating microRNAs (miRNAs) in TNBC has never been investigated. This study investigated the potential of citrate-AuNPs against tumorigenic inflammation via modulation of miRNAs in TNBC cells. Methods Gold nanoparticles were chemically synthesized using the trisodium-citrate method and were characterized by UV-Vis spectrophotometry and dynamic light scattering studies. Targetscan bioinformatics was used to analyze miRNA target genes. Levels of miRNA and mRNA were quantified using TaqMan assays. The pairing of miRNA in 3'untranslated region (3'UTR) of mRNA was validated by luciferase reporter clone, containing the entire 3'UTR of mRNA, and findings were further re-validated via transfection with miRNA inhibitors. Results Newly synthesized citrate-AuNPs were highly stable, with a mean size was 28.3 nm. The data determined that hsa-miR155-5p is a direct regulator of SOCS1 (suppressor-of-cytokine-signaling) expression and citrate-AuNPs inhibits SOCS1 mRNA/protein expression via modulating hsa-miR155-5p expression. Transfection of TNBC MDA-MB-231 cells with anti-miR155-5p markedly increased SOCS1 expression (p<0.001), while citrate-AuNPs treatment significantly inhibited anti-miR155-5p transfection-induced SOCS1 expression (p<0.05). These findings were validated by IFN-γ-stimulated MDA-MB-231 cells. Moreover, the data also determined that citrate-AuNPs also inhibit IFN-γ-induced NF-κB p65/p50 activation in MDA-MB-231 cells transfected with anti-hsa-miR155-5p. Conclusion Newly generated citrate-AuNPs were stable and non-toxic to TNBC cells. Citrate-AuNPs inhibit IFN-γ-induced SOCS1 mRNA/protein expression and deactivate NF-κB p65/50 activity via negative regulation of hsa-miR155-5p. These novel pharmacological actions of citrate-AuNPs on IFN-γ-stimulated TNBC cells provide insights that AuNPs inhibit IFN-γ induced inflammation in TNBC cells by modulating the expression of microRNAs.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Consultant, Calamvale, QLD, Australia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
50
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|